
HAL Id: hal-03378464
https://hal.science/hal-03378464v1

Submitted on 13 Dec 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Hardware security without secure hardware: How to
decrypt with a password and a server

Olivier Blazy, Laura Brouilhet, Celine Chevalier, Patrick Towa, Ida Tucker,
Damien Vergnaud

To cite this version:
Olivier Blazy, Laura Brouilhet, Celine Chevalier, Patrick Towa, Ida Tucker, et al.. Hardware security
without secure hardware: How to decrypt with a password and a server. Theoretical Computer
Science, 2021, 895, pp.178-211. �10.1016/j.tcs.2021.09.042�. �hal-03378464�

https://hal.science/hal-03378464v1
https://hal.archives-ouvertes.fr


Hardware Security without Secure Hardware:
How to Decrypt with a Password and a Server

Olivier Blazy1, Laura Brouilhet1, Celine Chevalier2,
Patrick Towa3, Ida Tucker4, Damien Vergnaud5,6

1 Université de Limoges, XLim, Limoges, France
2 Université Panthéon-Assas Paris II, Paris, France

3 ETH Zurich, Zurich, Switzerland
4 IMDEA Software Institute, Madrid, Spain

5 Sorbonne Université, CNRS, LIP6, F-75005 Paris, France
6 Institut Universitaire de France

Abstract. Hardware security tokens have now been used for several
decades to store cryptographic keys. When deployed, the security of the
corresponding schemes fundamentally relies on the tamper-resistance of
the tokens – a very strong assumption in practice. Moreover, even secure
tokens, which are expensive and cumbersome, can often be subverted.

We introduce a new cryptographic primitive called Encryption sche-
mes with Password-protected Assisted Decryption (EPAD schemes), in
which a user’s decryption key is shared between a user device (or token)
on which no assumption is made, and an online server. The user shares a
human-memorizable password with the server. To decrypt a ciphertext,
the user launches, from a public computer, a distributed protocol with
the device and the server, authenticating herself to the server with her
password (unknown to the device); in such a way that her secret key is
never reconstructed during the interaction. We propose a strong security
model which guarantees that (1) for an efficient adversary to infer any
information about a user’s plaintexts, it must know her password and
have corrupted her device (secrecy is guaranteed if only one of the two
conditions is fulfilled), (2) the device and the server are unable to infer
any information about the ciphertexts they help to decrypt (even though
they could together reconstruct the secret key), and (3) the user is able to
verify that device and server both performed the expected computations.
These EPAD schemes are in the password-only model, meaning that the
user is not required to remember a trusted public key, and her password
remains safe even if she is led to interact with a wrong server and a
malicious device.

We then give a practical pairing-based EPAD scheme. Our construc-
tion is provably secure under standard computational assumptions, us-
ing non-interactive proof systems which can be efficiently instantiated in
the standard security model, i.e., without relying on the random oracle
heuristic.



1 Introduction

Mobile devices are ubiquitous nowadays: smart phones and tablets have not
only become prevalent in daily communication but also in numerous security-
critical tasks. These devices collect and compile a large amount of confidential
information to which access must be controlled. If such a device is infected by
malware, an attacker may gain full access to the compromised device and be
able to control it and steal any information stored on it. In addition to that,
smart phones and tablets are easily lost or stolen even though they usually only
use (human-memorizable) passwords to prevent unauthorized access.

Despite their practicality, the use of mobile devices to store sensitive data
incurs various security issues (since they fail to protect sensitive information and
passwords in particular): vulnerability to dictionary attacks (since passwords are
weak-entropy secrets), re-use of passwords for multiple services, frequent leakage
of password databases, and many more. A possible solution is to use a physical
device that provides extra security. A hardware security module is a tamper-
resistant device that strengthens encryption practices and is used in addition to
or in place of passwords. These modules often come in the form of plug-in cards
or external devices from which secret information cannot be easily leaked to
anyone who gets hold of it. However, such modules are often costly, inconvenient
to use and may even be subverted, i.e., corrupt from their very production. In
this paper, we investigate how we can get rid of such tamper-resistant devices,
and show how to rely on a smart phone (combined with a public computer) on
which no hardware-security assumption is made. We thus use a device (such as
a smart phone) as a token, meaning in particular that these two terms are used
interchangeably in the following.

Encryption schemes with Password-protected Assisted Decryption. In
this work we focus on encryption, and consider the problem of achieving security
guarantees equivalent to those of hardware security modules without making any
assumption on the device in possession of the user. Therefore, no assumption
is here made on a user token, i.e., it is not presumed to be tamper-proof or
malware-free. The token just acts as a virtual smart-card.

To mitigate this lack of security from the token, we introduce a server which
assists the user with the decryption. In a real-world scenario, the user could
log-in from a public computer, use her phone as a token, and communicate with
a remote server to decrypt ciphertexts she receives. Concretely, the secret key of
the user is shared between the token and the server, and a password is shared
between the user and the server. Nevertheless, the introduction of a server should
not weaken the security of the original scheme: an attacker should not be able
to leverage the server alone to infer any information about the plaintexts of the
user. Besides, introducing a token and a server should not jeopardize the privacy
of a user: they should assist her in a blind manner, i.e., without being able to
infer any information about the plaintexts they help decrypt. This property is
later referred to as blindness.
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We also require verifiability for the user. First, although the user is not re-
quired to remember the decryption key, she should still be able to verify that
the token and server both correctly performed their computations with respect
to the public key. As we do not want to require the user to remember the public
encryption key, it is assumed that a public key is attached to the ciphertext.
Since a different key than that attached may have been used to compute the
ciphertext, the protocol should only guarantee verifiability with respect to the
attached key, but should not leak any information about the passwords held by
the user and the server.

The advantage of having the user enter her password on a public computer
rather than directly on her token is twofold. First, if an adversary takes control of
the token, without knowing the user’s password it cannot decrypt her ciphertexts
(assuming an appropriate throttling mechanism preventing online dictionary at-
tacks). Secondly, if the computer from which the user starts a decryption query
is corrupt (e.g., has a keylogger on it), her password is leaked, but as long as her
token is not corrupt, no one can decrypt her ciphertexts. Hence separating the
user algorithm and the token guarantees security if either the user password is
not leaked or if the token is not corrupt.

Three Levels of Authentication. For the sake of clarity, consider the user is
logging-in from a public (untrusted) computer, and interacts with an (insecure)
token (such as her smart phone or tablet) and a remote server. She shares a
password with the server, and her decryption key is shared between the token
and the server. Recall that no assumption is made on the hardware security of
the token, but that she types her password into the public computer. We now
present the authentication required between these three parties involved in our
protocol.

User–Token Authentication. Since the token would in practice be a smart phone
or a tablet, a PIN is usually required to access them (in very few attempts), which
is similar to having the user authenticate to the token. The user can then initiate
the decryption protocol between the three entities, from the public computer,
by logging-in to the server using her password. No secure channel between the
user’s machine and the token is assumed.

Similarly, no higher-level mechanism is assumed for the token to authenti-
cate itself to the user. The user is supposed to recognize her token and have
it at proximity. Nonetheless, if the scheme is verifiable and secure, the user is
assured that even if she is led to interact with a malicious token, the result of
the decryption protocol must be correct if it terminates, and that the protocol
leaks no information about her password.

Token–Server Authentication. The token authenticates itself to the server using
its share of the user decryption key. Having the token prove to the server that
it belongs to the user prevents adversaries from taking advantage of the servers’
throttling mechanism to block an honest-user account. Indeed, without this au-
thentication an attacker could request decryptions on behalf of the user with an
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arbitrary token and make several password attempts until the server blocks her
account. Even more damaging, the malicious token could also make queries to
the server to infer information about the share of the server.

Likewise, the server must authenticate itself to the token using its own share
of the decryption key. Otherwise, a malicious server without the user password
could exploit the token to get information about it’s share of the decryption key.

Server–User Authentication. In our model, the user need only remember her
password. She must then be able to recover the address of the server sharing a
decryption key with her token. A straightforward solution would be to retrieve
this address from the token; but then a corrupt token may lure her into executing
the decryption protocol with a malicious server via a phishing attack. The user
may also simply mistype the address of the server. The server on which the user
lands may even be certified within a PKI, but not one with which she shares a
password, or one which shares the decryption key with the token. If this server
is malicious, it could try to infer information about the user’s password or the
decryption key share held by the token.

Therefore, since the secret values (passwords or decryption-key shares) must
be protected, the user and the server authenticate themselves to each other,
and they do so via their common password. Note that this authentication must
not leak any information on the password. In particular, it protects the user’s
password from an adversarial server which does not know her password, and it
also preserves the confidentiality of her messages against an attacker which does
not know her password and tries to exploit her server. These requirements are
captured by our security definition.

A scheme satisfying all the aforementioned properties is called an Encryption
scheme with Password-protected Decryption (EPAD) scheme.

Comparison with Prior Work. For cryptographic authentication, Camenisch,
Lehmann, Neven and Samelin introduced [15] password-authenticated server-
aided signatures (Pass2Sign). Their approach aims to offer comparable security
guarantees to hardware security modules even when using a potentially corrupt
device. To do so, they introduce a server which shares the secret key with the
device. To compute a signature, the user starts a protocol with the server from
her device, using a password to authenticate herself to the server. The secret key
is never reconstructed during the protocol, so if the device is subsequently cor-
rupted (assuming previously entered passwords have been erased), only a share
of the secret key is lost and the attacker is unable to compute valid signatures.
The device thus simply acts as a virtual smart card.

However, their work relies on two crucial assumptions: 1) the device is not
corrupt at the moment the user enters her password, as an attacker would oth-
erwise be able to impersonate the user and sign on her behalf and 2) the device
securely erases previously typed passwords, since a corruption would directly
leak them. Hence they do not completely achieve their ambitious goal of making
no assumptions on the security of the device.
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The scenario we consider (disregarding our new blindness property) is a hy-
brid of that of Pass2Sign (in which the user enters her password from the device)
and of password-protected secret sharing [3, 4, 14, 30]. An important difference
w.r.t. the latter is that the decryption key is never reconstructed, thereby pro-
tecting the user in case of corruption of her machine (i.e., the public computer
from which she initiates the protocol). This property also allows the user to pre-
vent further use of her device should it be stolen, by asking the server to block
her account. This also hinders online dictionary attacks.

Moreover, interaction allows the server to enforce a throttling mechanism and
refuse to decrypt if it detects suspicious behavior (e.g., several failed password
attempts). From a commercial perspective, interaction also allows the server to
run a paid service and charge the user for decryption requests.

Contrarily to the model of Pass2Sign, we do not assume that communication
between the token and the server is a priori authenticated (via TLS for instance).
Our security model ensures that interacting with a malicious party leaks no
information about either the key shares or the passwords held by the user and
the server. In our construction, the token and the server leverage the fact that
they share the user’s secret key to authenticate themselves to each other.

Finally, separating the public machine (on which the user types her pass-
word) and the token provides a strictly stronger security than that of password-
authenticated server-aided signatures (for which a malware-infected token leaks
both the user’s password and secret-key share); while being no less convenient
than technologies leveraging two-factor authentication mechanisms.

Contributions. The contributions of the paper are manifold.

Security Model. We first formalize the security properties required of an EPAD
scheme. As explained above, an EPAD scheme enables a user to make decryption
queries without revealing information about the ciphertexts being decrypted.
This property was formalized by Green [26] (for classical public-key encryption
(PKE) schemes) as blind decryption. To preserver user privacy, we propose a
similar blindness property, the main difference being that there no longer is
a centralized decryption entity as decryption is shared between the token and
the server. Hence we require that neither the token nor the server should be
able to infer any information about the ciphertexts the user wants to decrypt.
The requirements of this property are strong, as it captures the scenario in
which an adversary may have corrupted both the token and the server; and
hence knows both shares of the decryption key, and the password. Our protocol
achieves this strong notion of privacy by having the user perform some blinding
step on the underlying plaintext (i.e., use a temporary high-entropy secret), and
by randomizing the ciphertext before sending it to the token and the server
for decryption. This implies that – to ensure user privacy – the scheme should
tolerate some form of malleability.

Due to this mild form of malleability, which allows users to re-randomize their
ciphertexts, the confidentiality notion considered for EPAD schemes is similar
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to Replayable Chosen-Ciphertext Attacks security (RCCA) defined by Canetti,
Krawczyk and Nielsen for classical PKE [18]. Our notion is called Password-
protected Indistinguishability under Replayable Chosen-Ciphertext Attacks (P-
IND-RCCA) and takes into account the fact that decryption requests should
be protected by user passwords. More precisely, it ensures that unless an ad-
versary both knows the user’s password (by corrupting the user’s machine or
the server) and has corrupted her token, it cannot infer any information about
the user’s plaintexts in reasonable time. It captures both indistinguishability
under replayable chosen-ciphertext attacks and password authentication. The
formal model for P-IND-RCCA security is inspired by the Bellare–Rogaway–
Pointcheval (BPR) model for password-based authenticated-key-exchange pro-
tocols [7]. It covers the cases of concurrent protocol executions, with potentially
many users, tokens and servers.

The third security notion in our model is verifiability which guarantees that
the user accepts the result of the decryption protocol only if the token and the
server performed their computations correctly.

As we target the most efficient solutions possible, these properties are cap-
tured via game-based security definitions rather than functionalities in the uni-
versal composability framework [16]; see Section 4.2 for an in-depth discussion.

Technical Challenges. The fact user passwords are not entered into the token
may, at first sight, seem a simple solution to the problem in Pass2Sign, and
thereby to achieve the level of security provided by secure hardware. However, it
raises several challenges. Indeed, (1) the token – without knowing the password
– must be able to ensure that the user and server have correctly authenticated
themselves to each other, and that it shares its secret key with the server, be-
fore performing computations. Otherwise, an attacker which does not know the
password or the other key share, could exploit the token and gain information
about its share. (2) Throughout the entire protocol, the parties must ensure they
are communicating with the expected party, and that they are not victims of
man-in-the-middle attacks (recall that the communication is not assumed to be a
priori authenticated). (3) Although the token terminates decryption, plaintexts
must remain hidden from its view, even though the user and server only share
a low-entropy secret. (4) The token must be convinced that the server correctly
performed its computation, even without knowing the only piece of information
shared between the user and the server (i.e., the password). (5) Finally, the pro-
tocol should guarantee user privacy despite the fact that together, the token and
the server know all secrets.

Efficient and Secure Construction. We overcome these challenges and propose
a concrete pairing-based EPAD scheme. It uses as a building block the publicly
verifiable RCCA-secure encryption scheme of Faonio, Fiore, Herranz and Rà-
fols [24], though similar techniques can be applied to other such schemes (e.g.,
Libert, Peters and Qian’s [36]). Section 4.2 gives further insight into the techni-
calities of our scheme.
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The construction may at first seem complex as it uses several classical cryp-
tographic primitives as building blocks, and one may wonder whether a general
Multi-Party Computation (MPC) between the token and the server could solve
the problem. The issue is here that the token – without any information on the
user’s password – would need to verify the password held by the server. Hence
a practical solution with off-the-shelf MPC is not immediate. Besides, it is not
clear how such a solution would guarantee blindness.

Finally, our construction is proven secure in the standard model; one may
wonder whether it could be simplified in a stronger model such as the Random-
Oracle Model (ROM). However since our techniques heavily rely on the mal-
leability of zero-knowledge proofs, ROM-based proofs do not seem appropriate.

2 Preliminaries

This section introduces the notation used throughout the paper, as well as the
building blocks on which the constructions herein are based.

2.1 General Notation

The security parameter is denoted _, and input lengths are always assumed to
be bounded by some polynomial in _. A Probabilistic algorithm is said to run
in Polynomial Time (i.e., it is a PPT or efficient algorithm) if its running time
is polynomial in _.

Unless stated otherwise, ? denotes a prime number. For a group G with
neutral element 1G, G∗ stands for G\{1G}. For an integer = ≥ 1, È=É denotes the
set {1, . . . , =}. Vectors and matrices are denoted in bold font, and vectors are
by default column vectors. For a given matrix A, AT stands for its transpose.
For two matrices A and B of equal size, A ◦ B denotes their Hadamard (i.e.,
element-wise) product. If A and B are vectors, then their Hadamard product is
simply denoted AB.

Given an Oracle O, the notation (�, �, ·) means that (�, �) is its inner (secret)
state, while · denotes the (adversarial) query.

Entropy is commonly used as a measure of password quality [13, 33], in this
work the effort of guessing a password G sampled from some probability distri-
bution D is measured by the min-entropy �∞,D (G). Min-entropy describes the
unpredictability of an outcome determined solely by the probability of the most
likely result, and is appropriate for describing passwords and other non-uniform
distributions of secrets.

2.2 Bilinear Structures and SXDH Assumption

An (asymmetric) bilinear structure is a tuple (?,G1,G2,G) , 4) where G1 = 〈61〉,
G2 = 〈62〉 and G) are ?-order groups, and such that 4 : G1×G2 → G) is a pairing,
i.e., an efficiently computable non-degenerate (4 ≠ 1G) ) bilinear map. Let 6) de-
note 4(61, 62), which is a generator of G) . Type-3 bilinear structures are bilinear
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structures for which there is no known efficiently computable homomorphism
from G2 to G1. A bilinear structure generator is an algorithm G which, on input
1_, returns the description of a bilinear structure. For integers =, < ≥ 1, given
vectors x ∈ G=1 and y ∈ G<2 , 5 (x, y) denotes the matrix

[
4
(
G8 , H 9

) ]
8, 9
∈ G=×<

)
.

We now introduce the hardness assumption on which our construction relies.

Definition 2.1 (SXDHAssumption). The Symmetric eXternal Diffie–Hellman
(SXDH) assumption over a bilinear structure generator G is that given _ ∈ N, for
Γ = (?, G1 = 〈61〉, G2 = 〈62〉, G) , 4) ← G

(
1_

)
, the Decisional Diffie–Hellman

(DDH) assumption holds in both G1 and G2 with overwhelming probability. That
is, no efficient adversary has a non-negligible advantage (in _) in distinguishing(
68 , 6

0
8
, 61
8
, 601
8

)
from

(
68 , 6

0
8
, 61
8
, 62
8

)
, for 8 ∈ {1, 2}, 0, 1, 2 ←$ Z? and Γ← G

(
1_

)
.

2.3 Signatures

We here introduce the syntax of digital signature schemes. See Appendix A for
the definition of their strong one-time security and for specific instantiations.

Syntax & Correctness. A signature scheme consists of a setup algorithm Setup
(
1_

)
→ pp, a key-generation algorithm KG(pp) → (vk , sk ), a signing algorithm Sign(sk ,
M ) → f and a verification algorithm Vf (vk ,M , f) → 1 ∈ {0, 1}. The scheme is
correct if Vf (vk ,M , Sign(sk ,M )) = 1 for all parameters and keys so generated,
and all messages M .

