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Abstract

Reasoning about 3D scenes from their 2D image projections is one of the core
problems in computer vision. Solutions to this inverse and ill-posed problem typi-
cally involve a search for models that best explain observed image data. Notably,
images depend both on the properties of observed scenes and on the process of
image formation. Hence, if optimization techniques should be used to explain
images, it is crucial to design differentiable functions for the projection of 3D
scenes into images, also known as differentiable rendering. Previous approaches to
differentiable rendering typically replace non-differentiable operations by smooth
approximations, impacting the subsequent 3D estimation. In this paper, we take
a more general approach and study differentiable renderers through the prism of
randomized optimization and the related notion of perturbed optimizers. In particu-
lar, our work highlights the link between some well-known differentiable renderer
formulations and randomly smoothed optimizers, and introduces differentiable per-
turbed renderers. We also propose a variance reduction mechanism to alleviate the
computational burden inherent to perturbed optimizers and introduce an adaptive
scheme to automatically adjust the smoothing parameters of the rendering process.
We apply our method to 3D scene reconstruction and demonstrate its advantages
on the tasks of 6D pose estimation and 3D mesh reconstruction. By providing
informative gradients that can be used as a strong supervisory signal, we demon-
strate the benefits of perturbed renderers to obtain more accurate solutions when
compared to the state-of-the-art alternatives using smooth gradient approximations.

1 Introduction

Many common tasks in computer vision such as 3D shape modelling [5, 15, 34, 36, 37] or 6D pose
estimation [18, 22, 25, 30, 32] aim at inferring 3D information directly from 2D images. Most of
the recent approaches rely on (deep) neural networks and thus require large training datasets with
3D shapes along with well-chosen priors on these shapes. Render & compare methods [18, 22]
circumvent the non-differentiability of the rendering process by learning gradients steps from large
datasets. Using a more structured strategy would allow to alleviate the need for such a strong
supervision. In this respect, differentiable rendering intends to model the effective image generation
process to compute a gradient related to the task to solve. This approach has the benefit of containing
the prior knowledge of the rendering process while being interpretable. This makes it possible to
provide a supervision for neural networks in a weakly-supervised manner [10, 16, 23]. The main
challenge of differentiable rendering lies in the non-smoothness of the classical rendering process. In
a renderer, both the rasterization steps, which consist in evaluating the pixel values by discretizing
the 2D projected color-maps, and the aggregation steps, which merge the color-maps of several
objects along the depth dimension by using a Z-buffering operation, are non-differentiable operations
(Fig. 1). Intuitively, these steps imply discontinuities in the final rendered image with respect to
the 3D positions of the scene objects. For example, if an object moves on a plane parallel to the
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Figure 1: Top: Overview of the rendering process: both rasterization and aggregation steps induce
non-smoothness in the computational flow. Bottom: Illustration of the differentiable perturbed
aggregation process. The rasterization step is made differentiable in a similar way.

camera, some pixels will immediately change color at the moment the object enters the camera view
or becomes unocluded by another object.

In this paper, we propose to exploit randomized smoothing techniques within the context of dif-
ferentiable rendering to automatically soften the non-smooth rendering operations, making them
naturally differentiable. The generality of our approach offers a theoretical understanding of some of
the existing differentiable renderers while its flexibility leads to competitive or even state-of-the-art
results in practice. We make the following contributions:

↪→ We formulate the non-smooth operations occurring in the rendering process as solutions of
optimization problems and, based on recent work [4], we propose a natural way of smoothing
them using random perturbations. We highlight the versatility of this smoothing formulation
and show how it offers a theoretical understanding of several existing differentiable renderers.

↪→ We propose a general way to use control variate methods to reduce variance when estimating
the gradients of the perturbed optimizers, which allows for sharp gradients even in the case of
weaker perturbations.

↪→ We introduce an adaptive scheme to automatically adjust the smoothing parameters by relying
on sensitivity analysis of differentiable perturbed renderers, leading to a robust and adaptive
behavior during the optimization process.

↪→ We demonstrate through experiments on pose optimization and 3D mesh reconstruction that the
resulting gradients combined to the adaptive smoothing provide a strong signal, leading to more
accurate solutions when compared to state-of-the-art alternatives based on smooth gradient
approximations [23].

2 Background

In this section, we review the fundamental aspects behind image rendering and recall the notion of
perturbed optimizers which are at the core of the proposed approach.
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Rasterizer and "aggregater" as optimizers. We consider the rendering process of an RGB image
of height hI and width wI , from a scene composed with meshes represented by a set of m triangles.
We assume that every triangle has already been projected onto the camera plane and their associated
color maps Cj ∈ RhI×wI×3, j ∈ [1 . . m], have been computed using a chosen illumination model
(Phong [29], Gouraud [13] etc.) and interpolating local properties of the mesh. We denote by I the
occupancy map such that Iij is equal to 1 if the center of the ith pixel is inside the 2D projection of
the jth triangle on the camera plane and 0 otherwise. By denoting d(i, j) the Euclidean distance from
the center of the ith pixel to the projection of the jth triangle, the rasterization step (which actually
consists in computing the occupancy map I) can be written as:

Iij = H(d(i, j)), (1)

where H corresponds to the Heaviside function defined by:

H(x) =

{
0 if x ≤ 0
1 otherwise = argmax

0≤y≤1
y x. (2)

We call R ∈ RhI×wI×3 the final rendered image which is obtained by aggregating the color map of
each triangle. In classical renderers, this step is done by using a Z-buffer so that only foreground
objects are visible. This corresponds to:

Ri =
∑
j

wij(z)C
i
j , with wi(z) = argmax

y s.t. ‖y‖1=1,y≥0, yj=0 if Iij=0

〈z, y〉, (3)

where w, z ∈ Rm+1 and for 1 ≤ j ≤ m, zj is the inverse depth of the jth triangle and the (m+ 1)th

coordinate of z and w account for the background. The inverse depth of the background is fixed to
zm+1 = zmin. From Eq. (2) and (3), it appears that argmax operations play a central role in renderers
and are typically non-differentiable functions with respect to their input arguments, as discussed next.

