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Abstract

Cryogenic electron tomography (cryo-ET) allows study-
ing biological macromolecular complexes in cells by three-
dimensional (3D) data analysis. The complexes continu-
ously change their shapes (conformations) to achieve bi-
ological functions. The shape heterogeneity in the sam-
ples imaged in the cryo electron microscope is a bottleneck
for comprehending biological mechanisms and developing
drugs. Low signal-to-noise ratio and spatial anisotropy
(missing wedge artefacts) make cryo-ET data particularly
challenging for resolving the shape variability. Other shape
variability analysis techniques simplify the problem by con-
sidering discrete rather than continuous conformational
changes of complexes. Recently, HEMNMA-3D was intro-
duced for cryo-ET continuous shape variability analysis,
based on elastic and rigid-body 3D registration between
simulated shapes and cryo-ET data. The simulated motions
are obtained by normal mode analysis of a high- or low-
resolution 3D reference model of the complex under study.
The rigid-body alignment is achieved via fast rotational
matching with missing wedge compensation. HEMNMA-
3D provides a visual insight into molecular dynamics by
grouping and averaging subtomograms of similar shapes
and by animating movies of registered motions. This article
reviews the method and compares it with existing literature
on a simulated dataset for nucleosome shape variability.

1. Introduction

Three-dimensional (3D) volumetric images of vitrified
cell sections (slices) can be obtained using cryogenic elec-
tron tomography (cryo-ET). The 3D nature of cryo-ET data
permits studying macromolecular complexes despite the
crowded cell environment. The most common cryo-ET data
acquisition scheme is the acquisition of multiple 2D pro-
jection images of a specimen rotated around a single axis
(perpendicular to the electron beam) inside the electron mi-

croscope. The obtained tilt-series 2D projections are used
to reconstruct a 3D volume (referred to as tomogram) based
on the Fourier slice theorem and backprojection. The tomo-
gram of a cell section typically contains hundreds of copies
of different macromolecules at random orientations. The
copies of the macromolecule under study (target macro-
molecule) can be identified and extracted into individual
volumes called subtomograms, either manually or via tem-
plate matching.

Subtomograms suffer from a low signal-to-noise ratio
(SNR) due to exposing the sample to a low electron dose
during data acquisition to preserve the fragile biological
structure from radiation damage. Additionally, subtomo-
grams suffer from spatial anisotropies, known as missing
wedge artefacts, due to the inability to include in the 3D
reconstruction the images from all orientations (the maxi-
mum tilt angle in the microscope is usually limited to ±60°),
which corresponds to a missing wedge-shaped region in 3D
Fourier space. The missing wedge artefacts are often ob-
served as elongations along the beam axis, blurring and dis-
tracting caustics in the subtomograms. Due to the low SNR
and the missing wedge artefacts, cryo-ET data processing
is mainly based on rigid-body aligning and averaging of
many subtomograms to enhance the data quality and re-
veal the target macromolecular structure, which is known as
Subtomogram Averaging (StA) [1]. However, with recent
instrumentation and software development, more research
moves in the direction of studying subtomograms individu-
ally (e.g., development of methods for denoising and miss-
ing wedge correction with no or a minimum of averaging
[2, 3]).

The main focus of studying macromolecules in their na-
tive state is to observe their shapes and dynamics. In the
last decade, cryo-electron microscopy (cryo-EM) research
has shown that disentangling macromolecular shape vari-
ability and identifying the macromolecular conformational
transitions is valuable for understanding biological mecha-
nisms [4, 5]. The most popular cryo-EM technique, namely
Single Particle Analysis (SPA), allows a near-atomic resolu-



tion of 3D reconstruction of macromolecules in vitro (from
vitrified samples of a solution containing biochemically pu-
rified macromolecules), by combining alignment and clas-
sification in 2D and 3D [6]. Only some SPA methods con-
sider continuous shape variability, meaning gradual confor-
mational transitions of macromolecules with many inter-
mediate conformational states. They represent images in
a low-dimensional space allowing a 3D visualization of the
macromolecular shape variability [7, 8]. In contrast to SPA,
cryo-ET allows studying macromolecules in situ (in vitri-
fied cell sections). The conformational variability in the na-
tive cellular environment is largely overlooked, due to the
lack of cryo-ET image analysis methods capable of dealing
with continuous shape variability in the data with low SNR
and missing-wedge artefacts.