2.4 Public-Key Encryption

This section introduces public-key encryption schemes, variants thereof and their
security, as well as instantiations.

Syntax. A public-key encryption scheme consists of a setup algorithm Setup
(
1_

)
→ pp, a key-generation algorithm KG(pp) → (pk , sk ) which returns a public
encryption key and a secret decryption key, a probabilistic encryption algorithm
Enc(pk ,M ; A) → C (the randomness r may at times be omitted from the syntax)
and a deterministic decryption algorithm Dec(sk ,C ) → M /⊥. An encryption
scheme is labeled if the encryption and decryption algorithm additionally take as
input a label or public data ℓ which is non-malleably attached to the ciphertext.
In this case, the label is indicated on these algorithms by a superscript.

IND-PCA Security. INDistinguishability under Chosen Plaintext-Checkable At-
tacks [1] (IND-PCA) guarantees that an encryption scheme reveals no informa-
tion about plaintexts even if an adversary can check whether ciphertexts encrypt
messages of its choice. Abdalla, Benhamouda and Pointcheval [1] argued that
this weakening of IND-CCA of security is enough for many password-related ap-
plications. In fact if the message space is small enough to enumerate all messages,
it is equivalent to IND-CCA security. See Appendix B.1 for a formal definition.
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RCCA Security. Indistinguishability under Replayable Chosen-Ciphertext At-
tacks [18] (RCCA) is a relaxation of the classical CCA security tolerating a mild
form of malleability. It allows for the re-randomization of ciphertexts while still
providing strong security guarantees. See Appendix B.1 for a formal definition.

Publicly Verifiable Encryption. A PKE scheme is verifiable if there exists a
deterministic algorithm Vf (pk ,C ) → 1 ∈ {0, 1} such that no efficient adversary
can, on the input of pk and with non-negligible probability, produce a ciphertext
C such that Vf (pk ,C ) = 1 and Dec(sk ,C ) = ⊥.

Re-randomizable Encryption. A PKE scheme is re-randomizable if there exists
an algorithm Rand(pk ,C ) → Ĉ which given a public key pk and a ciphertext C ,
outputs a new ciphertext Ĉ . It returns ⊥ if any of its inputs are ill-formed.

Unlinkability. A re-randomizable encryption scheme is perfectly unlinkable [19,
36,38] if the re-randomized valid ciphertexts have the same distribution as fresh
encryptions of their underlying plaintexts.

Threshold Decryption. Threshold encryption schemes [20] are schemes in which
decryption keys are shared between several parties. For a given ciphertext, each
party can compute a decryption share with her key share, and a threshold num-
ber of those decryption shares is necessary to reconstruct the plaintext. If there
are = parties, the security requirement of a C-out-of-= scheme is that no informa-
tion about the plaintext can be inferred from less than C +1 shares. In the RCCA
variant of this security notion, during the second query phase (which targets a
specific honest party), the challenger first decrypts the ciphertext of the query
with the secret key it has generated, and checks whether it results in one of the
challenge messages before answering with a decryption share if it is not the case.

2.5 Smooth Projective Hash Functions

Smooth Projective Hash Functions (SPHFs) [21] are hash functions defined over
a set X, and which can be evaluated in two ways on a subset L ⊆ X. An SPHF
can be evaluated on X using a hashing key hk , which can be seen as a private
key. On L, it can also be evaluated with a projective key hp, which can be seen
a public key, and a witness of membership to L. We use the definition due to
Gennaro and Lindell [25], in which projective keys depend on words in X.

Syntax [9]. An SPHF over a language L ⊆ X is defined by five algorithms:
Setup

(
1_

)
→ pp generates public parameters; HashKG(L) → hk generates a

hashing key for L; ProjKG(hk ,L,C ) → hp derives a projective key hp from hk
depending on a word C ∈ X; Hash(hk ,L,C ) → ℌ ∈ ℋ outputs hash value for
any word C ∈ X, and ProjHash(hp,L,C , F) → ℌ ∈ ℋ outputs a hash value on
a word C ∈ L given a projective key and a witness F for the membership of C .
The public parameters are given as implicit input to all the other algorithms.
When L is the language of ciphertexts of a given message for a certain scheme,
the public parameters typically contain the encryption key, and may even include
the decryption key to efficiently test language membership.
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Correctness. An SPHF is said to be correct if for all C ∈ L with witness F, for all
pp ← Setup

(
1_

)
, hk ← HashKG(L), hp ← ProjKG(hk ,L,C ), Hash(hk ,L,C ) =

ProjHash(hp,L,C , F).

Adaptive Smoothness. An SPHF is smooth if its hash values on all C ∈ X\L are
statistically indistinguishable from uniformly random values. Katz and Vaikun-
tanathan introduced [32] SPHFs (KV-SPHFs) with word-independent projective
keys, and for which smoothness holds even if the words depend on the projec-
tive keys. KV-SPHFs are the most flexible kind since the words on which they
are evaluated can be chosen even after computing and publishing the projective
keys. In this sense, they are adaptive.

A KV-SPHF is smooth if its hash values on all C ∈ X \ L are statistically
indistinguishable from uniformly random values, even if C depends on projective
keys. Formally, a KV-SPHF is Y-smooth [9] if, for any map f onto X \ L, the
following two distributions are Y-close:

{(hp,ℌ) : hk ← HashKG(L), hp ← ProjKG(hk ,L,⊥),ℌ← Hash(hk ,L, f(hp))}
{(hp,ℌ) : hk ← HashKG(L), hp ← ProjKG(hk ,L,⊥),ℌ←$ ℋ} .

A KV-SPHF is perfectly smooth if it is 0-smooth.

2.6 Key-Derivation Functions

A Key-Derivation Function (KDF) computes pseudorandom keys of appropriate
length from a source key material which is not uniformly distributed, or which
still has high entropy despite partial adversarial knowledge. The results can then
be used as secret keys for cryptosystems.

Syntax. A key-derivation function [35] KDF(SKM ,XTS ,CTX , !) →  , takes
as input a source key material SKM , an extractor-salt value XTS , some context
information CTX and a length !, and returns an !-bit string  . See Appendix E
for the formal security definition of KDFs.

2.7 Malleable Non-Interactive Proofs

As the construction in Section 4 heavily relies on malleability and non-interactive
zero-knowledge proofs, this section recalls the definition of proofs which are still
sound under “controlled malleability”. These proofs allow to compute, from a
proof c on a word G, a new proof c′ on a transformation )G (G) of G without the
knowledge of a witness for )G (G), but only if the transformation belongs to a
class of “allowed” transformations. The soundness of the proof system can then
be defined w.r.t. this class of transformations. In addition to that, the soundness
definition can even be extended to consider cases in which proofs are simulatable
but remain sound under this controlled malleability.

Chase et al. [19] gave a definition of proof systems that are extractable un-
der controlled malleability and a generic construction based on signatures and
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extractable proof systems. In App. D.3, we give a similar definition which only
requires soundness and then a generic construction from signatures and proof
system that are only extractable in a sense defined therein. The reason is that
the EPAD construction in Section 4 uses Groth–Sahai proofs from which group
elements can be extracted but not exponents.

Syntax of Proof Systems. A non-interactive proof system for a language L (with
corresponding relation R) consists of an algorithm Setup

(
1_

)
→ crs which re-

turns a common reference string, an algorithm Prove(crs , G, F) → c which com-
putes a proof on the input of a word G and of a witness F, and an algorithm
Vf (crs , G, c) → 1 ∈ {0, 1} which returns a bit indicating whether the proof is
considered valid. See App. D.3 for definitions of the classical soundness and and
zero-knowledge properties.

Transformations. A transformation is an efficiently computable function ) B
()G , )F ) : R → R. A relation R is said to be closed under ) if for any (G, F) ∈ R,
) (G, F) ∈ '. Transformation ) is then said to be admissible for R. A class T
of transformations is allowable for R if for every transformation ) ∈ T , ) is
admissible for R.

A non-interactive proof system for a relation R is malleable [19] w.r.t. a class
T of allowable transformations for R if there exists an algorithm Eval(crs , ), G, c)
→ c′ (word G may further be omitted from the syntax) which compute a proof
c′ for )G (G) from a valid proof c for G, without the knowledge of )F (F).

Groth–Sahai Proofs. Groth and Sahai [28] (GS) built an efficient proof sys-
tem for a large class of equations in bilinear groups. It actually allows to extract
witness group elements (but not exponents). Their proofs are re-randomizable
and malleable w.r.t. additive transformations. The proof system is recalled in
Appendix D.3. Using a structure-preserving signature scheme, one can apply
the generic construction in Sec. D.1 to the GS proof system to obtain a zero-
knowledge proof system which is CM simulation sound w.r.t. additive transfor-
mations.

3 Model

This section introduces Encryption schemes with Password-protected Assisted
Decryption (EPAD schemes). As mentioned in the introduction, an EPAD scheme
is an encryption scheme which involves three parties, a user U, a token T and
a server S. The user U, sharing a password with a server S, is logging-in from
a computer, and her decryption key is shared between the token T and the
server S. The protocol allows the user to decrypt ciphertexts with the help of
the token T and the server S, granted that each authentication between the
three parties (based on the private values mentioned above) succeeds.

Informally, the security notions required for such a scheme are as follows.
First, the P-IND-RCCA property captures both the indistinguishability of the

11



encryption scheme and password authentication. It ensures that the adversary
cannot recover any information on the plaintext without knowing the password of
the user and having access to the token, and that the decryption can only succeed
if the user and the server share the same password. Then, the blindness property
implies that neither the token nor the server can recover any information on
the ciphertext the user wants to decrypt on their own. Finally, the verifiability
property ensures that the user is convinced the decryption has been correctly
done.

3.1 Syntax

In a three-party setting with a user U, a token T and a server S, an EPAD
scheme consists of the following algorithms.

Setup
(
1_

)
→ pp : generates public parameters on input a security parameter.

These parameters are implicit inputs to all the other algorithms.
KG(pp) → (pk , sk , sk T , sk S) : generates a public key, a secret key and shares

thereof.
Enc(pk ,M ) → C : a probabilistic encryption algorithm.
Dec(sk ,C ) → M /⊥ : a deterministic decryption algorithm.
IDec = 〈U(pk , pU ,C ) 
 T(sk T) 
 S(sk S , pS)〉 → 〈M /⊥,⊥,⊥〉 : an interactive de-

cryption protocol between a user algorithm with input a public key, a user
password and a ciphertext; a token algorithm with input a secret-key share;
and a server algorithm with input a secret-key share and a server password.
The passwords are here treated as bit strings.

Correctness. An EPAD scheme is correct if the decryption of an encrypted
plaintext, whether by the deterministic decryption algorithm or by the interac-
tive protocol with pU = pS , results in the plaintext. That is, for all _ ∈ N, all M
and all pU = pS ,

Pr

IDec = 〈Dec(sk ,C ),⊥,⊥〉 = 〈",⊥,⊥〉 :
pp ← Setup

(
1_

)
(pk , sk , sk T , sk S) ← KG(pp)
C ← Enc(pk ,M )

 = 1.

3.2 Security Definitions

This section formalizes the security properties expected from EPAD schemes.
These properties are Password-protected Indistinguishability under Replayable
Chosen-Ciphertext Attacks (P-IND-RCCA), blindness and verifiability.

P-IND-RCCA Security. Password-protected Indistinguishability under Re-
playable Chosen-Ciphertext Attacks (P-IND-RCCA) ensures that no efficient
adversary can infer any information about a user’s plaintext as long as it does not
know her password (by corrupting the user’s machine or the server) or does not
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have access to her token. It captures both indistinguishability under replayable
chosen-ciphertext attacks and password authentication. The latter means that
decryption can only succeed if the user and the server have the same password.

The formal model for P-IND-RCCA security is inspired by the Bellare–
Rogaway–Pointcheval (BPR) model for password-based authenticated-key-ex-
change protocols [7]. It covers the cases of concurrent protocol executions, with
potentially many users, tokens and servers. In addition to that, a user may pos-
sess several tokens and could be registered on several servers.

Game Overview. The P-IND-RCCA security experiment features an adversary
A. After an initial parameter generation phase,A can request that the challenger
generates keys and passwords for the users. The passwords are generated via a
password generator PG that returns values in some dictionary D . The min-
entropy of the output distribution of PG is denoted �∞,PG.

Next, A is given access to several oracles modeling different types of attacks
(password-related or chosen-ciphertext attacks); and to a test oracle which can
be called at any time, but only once (a definition with several test queries would
be equivalent). On input two messages and a user identity chosen by A, this test
oracle randomly chooses one of the messages, and returns an encryption of this
message under the user’s public key. If A guesses which message was encrypted,
it is considered successful. An EPAD scheme is then said to be P-IND-RCCA
secure if no efficient adversary can win the game with probability significantly
greater than 1/2+n , where n is the maximum advantage one can gain from trivial
online dictionary attacks (i.e., guessing passwords should be the only possible
attacks).

Initialization & Game Variables. A set of users U is assumed to be fixed. For
every U ∈ U , the set of tokens belonging to U is denoted by T [U], and the
set of servers with which U shares a password is denoted S [U]. The set of all
tokens is denoted T and the set of all servers S .

During the initialization phase, public parameters for the encryption scheme
are generated. Secret-key shares for all tokens and servers are set to ⊥. Further
on, for id ∈ T ∪ S , sk id denotes the set of all user key-shares for id .

A finite instance set I for all party algorithms is also assumed to be fixed.
Each instance 8 ∈ I of the algorithm of party id maintains a state st 8

id
. A session

identifier sid 8id , and partner identities pid 80 and pid 81 allow to match instances in
protocol executions.

A variable used 8id indicates whether an active attack has been performed on
the 8th instance of the algorithm of party id .

Variables acc8
id

and term 8
id

respectively indicate whether the 8th algorithm
instance of party id has accepted and terminated. As in the BPR model, accep-
tance and termination are distinguished. When an instance terminates, it does
not output any further message. Nevertheless, it can accept at a certain point of
its computation but terminate later. This may occur when an instance confirms
its partners, in which case it accepts, and thereafter continues the computation
until termination.
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A queue &AddU of added users, i.e., users for which keys and passwords have
been generated, and a queue of corrupt users &Corrupt are also initialized.

At the end of the initialization phase, the encryption parameters, the sets of
participants and the user public keys are returned in a public input pin, and the
rest is set in a secret input sin. That is, pin ← (pp, I , U , T , S , (pkU)U

)
and

sin ←
(
pin , (sk T)T , (sk S)S ,

(
st 8

id
, sid 8id , pid

8
id ,0, pid

8
id ,1, acc8

id
, term 8

id
, used 8id

)
8,id

,

&AddU, &Corrupt
)
. The secret input sin is later made available to all oracles.

Oracles. Throughout the experiment, A is given access to the oracles detailed
below and summarized on Figure 1, and which it can query in any order.

– Test1 : returns the encryption with a user public key of one of two messages,
all chosen by the adversary. The challenge user identity U∗ is not required
to be honest (i.e., the adversary may know her password), but the challenge
token T ∗ and challenge server S∗ cannot both be corrupt, otherwise the
adversary would be able to reconstruct her secret key and trivially win the
game. The public key pkU∗ is the one for which T ∗ and S∗ hold secret-key
shares. For simplicity, the adversary may query this oracle at most once.
Note also that as in the BPR model [7] and the model for distributed session
key [8], this query is not restricted to be the last query of the adversary.

– AddU : adds an honest user identity. In addition to a user identity U, the
adversary specifies a set T [U] of tokens and a set S [U] of servers for U.
Note that these can be corrupt, except for the challenge identities U∗, T ∗,
S∗: parties T ∗ and S∗ cannot both be corrupt (see the definition of oracle
Corrupt). For each server in S [U], a password pU and a transformation
pUS thereof is generated by the password generator PG. Keys and secret-key
shares for all token–server pairs of the user are also generated.

– Exec : returns the transcript of an honest (i.e., without the interference of the
adversary) decryption-protocol execution on a ciphertext C . Note that Exec
queries thereby model offline dictionary attacks among others. The execution
is between the 8th, 9th and :th instances the algorithms of a user U, a token
T and a server S. The notation U8, T 9 and S: mean that algorithms U, T
and S are respectively run with the states st 8U , st

9

T and st :S . If Dec(skU ,C )
is one of the challenge messages (with skU the secret key for which T and
S hold shares), the oracle returns a special string replay as in the classical
definition of RCCA security (see Sec. 2.4). The parties may be corrupt (in
which case A has their states), but T ∗ and S∗ cannot both be corrupt.

– Send : the adversary can perform active attacks via this oracle. The adversary
can send a message to an algorithm instance (e.g., the :th instance of a server
algorithm), all of its choice. The notation IDec(id , ·) respectively stands for
U(·), T(·) or S(·) if id ∈ U , T or S . This algorithm then runs the instance
on that message. To prompt the 8th instance of the algorithm of a user U
to initiate a protocol execution on a ciphertext C with the 9th instance
of a token T and the :th instance of a server S, the adversary can query
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Init
(
1_,U ,T , S , I

)
pp ← Setup

(
1_

)
for (T ∈ T )

{
for (U ∈ U ) skUT ← ⊥

}
for (S ∈ S )

{
for (U ∈ U ) skUS ← ⊥

}
for (8, id ) ∈ I × (U ∪ T ∪ S )

st 8
id
← ⊥

sid 8id ← pid 8id ,0 ← pid 8id ,1 ← ⊥
acc8

id
← term 8

id
← used 8

id
← FALSE

&AddU ← &Corrupt ← ∅
return (pin , sin)

AddU(U,T [U], S [U]) if
(
U ∉ U or U ∈ &Corrupt

)
return ⊥

for (S ∈ S [U])
(
pU , p

U
S

)
← PG(pp) // Generate passwords for the user

for (T ,S) ∈ T [U] × S [U]
(pkU , skU , sk T , skS) ← KG(pp) // Generate user keys(
skUT , sk

U
S

)
← (sk T , skS)

output pkU
&AddU ← &AddU ∪ {U}

Exec(U, 8,T , 9 ,S, :,C ) if (U ∉ &AddU or T ∉ T or S ∉ S )
return ⊥

if
(
used 8U or used 9T or used :S

)
return ⊥

if (Dec(skU ,C ) ∈ {M0,M1}) return replay // Prevent replay attacks
g ←

〈
U8 (pk , pU ,C ),T 9

(
skUT

)
, S:

(
skUS , p

U
S

)〉
// Run an honest protocol execution.
return g

Send(id , 8,M ) if term 8
id

return ⊥
used 8

id
← TRUE

if id = U∗ and M = (T ∗, ∗,S∗, ∗,C )
if (Dec(skU∗ ,C ) ∈ {M0,M1})

return replay
if U∗ ∈ &Corrupt or S∗ ∈ &Corrupt

if (id = T ∗) return ⊥
// If A has the password of U∗, reject queries to T ∗

if U∗ ∈ &Corrupt and T ∗ ∈ &Corrupt
if (id = S∗) return ⊥

// If A has the password of U∗ and if T ∗ is corrupt, reject queries to S∗〈
mout , acc, term

8
id
, sid , pid0, pid1, st

8
id

〉
←

〈
IDec

(
id , st 8

id
, sk id , pid ,M

)〉
// If id ∈ U , replace sk id with pk id
// If id ∈ T , replace pid with ⊥

if acc and ¬acc8
id

sid 8
id
← sid ; pid 8

id ,0/1 ← pid0/1; acc8
id
← acc

return
(
mout , acc, term

8
id
, sid , pid0, pid1, st

8
id

)
Corrupt(id , p) if

(
∃8 ∈ � : used 8

id
and ¬term 8

id

)
return ⊥ //Static corruption only

&Corrupt ← &Corrupt ∪ {id }
if id ∈ U

for S ∈ S [id ]
pUS ← p [S] // Overwrite the user’s passwords

return
(
pU ,

{
st 8U

}
8∈I

)
else

if
(
id = T ∗ and S∗ ∈ &Corrupt

)
or

(
id = S∗ and T ∗ ∈ &Corrupt

)
return ⊥ // T ∗ and S∗ cannot both be corrupt

return
(
sk id ,

{
st 8

id

}
8

)
Test1 (U∗,T ∗,S∗,M0,M1) if (U∗ ∉ U or T ∗ ∉ T [*∗] or S∗ ∉ S [*∗]) return ⊥

if
(
(T ∗,S∗) ∈ &2

Corrupt

)
return ⊥ // T ∗ and S∗ cannot both be corrupt

C ∗ ← Enc
(
pkU∗ ,M1

)
return C ∗

Fig. 1. Oracles for the P-IND-RCCA Security Experiment.
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oracle Send on (U, 8, (T , 9 ,S, :,C )). If such a query decrypt to either of the
challenge messages, the oracle returns replay to prevent trivial wins.