Perturbed optimizers. In [4], Berthet et al. introduce a generic approach to handle non-smooth
problems of the form y∗(θ) = argmax

y∈C
〈θ, y〉 with C a convex polytope, and make these problems

differentiable by randomly perturbing them. More precisely, y∗(θ) necessarily lies on a vertex of
the convex set C. Thus, when θ is only slightly modified, y∗ remains on the same vertex, but when
the perturbation grows up to a certain level, y∗ jumps onto another vertex. Concretely, this means
that y∗(θ) is piece-wise constant with respect to θ: the Jacobian Jθy∗ is null almost everywhere
and undefined otherwise. This is why the rasterization (2) and aggregation (3) steps make renderers
non-differentiable. Following [4], y∗(θ) can be approximated by the perturbed optimizer:

y∗ε (θ) = EZ [y∗(θ + εZ)] (4)

= EZ

[
argmax
y∈C

〈θ + εZ, y〉

]
, (5)

where Z is a random noise following a distribution of the form µ(z) ∝ exp(−ν(z)). Then, we have
y∗ε (θ)

ε−→0−−−→ y∗(θ), y∗ε (θ) is differentiable and its gradients are non-null everywhere. Intuitively, one
can see from (5) that perturbed optimizers y∗ε are actually a convolved version of the rigid optimizer
y∗. Moreover, their Jacobian with respect to θ is given by:

Jθy
∗
ε (θ) = EZ

[
y∗(θ + εZ)

ε
∇ν(Z)>

]
. (6)

It is worth noticing at this stage that, when ε = 0, one recovers the standard formulation of the rigid
optimizer. In general, y∗ε (θ) and Jθy∗ε (θ) do not admit closed-form expressions. To overcome this
issue, Monte-Carlo estimators are exploited to compute an estimate of these quantities, as recalled in
Sec. 4.

3 Related work

Our work builds on results in differentiable rendering, differentiable optimization and randomized
smoothing.
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Differentiable rendering. Some of the earliest differentiable renderers rely on the rigid
rasterization-based rendering process recalled in the previous section, while exploiting some gradient
approximations of the non-smooth operations in the backward. OpenDR [24] uses a first-order Taylor
expansion to estimate the gradients of a classical renderer, resulting in gradients concentrated around
the edges of the rendered images. In the same vein, NMR [16] proposes to avoid the issue of local
gradients by doing manual interpolation during the backward pass. For both OpenDR and NMR,
the discrepancy between the function evaluated in the forward pass and the gradients computed
in the backward pass may lead to unknown or undesired behaviour when optimizing over these
approximated gradients. More closely related to our work, SoftRas [23] directly approximates
the forward pass of usual renderers to make it naturally differentiable. Similarly, DIB-R [8]
introduces the analytical derivatives of the faces’ barycentric coordinates to get a smooth rendering
of foreground pixels during the forward pass, and thus, gets gradients naturally relying on local
properties of meshes. Additionally, a soft aggregation step is required to backpropagate gradients
towards background pixels in a similar way to SoftRas. In a parallel line of work, physically realistic
renderers are made differentiable by introducing a stochastic estimation of the derivatives of the ray
tracing integral [21, 28]. This research direction seems promising as it allows to generate images
with global illumination effects. However, this class of renderers remains computationally expensive
when compared to rasterization-based algorithms, which makes them currently difficult to exploit
within classic computer vision or robotics contexts, where low computation timings matter.

Differentiable optimization and randomized smoothing. More generally, providing ways to dif-
ferentiate solutions of constrained optimization problems has been part of the recent growing effort
to introduce more structured operations in the differentiable programming paradigm [33], going
beyond classic neural networks. A first approach consists in automatically unrolling the optimization
process used to solve the problem [11, 26]. However, because the computational graph grows with the
number of optimization steps, implicit differentiation, which relies on the differentiation of optimality
conditions, should be preferred when available [2, 3, 20]. These methods compute exact gradients
whenever the solution is differentiable with respect to the parameters of the problem. In this paper,
we show how differentiating through a classic renderer relates to computing derivatives of a Linear
Programming (LP) problem. In this particular case and as recalled in the Sec. 2, solutions of the
optimization problem vary in a heavily non-smooth way as gradients are null almost-everywhere
and non-definite otherwise, thus, making them hard to exploit within classic optimization algorithms.
To overcome this issue, a first approach consists in introducing a gradient proxy by approximating
the solution with a piecewise-linear interpolation [35] which can also lead to null gradient. Another
approach leverages random perturbations to replace the original problem by a smoother approx-
imation [1, 4]. For our differentiable renderer, we use this later method as it requires only little
effort to transform non-smooth optimizers into differentiable ones, while guaranteeing non-null
gradients everywhere. Moreover, randomized smoothing has been shown to facilitate optimization of
non-smooth problems [12]. Solving a smooth approximation leads to improved performance when
compared to methods dealing with the original rigid problem. In addition to its smoothing effect, the
addition of noise also acts as an implicit regularization during the training process which is valuable
for globalization aspects [4, 9], i.e. converging towards better local optima.