Contribution: HEMNMA-3D [9] was introduced for
cryo-ET continuous macromolecular shape variability anal-
ysis, inspired by HEMNMA, a method for continuous shape
variability analysis in SPA [10, 8]. HEMNMA-3D is based
on elastic and rigid-body 3D registration between simulated
shapes and cryo-ET data. The simulated motions are ob-
tained by normal mode analysis of a high- or low-resolution
3D reference model of the complex under study. The rigid-
body alignment is achieved via fast rotational matching with
missing wedge compensation. HEMNMA-3D provides a
visual insight into molecular dynamics by grouping and av-
eraging subtomograms of similar shapes and by animat-
ing movies of registered motions. This article reviews the
method and compares it with existing literature on a simu-
lated dataset for nucleosome shape variability.

2. Related work
2.1. 3D elastic registration for medical images

Elastic registration is extensively used in medical image
processing for a wide spectrum of applications, including
Magnetic Resonance Imaging [11] and Computed Tomog-
raphy [12]. Noteworthy, several multi-purpose machine
learning and deep learning-based 3D registration methods
were proposed [13, 14]. However, none of these methods
was adapted or applied to cryo-ET, possibly due to severe
cryo-ET data limitations such as missing wedge artefacts
and poor SNR.

2.2. Cryo-ET subtomogram classification

Methods reported to deal with cryo-ET data hetero-
geneity are based on classification and rigid-body align-
ment. They can be split into two categories, namely multi-
reference alignment approaches [15] and post-alignment
classification approaches [16].

Multi-reference alignment approaches are based on com-
petitive alignment. An expert user provides a number of ref-

erences with different shapes of the macromolecule under
study based on anticipated shape variabilities. An algorithm
then aligns (rigid-body-wise) and compares each subtomo-
gram with the multiple given references and attributes it to
the reference that yields the highest similarity score. The
starting references evolve by averaging the aligned subto-
mograms and repeating the process until stability. Such
methods require prior knowledge of the biological speci-
men and are prone to overfitting and data misinterpretation
if not carefully used.

Post-alignment classification approaches perform clas-
sification after rigid-body alignment via StA. During StA,
subtomograms are rigid-body aligned against a reference to
maximize a scoring function. In each iteration, the aligned
subtomograms are averaged to produce a structure that be-
comes the reference for the next StA iteration. The iter-
ations repeat until convergence. The result is an average
structure and aligned subtomograms (centred and oriented
with respect to the reference used in the last iteration).
Classifying aligned subtomograms according to the shape
variability is challenging because of the missing wedge
artefacts. The aligned subtomograms are usually classi-
fied based on the covariance matrix calculated using a con-
strained correlation coefficient (CCC) between each pair of
aligned subtomograms. The CCC corresponds to constrain-
ing the cross-correlation evaluation to the Fourier-space re-
gion that excludes the missing wedge of both subtomo-
grams [17]. The covariance matrix serves as a basis for a
hierarchical classification technique, or it is fed to a dimen-
sionality reduction method first and, then, to a clustering
technique [17, 18]. A drawback of post-alignment classi-
fication methods is their dependency on rigid-body align-
ment accuracy, which decreases as the specimen’s confor-
mational heterogeneity increases.

In practice, the classification remains efficient at resolv-
ing discrete structural variabilities such as ligand binding
and macromolecular disassembly, but for classifying con-
tinuous shape variants, particles assigned to the same class
will rarely, if ever, have identical conformations.

3. HEMNMA-3D
A flowchart for HEMNMA-3D is in Figure 1. The

method comprises the following blocks:

1. Input: subtomograms and a reference structure;
2. Normal Mode Analysis of the reference structure;
3. Elastic and rigid-body 3D registration; and
4. Visualizing macromolecular shape variability via se-

lective data averaging and animations.