In addition to an output message mout , the algorithm also returns to
A acceptance and termination states acc and term 8

id
, a session identifier

sid and partner instances pid0 and pid1, and a state st 8
id
. Identity pid0 is

always assumed to be the party which should receive the next flow of id , i.e.,
a token identity if id ∈ U , a server identity if id ∈ T and a token identity
if id ∈ S . Variables sid 8id , pid

8
id ,0 and pid 8id ,1 and acc8

id
are updated in case

the instance accepts, and all values are revealed to the adversary except the
state (which may contain a password or a secret-key share). A can access
this state by corrupting party id .

If A knows the password of the challenge user U∗, by corrupting either
that identity or S∗, then queries to T ∗ are rejected. It translates the fact
that in case of a server breach or if there is a keylogger on the user’s machine,
then no security can be expected if an attacker also has access to her token.

Likewise, if U∗ is corrupt as well as T ∗, queries to S∗ are rejected. It
reflects the fact that if a user’s token is corrupt, no security can be expected
if her password is also leaked. Indeed, in that case, an attacker can use the
server which shares a key with the token in order to decrypt the ciphertexts.

– Corrupt : gives the adversary control over all the instances of a party al-
gorithm. In the case of a user, the adversary does not only receives her
passwords and the states of all her algorithm instances, but may also over-
write the password held by each of her servers. If the party being corrupted
is a token or a server, the adversary receives the states of all of its algorithm
instances and also its key shares. Once a Test query has been made with an
identity U∗, the corruption of both T ∗ and S∗ is not allowed. That is to
prevent the adversary from reconstructing her secret key and trivially win
the game.

Only static corruptions are here considered, i.e., the adversary cannot
corrupt a party of which an algorithm instance is in the middle of a protocol
execution. It is expressed by the condition “if

(
∃8 ∈ � : used 8id and ¬term 8

id

)
return ⊥”.

Definition 3.1 (P-IND-RCCA). An EPAD scheme is P-IND-RCCA secure
if for all _ ∈ N, for every efficient adversary A,

Pr


1 = 1′ :

(pin , sin) ← Init
(
1_,U ,T , S , I

)
1 ←$ {0, 1}
O ← {Exec, Send,Corrupt,Test1}
1′← AO(sin , ·) (pin)
return (1, 1′)


is negligibly close to 1/2 + @Send · �∞,PG.

The term @Send · �∞,PG accounts for online dictionary attacks. An EPAD
scheme should guarantee that these are the best attacks possible.
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Remark 3.1 (On One-Round Protocols). Note that there cannot exist a one-
round protocol secure against offline dictionary attacks. A round is here under-
stood as the set of messages sent between all parties from a message sent by
the user to the token to the next response from the token. Would there be such
a one-round protocol, an adversary could intercept the transcript of an execu-
tion of the decryption protocol. In that execution, the user would have had to
send sufficient information for the server to verify her password, without having
received any prior indication that the server shares this password; sufficient in
fact, for the adversary to perform an offline dictionary attack on her password.
Therefore, a protocol secure against offline dictionary attacks must consist of
at least two rounds. It is not surprising as the user, who initiates the protocol,
should verify the server holds the same password as she does. Moreover, the
mere fact the user continues the protocol until the end indicates that the server
could successfully authenticate itself to the user. On this account, without a
throttling mechanism on the user’s side, online dictionary attacks against the
user’s password cannot be prevented.

Blindness. This property formalizes the idea that neither the token nor the
server should be able to infer any information about the ciphertexts the user
wants to decrypt. This is analogous to Green’s notion of blindness [26] except
that in his work, the decryptor is a centralised entity, whereas the decryption
process is here shared between the token and the server.

In the formal definition, the challenge ciphertexts C0 and C1 must be either
both valid or both invalid, i.e., (Dec(sk ,C0) = ⊥) = (Dec(sk ,C1) = ⊥) should
hold, which is a minimal condition to exclude trivial wins. Besides, the defini-
tion might at first seem too strict as the token and server are therein corrupt
and can together reconstruct the full secret key and the password. However, the
definition can in practice be achieved by letting the user rerandomize her cipher-
texts and blind the underlying plaintexts with temporary high-entropy secrets
before sending the ciphertext to the token and the server.

Definition 3.2 (Blindness). An EPAD scheme satisfies blindness if for all
_ ∈ N, for every efficient adversary A,

Pr


1 = 1′ :

pp ← Setup
(
1_

)
(pk , sk , sk T , sk S) ← KG(pp)
(st , pU ,C0,C1) ← A(pk , sk , sk T , sk S)
1 ←$ {0, 1}
if (Dec(sk ,C0) = ⊥) ≠ (Dec(sk ,C1) = ⊥)

1′←$ {0, 1}
return (1, 1′)

〈∗, 1′〉 ← 〈U(pk , pU ,C1),A(st)〉
return (1, 1′)


is negligibly close to 1/2.

17



Verifiability. This property captures the idea that the user should accept the
result of the decryption protocol only if the token and the server have correctly
performed their computations.

Definition 3.3 (Verifiability). An EPAD scheme is verifiable if for all _ ∈ N,
for every efficient adversary A,

Pr [〈U (pk , pU ,C ) ,A(st)〉 ∉ {〈Dec(sk ,C ), ∗〉, 〈⊥, ∗〉} :
pp ← Setup

(
1_

)
(pk , sk , sk T , sk S) ← KG(pp)
(st , pU ,C ) ← A(pk , sk , sk T , sk S)

 =1.
4 Construction

In this section, we build an EPAD scheme from the RCCA-secure encryption
scheme of Faonio, Fiore, Herranz and Ràfols [24] (see App. B.3). Similar tech-
niques can a priori be applied to any publicly verifiable, structure-preserving
RCCA-secure scheme. The public-verifiability aspect is to easily make the scheme
threshold while maintaining the security of the original scheme.

The section starts by showing how users can blind the plaintexts underlying
the ciphertexts they want to decrypt. It then continues with the main construc-
tion and its efficiency assessment.

4.1 Verification of Blinded Ciphertexts

As mentioned in Sec. 3.2, EPAD schemes should satisfy blindness, meaning that
even if the token and the server are corrupt, they cannot infer any information
about the ciphertexts they are helping a user to decrypt. It is a stringent re-
quirement as a corrupt token and server can reconstruct the secret key, and if
the server is actually one associated to the user, it also has her password. Thus
given a ciphertext, the user must be able to blind the underlying plaintext using
only public information.

On the other hand, EPAD schemes also aim for an RCCA type of security,
so the only type of malleability that should be expected is re-randomization.
Therefore, the user cannot a priori blind the plaintext and produce a new valid
ciphertext (except with negligible probability) since she does not remember her
secret key. Nonetheless, she can provide enough information auxiliary to the
modified ciphertext which allows the token and the server to verify, with their
secret key shares, that she correctly blinded the underlying plaintext of a valid
ciphertext, and that she knows the blinding factor.

We thus introduce a new algorithm Blind(pk ,C ) →
(
C̃ , aux

)
which, given

a public key and a ciphertext of the scheme of Faonio et al., essentially adds a
one-time pad to the plaintext and gives a Groth–Sahai proof knowledge of the
pad in some auxiliary information. The new ciphertext can then be verified by
another algorithm BlindVf

(
sk , C̃ , aux

)
→ 1 ∈ {0, 1} on the input of a secret-key
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share and of the auxiliary information. Similar techniques can a priori be applied
to other publicly-verifiable schemes. Algorithms Blind and BlindVf are formally
defined in App. B.3.

4.2 Construction

This section presents our main construction which is further denoted E. Recall
from Sec. 3 that a secure scheme must be at least two rounds. Our protocol,
which consists of two rounds, is therefore round optimal.

Building Blocks. The construction uses as building blocks

– the RCCA-secure encryption scheme of Faonio et al. (App. B.3) denoted
Ercca

– the short Cramer–Shoup encryption scheme in G1 (App. B.2) with hash-
function family HPCA to encrypt passwords. It is further denoted Epca

– Groth’s one-time signature scheme (see App. A.1), further denoted OTS,
with hash-function family HOTS

– the KV-SPHF for short Cramer–Shoup ciphertexts (App. C.2)
– a (single-keyed) Hash-based Message Authentication Code [6] (HMAC), fur-

ther denoted MAC, with {6^ }^ as family of compression functions (SHA-256
in practice)

– Krawczyk’s KDF (App. E) denoted KDF with
∗ for the extraction phase, HMAC based on a family {�^ }^ of Merkle–Damgård
hash functions with {ℎ^ }^ as underlying family of compression functions
(SHA-512 in practice), and
∗ for the expansion phase, HMAC with {6^ }^ as family of compression
functions (SHA-256 in practice)

– the SXDH-based simulation-sound Groth–Sahai proof system (App. D.3)
which is controllably malleable w.r.t. additive transformations in Z? and
satisfies strong derivation privacy (App. D.2), and which uses Jutla and Roy’s
scheme (further denoted SIG) as underlying signature scheme (App. A.2).
The proof system is further denoted SS_GS.

Construction Overview. The main steps of the scheme are depicted on Fig 2.
The high-level description follows (for notations and details, see the appendices
cited in the building blocks above).

Setup & Key Generation. The parameters include parameters for the scheme
of Faonio et al., for the SPHF for Elgamal ciphertexts, and for the simulation-
sound GS proof system.

Encryption & Decryption Algorithms. These are the same as the ones of
the scheme of Faonio et al.

Interactive Decryption. During the interactive decryption protocol IDec, the
parties proceed as follows.
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– At the beginning of the protocol, the user and the server essentially do
a one-round Password-Authenticated Key Exchange (PAKE) with short
Cramer–Shoup encryption of their passwords and KV-SPHF evaluations
on them; following techniques of Benhamouda et al. [9]. The underlying
idea is to enable each party to implicitly check via the projective keys
that the ciphertext of the other party encrypts the same password as
hers (see Sec. 2.5).

The encrypted passwords are bound to the ongoing session via the
projective keys sent during the PAKE and used as labels for the en-
crypted passwords. It prevents replay attacks since the corresponding
hashing keys are needed to recover the PAKE key.

The key obtained later serves two purposes. It is first used as key
material for a KDF of which the output is used to authenticate the
respective next flows of the server and then the user, thereby making
sure that the other party holds the same password. Its second use is to
mask the partial decryption of the server so that only a party who has
the same password as the server can later remove it and retrieve the
plaintext.

In parallel, the token and the server verify that the other party knows
a share of the secret key, and the user checks that the token and the server
can together reconstruct the secret key. The user therefore makes sure
that the server knows both a secret-key share, and her password if their
PAKE outputs are the same (which she ascertains with the MAC).

Note that, to bind its proof to the ongoing session, the token also signs
the proof (and the input from the user) with a one-time scheme. The
verification key is used as label for an encryption (with a key different
from the one used to encrypt the passwords) of the partial user public
key relative to the token share. As only the server can also compute the
partial user public key of the token, it can check (given the decryption
key) that the token is the party who computed the ciphertext, and that
the one-time verification key was not altered.

On the other hand, the server need not do the same as no computation
involving the token share is done before the server must prove knowledge
of the hashing key corresponding to the projective key sent in the first
round. As the projective key is authenticated together with the server
proof via the MAC, and as the smoothness of the SPHF guarantees that
the hashing key can be recovered with only negligible probability, the
server proof is also bound to the ongoing session.

– After the PAKE, the user re-randomizes her ciphertext and blinds the un-
derlying plaintext (as in Sec. 4.1) so that even if the token and the server
are corrupt, they cannot infer any information about the ciphertext they
help her decrypt. She also authenticates the blinded, re-randomized ci-
phertext with a key derived with the KDF from the PAKE key as key
material. She then sends the ciphertext and the tag to the token.
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– The token verifies that the user correctly blinded the plaintext of a valid
ciphertext, and that she knows the blinding factor, before forwarding to
the server what it just received. This verification could actually be done
in parallel of the server computation, but before partially decrypting the
ciphertext. It is to make sure that no attacker can obtain partial decryp-
tion from the token on invalid ciphertexts and possibly infer information
about its share.

– The server verifies the authenticity of the flow via the MAC and then
performs the same verifications as the token. If they succeed, it partially
decrypts the ciphertext and masks it with the PAKE key. The server
then sends the partially decrypted (and masked) ciphertext to the token,
along with a proof that she decrypted the ciphertext with the key share
of which she proved knowledge in the first round (i.e., verification is
done w.r.t. the GS commitment to that share and which was sent in
the first round), and that it masked the result with the PAKE key from
the first round. Although the token does not know the password shared
by the user and the token, it is convinced that the mask is really the
PAKE key from the first round. That is because the token verifies the
server proof w.r.t. the encrypted passwords and the projective keys that
were sent in the first round, and this is absolutely crucial to prevent
man-in-the-middle attacks between the token and the server.

– After verifying the proof, the token finishes the decryption and uses the
malleability of GS proofs w.r.t. additive transformations to compute,
from the server proof, a proof that it and the server both correctly per-
formed their computations. It then sends the decrypted, though blinded
(by the user) and masked, plaintext and the proof of correct computa-
tion.

– The user verifies the proof, and if it is correct, removes her blinding
factor, removes the mask with the PAKE key and can then recover the
plaintext.

In the P-IND-RCCA security proof, soundness must be guaranteed even after
giving the adversary simulated proofs, which is why the GS proof system
must be CM simulation sound w.r.t. additive transformations (see Section
D.1). It is due to the fact that secret keys are kept across different sessions.

Formal Description. The decryption protocol is given on Fig. 3. Each message
sent is assumed to be prepended with a session identifier and the identities of
the two partner instances. It is assumed that an algorithm aborts if it receives
an ill-formed message or if a verification fails, and that it erases all its temporary
variables (which include its randomness) once it terminates. The proofs from the
token and the server are outlined below.

Notation. Let [·] : G1 → {0, 1}ℓ be an injection, namely the bit representation of
G1 elements. Integers in {0, . . . , ? − 1} are identified with their binary represen-
tations in {0, 1}ℓ . For three integers 8 ∈ {1, 2}, 9 and :, whenever computational
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costs in a bilinear structure are considered, G 9
8
denotes a 9-exponentiation in

G8 and P: denotes the computation of product : pairing values. As for com-
munication costs, 9G8 denotes 9 elements in G8 and 9Z? denotes 9 elements in
Z?.

In the following SS_GS is a Simulation-Sound Groth Sahai proof system
with two main algorithms, a Prove algorithm that generates valid proofs for a
statement with respect to the secret used, and Vf that checks if a proof is valid
with respect to a statement. An extra algorithm Eval allows to further refine a
proof by using extra witnesses.

OTS is a one time signature, with a KG key generation algorithm, a Sign
signing algorithm, and a verification Vf algorithm checking the consistency of
the signature with respect to it’s public key.
Epca is a plaintext checkable encryption scheme, while Ercca is a randomizable

CCA encryption scheme allowing access to extra algorithms: a randomization
Rand algorithm, and Blind/BlindVf that respectively allow to blind the payload in
a ciphertext, and to check consistency to know whether the decryption algorithm
will return a value different from ⊥.

HashKG,ProjKG,Hash,ProjHash are the 4 algorithms constituting an SPHF,
to generate keys to allow to implicitly prove the validity of a statement with
respect to a given witness.

Parameters. Given two families HPCA and HOTS of hash functions from {0, 1}∗
to {0, 1}ℓ , to generate public parameters,

– generate a bilinear structure Γ← (?,G1 = 〈61〉,G2 = 〈62〉,G) , 4) ←$ G
(
1_

)
.

Let ℓ ← blog2 ?c + 1 be the bit length of ?
– select �PCA ←$ HPCA and �OTS ←$ HOTS

– generate a salt value XTS ←$ {0, 1}ℓ for the KDF
– generate keys for the short Cramer–Shoup encryption scheme in G1, i.e.,

Decryption key dk = (Z, U, V, U′, V′)
Encryption key ek = (ℎ1, W, X) =

(
6
Z

1 , 6
U
1 ℎ

V

1 , 6
U′
1 ℎ

V′

1

)
– generate parameters for Ercca, i.e., GS parameters a, b ∈ G2

1; v,w ∈ G2
2 in

soundness mode
– generate parameters for SS_GS, i.e., GS parameters ã, b̃ ∈ G2

1; ṽ, w̃ ∈ G2
2 in

soundness mode and a pair of keys (vk , sk ) ← SIG.KG(Γ, 2)
– return pp ← crs ←

(
Γ; a, b; v,w; ã, b̃; ṽ, w̃;�PCA, ek ;�OTS; vk ;XTS

)
.

Passwords. Passwords are elements of G1; 1G1
is not a valid password.