4 Approximate differentiable rendering via perturbed optimizers

In this section, we detail the main contributions of the paper. We first introduce the reformulation
of the rasterization and aggregation steps as perturbed optimizers, and propose a variance reduction
mechanism to alleviate the computational burden inherent to these kinds of stochastic estimators.
Additionally, we introduce an adaptive scheme to automatically adjust the smoothing parameters
inherent to the rendering process.

4.1 Perturbed renderer: a general approximate and differentiable renderer

As detailed in Sec. 2, the rasterization step (2) can be directly written as the argmax of an LP.
Similarly, the aggregation (3) step can be slightly modified to reformulate it as an argmax of an LP.
Indeed, when y ≥ 0, the hard constraint yj = 0 if Iij = 0 is equivalent to Iij

yj > 0, which can be
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Figure 2: Examples of images obtained from a perturbed differentiable rendering process with a
Gaussian noise. With smoothing parameters set to 0, we retrieve the rigid renderer, while adding
noise makes pixels from the background appear on the foreground and vice versa.

approximated by adding a logarithmic barrier yj ln I
j
i in the objective function as done in classical

interior point methods [6]:

wiα(z) = argmax
y s.t. ‖y‖1=1,y≥0

〈z + 1

α
ln(Ii), y〉, (7)

because ln Iij
Iij−→0
−−−−→ −∞, enforcing wij

Iij−→0
−−−−→ 0. α −→ +∞ approximates the hard constraint and

allows to retrieve the classical formulation (3) of w. Using this formulation, it is possible to introduce
a differentiable approximation of the rasterization and aggregation steps:

Îij = Hσ(d(i, j)), with Hσ(x) = EX [H(x+ σX)] = EX [argmax
0≤y≤1

〈y, x+ σX〉], (8)

R̂i =
∑
j

wiα,γj(z)C
i
j , with wiα,γ(z) = EZ [wα(z + γZ)] (9)

= EZ [ argmax
y s.t. ‖y‖1=1,y≥0

〈y + 1

α
ln(Îi), z + γZ〉]. (10)

By proceeding this way, we get a rendering process for which every pixel is influenced by every
triangle of meshes (Fig. 1,2), similarly to SoftRas [23]. More concretely, as shown in [4], the
gradients obtained with the randomized smoothing are guaranteed to be non-null everywhere unlike
some existing methods [8, 16, 24]. This makes it possible to use the resulting gradients as a strong
supervision signal for optimizing directly at the pixel level, as shown through the experiments in
Sec. 5. At this stage, it is worth noting that the prior distribution on the noise Z used for smoothing is
not fixed. One can choose various distributions as a prior thus leading to different smoothing patterns,
which makes the approach versatile. Indeed, as a different noise prior induces different smoothing,
some specific choices allow to retrieve some of the existing differentiable renderers [16, 23, 24]. In
particular, using a Logistic and a Gumbel prior respectively on X and Z leads to SoftRas[23]. Further
details are included in Appendix A.

More practically, the smoothing parameters σ, γ appearing in differentiable renderers such as SoftRas
[23] or DIB-R [8] can be hard to set. In contrast, in the proposed approach, the smoothing is naturally
interpretable as a noise acting directly on positions of mesh triangles. Thus, the smoothing parameters
representing the noise intensity can be scaled automatically according to the object dimensions. In
Sec. 4.3, we notably propose a generic approach to automatically adapt them along the optimization
process.

4.2 Exploiting the noise inside a perturbed renderer

In practice, (5) and (6) are useful even in the cases when the choice of prior on Z does not induce any
analytical expression for y∗ε and Jθy∗ε . Indeed, Monte-Carlo estimators of these two quantities can be
directly obtained from these two expressions:

yMε (x) =
1

M

M∑
i=1

y∗(θ + εZ(i)) (11)

Jθ y
M
ε (z) =

1

M

M∑
i=1

y∗(θ + εZ(i))
1

ε
∇ν(Z(i))>, (12)
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Table 1: Time and memory complexity of our perturbed renderer for the forward and backward
computation during the pose optimization task (5).

# of samples 1 2 8 32 64 SoftRas Hard renderer

Forward (ms) 30 (±3) 30 (±3) 31 (±3) 31 (±3) 31 (±3) 29 (±3) 29 (±3)
Backward (ms) 19 (±1) 19 (±1) 19 (±2) 20 (±1) 22 (±1) 18 (±1) N/A

Max memory (Mb) 217.6 217.6 217.6 303.1 440.0 180.3 178.5

Figure 3: Control variates methods [19] allow to reduce the variance of the gradient of the smooth
argmax. Left: Gaussian-perturbed argmax operator, Middle: estimator of gradient Right: variance-
reduced estimator of gradient.

where M is the total number of samples used to compute the approximations.