3.1. Reference structure

The 3D registration is performed using a reference struc-
ture in the Protein Data Bank (PDB) format. If there is an



Figure 1. Flowchart of HEMNMA-3D for macromolecular shape
variability analysis in cryo-ET using 3D elastic registration via
normal mode analysis. Note: the displayed molecule is the nu-
cleosome (PDB:3w98).

existing atomic model of the macromolecule under study
(e.g., a model available in the PDB database and obtained
by X-ray crystallography, nuclear magnetic resonance, or
derived from 3D reconstructed density maps from cryo-EM
images), this model can be used as the reference structure
for the method. However, if no atomic model is available
but a lower-resolution density map can be obtained by SPA
reconstruction or subtomogram averaging, this density map
can be converted into a pseudoatomic model [19, 20] and,
then, this model can be used as the reference structure for
the method. The PDB file of the reference structure contains
3D Cartesian coordinates of atoms or pseudoatoms.

3.2. Normal Mode Analysis

Normal Mode Analysis (NMA) is a method for molec-
ular mechanics simulation. One of its main applications is
the elastic deformation of an existing atomic structure to fit
a cryo-EM density map of the same macromolecule but at
a different conformation. This application is usually known

as normal mode flexible fitting and allows deriving atomic
models from cryo-EM maps [21].

Normal modes are computed from the atomic or pseu-
doatomic reference structure based on the elastic network
model [22]. This model represents the atoms or pseu-
doatoms as locally connected (within a cutoff distance) by
elastic springs. Normal modes are vectors that describe
harmonic-oscillator motions of the elastic network model
(the length of each normal-mode vector is 3 times the num-
ber of atoms or pseudoatoms). Computationally, normal
modes are eigenvectors of a Hessian matrix of the system
(the matrix of second derivatives of the potential energy
function of the elastic network model) and the correspond-
ing eigenvalues are the squares of the normal-mode fre-
quencies. Also, for each normal mode, its collectivity de-
gree is computed, which measures the percentage of atoms
or pseudoatoms that move with that mode. Low-frequency,
high-collectivity normal modes have been shown to be rel-
evant to macromolecular conformational variability [23].

The atomic or pseudoatomic displacement is determined
by a linear combination of normal modes, where the coeffi-
cients of the linear combination are the displacement am-
plitudes along the modes. NMA only allows computing
normal modes (vectors), meaning atomic or pseudoatomic
displacement directions. The amplitudes of these displace-
ments are computed by 3D elastic registration. In the con-
text of 3D elastic registration, the key advantage of NMA is
that selecting a subset of normal modes with the lowest fre-
quencies and highest collectivities allows faster data analy-
sis and a regularization against noise overfitting, which was
also observed in 3D-to-2D elastic registration [8].

3.3. Elastic and rigid-body 3D registration

This module comprises simultaneous NMA-based elas-
tic registration and Fast Rotational Matching (FRM)-based
rigid-body alignment of the reference structure with each
given subtomogram via numerical optimization.

Given a subtomogram, a reference structure, and a set
of normal modes of the reference structure, this module
searches for the displacement amplitudes along the nor-
mal modes (elastic parameters) and the angles and shifts
(rigid-body parameters) of the reference structure to match
the structure to the subtomogram. A numerical optimizer
maximizes the similarity between the subtomogram and
a density volume simulated [24] from the elastically de-
formed, oriented, and shifted atomic or pseudoatomic ref-
erence. The similarity measure is the CCC, which is here
defined as the cross-correlation between the reference and
subtomogram density maps excluding the Fourier-space re-
gion corresponding to the subtomogram’s missing wedge.
Such similarity measure allows to compensate for the miss-
ing wedge, which otherwise can lead to erroneous results.
The numerical optimizer is a variant of Powell’s UOBYQA



method known as CONDOR [25], which subjects the objec-
tive function to a trust-region radius and avoids noise over-
fitting by giving more credibility to smaller normal mode
amplitudes during the registration.