Key Generation. To generate keys for E, run (pkU , sk , sk T , sk S) ← Ercca.KG(pp).
The secret-key shares sk T/sk S ←

(
U1,T/S , U2,T/S , G, �1, �2, C1, C2), are

such that U8,T ←$ Z? and U8,S = U8 −U8,T for 8 = 1, 2. Generate also another pair
(ek ′, dk ′) ← Epca.KG(?, 61,G1, �). Note that pkU is of the form

(
Γ, pk1 B 6�1 ,

pk2 B 6
U1�+U2

1 , . . .

)
. The token is given ek ′, and the server dk ′. The whole token
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Fig. 3. Decryption Protocol.
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share (cf. the syntax of Sec. 3) is then (sk T , ek ′) and the whole server share is
(sk S , dk ′).

Acceptance and Termination. The U instance accepts after verifying tag gS , and
terminates after returningM . The T instance accepts after receiving

(
C̃M , aux , gU

)
,

and terminates after sendingMT and cT to the user. The S instance accepts after
verifying gU , and terminates after sending MS and cS to the token.

First Proofs c̃T from the Token. In the first round, the token proves with SS_GS
to the server that it knows the other share of the user secret key. Proof c̃T then
consists of 20 G1 element, 26 G2 elements and 2 Z? elements, and verifying it
costs 4G1

1 + 4G1
2 + 2P4 + 6P6 + 8P5 + 4P8.

First Proofs c̃S from the Server. Leveraging the malleability of SS_GS, the
server computes a proof of knowledge of the complete user secret key.

Second Proof cS from the Server. After the server partially decrypts the cipher-
text and masks the result with an SPH, it proves that it correctly performed its
computation. In particular, the server proves the server proves that secret-key
shares it used to partially decrypt are the ones to which it committed in the
first round. It also proves that the password it encrypted in the first round is
the same that is used to computed the SPH mask.

Equations. Let b ← � (*, �, hpS). The server must prove knowledge of pS ,
hk S B (_, `, a, \) and AS such that

hpS,1 = 6
_
1ℎ
a
1W

\ and hpS,2 = 6
`

1 X
\ and CS = (*, �,+) =

(
6
AS
1 , ℎ

AS
1 pS ,

(
WXb

)AS )
and MS G̃

−1
3 = G̃

−U1,S
1 G̃

−U2,S
2 *_+`b�a (1/pS)a + \

(
hpU,1hp

b

U,2

)AS
.

With SS_GS, proof cS consists of 38 G1 elements, 42 G2 elements and 2 Z?
elements. Verifying it costs 4G1

1+G2
2+2P3+4P4+4P5+6P6+6P7+4P9+8P10+2P13.

Note that the token verifies w.r.t. to the commitments c(U8,S) it infers from the
first proof c̃S and its secret-key share.

Second Proof cT from the Token. Upon receiving cS from the server, the token
decryption algorithm first verifies it. If cS is correct, the token algorithm uses
the malleability of GS proofs to compute a proof that decryption was done with
the full secret key of which knowledge was proved in the first round.

Correctness & Security. The P-IND-RCCA security and the verifiability of
E rely of the following assumptions (see also App. E):

– {ℎ^ }^ is pairwise-independent
– {�^ }^ is collision-resistant against linear-size circuits
– 6 · is a secure Pseudo-Random Function (PRF)
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U
 T T
 S
1st Flow 5G1 31G1 + 26G2 + 4Z?
2nd Flow 25G1 + 26G2 + 3Z? 25G1 + 26G2 + 3Z?
3rd Flow 16G1 + 19G2 + 4G) + 1Z? 16G1 + 19G2 + 4G) + 1Z?
4th Flow 39G1 + 42G2 + 1Z? 39G1 + 42G2 + 1Z?

Table 1. Theoretical communication cost of the decryption protocol.

U
 T T
 S
1st Flow 0.41 5

2nd Flow 4.43 4.43

3rd Flow 4.92 4.92

4th Flow 6.73 6.73

Table 2. Estimated communication in KB, _ = 128 and Cocks-Pinch modified curve.

– 6̂ : ( ,M ) → 6M ( ) is a secure PRF under a class of affine related-key
attacks defined by the inner and outer pads [5, Lemma 5.2].

Concerning its properties, E is correct. Assuming that the SXDH assumption
over G holds, that {ℎ^ }^ , {�^ }^ , 6 · and 6̂ · satisfy the assumptions above, that
HPCA is second-preimage resistant and that HOTS is collision-resistant, E is P-
IND-RCCA secure. Moreover, E satisfies blindness under the SXDH assumption
over G. Lastly, E is verifiable if {ℎ^ }^ , {�^ }^ , 6 · and 6̂ · satisfy the assumptions
above and if the SXDH assumption over G holds. See App. F for proofs of these
statements.

Efficiency. Tab. 1 sums up the theoretical communication cost of the decryption
protocol. Concretely, for an 128-bit security, adopting the Cocks-Pinch modified
curve with ? a 672 bit prime and an embedding degree : = 6 (following parame-
ters advised by Guillevic in [29]), elements in G1 and G2 are of size 672 bits, while
elements of G) are of size 4028 bits. We estimate the resulting communication
complexity in Tab. 2.

On Adaptive Corruptions. The main reason why the decryption protocol is
not secure against adaptive corruptions is that the short Cramer–Shoup encryp-
tion is “fully committing”, meaning that there is only one valid opening (i.e.,
message–randomness pair) for each commitment (i.e., ciphertext). However, in
one of the intermediate games in the proof of P-IND-RCCA security, the chal-
lenger computes commitments to dummy passwords for honest parties. It means
that if the adversary corrupts an honest party right after she has sent her com-
mitment, the challenger cannot return to the adversary a valid opening which
contains the actual password of that party.
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To overcome this hurdle, one could instead use an equivocable commitment
scheme which supports adaptively smooth KV-SPHFs. As an equivocable com-
mitment scheme allows to compute a valid opening to any commitment given a
trapdoor, such a scheme together with a KV-SPHF should make the protocol
secure against adaptive corruptions. Blazy and Chevalier’s commitment scheme
and its associated KV-SPHF [10] precisely satisfy these conditions. The commit-
ment scheme relies on the SXDH assumption, and although its size is constant
in the bit length of the message (i.e., 4 G1 elements and 2 G2 elements for each
commitment), it is still larger than that of the short Cramer–Shoup encryption
scheme. The latter was then chosen for efficiency reasons but at the expense of
adaptive corruptions.

Note also that if U∗ is corrupted right after the end of the PAKE (i.e., at the
end of the first round), then the adversary could get from the server instance a
partial decryption on the challenge ciphertext with the third flow (even if the
U∗ instance was prompted on a different ciphertext). To prevent this, the token
could again compute a one-time signature as in the first flow, but also include
CM in the label of the encryption. Doing so ensures the server that the third
flow went through the token, which would not be possible in case of corruption
of U∗ as token queries are then rejected.

On Composability. The Section-3 definitions are game-based and do not guar-
antee composability. However, a UC [16] functionality for EPAD schemes could
be defined in the same vein as for PAKE [17] and RCCA-secure encryption
schemes [18] considered together. Yet, to achieve composability, and as for PAKE
protocols, it would be necessary for the UC simulator (in case the adversary cor-
rectly guesses the password of an honest party) to be able to compute correct
SPH values on invalid words C (encrypting 1G1

) with the sole knowledge of a
projective key hp from the adversary and not of the corresponding hashing key
hk .

Benhamouda et al. [9] introduced trapdoor SPHFs exactly for this purpose
and gave a construction for the original Cramer–Shoup encryption scheme which
is computationally and adaptively smooth under the SXDH assumption. It could
readily be adapted to the short version of their scheme, though each projec-
tive key would contain one more G1 element. Alternatively, one could also use
structure-preserving SPHFs which were introduced by Blazy and Chevalier [10].

Mitigating Server Breaches. EPAD schemes have so far been defined only
w.r.t. a single server. Nevertheless, password theft from server databases is com-
mon in practice, and users even tend to use the same password for several ser-
vices. It means that not only the confidentiality of user messages is threatened
if a single server is compromised (and if her token is corrupt), but also potential
other services.

To mitigate the impact of server breaches, a potential solution is to use
threshold cryptography [22,39]. User passwords are then encrypted in a database
and the decryption key is shared between = ≥ 1 servers so that no information
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about the passwords is leaked if at most a number C of them are corrupt. Never-
theless, any C+1 servers should be able to recover user passwords. Blazy, Chevalier
and Vergnaud [11, Sec. 5] proposed an efficient protocol for threshold PAKE [37]
from SPHFs which is based on this idea. It allows a user and a gateway that
interacts with C + 1 servers to agree on a common high-entropy key if the user
password and the encrypted password match, without revealing any information
about the passwords. However, if they do not, the keys obtained by each party
are independent and uniformly random. In consequence, the security of the key
exchange is guaranteed so long as at most C servers are corrupt.

The EPAD scheme in Section 3 can then be turned into a scheme with =

servers and which withstand the corruption of C of them (i.e., a C-out-of-= scheme)
as follows. During the set-up phase, the user encrypts her password and sends the
encrypted password and a C-out-of-= secret-key share to each server. The Ercca
secret key is (C + 1)-out-of-(= + 1) shared between the = servers and the token so
that any C + 1 servers and the token can decrypt user ciphertexts. During the
decryption protocol, each of the participating servers plays in parallel the role of
the gateway of Blazy, Chevalier and Vergnaud’s protocol, and uses the resulting
keys to authenticate the second flow in the protocol of Fig. 3. In the last flow,
each server would then have to prove that it partially decrypted the ciphertext
with its Ercca key share and masked it with the key resulting from the threshold
PAKE. As the threshold PAKE is based on SPHFs, the same techniques (as in
Sec. 3) leveraging malleability apply.
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A Signatures

This section first gives the definition of strong one-time security of signature
schemes. It then presents Groth’s one-time signature scheme as well as a structure-
preserving existentially unforgeable signature scheme due to Jutla and Roy [31].

Strong One-Time Security. A signature scheme is one-time strongly unforgeable
against chosen-message attacks if no efficient adversary can forge a signature
on a message even after obtaining a single signature (potentially on the same
message). That is to say, for all _ ∈ N, for every efficient adversary A,

Pr

Vf (vk ,M ∗, f∗) = 1
∧(M ∗, f∗) ∉ &Sign

:

pp ← Setup
(
1_

)
;&Sign ← ∅

(vk , sk ) ← KG(pp)
(M ∗, f∗) ← AO.SignOT (sk , ·) (vk )


is negligible. Oracle O.SignOT (sk , ·) can be queried only once, say on a message
M . It computes and returns f ← Sign(sk ,M ), and adds (M , f) to &Sign.

A.1 Groth’s Strong One-Time Signatures

Given a group generator G and family of hash functionsH , Groth’s [27] signature
scheme consists of the following algorithms.

Setup
(
1_

)
→ pp : run (?,G = 〈6〉) ← G

(
1_

)
. Generate � ←$ H . Set and return

pp ← (?,G, �).
KG(pp) → (vk , sk ): generate G, H ←$ Z

∗
?. Compute 5 ← 6G and ℎ ← 6H. Gen-

erate A, B ←$ Z
∗
? and compute 2 ← 5 A ℎB. Set vk ← ( 5 , ℎ, 2) and sk ←

(G, H, A, B). Return (vk , sk ).
Sign (sk ,M ∈ {0, 1}∗) → f : generate C ←$ Z?, and compute and return f ←(

C, (G(A − C) + HB − � (M ))H−1
)
.

Vf (vk ,M , f) → 1 ∈ {0, 1} : parse f as (C, D). Return 1 if 2 = 6� (M ) 5 CℎD, else
return 0.

Groth proved [27, Theorem 18] that it is one-time strongly unforgeable against
chosen-message attacks if the discrete-logarithm assumption over G holds and if
H is a family of collision-resistant hash functions.

A.2 Jutla and Roy’s Signature Scheme

The following signature scheme, parametrized by a bilinear structure generator
G, is due to Jutla and Roy [31]. It allows to sign vectors of first-group elements,
and it is existentially unforgeable under the SXDH assumption.

Setup
(
1_, =

)
→ pp : run Γ ← (?, G1 = 〈61〉, G2 = 〈62〉, G) , 4) ← G

(
1_

)
. Re-

turn pp ← (Γ, =).

32



KG(pp) → (vk , sk ): Generate 1, 3, 5 , :0, �, I ←$ Z?, k ←$ Z
=
?, K ←$ Z

=+4
? .

Set vk7 ←
(
6
� 1

2 , . . . , 6
� =+4
2 , 6�I2 , 6�2

)
and sk ← (1, 3, 5 , :0, k,K, I). Return

(vk , sk ).
Sign

(
sk , ` ∈ G=1

)
→ f : Generate A, C ←$ Z?. Compute

d ← 6A1, d̂ ← 6A11 , k ← 6AC1 , W ←
=∏
8=1

`
:8
8
6
:0+3A+ 5 A C
1

g ← 6C2, c ←
=∏
8=1

`
 8

8
d =+1 d̂ =+2k =+3W =+46I1

Set and return f ← (d, d̂, k, W, c, g) ∈ G5
1 × G2.

Vf (vk , `, f) → 1 ∈ {0, 1} : If 4(d, g) = 4(k, 62) and

4

(
c, 6�2

)
=

=∏
8=1

4

(
`8 , 6

� 8

2

)
4

(
d, 6

� =+1
2

)
4

(
d̂, 6

� =+2
2

)
4

(
k, 6

� =+3
2

)
4

(
W, 6

� =+4
2

)
4

(
61, 6

�I
2

)
then return 1, else return 0.

B Public-Key Encryption

This section recalls some security definitions for public-key encryption schemes
as well as instantiations that are building blocks of the construction in Section 4.

B.1 Security Definitions

This section recalls the formal definitions of IND-PCA and IND-RCCA security.

IND-PCA Security. A labeled encryption scheme (Setup,KG,Enc,Dec) is
IND-PCA secure if for every _ ∈ N, for every efficient adversary A,

Pr


1 = 1′ :

pp ← Setup
(
1_

)
;& ← ∅; (pk , sk ) ← KG(pp)

(st , ℓ∗,M0,M1) ← AO(&,sk , ·) (pk )
1 ←$ {0, 1};C ∗ ← Encℓ

∗ (pk ,M1)
1′←$ AO(&,sk , ·) (st ,C ∗)
if (ℓ∗,C ∗) ∈ &

1′←$ {0, 1}
return (1, 1′)

return (1, 1′)


7 The verification key is independent of 1, 3, 5 , :0, k as signatures are split-CRS quasi-
adaptive proofs for an affine language defined by the message, 1, 3, 5 , :0 and k, and
these proofs are simulated with (K, I) as trapdoor.
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is negligibly close to 1/2 (the advantage of A is then the distance of that proba-
bility to 1/2). Oracle O, with a state (& and sk), replies to a (ℓ,C ,M ) query by
returning the truth value of

(
Decℓ (sk ,C ) = M

)
and setting & ← & ∪ {(ℓ,C )}.

If A ever queries O on (ℓ∗,C ∗), its advantage is set to 0 since 1′ is overwritten
by a uniformly random bit.

IND-RCCA Security. An encryption scheme (Setup,KG,Enc,Dec) is IND-
RCCA secure if for every _ ∈ N, for every efficient adversary A,

Pr


1 = 1′ :

pp ← Setup
(
1_

)
; (pk , sk ) ← KG(pp)

(st ,M0,M1) ← AO(sk ,⊥,⊥, ·) (pk )
1 ←$ {0, 1};C ∗ ← Enc(pk ,M1)
1′←$ AO(sk ,M0 ,M1 , ·) (st ,C ∗)
return (1, 1′)


is negligibly close to 1/2. Oracle O, with state (sk ,M0,M1), replies to C queries
by first computing M ← Dec(sk ,C ). If M = M0 or M = M1, it returns a special
string replay indicating that C encrypts one of the challenge messages, otherwise
it returns M .

B.2 Short Cramer–Shoup Encryption.

Given a group generator G (i.e., an algorithm which returns a prime ? and the
description of a ?-order group on the input of a security parameter 1_) and
a family H of hash functions, the (labeled) short Cramer–Shoup encryption
scheme [1] consists of the following algorithms.

Setup
(
1_

)
→ pp : generate (?,G = 〈6〉) ← G

(
1_

)
and � ←$ H . Set and return

pp ← (?,G, 6, �).
KG(pp) → (pk , sk ) : sk ← (Z, U, V, U′, V′) ←$ Z

5
?. Compute pk ← (pp, ℎ, W, X)

←
(
pp, 6Z , 6UℎV , 6U

′
ℎV
′ ). (Parameters pp may further be omitted in the

syntax.) Return (pk , sk ).
Encℓ (pk ,M ∈ G; A ∈ Z?) → C : compute * ← 6A , � ← ℎAM , b ← � (*, �, ℓ)

and + ←
(
WXb

)A . Set and return C ← (*, �,+).
Decℓ (sk ,C ) → M /⊥ : compute M ← */� Z and b ← � (*, �, ℓ). If + = *U+b U′

(�/M )V+bV′ then return M , else return ⊥.

Abdalla, Benhamouda and Pointcheval proved that this scheme is IND-PCA
secure if the DDH assumption over G holds and ifH is second-preimage resistant.

B.3 Encryption Scheme of Faonio, Fiore, Herranz and Ràfols

Faonio, Fiore, Herranz and Ràfols [24] constructed a publicly verifiable, re-
randomizable, structure-preserving encryption scheme which is secure under the
matrix decisional Diffie–Hellman assumption [23]. The explicit version of their
scheme under the SXDH assumption is given below.
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Setup
(
1_

)
→ pp : run Γ← (?, G1 = 〈61〉, G2 = 〈62〉, G) , 4) ← G

(
1_

)
. Gener-

ate a Groth–Sahai common reference string, i.e., a, b ∈ G2
1 and v,w ∈ G2

2. Set
and return pp ← (Γ, a, b, v,w).

KG(pp) → (pk , sk ) : generate �, � ←$ Z?, U1, U2, V1, V2, W1, W2 ←$ Z?, F←$ Z
2
?

and G←$ Z
2×3
? . Compute

M1 ←



6�1
6
V1�+V2
1 01 11
1G1

02 12

6
�1,1�+�2,1

1 01 11
1G1

02 12

6
�1,2�+�2,2

1 01 11
1G1

02 12


and

M2 ←



6�2
6
W1�+W2
2 E1 F1

1G2
E2 F2

6
�1,1�+�2,1

2 E1 F1

1G2
E2 F2

6
�1,2�+�2,2

2 E1 F1

1G2
E2 F2

6
�1,3�+�2,3

2 E1 F1

1G2
E2 F2


.