Approximately, we have Var
[
Jθy

M
ε (z)

]
∝ Var[y∗(θ+εZ)∇ν(Z(i))>]

Mε2 . When decreasing ε, the variance
of the Monte-Carlo estimator increases, which can make the gradients very noisy and difficult to
exploit in practice. For this reason, we use the control variates method [19] in order to reduce the
variance of our estimators. Because the quantity y∗(θ)∇ν(Z)> has a null expectation when Z has a
symmetric distribution and is positively correlated with y∗(θ + εZ)∇ν(Z)>, we can rewrite (6) as:

Jθy
∗
ε (θ) = EZ

[
(y∗(θ + εZ)− y∗(θ))∇ν(Z)>/ε

]
, (13)

which naturally leads to a variance-reduced Monte-Carlo estimator of the Jacobian:

Jθy
M
ε (θ) =

1

M

M∑
i=1

(
y∗(θ + εZ(i))− y∗(θ)

) 1

ε
∇ν(Z(i))>. (14)

The computation of yMε requires the solution of M perturbed problems instead of only one in the
case of classical rigid optimizer. Fortunately, this computation is naturally parallelizable, leading
to a constant computation time at the cost of an increased memory footprint. Using our variance-
reduced estimator alleviates the need for a high number of Monte Carlo samples, hence reducing the
computational burden inherent to perturbed optimizers (Fig. 3). As shown in Sec. 5 (Fig. 5, left),
M = 8 samples is already sufficient to get stable and accurate results. In addition, computations
from the forward pass can be reused in the backward pass and time and memory complexities to
evaluate these passes are comparable to classical differentiable renderers (Tab. 1). Consequently,
evaluating gradients does not require any extra computation. It is worth mentioning at this stage that
this variance reduction mechanism in fact applies to any perturbed optimizer. This variance reduction
technique can be interpreted as estimating a sub-gradient with the finite differences in a random
direction and is inspired by the field of random optimization [27].

4.3 Making the smoothing adaptive with sensitivity analysis

In a way similar to (6), it is possible to formulate the sensitivity of the perturbed optimizer with
respect to the smoothing parameter ε:

Jεy
∗
ε (θ) = EZ

[
y∗(θ + εZ)

(
∇ν(Z)>Z − 1

)
/ε
]

(15)

and, as previously done, we can build a variance-reduced Monte-Carlo estimator of this quantity:

Jεy
M
ε (θ) =

1

M

M∑
i=1

(
y∗(θ + εZ(i))− y∗(θ)

) ∇ν(Z(i))>Z(i) − 1

ε
(16)
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Figure 4: Perturbed differentiable renderer and adaptive smoothing lead to precise 6D pose estimation.

In the case of differentiable rendering, a notable property is the positivity of the sensitivity of any
locally convex loss L (which is valid for the RGB loss) with respect to the γ smoothing parameter
when approaching the solution. Indeed, in the neighborhood of the solution, we have θ ≈ θt and a
first-order Taylor expansion gives:

∂L
∂γ

(θ) ≈ Jγwγ(z)>C>∇2L(R(θt))CJγwγ(z) ≥ 0, (17)

because for a locally convex loss,∇2L(R(θt)) is positive definite near a local optimum. We exploit
this property to gradually reduce the smoothing when needed. To do so, we track an exponential
moving average of the sensitivity during the optimization process:

vtγ = βγv
t−1
γ + (1− βγ)

∂L
∂γ

(θt) (18)

where βγ is a scalar parameter. Whenever vtγ is positive, the smoothing (σ, γ) is decreased at a
constant rate (Fig. 4). Note that the adaptive algorithm does not require any further computation as
sensitivity can be obtained from backpropagation and also beneficially applies to other differentiable
renderers [23] (see 5).

5 Results

In this section, we explore applications of the proposed differentiable rendering pipeline to
standard computer vision tasks: single-view 3D pose estimation and 3D mesh reconstruction. Our
implementation is based on Pytorch3d [31] and will be publicly released upon publication. It
corresponds to a modular differentiable renderer where switching between different type of noise
distributions (Gaussian, Cauchy, etc.) is possible. We notably compare our renderer against the open
source SoftRas implementation available in Pytorch3d and DIB-R from Kaolin library. The results
for these renderers are obtained by running the experiments in our setup as we were not able to
get access to the original implementations of the pose optimization and shape reconstruction problems.

Single-view 3D pose estimation is concerned with the retrieving the 3D rotation θ ∈ SO(3) of an
object from a reference image. Similarly to [23], we first consider the case of a colored cube and fit
the rendered image of this cube to a single view of the true pose R(θt) (Fig. 4). The problem can be
formulated as a regression problem of the form:

min
θ
LRGB(θ) =

1

2
‖R(θt)− R̂(θ)‖22, (19)

where R̂ is the smooth differentiable rendered image. We aim at analysing the sensitivity of our
perturbed differentiable renderer with respect to random initial guesses of various amplitudes from
the real pose. Thus, the initial θ is randomly perturbed from the true pose with various intensity for
the perturbation (exploiting an angle-axis representation of the rotation, with a randomized rotation
axis). The intensity of the angular perturbation is taken between 20 and 80 degrees. Consequently,
the value of the average final error has an increased variance and is often perturbed by local minima
(Tab. 2). To avoid these caveats, we rely on another metric: the percentage of solved tasks (see
Tab. 2 and Fig. 5 and 6), accounting for the amount of final errors which are below a given threshold
(10 degrees for Tab. 2 and bottom row of Fig. 6). For this task, we compare our method with two
different distributions for the smoothing noise (Gaussian and Cauchy priors) to SoftRas. We use
Adam [17] with parameters β1 = 0.9 and β2 = 0.999 and operate with 128×128 RGB images, each
optimization problem taking about 1 minute to solve on a Nvidia RTX6000 GPU.
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Table 2: Results of pose optimization from single-view image using perturbed differentiable renderer
with variance reduction and adaptive smoothing.