For each subtomogram, the corresponding normal mode
amplitudes are initiated with zeros, i.e. the non-deformed
reference is used in the first iteration. As the iterations
evolve, the reference model is deformed with the new
guesses of the normal mode amplitudes, converted into a
volume and rigid-body aligned with the subtomogram us-
ing FRM [26]. The rotational matching allows a fast and
accurate 6D search for orientations and shits (three Euler
angles and three translation parameters). At the end of each
iteration, the CCC is found and fed to the numerical opti-
mizer. The iterations repeat, refining the elastic and rigid-
body registration parameters until convergence.

3.4. Macromolecular shape variability visualization

The number of elastic registration parameters (normal-
mode amplitudes) is determined by the number of normal
modes used for the elastic registration. If more than three
normal modes were used, the ensemble of normal-mode
amplitudes (for all subtomograms) can be projected onto
a lower-dimensional space using a dimensionality reduc-
tion technique, e.g. Principal Component Analysis (PCA).
The obtained high- or low-dimensional space of normal
mode amplitudes (conformational space) allows a global
data display for interpreting macromolecular shape variabil-
ity. Each point in this space represents a subtomogram, and
close points correspond to similar registered shapes. In this
conformational space, the shape variability can be analyzed
in the following two ways: 1) by averaging subtomograms
of similar registered shapes; and 2) by animating the reg-
istered motion of the reference structure along different di-
rections.

Grouping and averaging similar subtomograms: As
close points in the conformational space correspond to sim-
ilar registered shapes, grouping and averaging close points
in dense regions can help visualize variable macromolecular
shapes with better SNR and less artefacts (attenuated noise
and missing wedge artefacts thanks to averaging of many
similar shapes). Before computing the group averages, the
rigid-body alignment parameters found via the elastic and
rigid-body 3D registration module are applied to the subto-
mograms. The subtomogram averages from different re-
gions of the conformational space can be overlapped for a
visual comparison.

Animating registered motions of the input reference:
We can further analyze the conformational space by animat-
ing registered motions for several points through data distri-
bution manifolds (e.g., following a straight line or a curve
fitting the data). If a dimensionality reduction technique is
applied, the inverse mapping must be first used (e.g. inverse

PCA) to find the corresponding normal mode amplitudes
for each point. These normal modes amplitudes are applied
to elastically deform the reference structure (one elastically
deformed structure is obtained for each selected point). By
concatenating the resulting structures, a movie-like anima-
tion of registered motion can be obtained.

4. Implementation
The software of HEMNMA-3D is open-source and avail-

able on GitHub [10, 9]. It is built as part of the Continuous-
Flex plugin of the open-source Scipion software package
[27], commonly used for cryo-EM data processing. Our
software provides a graphical user interface (GUI) and is
empowered with a C++ backend with a message passing in-
terface (MPI) parallelization scheme. The number of subto-
mograms that can be processed simultaneously depends on
the number of available CPUs. The current implementation
takes around 10 minutes to analyze a subtomogram of size
643 voxels using three normal modes (tested on 2.2 GHz In-
tel Xeon Silver 4214 CPU processor and 64 GB RAM). The
more normal modes are used, the slower the processing.

5. Experiment
5.1. Simulating nucleosome shape variability

To review and compare HEMNMA-3D performance
with existing literature, we synthesized a dataset compris-
ing 1000 subtomograms with an imagined continuous shape
variability of the nucleosome. We generated a linear combi-
nation of two reported motions for the nucleosome, breath-
ing and gaping [28], with a linear dependence between the
amplitudes of normal modes corresponding to the two mo-
tions.

First, we performed NMA of the nucleosome atomic
structure available in the PDB database under the code
3w98 and we visualized the motions carried by the different
computed normal modes. Among these modes, we iden-
tified the modes describing breathing and gaping motions
as normal modes 9 and 13, respectively (note here that the
mode number corresponds to the frequency of the mode and
that higher numbers correspond to higher frequencies). We
generated a dataset using a linear relationship between the
amplitudes of normal modes 9 and 13 so that the nucleo-
some is simultaneously breathing and gaping. Precisely, at
one end of the generated ground-truth conformational dis-
tribution, the nucleosome’s two DNA ends (arms) are mov-
ing away from each other, and at the same time, the gap be-
tween the two DNA gyres increases. At the other end of the
generated conformational distribution, the DNA arms ap-
proach each other and the gap between the two DNA gyres
decreases. We simulated a gradual transition between the
two ends, representing a continuum of nucleosome shapes,
combining breathing and gaping. Equal random amplitudes