For 8 = 1, 2, generate �8 ←$ Z?. Generate K8 ←$ Z
(5+28)×1
? . Compute matrices

P8 ←MT
8
K8 and C8 ← �8K8. Set

pk ←
(
Γ, 6�1 , 6

U1�+U2

1 , 6
V1�+V2
1 , 6�2 , 6

W1�+W2
2 ,[

6
�1,1�+�2,1

1

6
�1,2�+�2,2

1

]
,

[
6
�1,1�+�1,2+�1,3 (U1�+U2)
1

6
�2,1�+�2,2+�2,3 (U1�+U2)
1

]
,


6
�1,1�+�2,1

2

6
�1,2�+�2,2

2

6
�1,3�+�2,3

2

 ,
[
6
�1,1�+�1,2

2

6
�2,1�+�2,2

2

]
, �1, �2,P1,P2,C1,C2

ª®®¬
sk ← (Γ, U1, U2, �1, �2,C1,C2) .

Return (pk , sk ). If ciphetext blinding is necessary as in Section 4.1, store also G
in sk .

Matrices M8, P8 and C8, and scalars �8 are parameters for the quasi-adaptive
non-interactive zero-knowledge proof system of Kiltz andWee for linear spaces [34]
with witness-sampleable distribution.
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Enc(pk ,M ∈ G1) → C :

◦ compute a tag, i.e.,
– A, B←$ Z?

– xT ←
[
6A�1 6A1 6

A (U1�+U2)
1 M

]
– yT ←

[
6B�2 6B2

]
◦ compute a smooth projective hash c of the tag, i.e.,

c ←4
(
6
A (V1�+V2)
1 , 62

) ∏
8=1,2

4

(
6
A (�1,8�+�2,8)
1 , H8

)
4

(
61, 6

B (W1�+W2)
2

) ∏
8=1,2,3

4

(
G8 , 6

B(�1,8�+�2,8)
2

)
◦ prove that c is well-formed, i.e.,

– A0E , A1E , A0F , A1F , d1, d2, f8, 9 , A8 , B:, 9 ←$ Z? for 8, 9 ∈ {1, 2} and : = 1, 2, 3

– c(c) ←
[
c8, 9

]
8, 9=1,2

5 (aA0E , v) 5 (bA1E , v) 5 (aA0F ,w) 5 (bA1F ,w) , with c8, 9 B
c if 8 = 9 = 2 and 1G) otherwise

– c0 ←
[
1 6

A (V1�+V2)
1

]T
ad1bd2

– c1,8 ←
[
1 6

A (�1,8�+�2,8)
1

]T
af8,1bf8,2 for 8 = 1, 2

– d0 ←
[
1 6

B (W1�+W2)
2

]T
vA1wA2

– d1,8 ←
[
1 6

B(�1,8�+�2,8)
2

]T
vB8,1wB8,2 for 8 = 1, 2, 3

– T←$ Z
2×2
?

– Θ←
[
0
)1,1
1 1

)2,1
1 0

)1,1
2 1

)1,2
2 6

A1
1 G

B1,1
1 G

B2,1
2 G

B3,1
3

0
)1,2
1 1

)2,2
1 0

)2,1
2 1

)2,2
2 6

A2
1 G

B1,2
1 G

B2,2
2 G

B3,2
3

]T
C

[
Θ1 Θ2

]
– Π̃←

[
E
−)1,1
1 F

−)2,1
1 E

−)1,1
2 F

−)2,1
2 6

d1
2 H

f1,1

1 H
f2,1

2

E
−)1,2
1 F

−)2,2
1 E

−)1,2
2 F

−)2,2
2 6

d2
2 H

f1,2

1 H
f2,2

2

]
– Π1 ← Π̃T

1 v
A0EwA0F ;Π2 ← Π̃T

2 v
A1EwA1F ;Π←

[
Π1

Π2

]
◦ prove that the commitments are well-formed, i.e., that

[
6�A1 cT0 cT1,1 cT1,2

]T is
in span (M1) and that

[
6�B2 dT0 dT1,2 dT1,2 dT1,3

]T is in span (M2). That is, for
9 = 1, 2, compute

Ψ1 ← 6
A%1,1+

∑
8=1,2 d8%1,1+8+

∑
8, 9=1,2 f8, 9%1,28+ 9+1

1

Ψ2 ← 6
B%2,1+

∑
8=1,2 A8%2,1+8+

∑3
8=1

∑2
9=1 B8, 9%2,28+ 9+1

2

◦ set and return

C ←
(
x, y, c(c), c0, (c1,8)28=1, d0, (d1,8)38=1,Π,Θ, (Ψ8)8=1,2

)
.

A ciphertext comprises 14 G1 elements, 15 G2 elements and 4 G) elements.
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Dec(sk ,C ) → M /⊥ :

◦ verify that the commitments are well-formed, i.e., that

4

(
Ψ1, 6

�1

2

)
=4

(
6�A1 , 6

C1,1

2

) ∏
8=1,2

4

(
c0,8 , 6

C1,1+8
2

)
∏
8, 9=1,2

4

(
c1,8, 9 , 6

C1,28+ 9+1
2

)
and that

4

(
6
�2

1 ,Ψ2

)
=4

(
6
C2,1

1 , 6�B2

) ∏
8=1,2

4

(
6
C2,1+8
1 , d0,8

)
∏
8=1,2,3

∏
9=1,2

4

(
6
C2,28+ 9+1
1 , d1,8, 9

)
◦ verify that the opening to c(c) is the smooth projective hash of the tag, i.e.,

that

5

(
c0,

[
1
62

] ) ∏
8=1,2

5

(
c1,8 ,

[
1
H8

] )
5

( [
1
61

]
, d0

) ∏
8=1,2,3

5

( [
1
G8

]
, d1,8

)
= 5 (a,Π1) 5 (b,Π2) 5 (Θ1, v) 5 (Θ2,w) c(c)

◦ if both verifications succeed, compute and return M ← G3G
−U1

1 G
−U2

2 , else return
⊥.

Vf (pk ,C ) → 1 : do the same verifications as algorithm Dec (they do not require
knowledge of sk , only of pk). If they succeed, return 1, else return 0.

Rand(pk ,C ) → Ĉ : first verify that the ciphertext is valid. Next, re-randomize
the tag, and all proofs and commitments, i.e., do

– Â , B̂←$ Z?

– x̂← x
[
6Â�1 6Â1 6

Â (U1�+U2)
1

]T
– ŷ← y

[
6B̂�2 6B̂2

]T
– re-randomize c, i.e., compute

ĉ ←c · 4
(
6
Â (V1�+V2)
1 , 62

) ∏
8=1,2

4

(
6
Â (�1,8�+�2,8)
1 , H8

)
4

(
61, 6

B̂ (W1�+W2)
2

) ∏
8=1,2,3

4

(
G8 , 6

B̂(�1,8�+�2,8)
2

)
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– Â0E , Â1E , Â0F , Â1F , d̂1, d̂2, f̂8, 9 , Â8 , B̂:, 9 ←$ Z? for 8, 9 ∈ {1, 2} and : = 1, 2, 3

– ĉ(c) ← 5
(
aÂ0E , v

)
5
(
bÂ1E , v

)
5
(
aÂ0F ,w

)
5
(
bÂ1F ,w

)
c(c)

– ĉ0 ← c0a
d̂1bd̂2

– ĉ1,8 ← c1,8a
f̂8,1bf̂8,2 for 8 = 1, 2

– d̂0 ← d0v
Â1wÂ2

– d̂1,8 ← d1,8v
B̂8,1wB̂8,2 for 8 = 1, 2, 3

– T̂←$ Z
2×2
?

– Θ̂← Θ ◦
[
0
)̂1,1
1 1

)̂2,1
1 0

)̂1,1
2 1

)̂1,2
2 6

Â1
1 G

B̂1,1
1 G

B̂2,1
2 G

B̂3,1
3

0
)̂1,2
1 1

)̂2,2
1 0

)̂2,1
2 1

)̂2,2
2 6

Â2
1 G

B̂1,2
1 G

B̂2,2
2 G

B̂3,2
3

]T
– compute

Π̂← Π◦
[
E
−)̂1,1
1 F

−)̂2,1
1 E

−)̂1,1
2 F

−)̂2,1
2 6

d̂1
2 H

f̂1,1

1 H
f̂2,1

2

E
−)̂1,2
1 F

−)̂2,2
1 E

−)̂1,2
2 F

−)̂2,2
2 6

d̂2
2 H

f̂1,2

1 H
f̂2,2

2

]T
◦[

EÂ0EFÂ0F

EÂ1EFÂ1F

]
– Ψ̂1 ← Ψ1 · 6

Â %1,1+
∑

8=1,2 d̂8%1,1+8+
∑

8, 9=1,2 f̂8, 9%1,28+ 9+1
1

– Ψ̂2 ← Ψ2 · 6
B̂%2,1+

∑
8=1,2 Â8%2,1+8+

∑3
8=1

∑2
9=1 B̂8, 9%2,28+ 9+1

2

– set and return Ĉ ← (x̂, ŷ, ĉ(c), ĉ0,
(
ĉ1,8

)2
8=1 , d̂0,

(
d̂1,8

)3
8=1
, Π̂, Θ̂,

(
Ψ̂8, 9

)2
8, 9=1

)
.

Threshold Decryption. The scheme of Faonio et al. can be turned into a
C-out-of-= scheme by doing a C-out-of-= Shamir share [39] of U1 and U2. Before
partially decrypting the plaintext, each shareholder first verifies the validity of
the ciphertext, which is possible as the scheme is publicly verifiable. If the ci-
phertext is invalid, the shareholder returns ⊥. As a result, any C + 1 shares are
sufficient to decrypt ciphertexts, but no information about the plaintexts can be
inferred with only C shares.

Verification of Blinded Ciphertexts. This section gives an algorithm to
blind the plaintext underlying a ciphertext of the scheme of Faonio et al. without
the knowledge of the secret key, and an algorithm to verify that the blinding was
done correctly given a share of the secret key and auxiliary information provided
by the first algorithm.

Formally, these algorithm are as follows.

Blind(pk ,C ) →
(
C̃ , aux

)
:

◦ if Vf (pk ,C ) = 0 return ⊥
◦ parse C = (x, y, c(c), c0, (c1,8)28=1, d0, (d1,8)38=1, Π, Θ, (Ψ8)8=1,2

)
◦ generate a blinding factor ' ←$ G1
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◦ blind the payload part of the ciphertext, i.e., G̃3 ← G3'

◦ x̃←
[
G1 G2 G̃3

]T
◦ c̃ ← c4

(
', 6

B(�1,3�+�2,3)
2

)
◦ denote by c(c̃) the matrix c(c)

[
c̃8, 9

]
8, 9=1,2

, with c̃8, 9 B c̃ if 8 = 9 = 2 and 1G)
otherwise. It is a commitment to c̃ with the same randomness as for c(c)

◦ set C̃ ← (x̃, y, c(c), c0, (c1,8)28=1, d0, (d1,8)38=1, Π, Θ, (Ψ8)8=1,2
)
. Note that

c(c) is not replaced by c(c̃), as one would not be able to prove that it is
well-formed for the scheme of Faonio et al. is RCCA-secure

◦ commit to ', i.e.,

– f1, f2 ←$ Z?; c(') ←
[
1 '

]T
af1bf2

◦ Note that

c(c) 5
(
c('),

[
1

6
B(�1,3�+�2,3)
2

])
= 5

(
a,

[
1

6
Bf1 (�1,3�+�2,3)
2

])
5

(
b,

[
1

6
Bf2 (�1,3�+�2,3)
2

])
c(c̃).

The issue is that without the secret key, one cannot compute 6Bf8 (�1,3�+�2,3)
2

for 8 = 1, 2. However, 6B2 and 6B�2 are part of the ciphertext, so the user can
compute

Σ←
[
6
Bf1

2 6
Bf2

2

6
Bf1�
2 6

Bf2�
2

]
.

Given Σ and G (which is part of the secret key), one can then compute

6
Bf1 (�1,3�+�2,3)
2 and 6Bf1 (�1,3�+�2,3)

2

◦ aux ← (c('),Σ). It is essentially a designated GS proof intended for any party
who knows G

◦ return
(
C̃ , aux

)
.

BlindVf
(
sk , C̃ , aux

)
→ 1 ∈ {0, 1} :

◦ verify that commitments c0, (c1,8)28=1, d0, (d1,8)38=1, are well-formed as in algo-
rithm Dec

◦ compute Σ1 ← Σ
�2,3

1,1 Σ
�1,3

2,1 and Σ2 ← Σ
�2,3

1,2 Σ
�1,3

2,2 . This requires the matrix G
in the secret key. If this matrix is kept in a share of the secret key, then the
key share is enough.
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◦ verify with the corrective terms Σ1 and Σ2 that the opening to c(c) is the
smooth projective hash of the tag, i.e., that

5

(
c0,

[
1
62

] ) ∏
8=1,2

5

(
c1,8 ,

[
1
H8

] )
5

( [
1
61

]
, d0

) ∏
8=1,2,3

5

( [
1
G̃8

]
, d1,8

)
= 5 (a,Π1) 5 (b,Π2) 5 (Θ1, v) 5 (Θ2,w) c(c) 5

(
c('),

[
1

6
B(�1,3�+�2,3)
2

])
5

(
a,

[
1
Σ−11

] )
5

(
b,

[
1
Σ−12

] )
◦ if both verifications succeed, return 1, else return 0.

C Smooth Projective Hash Functions

This section explains how smooth projective hash function can be viewed as
proofs of membership with designated verifier, and recalls a KV-SPHF for short
Cramer–Shoup ciphertexts.

C.1 Designated-Verifier Proofs of Membership

SPHFs can be seen as designated-verifier proofs of membership to L [2, 12].
Indeed, to prove that a word C is in L, a designated verifier can generate a
key hk and compute a projective key hp which she sends to the prover. Given
a membership witness F, the prover evaluates the SPHF on (C , F) with hp
and sends the result as a proof to the verifier. To verify the proof, the verifier
computes the SPHF on C using hk and accepts if and only if the result matches
the proof value. The correctness of the protocol follows from the correctness of
the SPHF, and its soundness from the adaptive smoothness of the SPHF.

C.2 KV-SPHF for Short Cramer–Shoup Ciphertexts

For a fixed tuple (?,G = 〈6〉), denote by LℓM the language {C : ∃A, C = (*, �,+) =(
6A , ℎAM ,

(
WX� (6

A ,ℎAM ,ℓ) )A )} . Given a group generator G, Γ← G(?,G = 〈6〉) and
M ∈ �, the following scheme, due to Abdalla, Benhamouda and Pointcheval [1],
is a perfectly smooth KV-SPHF for LℓM .

Setup
(
1_

)
→ pp : generate sk ← (Z, U, V, U′, V′) ←$ Z

5
?. Compute pk ← (ℎ, W, X)

←
(
6Z , 6UℎV , 6U

′
ℎV
′ ). Return (Γ, pk , sk ).

HashKG
(
LℓM

)
→ hk : return hk ← (_, `, a, \) ←$ Z

4
?.

ProjKG
(
hk ,LℓM ,⊥

)
→ hp : return hp ←

(
6_ℎaW \ , 6`X\

)
. Note that hp actually

depends on neither M nor ℓ.
Hash

(
hk ,LℓM ,C

)
→ ℌ : compute b ← � (*, �, ℓ). Return ℌ← *_+`b (�/M )a + \ .

ProjHash
(
hp,LℓM ,C , A

)
→ ℌ : compute b ← � (*, �, ℓ). Return ℌ←

(
hp1hp

b

2

)A
.
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D Proof Systems

A proof system Π B (Setup,Prove,Vf) is correct if for all _ ∈ N, for all crs ←
Setup

(
1_

)
, for all (G, F) ∈ R, Pr [Vf (crs , G,Prove(crs , G, F)) = 1] = 1.

Π satisfies Ysound-soundness if for all _ ∈ N, for every adversary A,

Pr

[
Vf (crs , G, c) = 1 ∧ G ∉ L :

crs ← Setup
(
1_

)
(G, c) ← A(crs)

]
≤ Ysound.

Π is Ywi-witness-indistinguishable if for all _ ∈ N, for every PPT adversary A,������������������
Pr


1 = 1′ :

crs ← Setup
(
1_

)
(st , G, F0, F1) ← A(crs)
1 ←$ {0, 1}
if (G, F0) ∉ R or (G, F1) ∉ R

1′←$ {0, 1}
return (1, 1′)

c ← Prove(crs , G, F1)
1′← A(st , c)
return (1, 1′)


− 1/2

������������������
≤ Ywi.

Π is (@, Yzk)-zero-knowledge if there exist two algorithms TSetup
(
1_

)
→

(crs , g) and Sim(crs , g, G) → c such that for all _ ∈ N, the distribution of crs is
the same as that of Setup, and such that for every PPT adversary A that makes
at most @ oracle queries,����Pr [

1 = 1:
crs ← Setup

(
1_

)
1 ← AOProve (crs , ·) (crs)

]
− Pr

[
1 = 1:

(crs , g) ← TSetup
(
1_

)
1 ← AOSim (crs ,g, ·) (crs)

] ���� ≤ Yzk,
with OProve (crs , ·) an oracle that computes and returns Prove(crs , G, F) on input
(G, F) ∈ R, and returns ⊥ on input (G, F) ∉ R; and OSim an oracle that computes
and returns Sim(crs , G, g) on input (G, F) ∈ R, and returns ⊥ on input (G, F) ∉ R.

D.1 Simulation Soundness under Controlled Malleability.

In certain cases, it is necessary to be able to simulate proofs while still ensur-
ing that no PPT algorithm can compute new valid proofs for false statements
without a trapdoor. This property is commonly known as simulation sound-
ness. However, a proof system cannot a priori be both malleable and simulation
sound as malleability allows to compute proofs on transformed words without
the knowledge of a witness. Chase et al. [19] put forth a relaxed version of simu-
lation soundness which allows for malleability while guaranteeing a meaningful
form of soundness; namely an adversary cannot compute (without trapdoor) a
valid proof for the membership of G to L if G ∉ L and G is not the image under
an admissible transformation (from a pre-determined class) of a word for which
it was given a simulated proof. Their definition requires the proof system to be
a proof of knowledge (i.e., it requires extractability), but the following definition
is rather for proof of statements.
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Formal Definition. Let (Setup,Prove,Vf, SS_Setup, Sim,Eval) be a non-interactive
zero-knowledge proof system for a language L which is malleable w.r.t. a class T
of allowable transformations for the relation R relative to L. The proof system
is said to satisfy Controlled-Malleable (CM) simulation soundness w.r.t. T if for
all _ ∈ N, for every PPT adversary A,

Pr


Vf (crs , G, c) = 1
∧(G, c) ∉ & ∧ G ∉ L
∧∀(), G ′, ∗) ∈ T ×&,
G ≠ )G (G ′)

:
(crs , g) ← SS_Setup
& ← ∅
(G, c) ← AO.Sim(&,crs ,g, ·) (crs)


is negligible, with O.Sim an oracle which computes simulated proofs c on inputs
G and adds (G, c) to &.