Initial error 20° 50° 80°

Diff. renderer SoftRas Cauchy
smoothing

Gaussian
smoothing

SoftRas Cauchy
smoothing

Gaussian
smoothing

SoftRas Cauchy
smoothing

Gaussian
smoothing

Avg. error (°) 5.5 6.1 3.8 14.6 20.9 11.6 33.5 41.8 25.3
Std. error (°) 4.9 5.1 4.4 26.6 21.0 22.5 35.3 34.0 34.9
Task solved (%) 84 ±4.0 82 ±2.3 93 ±0.4 75 ±5.3 71 ±2.5 84 ±1.3 55 ±4.8 55 ±5.5 67 ±2.6

Figure 5: Left: Variance reduction (VR) drastically reduces the number of Monte-Carlo samples
required to retrieve the true pose from a 20° perturbation. Right: Adaptive smoothing (AS) improves
resolution of precise pose optimization for a 80° perturbation.

We provide results of 100 random perturbations for various magnitude of initial perturbations in
Tab. 2 and Fig. 5,6. Error bars provide standard deviations while running experiments with different
random seeds. Fig. 5 (left) demonstrates the advantage of our variance reduction method to estimate
perturbed optimizers and precisely retrieve the true pose at a lower computational cost. Indeed, the
variance-reduced perturbed renderer is able to perform precise optimization with only 2 samples (80%
of final errors are under 5° while it is less than 50% without the use of control variates). Additionally,
our adaptive smoothing significantly improves the number of solved tasks for both SoftRas and our
perturbed renderer (Fig. 5, right).

Additional results in Tab. 2, Fig. 6 and Fig. 11 in Appendix demonstrate that our perturbed renderers
with a Gaussian smoothing, outperforms SoftRas and can achieve state-of-the-art results for pose
optimization tasks on various objects. As shown in Appendix (Prop. 4), SoftRas is equivalent to
using a Gumbel smoothing which is an asymmetric prior. However, no direction should be preferred
when smoothing the rendering process which explain the better performances of the Gaussian prior.

Figure 6: Top row: perturbed renderer combined with variance reduction and adaptive scheme
improves SoftRas results on pose optimization. Bottom row: The method is robust w.r.t. initial
smoothing values. Higher is better.
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Figure 7: Left: A neural network is trained with a self-supervision signal from a differentiable
rendering process. Right: Qualitative results from self-supervised 3D mesh reconstruction using a
perturbed differentiable renderer. 1st column: Input image. 2nd and 3rd columns: reconstructed
mesh viewed from different angles.

Table 3: Results of mesh reconstruction on the ShapeNet dataset [7] reported with 3D IoU (%)

Airplane Bench Dresser Car Chair Display Lamp Speaker Rifle Sofa Table Phone Vessel Mean

NMR [16] 58.5 45.7 74.1 71.3 41.4 55.5 36.7 67.4 55.7 60.2 39.1 76.2 59.4 57.0
SoftRas [23] 2 62.0 47.55 66.2 69.4 49.4 60.0 43.3 62.6 61.4 60.4 43.6 76.4 59.9 58.6
DIB-R [8] 2 59.7 50.9 66.2 72.6 52.0 57.9 43.8 63.8 61.0 65.4 50.5 76.3 58.6 59.9
Ours 63.5 49.4 67.1 72.3 51.6 60.4 44.3 62.8 65.7 66.7 49.2 80.2 60.0 61.0

(±0.15) (±0.08) (±0.32) (±0.15) (±0.11) (±0.14) (±0.31) (±0.24) (±0.09) (±0.12) (±0.21) (±0.33) (±0.07) (±0.11)

Bottom row of Fig. 6 shows that our method is robust to the choice of initial values of smoothing
parameters. During optimization, the stochasticity of the gradient due to the noise from the perturbed
renderer acts as an implicit regularization of the objective function. This helps to avoid sharp local
minima or saddle points and converge to more stable minimal regions, leading to better optima. As
mentioned earlier, results are limited by the inherent non-convexity of the rendering process and
differentiable renderers are not able to recover from a bad initial guess. Increasing the noise intensity
to further smoothen the objective function would not help in this case, as it would also lead to a
critical loss of information on the rendering process.

Self-supervised 3D mesh reconstruction from a single image. In our second experiment, we
demonstrate the ability of our perturbed differentiable renderer to provide a supervisory signal for
training a neural network. We use the renderer to self-supervise the reconstruction of a 3D mesh and
the corresponding colors from a single image (see Fig. 7). To do so, we use the network architecture
proposed in [23] and the subset of the Shapenet dataset [7] from [16]. The network is composed of a
convolutional encoder followed by two decoders: one for the mesh reconstruction and another one
for color retrieving (more details in Appendix B).

Using the same setup as described in [8, 16, 23] , the training is done by minimizing the following
loss:

L = λsilLsil + λRGBLRGB + λlapLlap, (20)

where Lsil is the negative IoU between silhouettes I and Î , LRGB is the `1 RGB loss between R
and R̂, Llap is a Laplacian regularization term penalizing the relative change in position between
neighbour vertices (detailed description in Appendix B). For training, we use Adam algorithm with a
learning rate of 10−4 and parameters β1 = 0.9, β2 = 0.999. Even if the memory consumption of the
perturbed renderer may limit the maximum size of batches, its flexibility makes it possible to switch
to a deterministic approximation such as [23] to use larger batches in order to finetune the neural
network, if needed.