https://github.com/scipion-em/scipion-em-continuousflex


Figure 2. Synthesized combined breathing and gaping motions of
the nucleosome (PDB 3w98 structure): (a) nucleosome breath-
ing motion, (b) nucleosome gaping motion, (c) generated ground-
truth conformational distribution (top) comprising 1000 synthetic
nucleosome shape variants obtained by a linear combination of
modes 9 and 13, with a linear dependence between the normal-
mode amplitudes (blue points in the plot), and 3 representative
shapes (bottom) corresponding to the two ends and the middle of
the conformational distribution.

uniformly distributed in the range [-150, 150] were used for
the two normal modes 9 and 13. An illustration of the sim-
ulated movements is provided in Figure 2.

To generate this dataset, for each subtomogram, we per-
formed the following steps:

1. Elastically deform the atomic structure (PDB:3w98) us-
ing equal random amplitudes for the two normal modes
9 and 13 in the range [-150, 150].

2. Convert the elastically deformed structure to a density
map of size 64 × 64 × 64 voxels (voxel size: 3.45 Å ×
3.45 Å × 3.45 Å), using [24].

3. Rotate and shift the volume in 3D space using random
Euler angles and random x, y, z shifts (the random shift
range is ±5 pixels from the center).

4. Tilt and project the randomly rotated and shifted volume,
using the tilt angle from -60° to +60° with 1° step, to ob-
tain a collection of 2D projection images (i.e. tilt series).

5. Simulate microscope conditions by adding heavy noise
(SNR = 0.01) and modulating the images with the con-
trast transfer function (CTF) of the microscope (using
the defocus of -0.5 µm).

6. Invert the CTF phase (a common CTF correction).
7. Reconstruct a volume (our synthetic subtomogram) from

the obtained tilt series using a Fourier reconstruction
method [29].

Figure 3 shows an example subtomogram from the syn-
thesized dataset and the corresponding ideal volume, for
comparison in real space and in Fourier space.

Figure 3. Example of a noisy and missing-wedge affected syn-
thetic subtomogram compared with the corresponding ideal vol-
ume of the nucleosome: (a) ideal volume (without noise and with-
out missing wedge artefacts), (b) noisy and missing-wedge af-
fected synthetic subtomogram.

5.2. Traditional subtomogram averaging and post
alignment classification

StA provides a global average without considering the
shape variability, and it provides a basis for performing clas-
sification of subtomograms (classification of the subtomo-
grams aligned through StA).

We applied StA on the synthesized nucleosome dataset,
using the protocol based on the rigid-body alignment ap-
proach of [26] (recall that this rigid-body alignment ap-
proach is also used in the elastic and rigid-body align-
ment of HEMNMA-3D). This StA protocol uses an exhaus-
tive angular search (with FRM method) and a shifts search
within a region of interest, and compensates for the miss-
ing wedge by using the CCC (evaluation of the correlation
between the subtomogram average of each iteration and the
given subtomogram density maps, but excluding the eval-
uation in the missing-wedge region of the given subtomo-
gram).

We followed the procedure in [26] and set the shifts
search region to 10 voxels from the image center. We started
iterations using an average of the unaligned subtomograms
(this StA procedure is referred to as reference-free align-
ment). After six iterations, StA converged (further itera-



Figure 4. Subtomogram averaging applied to the synthesized nu-
cleosome subtomograms. A reference-free alignment was per-
formed using Fast Rotational Matching [26].

Figure 5. Hierarchical clustering applied to the synthesized nucle-
osome subtomograms. Top: hierarchical tree for 1-CCCij matrix.
Bottom: views (vertically in the same color) of different subtomo-
gram class averages (horizontally in different colors).

tions gave the same results). The StA averages are shown
in Figure 4.

After StA, we applied the obtained rigid-body alignment
parameters (found through StA) on the subtomograms, and
we evaluated the covariance matrix CCCij of pairwise con-
strained cross-correlation (see section 2.2 for more details).
We performed the two most common post-alignment classi-
fication techniques on the CCCij matrix, namely hierarchi-
cal clustering [18] and PCA followed by k-means [17].