Generic Construction. Let R be an efficient relation with corresponding language
L. Consider a class T of allowable transformations for R containing the identity,
and for which membership can be efficiently tested. Consider an existentially
unforgeable signature scheme SIG = (Setup,KG, Sign,Vf), and a sound witness-
indistinguishable proof system Π̂ = (Setup,Prove,Vf,Eval) for the language:

{(G B (G1, G2), vk ) : ∃
(
F, G ′1, ), f

)
, (G, F) ∈ R ∨

SIG.Vf
(
vk , G ′1, f

)
= 1 ∧ G = )G

(
G ′1, G2

)
∧ ) ∈ T

}
.

Suppose that it is partially extractable in the sense that there exists a trapdoor-
setup algorithm which returns a trapdoor and a CRS indistinguishable from the
output of Setup; and an extraction algorithm such that no PPT adversary has
significant probability of computing a valid proof c on a word (G, vk ), where the
value

(
∗, G ′1, ∗, f

)
returned by the extractor on the input of the CRS, the trapdoor

and (G, c) is such that SIG.Vf (vk , G ′1, f) = 0. Let T̂ be a class of transformations
such that for all ) ′ ∈ T , there exists )̂ ∈ T̂ such that )̂G : (G, vk ) ↦→ () ′G (G), vk )
and )̂F : (F, G ′1, ), f) ↦→

(
) ′F (F), G ′1, ) ′ ◦ ), f

)
.

We devise a new proof system Π, described hereafter, which is inspired by
the scheme of Chase et al. [19, Section 3]:

Setup
(
1_

)
→ crs : run crs ′← Π̂.Setup

(
1_

)
, pp ← SIG.Setup

(
1_

)
and (vk , sk ) ←

SIG.KG(pp). Set and return crs ← (crs ′, vk ).
Prove(crs , G, F) → c : run c ← Π̂.Prove (crs ′, (G, vk ), (F,⊥)). Return c.
Vf (crs , G, c) → 1 ∈ {0, 1} : return Π̂.Vf (crs ′, (G, vk ), c).
Eval(crs , ), G, c) → c′ : return Π̂.Eval

(
crs , )̂ , G, c

)
.

Under the above assumptions, Π is complete, zero-knowledge and CM simulation
sound w.r.t. T . Indeed, it suffices to define SS_Setup as Setup only it returns
sk as trapdoor, and Sim as an algorithm which signs G with sk and honestly
proves knowledge of (⊥, G, id, f). The witness indistinguishability of Π̂ implies
Π is zero-knowledge. The simulation soundness of Π stems from the fact that,
since Π̂ is sound, an adversary can win the game only if it can compute a valid
signature on a word G ′1 such that (G ′1, ∗) was never queried. However, as Π̂ is
partially extractable, that would contradict the existential unforgeability of SIG.
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D.2 Strong Derivation Privacy.

In addition to the completeness, (CM simulation) soundness and zero-knowledge
property for proof systems, a malleable proof system should also satisfy deriva-
tion privacy. It captures the idea that given (G, F) ∈ R, proofs on a word )G (G)
computed with Prove and )F (F) as a witness should be indistinguishable from
those computed with Eval and a valid proof c for G. Note that re-randomizable
malleable proofs necessarily satisfy derivation privacy [19, Theorem 2.7] (ran-
domize then evaluate). An even stronger notion of derivation privacy is that the
proof computed with Eval should be indistinguishable from those computed by
the zero-knowledge simulator. Following a theorem of Chase et al. [19, Theorem
3.4], the above construction Π satisfies strong derivation privacy if Π̂ satisfies
derivation privacy.

D.3 Groth–Sahai Proofs

Groth and Sahai (GS) designed a practical, non-interactive witness-indistinguishable
proof system for a wide class of statements in bilinear groups [28]. More precisely,
their system allows to prove the existence of values which simultaneously satisfy
pairing product equations, multi-scalar multiplication equations in the source
groups, and quadratic equations in Z?. That is, given integers <, =, <′, =′ ≥ 1,
the GS proof system allows to prove that there exists X ∈ G<1 , Y ∈ G=2 , x ∈ Z<

′
?

and y ∈ Z=′? which satisfy sets of equations of the form

=∏
8=1

4 (�8 , .8)
<∏
8=1

4 (-8 , �8)
<∏
8=1

=∏
9=1

4 (-8 , .8)W8 9 = /)

=′∏
8=1

�̃
H8
8

<∏
8=1

-
18
8

<∏
8=1

=′∏
9=1

-
W̃8 9 H 9

8
= /1

=∏
8=1

.
08
8

<′∏
8=1

�̃
G8
8

<′∏
8=1

=∏
9=1

.
Ŵ8 9 G8

9
= /2

=′∑
8=1

0̃8H8 +
<′∑
8=1

1̃8G8 +
<′∑
8=1

=′∑
9=1

W′8 9G8H 9 = I mod ?,

with the other values being public. The set of public values for which all sets
of equations are satisfiable is further denoted LGS. Multiscalar multiplication
equations in �2 are further omitted (i.e., 08 B 0, �̃8 B 1G2

, Ŵ8 9 B 0, /2 B 1G2
)

as there are not of interest in this paper, and as they are purely symmetric to
equations in G1.
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Their construction is given in the Common-Reference String (CRS) model.
The CRS is generated in either of two modes: a soundness mode in which case the
system is perfectly sound, and a witness-indistinguishability mode in which case
the system is perfectly witness-indistinguishable. Under standard assumptions
over bilinear groups, the two types of CRSs are indistinguishable.

Instantiation under the SXDH Assumption.

Common Reference String. In the instantiation under the SXDH assumption, the
GS CRS contains two vectors a, b ∈ G2

1 and two vectors v,w ∈ G2
2. In a soundness

setting, b ∈ span(a) and w ∈ span(v). Given the discrete-logarithm relation
between 02 and 01, group-element variables can actually be efficiently extracted
(which is not the case for Z? elements as the discrete-logarithm problem is
hard). In a witness-indistinguishable setting, a and b are linearly independent
(b ← aC

[
1 6−12

]T for C ←$ Z?), and so are v and w. In either setting, define
d B b

[
1 62

]T and u B w
[
1 62

]T.
Proof Computation. To compute a GS proof of satisfiability of equations of the
form above,

– commit to all variables, i.e.,
∗ for all 8 ∈ È<É, generate d8 , f8 ←$ Z?

∗ c(-8) ←
[
1 -8

]T
ad8bf8

∗ for all 8 ∈ È=É, generate d′
8
, f′
8
←$ Z?

∗ c(.8) ←
[
1 .8

]T
vd
′
8wf

′
8

∗ for all 8 ∈ È<′É, generate A8 ←$ Z?
∗ c(G8) ← dG8aA8

∗ for all 8 ∈ È=′É, generate A ′
8
←$ Z?

∗ c(H8) ← uH8vA
′
8

– compute proof elements for each pairing product equation, i.e.,
∗ generate T←$ Z

2×2
?

∗ Θ←
[
Θ1 Θ2

]
C

[
1

∏
8 �

d′
8

8

∏
8, 9 -

W8, 9d
′
9

8

1
∏
8 �

f′
8

8

∏
8, 9 -

W8, 9f
′
9

8

]T
◦

[
0
)1,1
1 1

)1,2
1 0

)1,1
2 1

)1,2
2

0
)2,1
1 1

)2,2
1 0

)2,1
2 1

)2,2
2

]T
∗ Π←

[
Π1

Π2

]
C

[
1

∏
8 �

d8
8

∏
8, 9 .

W8, 9d8

9

1
∏
8 �

f8

8

∏
8, 9 .

W8, 9f8

9

]T
◦

[
v
∑

8, 9 d8W8 9d
′
9
−)1,1w

∑
8, 9 d8W8 9f

′
9
−)2,1

v
∑

8, 9 f8 W̃8 9d
′
9
−)1,2w

∑
8, 9 f8W8 9f

′
9
−)2,2

]
– for each multi-scalar multiplication equation in G1,
∗ generate T←$ Z

2
?

∗ Θ←
[
1

∏
8 �

A ′
8

8

∏
8, 9 -

W̃8, 9A
′
9

8

]T
◦

[
0
)1
1 1

)2
1 0

)1
2 1

)2
2

]T
∗ Π←

[
Π1

Π2

]
C

[
u
∑

8 18d8+
∑

8, 9 d8 W̃8 9 H 9

u
∑

8 18f8+
∑

8, 9 f8 W̃8 9 H 9

]
◦

[
v
∑

8, 9 d8 W̃8 9A
′
9
−)1

v
∑

8, 9 f8 W̃8 9A
′
9
−)2

]
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In case all W̃8 9 are nil, then T can be set as 0, and the proof element Θ can
then be restricted to its second component. Besides, if all 18 = 0, then Π can
be set as 1.

– for each quadratic equation in Z?,
∗ generate ) ←$ Z?

∗ Θ← d
∑

8 0̃8A
′
8
+∑8, 9 A

′
8
W′
8 9
H 9a)

∗ Π← u
∑

8 1̃8d8+
∑

8, 9 d8W
′
8 9
H 9v

∑
8, 9 d8W

′
8 9
A ′
9
−)

In case all W′
8 9

are nil, then T can be set as 0. Moreover, Θ can also rather
be set as

∑
8 0̃8A

′
8
∈ Z? and Π as

∑
8 1̃8d8 ∈ Z?, which results in smaller proof

elements (the verification algorithm would then first compute dΘ and uΠ).
– return all commitments (c(-8))<8=1 , (c(.8))=8=1 , (c(G8))<

′
8=1 , (c(H8))=

′
8=1 and all proof

elements. Note that the resulting proof is perfectly re-randomizable, and that
the proof system therefore satisfies derivation privacy.

Verification. Accept a proof parsed as above if and only if

– for every pairing production equation,

∏
8

5

( [
1
�8

]
, c(.8)

) ∏
8

5

(
c(-8),

[
1
�8

] ) ∏
8, 9

5
(
c(-8), c(. 9 )

)W8 9
=

[
1 1
1 /)

]
5 (Θ1, v) 5 (Θ1,w) 5 (a,Π1) 5 (b,Π2)

– for every multi-scalar multiplication equation in G1,

∏
8

5

( [
1

�̃8

]
, c(H8)

) ∏
8

5

(
c(-8),

[
1
18

] ) ∏
8, 9

5
(
c(-8), c(H 9 )

) W̃8 9
= 5

( [
1
/1

]
, u

)
5 (Θ, v) 5 (a,Π1) 5 (b,Π2) .

– for every quadratic equation in Z?,∏
8

5

(
d0̃8 , c(H8)

) ∏
8

5

(
c(G8), u1̃8

) ∏
8, 9

5
(
c(G8), c(H 9 )

)W′
8 9

= 5 (d, uI) 5 (Θ, v) 5 (a,Π) .

Malleability. Additive transformations in Z? are admissible for the relation of
multi-scalar multiplication equations in G1. That is, for any set � ⊆ È=′É such
that W8 9 = 0 for all 8 ∈ È<′É and 9 ∈ �, given (U8)8∈� ∈ Z |� |? and ℓ multi-scalar
multiplication equations, the map

)(U8)8 :
( (
. . . , /:,1

)ℓ
:=1 , ((H8)8 , . . .)

)
↦→

((
. . . , /:,1

∏
8

�̃
U8
:,8

)
:

, ((H8 + U8)8 , . . .)
)
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is admissible. This map is identified with the tuple (U8)8∈� . Note that it is the
identity at the coordinates 8 such that U8 = 0.

The GS proof system is malleable w.r.t. to such transformation. More pre-
cisely, its algorithm Eval first parses a valid c as above, generates A ′′

8
←$ Z?, and

computes

– c(H8 + U8) ← c(H8)uU8vA
′′
8

– for all : ∈ ÈℓÉ, Θ:,2 ← Θ:,2 ·
∏
8 �̃

A ′′
8

:8
.

It then returns
(
(c(-8))<8=1, c(H8 + U8)=

′
8=1, (Θ: ,Π: )

ℓ
:=1

)
.

OR Proofs. Define LOR−GS as the language of pairs ((0, (1) such that (0 ∈ LGS

or (1 ∈ LGS. To prove a statement ((0, (1) ∈ LOR−GS, following techniques of
Groth [27], it suffices to introduce new variables j0 ∈ Z?, and XV ∈ G<1 , YV ∈ G=2 ,
xV ∈ Z<

′
? and yV ∈ Z=

′
? for V ∈ {0, 1}, and then GS prove the satisfiability of the

sets of equations

=V∏
8=1

4
(
�V,8 , .V,8

) <V∏
8=1

4
(
-V,8 , �V,8

) <V∏
8=1

=V∏
9=1

4
(
-V,8 , .V,8

)WV,8 9 = /Vj0+(1−V) (1−j0)
V,)

=′
V∏

8=1

�̃
HV,8

V,8

<V∏
8=1

-
1V,8

V,8

<V∏
8=1

=′
V∏
9=1

-
W̃V,8 9 H 9

V,8
= /

Vj0+(1−V) (1−j0)
V,1

=′
V∑

8=1

0̃V,8HV,8 +
<′

V∑
8=1

1̃V,8GV,8 +
<′

V∑
8=1

=′
V∑
9=1

W′V,8 9GV,8HV, 9 = I
Vj0+(1−V) (1−j0)
V

mod ?

j20 − j0 = 0 mod ?

for V ∈ {0, 1}, and with �0,8 denoting the variable �8 for (0 and �1,8 the one for
(1, and likewise for the other public values. If (0 ∈ LGS (with witness (X, . . .)),
set X0 ← X and X1 ← 1, x0 ← x and x1 ← 0, and similarly for the other
variables; and vice versa if (1 ∈ LGS. The last equation implies that j0 = 0 or 1
mod ?, which guarantees that (0 ∈ LGS or (1 ∈ LGS. To prove the last equation,
it suffice to consider j0 as both an extra G and an extra H variable such that
G − H = 0 mod ? and G − GH = 0 mod ?.

Simulation Soundness under Controlled Malleability. The generic construction
of a CM simulation proof system of Sec. D.1 can be applied with Jutla and Roy’s
signature scheme (App. A.2) to the GS proof system for multi-scalar multiplica-
tion equations in G1; the latter being malleable w.r.t. additive transformations
in Z?.

In more detail, given equations of the form

=′∏
8=1

�̃
H8
:,8

<∏
8=1

-
1:,8
8

<∏
8=1

=′∏
9=1

-
W̃:,8 9 H 9

8
= /:,1
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for 1 ≤ : ≤ ℓ, let T denote the class of additive transformations. These trans-
formations are identified with tuples (U8)8. For a given transformation (U8)8,
let  ⊆ ÈℓÉ denote the set of indices such that /:,1 ≠ /:,1

∏
8 �̃
−U8
:,8

. Set `

as
(
/:,1

∏
8 �̃
−U8
:,8

)
:∈ 

. The components of ` are nothing but the public values
which are affected by the transformation (i.e., it corresponds to G ′1 in the generic
construction). A CM simulation sound GS proof for multi-scalar multiplication
equations in G1 is then a proof that there exists X and y such that all ℓ equations
are satisfied or that there exists `, (U8)8 and a Jutla–Roy signature f such that

Vf (vk , `, f) = 1 and )(U8) ,G

((
. . . , /:,1

∏
8 �̃
−U8
:,8

)ℓ
:=1

)
= (. . . , /:,1)ℓ:=1.

Compared to a standard GS proof, a CM-simulation-sound GS proof intro-
duces |` | additional variables `8 ∈ G1, 5 additional G1 variables and 1 additional
G2 variables for f, |` | additional variables U8 ∈ Z? for the transformation, and
2 additional Z? variables G and H (which should satisfy G − H = G − GH = 0).

In terms of equations, it introduces 2 pairing-product equations for the veri-
fication of the signature, |` | multi-scalar multiplication equations in G1 for the
transformation, and 2 quadratic equations in Z? for G and H. That means 2(5+|` |)
G1 and 2(3 + |` |) G2 elements to commit to the additional variables; 4 G1 and 8
G2 elements as proof elements for the verification of the signature (which costs
4P6 +4P7+|` |); 2 G1, 2 G2 and 2 Z? elements as proof elements for the two equa-
tions in Z?, the of which verification costs 2 G1

1 + 6 G1
2 + 8P5; and |` | G1 and

4|` | G2 elements for the multi-scalar multiplication equations in G1 introduced
by `, the verification of each of which costs 2P5+|{i : Ãk,i≠1G1 }| .

E Key-Derivation Functions

This section gives the formal security definition of key-derivation functions, and
recalls Krawczyk’s scheme [35].

E.1 Security

The security of key-derivation functions can be defined w.r.t. to a specific source
of keying material which returns a material SKM and a public piece of informa-
tion inf .

Definition E.1 ( [35, Definition 7]). A key-derivation function KDF, which
supports salt values from a finite set Σ, is secure w.r.t. a source (of key material)
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SKM if for every efficient adversary A,

Pr



1 = 1′ :

(SKM , inf ) ← SKM;& ← ∅
XTS ←$ Σ

(st ,CTX ∗, ℓ∗) ← AO.KDF(&,SKM ,XTS , ·) (inf ,XTS )
1 ←$ {0, 1}
if 1 = 0

 ∗ ←$ {0, 1}ℓ
else

 ∗ ← KDF(SKM ,XTS ,CTX ∗, ℓ∗)
1′← AO.KDF(&,SKM ,XTS , ·) (st ,  ∗)
if CTX ∗ ∈ &

1′←$ {0, 1}
return (1, 1′)

return (1, 1′)


is negligibly close to 1/2, with O.KDF an oracle which, on input (SKM ,XTS ),
replies to a (CTX , ℓ) query with KDF(SKM ,XTS ,CTX , ℓ) and then adds CTX
to &.

The previous definition is w.r.t. to a specific source, but it can be extended to
all sources which return materials with enough entropy even when conditioned on
the public information. Formally, for an integer <, a source SKM is a <-entropy
source if for all B in the range of key materials and all 8 in the support of public
information returned by SKM, Pr [SKM = B |inf = 8] ≤ 2−<. A key-derivation
function is then said to be <-entropy secure if it is secure w.r.t. all <-entropy
sources.

E.2 Krawczyk’s Key-Derivation Function

Krawczyk gave [35, Section 4.2] a secure construction of KDFs from Hash-
based Message Authentication Codes [6] (HMAC) which follows the extract-
then-expand paradigm.

More precisely, let {�^ }^∈{0,1}: be a family of Merkle–Damgård hash func-
tions with :-bit outputs which is based on a family of compression functions
{ℎ^ }^ (think of SHA-512). Assume (single-keyed) HMAC to be built from NMAC [6],
and NMAC to be built from {�^ }^ . If {ℎ^ }^ is a family of pairwise-independent
compression functions, and {�^ }^ is collision-resistant against linear-size circuits,
then [35, Corollary 9] NMAC truncated by 2 bits is a

(
<, (= + 2)2−2/2

)
-statistical

extractor on =-block inputs. If {ℎ^ }^ is modeled as a family of random functions
independent from the source, then the same result applies to HMAC.