We analyze the quality of obtained 3D reconstruction through a rendering pipeline by providing
IoU measured on 13 different classes of the test set (see Tab. 3). We observe that our perturbed

2These numbers were obtained by running the renderer in our own setup (cameras, lightning, training
parameters etc.) in order to have comparable results. This may explain the slight difference with the numbers
from the original publications.
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renderer obtains state-of-the-art accuracies on this task. Error bars (representing the standard deviation
obtained by retraining the model with different random seeds) confirm the stability of our method.
Additionally, we illustrate qualitative results for colorized 3D mesh reconstruction from a single image
in Fig. 7(right) confirming the ability of perturbed renderers to provide strong visual supervision
signals.

6 Conclusion

In this paper, we introduced a novel approach to differentiable rendering leveraging recent con-
tributions on perturbed optimizers. We demonstrated the flexibility of our approach grounded in
its underlying theoretical formulation. The combination of our proposed perturbed renderers with
variance-reduction mechanisms and sensitivity analysis enables for robust application of our rendering
approach in practice. Our results notably show that perturbed differentiable rendering can reach
state-of-the-art performance on pose optimization and is also competitive for self-supervised 3D
mesh reconstruction. Additionally, perturbed differentiable rendering can be easily implemented on
top of existing implementations without major modifications, while generalizing existing renderers
such as SoftRas. As future work, we plan to embed our generic differentiable renderer within a
differentiable simulation pipeline in order to learn physical models, by using visual data as strong
supervision signals to learn physics.
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Appendices

A Differentiable perturbed renderer

This section describes some possible choice of priors for the smoothing noise of our differentiable
perturbed renderers and discuss the eventual links with already existing renderers. In addition, we
provide justification of the variance reduction and adaptive smoothing methods for different priors on
the noise.

A.1 Perturbed renderers

The following propositions discuss some possible choices of noise prior for the perturbed renderer,
exhibiting the links with already existing differentiable renderers [24, 16, 23].
Proposition 1. The sigmoid function corresponds to the perturbed Heaviside function with a logistic
prior on noise:

sigmoid(x) = E[H(x+ Z)] (21)

where Z ∼ Logistic(0, 1)

Proof. First, we note that the sigmoid function correspond to the first weight from the softmax

applied to the R2 vector x̃ =

(
x
0

)
. Indeed, we have :

σ(x) =
1

1 + exp(−x)
=

exp(x)

exp(x) + exp(0)
(22)

= softmax (x̃)
T

(
1
0

)
(23)

From the previous proposition, with Z a random variable in R2 distributed with a Gumbel distribution,
we have:

softmax(x̃) = E[ argmax
y s.t. ‖y‖1=1

〈y, x̃+ εZ〉] (24)

= E[ argmax
y s.t. ‖y‖1=1

yT
(
x+ εZ1

εZ2

)
] (25)

= E[ argmax
y s.t. ‖y‖1=1

yT
(
x+ ε(Z1 − Z2)

0

)
] (26)

because x+ ε(Z1 − Z2) > 0 is equivalent to x+ εZ1 > εZ2.

Finally, we can re-write:

σ(x) = E[ argmax
y s.t. ‖y‖1=1

yT
(
x+ εZ̃

0

)
]T
(
1
0

)
(27)

= E[argmax
0≤y≤1

y(x+ εZ̃)] (28)

= E[H(x+ εZ̃)] (29)

where Z̃ follows a logistic law.

Which allows to conclude that the sigmoid corresponds to the Heaviside function perturbed with
a logistic noise. We could use the fact that the cumulative distribution function of the logistic
distribution is the sigmoid function to make an alternative proof.

Proposition 2. The affine approximation of the step function corresponds to the perturbed Heaviside
function with an uniform prior on noise:

Haff (x) = E[H(x+ Z)] (30)

where Z ∼ U(− 1
2 ,

1
2 )
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Proof. We have :

E [H(x+ Z)] = P(x+ Z > 0) (31)
= P(Z > −x) (32)

=

 0 if x ≤ − 1
2

x+ 1
2 if − 1

2 < x < 1
2

1 if x ≥ 1
2

(33)

= Haff (x) (34)

Proposition 3. The arctan approximation of the step function corresponds to the perturbed Heaviside
function with a Cauchy prior on noise:

1

2
+

1

π
arctan(x) = E[H(x+ Z)] (35)

where Z ∼ Cauchy(0, 1)

Proof. We have :

E [H(x+ Z)] = P(x+ Z > 0) (36)
= P(Z > −x) (37)

=

∫ ∞
−x

1

π(1 + x2)
dz (38)

=
1

2
+

1

π
arctan(x) (39)

Proposition 4. The softmax function corresponds to the perturbed maximal coordinates with a
Gumbel prior on the noise:

softmax(z) = E[ argmax
y s.t. ‖y‖1=1

〈y, z + Z〉] (40)

where Z ∼ Gumbel(0, 1)

Proof. The Gumbel-max trick is a classical property of the Gumbel distribution stating: the maximizer
of M fixed values zi which have been perturbed by a noise i.i.d Zi following a Gumbel distribution,
follows an exponentially weighted distribution [14]. This can be written:

P(max
j
zj + Zj = zi + Zi) =

exp(zi)∑
j exp(zj)

(41)

where Zi are i.i.d. and following a Gumbel distribution. Thus, for a noise Z following a Gumbel
distribution, we have :

E[ argmax
y s.t. ‖y‖1=1

〈y, z + εZ〉] =
∑
i

eiP( argmax
y s.t. ‖y‖1=1

〈y, z + εZ〉 = ei) (42)

=
∑
i

eiP(max
j
zj + Zj = zi + εZi) (43)

=
∑
i

ei
exp(zi)∑
j exp(zj)

(44)

= softmax(z) (45)
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Figure 8: Modifying the prior on the noise leads to different approximations of a non-smooth operator.
The sigmoid and affine approximations are obtained by using respectively a Logistic and a Uniform
prior.