The hierarchical clustering on 1-CCCij matrix was per-
formed to 10 classes using the Agglomerative Clustering
module of Python Scikit-Learn package (version 0.22.1 and
default parameters were used) [30]. We note that applying
the clustering algorithm directly on the CCCij matrix gives
identical results, and we used the convention proposed in
the literature [18, 17]. The clustering tree (dendrogram) and
class averages are shown in Figure 5.

The k-means clustering was performed following PCA

Figure 6. K-means clustering applied to the synthesized nucleo-
some subtomograms. Top: k-means clustering in the space of the
first two PCA axes of CCCij matrix. Bottom: views (vertically in
the same color corresponding to the color in the PCA space) of
different subtomogram averages (horizontally in different colors).

on the CCCij matrix. The clustering was done into 10
classes (k=10) based on the first two principal axes, using
the k-means module of Scikit-Learn. In general, the choice
of the number of principal axes to perform classification is
arbitrary, as explained in [17]. Since the dataset was syn-
thesized with two degrees of freedom (nucleosome breath-
ing and gaping), we set the number of principle axes to 2,
to obtain the best results. Figure 6 shows the classification
of the PCA space and the resultant class averages.

We note that the two tested classification techniques give
similar outputs, showing different discrete class averages of
the nucleosome, at different breathing and gaping magni-
tudes (Figures 5 and 6). However, these outputs do not al-
low an unambiguous interpretation of the results in terms of
the synthesized ground-truth conformational transitions of
the nucleosome (from the smallest magnitudes to the largest
magnitudes of breathing and gaping and vice versa).

5.3. HEMNMA-3D

Applying HEMNMA-3D to the synthesized nucleosome
dataset aims at solving the inverse problem of finding the
nucleosome shape variant in each subtomogram, i.e. es-
timating the amplitudes of normal modes 9 and 13 of the
PDB structure 3w98 as close as possible to the generated
ground-truth amplitudes. We set the method parameters as
follows:

• NMA settings: To make the elastic and rigid-body 3D
registration task more realistic and challenging, we used
three normal modes (modes 9, 10 and 13) instead of only
two modes (modes 9 and 13 used to generate the dataset).



• FRM settings The shift range for the rigid-body registra-
tion (FRM method) is set to 10 pixels.

The amplitudes estimated for modes 9 and 13 using
HEMNMA-3D are shown in Figure 7 (a). It is graphically
intelligible that the linear relationship is retrieved between
the estimated amplitudes of the two modes. Figure 7 (b)
shows the histogram of the amplitudes estimated for mode
10 and confirms that they are globally near zero.

Table 1 presents the mean absolute error between the es-
timated and ground-truth normal-mode amplitudes and the
standard deviation of the error. It should be noted that
14/1000 points were excluded from the statistics as found
to differ significantly (outlier points) from the remaining
observations. These points were excluded for having a p-
value below 10-4 based on the Mahalanobis distance [31].

Normal-mode amplitudes do not have a physical unit.
Nonetheless, the Root Mean Square Deviation (RMSD)
[32] between the reference atomic coordinates and these
coordinates displaced using the calculated errors as the
normal-mode amplitudes can transform these errors in
physical units. The nucleosome core complex comprises
eight histone proteins surrounded by 146 DNA base pairs.
The synthesized movements (breathing and gaping) mainly
impacted the DNA loops. Evaluating the RMSD without
excluding the core histones can give a false sense of achiev-
ing higher accuracy by pulling the RMSD value towards
zero. Therefore, the reported RMSD hereafter is based on
the nucleosome’s DNA loops only (chain I and J of the PDB
structure 3w98).

We found a RMSD of 0.44 Å corresponding to the mean
absolute errors in Table 1 (for a combined displacement
along modes 9, 10 and 13). Also, we found a RMSD of
0.79 Å corresponding to the sum of the mean and standard
deviation of the errors in Table 1. Hence, the error range is
significantly inferior to the pixel size used to create the data
(3.45 Å).