Moreover, given another family of compression functions {6^ }^ (think of
SHA-256), if 6 · is a Pseudo-Random Function (PRF), and if 6̂ : ( ,M ) → 6M ( )
is a PRF under a class of affine related-key attacks (defined by the inner and
outer pads), then [5, Theorem 3.3, Lemma 5.2] HMAC is a (@% , Y%)-PRF for @%,
Y% explicited in Bellare’s paper [5].

48



Krawczyk’s theorem [35, Theorem 1] implies that HMAC is a (@% , Y% + (= + 2)
2−2/2

)
-secure KDF w.r.t. to sources with min-entropy at least <. Throughout

the paper, it is assumed that = and 2 are functions of _ such that =2−2/2 is
negligible in _. The construction is described in Algorithm 1. Therein, given two
integers = ≥ 3 ≥ 1 and G ∈ {0, 1}=, [G]3 denotes the sub-string of G consisting of
its first 3 bits.

Algorithm 1 Krawczyk’s HMAC-based KDF.
Require: (SKM ,XTS ,CTX , !) and HMAC based on a hash function with output
length :

Ensure:  ∈ {0, 1}!
C ← d!/:e
3 ← ! mod :
PRK ← HMAC(XTS , SKM )
 (1) ← HMAC(PRK ,CTX ‖0)
for 8 = 1 to C − 1 do

 (8 + 1) ← HMAC(PRK ,  (8)‖CTX ‖8)
end for
 ←  (1)‖ · · · ‖ [ (C)]3
return  

F Security of the Construction

This section proves the security of the construction in Section 4.

F.1 Security Proofs

Recall from Sec. 4.2 that the P-IND-RCCA security and the verifiabilty of E
rely of the following assumptions:

– {ℎ^ }^ is pairwise-independent
– {�^ }^ is collision-resistant against linear-size circuits
– 6 · is a secure Pseudo-Random Function (PRF)
– 6̂ : ( ,M ) → 6M ( ) is a secure PRF under a class of affine related-key

attacks defined by the inner and outer pads [5, Lemma 5.2].

Theorem F.1 (P-IND-RCCA). Assuming that the SXDH assumption over
G holds, that {ℎ^ }^ , {�^ }^ , 6 · and 6̂ · satisfy the assumptions above, that HPCA

is second-preimage resistant and that HOTS is collision-resistant, E is P-IND-
RCCA secure.

Proof. Let A be an adversary for the P-IND-RCCA game which makes at most
@Exec Exec queries and at most @Send Send queries. A message is subsequently
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said to be oracle-generated if it was computed by the challenger as a response
to a Send query and it was not altered. Otherwise, the message is said to be
adversarially generated. If an adversarially generated message is given as an input
to an algorithm which simply forwards it (possibly after some verifications),
the message is still considered adversarially generated. Recall that only static
corruptions are considered. However, A can of course modify the messages sent
between the parties. Recall also that all instances are assumed to erase their
temporary variables (which include their randomness) upon termination.

Further distinguish the following cases:

1. A never makes a Send query to an S instance on a valid tuple (i.e., which
passes all verification)

(
CU , hpU , ovk , c̃T ,CT , fT

)
such that

(
CU , hpU

)
is

oracle-generated but (CT , ovk ) is adversarially generated, although T and
S are honest.

2. A makes a Send query of the above form.

In the first case, the main idea is to define a game which is indistinguishable from
the real one, but in which the adversary cannot modify the messages computed
by honest parties within a session; unless it knows their passwords in the case of
user and server identities. Moreover, the oracle-generated messages in this latter
game are independent of the passwords, so as long as a user and one of her
servers are honest, A can only guess their common password, and it can only do
so with probability at most �∞,PG. Winning the 1-out-of-2 IND-RCCA security
of Ercca can then be reduced to winning that game.

To this end, consider the sequence of games hereafter. It starts by modifying
how Exec queries are handled, and then continues with Send queries.

Game 0. This is the real P-IND-RCCA game.
Game 1. In this game, the challenger generates trapdoor SS_GS parameters,

i.e., a signing key sk which allows to simulate proofs, as well as the discrete-
logarithm relations between 0̃1 and 0̃2, and between 1̃1 and 1̃2, which allow to
extract committed group elements. As the resulting parameters are perfectly
indistinguishable from honest parameters, Game 1 and Game 0 are perfectly
indistinguishable.

Game 2. To answer Exec queries with identities U, T and S, the challenger
simulates c̃S and cS . Note that since SS_GS satisfies perfect strong deriva-
tion privacy, proofs in the previous game (leveraging its malleability) are
perfectly indistinguishable from proofs computed with the full secret key.
By the zero-knowledge property of SS_GS, these latter are indistinguishable
from simulates proofs of the full secret key.

The zero-knowledge property of SS_GS implies that A can distinguish
this game from the previous one with an advantage of at most YI:SS_GS (@Exec),
with the latter denoting the supremal advantage of any PPT adversary in
distinguishing real proofs from simulated ones.

Note that even if S is corrupt at the beginning of the protocol and A
thus knows the witness of the proofs, it still cannot distinguish real proofs
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from simulated ones since SS_GS is zero-knowledge. Moreover, as temporary
variables of the token algorithm instance are erased upon termination, A
cannot distinguish real proofs from simulated ones by corrupting S after the
execution either.

Game 3. To answer Exec queries with identities U, T and S, the challenger
computes �U = �S ← Hash

(
hkU ,LpU , CS

)
Hash

(
hk S ,LpS , CU

)
. Game 3

from Game 2 are perfectly indistinguishable by correctness of the SPHF.
Game 4. To answer Exec queries with identities U, T and S, the challenger

now computes CU as EnchpU
(
ek , 1G1

)
and CS as EnchpS

(
ek , 1G1

)
(recall that

1G1
is assumed not to be a valid password).
The indistinguishability of Game 4 from Game 3 stems from the IND-

CPA security (implied by the IND-PCA security) of Epca which relies on the
SXDH assumption. The distinguishing advantage ofA is at most @ExecY

ind−cpa
Epca

,

with Yind−cpaEpca
denoting the supremal advantage of any efficient adversary in

the IND-CPA game with scheme Epca.
Game 5. The challenger now answers Exec queries with identities U, T and
S by choosing �U = �S uniformly at random. This game is perfectly in-
distinguishable from the previous one by the smoothness property of the
SPHF.

Game 6. In this game, the challenger also saves the short-Cramer–Shoup de-
cryption key dk . Game 6 is perfectly indistinguishable from Game 5.

Game 7. To answer Send queries to an S instance on
(
CU , hpU , ovk , c̃T ,CT ,

fT) and on
(
C̃M , aux , gU

)
, the challenger simulates c̃S and cS . The chal-

lenger also simulates c̃T and cT to answer queries to T instances. The same
arguments as in Game 2 imply that A can distinguish Game 7 from Game
6 with an advantage of at most YI:SS_GS (@Send).

Game 8. The challenger now answers Send queries on
(
CU , hpU , ovk , c̃T ,CT ,

fT) to an S instance as follows:

– if OTS.Vf
(
ovk ,

(
CU , hpU , c̃T

)
, fT

)
≠ 1 or Epca.Decovk (dk ′,CT) ≠ pk2

pk
−U1,S
1 6

−U2,S
1 or GS.Vf

(
crs , pkU , U8,S , c̃T

)
≠ 1, return ⊥

– if
(
CU , hpU

)
is oracle-generated and the tuple of the Send query also

is, compute �S ← Hash
(
hkU ,LpU , CS

)
· Hash

(
hk S ,LpS , CU

)
(the chal-

lenger knows hkU since
(
CU , hpU

)
is honestly generated). In this case,

this game is perfectly indistinguishable from the previous one by the
correctness of the SPHF

– if
(
CU , hpU

)
and (CT , ovk ) are oracle-generated (i.e., (∗, ovk , ∗,CT , ∗)

was computed as an answer to a Send query) but the tuple is adversarially
generated, if T is honest, abort as A contradicted the strong one-time
security of OTS. If T is corrupt, then reply with ⊥ if U is corrupt; if U
is honest, compute �S ← Hash (hkU , LpU , CS

)
· Hash

(
hk S ,LpS , CU

)
.

Denoting by YOTS the supremal advantage of any efficient adversary
in the strong one-time security game, A can distinguish this game from
the previous one with an advantage of at most |I |YOTS (the reduction al-
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gorithm must guess the T instance for which it sets the one-time signing
key as that of the challenger)

– if
(
CU , hpU

)
is oracle-generated but (CT , ovk ) is adversarially generated,

∗ if T is corrupt then
◦ if (U,T ,S) = (U∗,T ∗,S∗) and U∗ is corrupt, reply with ⊥
thereby following the definition of oracle Send
◦ else, compute �S ← Hash (hkU , LpU , CS

)
·Hash

(
hk S ,LpS , CU)

∗ if T is honest, then S is necessarily corrupt as
(
CU , hpU

)
is oracle-

generated and (CT , ovk ) is adversarially generated (cf. conditions of
case 1). Compute �S as in the real game

– if
(
CU , hpU

)
is adversarially generated and U and S are honest, check

whether Epca.DechpU (dk ,CU) = pUS . If so, i.e., A correctly guessed pUS ,
abort and return 1 indicating that A won the game (which increases
the advantage of A in this game). If not, generate �S uniformly at
random, and the perfect smoothness of the SPHF implies the perfect
indistinguishability from the previous game

– if
(
CU , hpU

)
is adversarially generated and U or S is corrupt,

∗ if (U,T ,S) = (U∗,T ∗,S∗) and T ∗ is corrupt, return ⊥. By definition
of oracle Send, Game 8 is perfectly indistinguishable from Game 7
∗ if T is honest, compute �S as in the real game.

The advantage of A in the previous game is therefore upper-bounded by
its advantage in Game 8 plus @Send |I |YOTS.

Game 9. The challenger now answers Send on
(
CS , hpS , c̃S , gS

)
to aU instance

as follows:
– if SS_GS.Vf

(
crs , pkU , c̃S

)
≠ 1, return ⊥

– if
(
CS , hpS

)
is oracle-generated, compute �U ← Hash

(
hk S ,LpS , CU

)
·

Hash
(
hkU ,LpU , CS

)
(the challenger knows hk S as

(
CS , hpS

)
is honestly

generated). In this case, Game 9 is perfectly indistinguishable from Game
8 by the correctness of the SPHF

– if
(
CS , hpS

)
is adversarially generated and S and U are honest, check

whether Epca.DechpS (dk ,CS) = pU . If so (i.e., A correctly guessed pU),
abort and return 1. If not, choose �U uniformly at random, and the
perfect smoothness of the SPHF implies the perfect indistinguishability
from the previous game

– if the tuple is adversarially generated and S or U is corrupt, compute
�U as in the real game.
The advantage of A in the previous game is thus upper-bounded by its

advantage in this game.
From this game onwards, the randomness used to encrypt passwords is

necessary to compute neither �U nor �S in case U and S are honest.
Game 10. In this game, the challenger answers Send queries to

– an S instance on tuples
(
CU , hpU , ovk , c̃T , CT , fT) such that (CU ,

hpU
)
is oracle-generated, and which are oracle-generated if T is honest,

by generating �S ←$ G1 in case U is honest
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– a U instance on oracle-generated tuples
(
c̃S ,CS , gS , hpS

)
by setting

�U ← �S , the latter being the value of the partner S instance of the U
in the current session

A lemma by Katz and Vaikuntanathan [32, Lemma 1] states that SPH
values are computationally indistinguishable from uniformly random group
elements even if hashing keys and ciphertexts are used several times and
if projective keys made public, under the assumption that the encryption
scheme is IND-PCA secure (they actually prove it in the case of IND-CCA
security, but the application of the lemma only makes use of plaintext-check
queries) and that the SPHF is statistically smooth. The lemma then entails
that A can distinguish Game 10 from Game 9 with an advantage of at most
2@2SendY

ind−pca
Epca

(@Send), with Yind−pcaEpca
(@Send) denoting the supremal advantage

of any efficient adversary which makes at most @Send plaintext-check queries
in the IND-PCA game with scheme Epca.

Game 11. For prompting queries (T , ∗,S, ∗, ∗) to aU instance and Send queries
to an S instance on oracle-generated tuples

(
CU , hpU , ovk , c̃T ,CT , fT) such

that
(
CU , hpU

)
is also oracle-generated, ifU and S are honest, the challenger

computes CS as EnchpU
(
ek , 1G1

)
and CU as EnchpS

(
ek , 1G1

)
. Distinguishing

Game 11 from Game 10 can then be reduced to winning the IND-PCA game
for Epca.

Note that for any Send query on
(
CU , hpU , ovk , c̃T ,CT , fT) to an S

instance, if the tuple is oracle-generated and
(
CU , hpU

)
also is, the reduction

algorithm already knows the password encrypted in CU and can then do
the same test as the challenger of Game 8. Similarly for Send queries on
tuples

(
CS , hpS , c̃S , gS

)
to U instances. In case

(
CU , hpU

)
or

(
CS , hpS

)
is

adversarially generated, the reduction can make a plaintext-check queries.
It follows that A can distinguish Game 11 from Game 10 with an advan-

tage at most 2@SendY
ind−pca
Epca

(@Send). Note also that from this game on, the
messages computed by instances of U and S are independent of the pass-
words if they are both honest, A can then guess their common password
with probability at most �∞,PG at each Send query.

Game 12. For Send queries to an S instance on tuples
(
CU , hpU , ovk , c̃T ,

CT , fT) such that
(
CU , hpU

)
is oracle-generated, and which are oracle-

generated if T is honest, the challenger generates  S uniformly at random
in case U is honest. For a Send query to a partner U instance on an oracle-
generated tuple

(
c̃S ,CS , gS , hpS

)
, the challenger sets  U ←  S .

Distinguishing this game from the previous can be reduced to the security
of KDF w.r.t. uniformly random sources. Note that since the distribution of
the source is independent of the adversary, generating the salt value XTS
before the end of the PAKE does not raise any issue in the reduction. Indeed,
the reduction algorithm can generate a uniformly random source value at the
beginning of the reduction, submit it to the KDF-security-game challenger,
then receive back a uniform salt value before generating the other parameters
for E.
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Denoting by YKDF (0) the supremal advantage of any efficient adversary
which makes no oracle query in the KDF security game with scheme KDF
(cf. Appendix E), adversary A can distinguish Game 12 from Game 11
with an advantage at most |I |2YKDF (0) (the reduction algorithm guesses the
instances of U and S for which it sets the keys as the key returned by the
KDF challenger).

Game 13. For a Send query on an adversarially generated tuple
(
CS , hpS , c̃S ,

gS) to a U instance, abort the protocol if S and U are honest. Moreover, if
the tuple is oracle-generated in a different session, abort the protocol. Like-
wise, for a Send query on a an adversarially generated tuple

(
C̃M , aux , gU

)
to an S instance, if U and S are honest, abort the protocol. Besides, if the
tuple is oracle-generated in a different session, abort the protocol.

Distinguishing Game 13 from Game 12 can be reduced to the security of
MAC. It followsA can distinguish Game 13 from Game 12 with an advantage
of at most |I |2YprfMAC (1), with Y

prf
MAC (1) being the supremal advantage of any

efficient adversary which makes at most one oracle query in the PRF game
with scheme MAC (cf. Appendix E) (the reduction algorithm guesses the U
and S instance for which it sets the common MAC key as the challenge one).

Game 14. For a Send query to a T instance on pair (MS , cS) which is either
adversarially generated or oracle-generated in a different session, abort if U
and S are honest. Indeed, the word for which cS is a proof is generated anew
for each session since hk S is always freshly generated (and hpS is thus not
the image of a previous projective key under an additive transformation). It
follows that

– if (MS , cS) is oracle generated in a different session, the verification can
only succeed with negligible probability if SS_GS is sound. In this case,
A can distinguish this game from the previous with an advantage of at
most YsoundSS_GS (@Send), with the latter denoting the supremal advantage of
any efficient adversary which makes at most @Send queries in the CM-
simulation-soundness game for SS_GS

– if (MS , cS) is adversarially generated, the CM simulation soundness of
SS_GS guarantees that the commitments c(_), c(`), c(a), c(\) satisfy
5 (61, c(_)) 5 (ℎ1, c(a)) 5 (W, c(\)) = 5 (hp1, u) 5

(
ΘhpS,1 , v

)
and 5 (61, c(`))

5 (X, c(\)) = 5 (hp2, u) 5
(
ΘhpS,2 , v

)
(with proof elements excerpted from

cS). However, these commitments can then be used to contradict the per-
fect smoothness of the KV-SPHF for short Cramer–Shoup ciphertext.
Indeed, given M ∈ G1 and C B (*, �,+) such that Epca.DechpS (dk ,
C ) ≠ M , these commitments and hpS can be used to distinguish Hash(
hk S ,LM ,C ) from ℌ←$ G1 simply by testing whether 5 (*, c(_)) 5

(
* b ,

c(`)) 5 (�/M , c(a)) 5 (+, (\)) = 5 (ℌ, u) 5
(
ΘhpS,1Θ

b

hpS,2
, v

)
. The perfect

smoothness of the KV-SPHF for short Cramer–Shoup ciphertexts im-
plies that it can only occur with probability 1/?. Therefore, in this case,
the adversary can distinguish this game from the previous one with an
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advantage of at most @Send

(
YsoundSS_GS (@Send) + ?−1

)
(the algorithm for the

reduction to the perfect smoothness of the SPHF must guess the query
for which it sets the projective key as hpS)

A can then distinguish this game from the previous one with an advantage
of at most @Send

(
YsoundSS_GS (@Send) + ?−1

)
.

In Game 14, once the challenge tuple (U∗,T ∗,S∗) is defined, all values re-
ceived by U∗, T ∗ and S∗ instances up to (MS∗ , cS∗ ) included are either all
oracle-generated in the same session or replied to with ⊥ as long as these iden-
tities are honest. In particular, if U∗ is corrupt, Send queries to T ∗ instances
are rejected (by definition of oracle Send) and A thus cannot make successful
Send queries to S∗ instances anymore as long as T ∗ is honest; and if U∗ and
T ∗ are corrupt, Send queries to S∗ instances are rejected anyway. Likewise, if
S∗ is corrupt, Send queries to T ∗ instances are rejected (recall that S∗ and T ∗
cannot both be corrupt) and A cannot make successful Send queries to S∗ in-
stances anymore. Winning the 1-out-of-2 RCCA game for Ercca can then reduced
to winning Game 14 as follows.