Following the previous results, one can observe that OpenDR [24] corresponds to a rasterization step
where a uniform prior is used for the smoothing noise in order to get gradients during the backward
pass. More precisely, the uniform distribution is taken with a support as large as a pixel size which
allows to get non null gradients for pixels lying on the border of triangles. This can be linked to
antialiasing techniques which are added to classical rendering pipeline to remove high frequencies
introduced by the non-smooth rasterization. These techniques make the intensity of a pixel vary
linearly with respect to the position of the triangle which can also be seen as an affine approximation
of the rasterization. However, one should note that the density of the uniform distribution cannot be
written in the form of µ(z) ∝ exp(−ν(z)) so the properties on differentiability from [4] does not
apply. In particular, this approximation is non-differentiable at some points (x = 1 or −1) and can
have null gradients (for x < −1 or x > 1) which is inducing localized gradients for OpenDR [24].
For this reason, the approach of NMR [16] actually consists in having a variable range for the
distribution support in order to get non-null gradients for a wider region. This approach corresponds
to the affine interpolation proposed in [35] and can lead to null gradients. More closely related to our
approach, SoftRas smoothen the rasterization by using a sigmoid approximation while Z-buffering is
replaced by a softmax during aggregation. As shown by propositions 1 and 4, this approach actually
corresponds to a special case of a perturbed renderer where rasterization and aggregation steps were
smoothen by using respectively a Logistic and a Gumbel prior for the noise.

In short, this means that some existing renderers [24, 23, 16] can be interpreted in the framework of
differentiable perturbed renderers when considering specific priors for the noise used for smoothing.
In addition, the generality of the approach allows to consider a continuous range of novel differentiable
renderers in between the already existing ones.

A.2 Variance reduction

As introduced in the paper, control variates methods can be used to reduce the noise of the Monte-
Carlo estimators of the Jacobian of a perturbed renderer, without inducing any extra-computation. In
particular, we prove this in the case of Gaussian and Cauchy priors on the smoothing noise.

Proposition 5. Jacobian of perturbed renderers can be written as :

Jθy
∗
ε (θ) = EZ

[
(y∗(θ + εZ)− y∗(θ))∇ν(Z)> 1

ε

]
, (46)

when Z follows a Gaussian distribution.
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Proof. As done in [4, 1], with a change of variable z′ = θ + εz we have:

Jθy
∗
ε (θ) =

∂

∂θ

(∫ ∞
−∞

y∗(θ + εz)µ(z)dz
)
, (47)

=

∫ ∞
−∞

y∗(z′)
∂

∂θ
µ

(
z′ − θ
ε

)
dz′, (48)

=

∫ ∞
−∞

y∗(z′)
1

ε
∇ν
(
z′ − θ
ε

)>
µ

(
z′ − θ
ε

)
dz′ (49)

And by doing the inverse change of variable, we get:

Jθy
∗
ε (θ) = EZ

[
y∗(θ + εZ)

ε
∇ν(Z)>

]
(50)

In addition, for Z following a standard Gaussian distribution we have ν(Z) = ‖Z‖2
2 and thus:

EZ
[
y∗(θ)∇ν(Z)>

]
= y∗(θ)EZ

[
Z>
]

(51)

and because Z is centered, we get:

EZ
[
y∗(θ)∇ν(Z)>

]
= 0 (52)

Finally we get:

Jθy
∗
ε (θ) = EZ

[
(y∗(θ + εZ)− y∗(θ))∇ν(Z)> 1

ε

]
. (53)

Proposition 6. Jacobian of perturbed renderers can be written as :

Jθy
∗
ε (θ) = EZ

[
(y∗(θ + εZ)− y∗(θ))∇ν(Z)> 1

ε

]
, (54)

when Z follows a Cauchy distribution.

Proof. Proceeding in a similar way to 5, for a Cauchy distribution we have ν(z) = ln(1 + z2), thus

EZ
[
y∗(θ)∇ν(Z)>

]
= y∗(θ)EZ

[
2Z>

1 + ‖Z‖2

]
(55)

= 0 (56)

and finally we have:

Jθy
∗
ε (θ) = EZ

[
(y∗(θ + εZ)− y∗(θ))∇ν(Z)> 1

ε

]
, (57)

for Z following a Cauchy distribution

A.3 Adaptive smoothing

In the same way as we proceeded for Jacobians computation, control variates method can be used to
reduce the variance of Monte-Carlo estimators of the sensitivity of perturbed optimizers with respect
to smoothing parameter ε.
Proposition 7. The sensitivity of the perturbed optimizer with respect to the smoothing parameter ε
can be expressed as:

Jεy
∗
ε (θ) = EZ

[
(y∗(θ + εZ)− y∗(θ)) ∇ν(Z)

>Z − 1

ε

]
(58)

for Z a smoothing noise following a Gaussian prior.