Figure 8 (a) shows grouping and averaging of subtomo-
grams through the point distribution in the conformational
space (ten equally distanced groups). The corresponding
subtomogram averages show the expected combination of
continuous motions of breathing and gaping, which can be
compared with the ground-truth motion in Figure 2.

Figure 8 (b) shows the displacement of the reference
structure along 10 points in the direction of the point distri-
bution in the conformational space (the procedure explained
in Section 3.4).

The obtained subtomogram averages and animation
show that the ground-truth nucleosome motion (a combi-
nation of breathing and gaping) was retrieved.

Figure 7. Output of the elastic and rigid-body 3D registration
module of HEMNMA-3D using synthesized nucleosome subto-
mograms. The goal was the retrieval of the ground-truth ampli-
tudes of normal modes 9, 10 and 13. Ideally, the amplitudes of
mode 10 are equal to zero and there is a linear relationship be-
tween the amplitudes of modes 9 and 13 in the range [-150, 150]:
(a) amplitudes of mode 9 vs amplitudes of mode 13, (b) histogram
of amplitudes of mode 10.

Normal mode
amplitude Mode 9 Mode 10 Mode 13

Actual range [-150, 150] 0 [-150,150]
Measure Mean Std Mean Std Mean Std

Absolute error 10.86 8.66 9.98 7.82 10.81 8.83

Table 1. Mean absolute error between the estimated and ground-
truth normal-mode amplitudes and the standard deviation of the
error, for HEMNMA-3D using synthesized nucleosome subtomo-
grams. Points below the p-value of 10-4 were excluded (14/1000
points) from the error evaluation based on the Mahalanobis dis-
tance.

6. Discussion and conclusion
This article presented a review on HEMNMA-3D,

a method that addresses continuous macromolecular
shape variability captured in cryo-ET subtomograms.
HEMNMA-3D applies elastic and rigid body 3D registra-
tion via normal mode analysis, fast rotational matching and
trust-region based numerical optimization.

We tested HEMNMA-3D by synthesizing a dataset of
nucleosome shape variability under challenging conditions
of the simulated microscope and testing the method’s capa-
bility to recover the ground-truth shapes. The test results
indicate that the method recovers the ground-truth combi-
nation of two nucleosome motions (breathing and gaping)
with subpixel accuracy. Also, it does not overfit the data
with non-existing motions (normal mode 10 was not used to
create the nucleosome dataset but used for 3D elastic regis-
tration, and it was retrieved with amplitudes near zero).

We applied two state-of-the-art methods for cryo-ET
classification on the synthesized nucleosome dataset. Both
methods gave similar outputs, showing different discrete
class averages of the nucleosome at different breathing and



Figure 8. HEMNMA-3D applied to the synthesized nucleosome subtomograms. (a) group averages for ten equally distanced groups along
the subtomogram (point) distribution in the conformational space, (b) displacement of the reference PDB structure 3w98 along the direction
of the data distribution in the conformational space, 10 frames represented by red dots. Note: each column represents four different views
of the same structure.

gaping magnitudes. However, the choice of the number of
classes is arbitrary in these methods and the shape transi-
tions between the obtained class averages are ambiguous,
probably because of the continuous nature of the shape vari-
ability.

In contrast to these methods, HEMNMA-3D adopts a
new scheme that permits revealing hidden macromolecular
dynamics by i) grouping and averaging similar subtomo-
grams at locations in the conformational space that reveal
the shape transitions and ii) animating the reference struc-
ture by displacing it in different directions in the conforma-
tional space. Hence, HEMNMA-3D provides a promising
new insight into what can be achieved in cryo-ET studies
of macromolecular shape variability. For more details on
HEMNMA-3D and an example of its use and results with
experimental cryo-ET subtomograms, the reader is referred
to [9].

However, unlike the classification methods, HEMNMA-
3D is limited to macromolecular elastic shape variability
that can be explained with NMA. It is not suitable for ana-
lyzing other structural variabilities such as macromolecular
disassembly or binding and unbinding of ligands. Future
work can involve combining this method with classification
to first disentangle such discrete structural variabilities and
then analyze continuous intraclass variability.
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