At the beginning of the game, the reduction algorithm, further denoted B,
guesses the identities U∗, T ∗ and S∗. If A later makes its Test query on a
different tuple of identities, B simply aborts and sends to the challenger a bit
chosen uniformly at random.

Recall that T ∗ and S∗ cannot both be corrupt by definition of P-IND-RCCA
game. On this account, first suppose that S∗ is honest throughout the game. B
then sets the public key as the public key of U∗ and asks for a secret key share
that it sets as the share of T ∗ (which is given to A in case of corruption). The
other share is then implicitly the share of party S∗.

For Exec queries and Send queries on oracle-generated tuples
(
C̃M , aux , gU∗

)
to S∗ instances, since C̃M is computed by B, the latter can make decryption
queries to the RCCA challenger on the original ciphertext CM , receive back
G3G
−U1,S∗
1 G

−U1,S∗
2 , and multiply it by '�S∗ , with ' denoting the blinding factor

generated by algorithm Blind.
B also simulates with the trapdoor proofs c̃S and cS .
For query Test, algorithm B simply forwards (M0,M1) to the RCCA chal-

lenger. After the test query, for Exec queries as above, if CM decrypts to M0 or
M1, the RCCA challenger answers with replay and so does B.

For a prompting Send query on (T ∗, ∗,S∗, ∗,CM ) to a U∗ instance, the re-
duction makes a decryption query to the RCCA challenger on CM . If it decrypts
to M0 or M1, the reduction algorithm receives replay and forwards it to A.

The condition “if (Dec(skU ,C ) ∈ {M0,M1}) return replay” guarantees that
B can answer with ⊥ Exec queries and prompting Send queries on C ∗, and
perfectly emulate the Game-14 challenger.

Moreover, recall that in case 1), A never makes a Send query on a valid
tuple

(
CU∗ , hpU∗ , ovk , c̃T∗ ,CT∗ , fT∗

)
such that

(
CU∗ , hpU∗

)
is oracle-generated

but (CT∗ , ovk ) is adversarially generated, although T ∗ and S∗ are honest. It
means that if U∗ is honest, A can obtain partial decryption from S∗ only with
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oracle-generated tuples, and the condition mentioned above ensures that S∗
never has to make a decryption query on a ciphertext which decrypts to M0 or
M1. If U∗ is corrupt and T ∗ is honest, B never has to make such a decryption
query either as A would never submit a valid tuple in the first flow. If U∗ and
T ∗ are both corrupt, then B can simply answer Send queries with ⊥.

As B perfectly emulates the Game-14 challenger, it wins the RCCA game
with at least the same advantage as A in that game.

In case T ∗ is honest throughout the game, the reduction is similar except
that B now sets the key share it gets as the share of S∗. Note that in Game 14,
all valid pairs (MS∗ , cS∗ ) submitted to T ∗ instances are oracle-generated in the
same session ifU∗ and S∗ are honest. If either of them is corrupt, all Send queries
to T ∗ instances are rejected. Consequently, B never has to make a decryption
query on a ciphertext that decrypts to M0 or M1.

It follows that the advantage of A in the P-IND-RCCA game in case 1) is at
most

YI:SS_GS(@Exec) + YI:SS_GS (@Send) + @ExecY
ind−cpa
Epca

+ |I |YOTS

+ @Send

(
�∞,PG + YsoundSS_GS (@Send) + ?−1 + 2(@Send + 1)Yind−pcaEpca

(@Send)
)

+ |I |2
(
YKDF (0) + YprfMAC (1)

)
+ |U | |T | |S |Advind−rccaG,Ercca

(_).

In the second case, T and S are honest in the query that distinguishes the two
cases. The major argument is that only T and S can compute pk

U1,T
1 6

U2,T
1 and

that only S holds the decryption dk ′. Therefore, an adversary cannot distinguish
CT from encryption of a dummy message which contains no information about
the token share. Moreover, as long asU and S are honest, �S is indistinguishable
from a uniformly random value and MS thus contains no information about the
shares either. For the adversary to compute a valid tuple from that point, it has
to compute a valid proof on the token share after only getting zero-knowledge
ones. This valid proof can then be used to contradict the 1-out-of-2 security of
Ercca.

To prove it formally, consider the following sequence of games.

Game 0–5. These are the same as in the previous case.
Game 6. To answer Exec queries with identities U, T and S, the challenger

computes, the challenger generates  U ←  S uniformly at random. A can
distinguish this game from the previous one with an advantage of at most
|I |YKDF (0).

Game 7. In this game, to answer Exec queries with identities U, T and S, the
challenger generates MS ←$ G1. This game is perfectly indistinguishable
from the previous one as �S is uniformly random in the latter.

Game 8. To answer Exec queries with identitiesU, T and S, the challenger now
computes CT as Epca.Encovk

(
ek ′, 1G1

)
(and verifies that Epca.Decovk (dk ′,

CT) = 1G1
). The indistinguishability from the previous games stems from
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the IND-CPA security of Epca (which is implies by its IND-PCA security).
Therefore, A can distinguish this game from the previous one with an advan-
tage of at most @ExecY

ind−cpa
Epca

, with Yind−cpaEpca
denoting the supremal advantage

of any efficient adversary in the IND-CPA game with scheme Epca.
Game 9. To compute c̃S and cS to answer Send queries to S instances, the

challenger now simulates them with the trapdoor. Likewise, the challenger
simulates c̃T and cT to answers Send queries to T instances. The zero-
knowledge property of SS_GS implies that A can distinguish this game
from the previous one with an advantage of at most YI:SS_GS (@Send).

Game 10. The challenger now answers Send queries to an S instance on (CU ,
hpU , ovk , c̃T ,CT , fT) such that

(
CU , hpU

)
is oracle-generated by comput-

ing �S ← Hash (hkU , LpU , CS
)
· Hash

(
hk S ,LpS , CU). This game is per-

fectly indistinguishable from the previous one by the correctness of the
SPHF.

Game 11. The challenger now answers Send to aU instance on
(
CS , hpS , c̃S , gS

)
such that

(
CS , hpS

)
is oracle-generated by computing �U ← Hash

(
hk S ,LpS ,

CU) ·Hash
(
hkU ,LpU , CS

)
. This game is perfectly indistinguishable from the

previous one by the correctness of the SPHF.
Game 12. In this game, the challenger answers Send queries to

– an S instance on tuples
(
CU , hpU , ovk , c̃T ,CT , fT

)
such that

(
CU , hpU

)
is oracle-generated by generating �S ←$ G1 in case U is honest

– a U instance on oracle-generated tuples (c̃S , CS , gS , hpS
)
by setting

�U ← �S , the latter being the value of the partner S instance of the U
in the current session
Katz and Vaikuntanathan’s lemma [32, Lemma 1] implies that A can

distinguish this game from the previous one with an advantage of at most
2@2SendY

ind−pca
Epca

(@Send).
Game 13. For Send queries to an S instance on tuples

(
CU , hpU , ovk , c̃T ,

CT , fT) such that
(
CU , hpU

)
is oracle-generated, the challenger generates

 S uniformly at random in case U is honest. For a Send query to a partner
U instance on an oracle-generated tuple

(
c̃S ,CS , gS , hpS

)
, the challenger

sets  U ←  S .
Distinguishing this game from the previous can be reduced to the security

of KDF w.r.t. uniformly random sources.
Denoting by YKDF (0) the supremal advantage of any efficient adversary

which makes no oracle query in the KDF security game with scheme KDF
(cf. Appendix E), this game can be distinguished from the previous one with
an advantage of at most |I |2YKDF (0).

Game 14. In this game, if U is honest, the challenger answers Send queries to
S instances on

(
C̃M , aux , gU

)
tuples by generating MS ←$ G1. This game is

perfectly indistinguishable from the previous one as �S is uniformly random
in the latter.

Game 15. To answer Send queries to T instances on oracle-generated pairs(
CU , hpU

)
, the challenger now generates  ←$ G1 and computes CT as
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Epca.Encovk (ek ′,  ). To answer Send queries to the partner S instance in
this session on tuples

(
CU , hpU , ovk , c̃T ,CT , fT), the challenger verifies that

Epca.Decovk (dk ′,CT) =  . The indistinguishability from the previous game
follows from the IND-PCA security of Epca. Indeed, for queries to S instances
as above, if (CT , ovk ) is oracle-generated (i.e., (∗, ovk , ∗,CT , ∗) was computed
as an answer to a Send query), then the reduction need not make a decryption
query as it computed it itself. If (CT , ovk ) is adversarially generated, i.e., CT
was computed with a label different from ovk , the reduction algorithm can
then make a decryption query.

Distinguishing this game from the previous one can thus be done with
an advantage of at most @SendY

ind−pca
Epca

(@Send).
Game 16. To answer Send queries to T instances on oracle-generated pairs(

CU , hpU
)
, the challenger now generates  ,  ′ ←$ G1 and computes CT

as Epca.Encovk (ek ′,  ). To answer Send queries to the partner S instance
in this session on tuples

(
CU , hpU , ovk , c̃T ,CT , fT), if (CT , ovk ) is oracle-

generated in the same session, the challenger skips the verification, otherwise
the challenger verifies that Epca.Decovk (dk ′,CT) =  ′. Once again, indistin-
guishability from the previous game follows from the IND-PCA security of
Epca. Adversary A can distinguish this game from the previous one with an
advantage of at most @SendY

ind−pca
Epca

(@Send).
Game 17. For Send queries to S instances on tuples

(
CU , hpU , ovk , c̃T ,CT ,

fT), if ovk and cT are oracle-generated but in different sessions, return
⊥. Denoting by YOTS the supremal advantage of any efficient adversary in
the strong one-time security game, A can distinguish this game fromt the
previous with an advantage of at most @Send |I |YOTS (the reduction algorithm
must guess the T instance for which it sets the one-time signing key as that
of the challenger).

Game 18. For Send′ queries to S instances on tuples
(
CU , hpU , ovk , c̃T ,CT ,

fT), if ovk is adversarially generated and cT is oracle-generated, the chal-
lenger returns ⊥. Adversary A can distinguish this game from the previous
one with an advantage of at most 1/?. Indeed, if cT is oracle-generated,
there exists a  ′ as defined in Game 16 which is independent of all the other
messages computed by the challenger and of all the inputs from A.

Winning the 1-out-of-2 RCCA game can then be reduced to winning the last
game as follows. At the beginning of the game, the reduction algorithm, denoted
B, guesses again the identities U∗, T ∗ and S∗. (If A later makes its Test query
on a different tuple of identities, B simply aborts and sends to the challenger a
bit chosen uniformly at random.) B then sets the public key as the public key
of U∗ and asks for a secret key share that it sets as the share of S∗. The other
share is then implicitly the share of T ∗.

Recall that if A corrupts U∗, algorithm B can reply to Send queries to T ∗
instances with ⊥ and perfectly emulate the challenger of the last game.

Whenever A makes its first Send query to an S∗ instance on a valid tu-
ple

(
CU∗ , hpU∗ , ovk , c̃T∗ ,CT∗ , fT∗

)
such that

(
CU∗ , hpU∗

)
is oracle-generated but
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(CT∗ , ovk ) is adversarially generated, ovk and cT∗ are necessarily adversarially
generated by definition of the challenger of the last game. By CM simulation
soundness of SS_GS w.r.t. additive transformations (which holds under the
existential unforgeability of SIG), either (i) 5

(
pk1, c(U1,T∗ )

)
5
(
61, c(U2,T∗ )

)
=

5

(
pk2pk

−U1,S∗
1 6

−U2,S∗
1 , u

)
5 (Θ, v), or there exists an oracle-generated proof (re-

spectively by an S∗ instance or by a T ∗ instance) (c1, c2,Θ′) such that (ii-a)
5 (pk1, c1) 5 (61, c2) = 5 (pk2, u) 5 (Θ′, v) or (ii-b) 5 (pk1, c1) 5 (61, c2) = 5 (pk2

pk
−U1,S∗
1 6

−U2,S∗
1 , u

)
5 (Θ′, v) and a tuple (c(Z1), c(Z2),Θ′′), with (Z1, Z2) ∈ Z2? rep-

resenting a transformation, such that 5 (pk1, c(Z1)) 5 (61, c(Z2)) = 5

(
pk2pk

−U1,S∗
1

6
−U2,S∗
1 , u

)
5 (Θ′′, v). It follows that for 8 = 1, 2 either c(U8,T∗ ) or c(Z8) is a com-

mitment to U8,T∗ ; and assume without loss of generality that it is the former. B
then computes c(U8) ← c(U8,T∗ )uU8,S∗ for 8 = 1, 2, i.e., commitments to U8 with
the same randomness used to compute c(U8,T∗ ).

IfA makes a Test query on the guessed identities, B simply forwards (M0,M1)
to the RCCA challenger, and receives back a challenge ciphertext C ∗ which
encrypts M1 for 1 ←$ {0, 1}. (If the guess was incorrect, B aborts its in-
teraction with A and sends a uniformly random bit to the challenger.) Note
that G∗3M

−1
1

= G∗1
U1G∗2

U2 and that dlogpk1
G∗1 = dlog61 G

∗
2 = dlogpk2

G∗3. Therefore,
5
(
G∗1, c(U1)

)
5
(
G∗2, (U2)

)
= 5

(
G∗3M

−1
1
, u

)
5 (Θ, v). Algorithm B can then test the

previous equality with M0 and M1 and win the 1-out-of-2 RCCA game with at
least the same advantage as A in the selective P-IND-RCCA game.

Consequently, in case 2), A wins the P-IND-RCCA game with an advantage
of at most

YI:SS_GS (@Exec) + YI:SS_GS(@Send) + @ExecY
ind−cpa
Epca

+ |I |YOTS + 2|I |2YKDF (0)

+ 2@Send (@Send + 1)Yind−pcaEpca
(@Send) + YsoundSS_GS (@Send) + |U | |T | |S |Advind−rccaG,Ercca

(_).

ut

Theorem F.2 (Blindness). E satisfies blindness under the SXDH assumption
over G.

Proof. The blindness property of E can be proved as follows via a sequence of
indistinguishable games starting from the real game and ending with a game in
which the advantage of any adversary is nil.

Game 0. This is the real game.
Game 1. The challenger generates GS parameters a, b, v,w in witness-indistin-

guishability mode. This CRS is computationally indistinguishable from the
one in the previous game under the SXDH assumption over G.

Game 2. Instead of computing c(') and Σ as algorithm Blind, the challenger
simulates those values with the GS proof-system simulator. Further denote
the resulting algorithm as SimBlind. Game 2 is perfectly indistinguishable
from Game 1 since the simulation is perfect.
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Game 3. In this game, the challenger runs SimBlind on Enc (pk ,Dec(sk ,C1)).
Game 3 is perfectly indistinguishable from Game 2 since the scheme of Faonio
et al. is perfectly unlikable.

Game 4. Instead of running algorithm SimBlind on Enc (pk ,Dec(sk ,C1)), the
challenger runs it on Enc (pk ,  ) for  ←$ G) . Game 4 is perfectly indis-
tinguishable from Game 3 since SimBlind computes G̃3 as G3' for ' ←$ G) ,
which entirely re-randomizes Dec(sk ,C1) in Game 3.

Note that in Game 4, the advantage of any adversary is nil.

It follows that E satisfies blindness under the SXDH assumption over G. ut

Theorem F.3 (Verifiability). E is verifiable if {ℎ^ }^ , {�^ }^ , 6 · and 6̂ · satisfy
the assumptions above and if the SXDH assumption over G holds.

Proof. Suppose that there exists an efficient adversary A which wins the veri-
fiability game with a non-negligible probability, i.e., it returns pU and C such
that the honest execution of U on (pk , pU ,C ) with A results in a value different
from Dec(sk ,C ) and ⊥. In the event in which A wins the game, then either
Dec(dk ,CS) = pU or not. If so, then there exists an algorithm B which runs A
as sub-routine and contradicts the perfect soundness of the GS proof system. If
Dec(dk ,CS) ≠ pU , then there exists an algorithm B which runs A as sub-routine
and wins the MAC game with non-negligible probability.

In the first case, the correctness of the SPHF guarantees that Hash
(
hkU ,LpU ,

CS) ProjHash
(
hpS ,LpU ,⊥, AU

)
= Hash

(
hk S ,LpS ,CU

)
ProjHash

(
hpU ,LpS ,⊥, AS

)
.

Therefore, if the value returned by U at the end of the protocol is different from
both Dec(sk ,C ) and ⊥, adversary A necessarily contradicted the soundness of
SS_GS for to the language{

(ek , pkU ,CU ,CS , hpU , C̃M ,MS) : ∃ (U8 , hk S , pS , AS) ,
pk2 = pk U1

1 6
U2

1

hpS = ProjKG
(
hk S ,LpS ,⊥

)
CS = Epca.EnchpS (ek , pS ; AS)

MS G̃
−1
3 = G̃

−U1

1 G̃
−U2

2 Hash
(
hk S ,LpS ,CU

)
·ProjHash

(
hpU ,LpS ,⊥, AS

)}
,

which is impossible under the existential unforgeability of Jutla and Roy’s sig-
nature, which relies on the SXDH assumption.

In the second case, i.e., if Dec(dk ,CS) ≠ pU , the verifiability of E can be
reduced to the security of the MAC through a sequence of games as below.

Game 0. This is the real game.
Game 1. In this game, the challenger replaces �U with a uniformly random

value. By the smoothness of the SPHF, Game 1 is perfectly indistinguishable
from Game 0.

60



Game 2. The challenger now generates a random key  U instead of computing
it with the KDF. The indistinguishability of Game 2 from Game 1 can then
be reduced to the security of KDF w.r.t. uniformly random source.

Note that as the distribution of the source is independent of the adversary,
generating the salt value XTS before the end of the PAKE does not raise
any issue in the reduction. Indeed, the reduction algorithm can generate a
uniformly random source value at the beginning of the reduction, submit it
to the KDF-security-game challenger, then receive back a uniform salt value
before generating the other parameters for E.

Therefore, under the assumptions on the compression functions which im-
ply the security of Krawczyk’s KDF, an efficient adversary can distinguishing
Game 2 from Game 1 with advantage at most YKDF (@Send), with YKDF (@Send)
denoting the supremal advantage of any efficient adversary which makes at
most @Send queries in the KDF security game with scheme KDF (cf. Ap-
pendix E).

As A must compute a tuple (c̃S ,CS , hpS , gS) such that MAC ( U , (c̃S ,CS ,
hpS)

)
= gS to win Game 0 without any prior MAC computation by U, it does so

with non-negligible probability in Game 2. It follows that A can then be run as
sub-routine to win the MAC game with non-negligible probability. Once again,
under the assumptions on the compression functions (which imply the security
of HMAC), an efficient adversary can only do so with negligible probability; a
contradiction. It follows that such an adversary A cannot exist and E is thus
verifiable. ut
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