16



Proof. In a similar way to 5, using the same change of variable, we get:

Jθy
∗
ε (θ) =

∂

∂ε

(∫ ∞
−∞

y∗(θ + εz)µ(z)dz
)
, (59)

=

∫ ∞
−∞

y∗(z′)
∂

∂ε
µ

(
z′ − θ
ε

)
dz′, (60)

=

∫ ∞
−∞

y∗(z′)
1

ε2

(
∇ν
(
z′ − θ
ε

)>
z′ − θ
ε
− 1

)
µ

(
z′ − θ
ε

)
dz′ (61)

which yields with the inverse change of variable:

Jεy
∗
ε (θ) = EZ

[
y∗(θ + εZ)

∇ν(Z)>Z − 1

ε

]
(62)

Then, for Z following a Gaussian distribution, we have:

EZ
[
y∗(θ)

∇ν(Z)>Z − 1

ε

]
= y∗(θ)EZ

[
‖Z‖2 − 1

ε

]
(63)

= 0 (64)

for Z following a standard Gaussian noise. Finally, we can write:

Jεy
∗
ε (θ) = EZ

[
(y∗(θ + εZ)− y∗(θ)) ∇ν(Z)

>Z − 1

ε

]
(65)

Proposition 8. The sensitivity of the perturbed optimizer with respect to the smoothing parameter ε
can be expressed as:

Jεy
∗
ε (θ) = EZ

[
(y∗(θ + εZ)− y∗(θ)) ∇ν(Z)

>Z − 1

ε

]
(66)

for Z a smoothing noise following a Cauchy prior.

Proof. We adapt the previous proof to the case of a Cauchy distribution for the noise. We observe
that:

Jεy
∗
ε (θ) = EZ

[
y∗(θ + εZ)

∇ν(Z)>Z − 1

ε

]
(67)

remains valid. In addition, we have :

EZ
[
y∗(θ)

∇ν(Z)>Z − 1

ε

]
= y∗(θ)

1

ε
EZ
[

2‖Z‖2

1 + ‖Z‖2
− 1

]
(68)

(69)

for Z following a Cauchy noise. Moreover, an integration by parts gives:∫ ∞
−∞

2x2

(1 + x2)
2 dx =

[
−x

1 + x2

]∞
−∞

+

∫ ∞
−∞

1

1 + x2
dx (70)

= [arctan(x)]]∞−∞ (71)

so we have :

EZ
[

2‖Z‖2

1 + ‖Z‖2
− 1

]
= 0 (72)

As previously done in Proposition 7, we finally get:

Jεy
∗
ε (θ) = EZ

[
(y∗(θ + εZ)− y∗(θ)) ∇ν(Z)

>Z − 1

ε

]
(73)
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Figure 9: Pose optimization with an initial guess uniformly sampled on the rotation space. Results
are reported for our differentiable perturbed renderer with Adaptive Smoothing (AS) and Variance
Reduction (VR), and for SoftRas [23] with and without Adaptive Smoothing.

B Experimental results

In this section, we provide details on our experimental setup and some additional results. In ad-
dition, we provide the code for our differentiable perturbed renderer based on Pytorch3d [31] and
the experiments on pose optimization while additional experiments will be made available upon
publication.

B.1 Pose optimization

Trying to solve pose optimization from an initial guess taken uniformly in the rotation space leads to
very variable results when measuring the average final error (Fig.9). When the initialization is too far
from the initial guess, the optimization process converges towards a local optima. This limitation
is inherent to approaches using differentiable rendering to solve pose optimization tasks and could
be avoided only by using a combination with other methods, e.g. Render & Compare [18], to get
better initial guess for the pose. For this reason, we prefer to consider the ability of our differentiable
renderer to retrieve the true pose with an initial guess obtained by perturbing the target and measure
the amount of final errors below a given precision threshold (Fig. 10,11).

In addition to the pose optimization task on the cube, we propose to solve the same problem with
others objects from Shapenet dataset [7] (Fig. 11).

B.2 Mesh reconstruction

Reconstruction network Network architecture is based on [23] and is represented in Fig. 12. The
encoder is composed of 3 convolutional layers (each of them is followed by a batch normalization
operations) and 3 fully connected layers. We use two different decoders to retrieve respectively the
vertices’ position and their color. The positional decoder is composed of 3 fully connected layers.
The decoder used for colors retrieval is composed of a branch selecting a palette of Np colors on the
input image while the second branch mixes these colors to colorize each of the Nv vertices.

Training setup We use the same setup as described in [8, 16, 23]. The training is done by
minimizing a loss combining silhouette and color information with a regularization term:

L = λsilLsil + λRGBLRGB + λlapLlap, (74)

and we set λsil = 1, λRGB = 1, λlap = 3.10−3 during training.
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Figure 10: Pose optimization results for a perturbed renderer with Gaussian and Cauchy priors on the
smoothing noise, and for SoftRas.
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Figure 11: Pose optimization on various objects: a bag (Top) and a mailbox (Bottom)

In more details, Lsil is the negative IoU between silhouettes I and Î which can be expressed as:

Lsil = E

[
1− ‖I � Î‖1
‖I + Î − I � Î‖1

]
(75)

LRGB is the `1 RGB loss between R and R̂:

LRGB = ‖R− R̂‖1 (76)

Llap is a Laplacian regularization term penalizing the relative change in position between a vertices v
and its neighbours N (v) which can be written:

Llap =
∑
v

v − 1

|N (v)|
∑

v′∈N (v)

v′

2

(77)

Additional results We provide additional qualitative results for colorized mesh reconstruction
(Fig. 13).
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Figure 12: Learning architecture for the task of colorized 3D mesh reconstruction. First row:
Overview of reconstruction network. Second row: Encoder network. Third row: Positional decoder.
Fourth row: Color decoder.

21



Figure 13: Results from unsupervised 3D mesh and color reconstruction. 1st and 4th column: Input
image. Other columns: Reconstructed 3D mesh from different angles.
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