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Reynolds-averaged Navier-Stokes (RANS)-based data assimilation has proven to be es-
sential in many data-driven approaches, including the augmentation of experimental
data and the identification of turbulence model corrections. As dense measurements of
the whole mean flow are not always available when performing data assimilation, we
here investigate the case where only a few punctual mean velocity measurements are
employed to infer the full mean flow. Sensor placement methodologies are developed
targeting an enhancement in either (i) the extrapolation of the full mean velocity field
from the few punctual measurements or (ii) the identification of the considered model
correction, which is here a forcing term in the momentum equations that accounts for the
divergence of the Reynolds stress tensor. Concerning the first objective, a sensor place-
ment procedure based on the correct reconstruction of the dominant singular modes of
the linearized RANS equations is developed. When focusing on retrieving the model cor-
rection, we propose in particular a second-order adjoint-based approach to improve the
well-posedness of the data assimilation problem. It consists in minimizing the condition
number of the Hessian operator that is associated to the cost function to optimize in
data assimilation. This procedure allows to take into account all nonlinearities in the
present inverse problem during the optimization of the sensor locations, thus ensuring
its effectiveness. Numerical experiments on the reconstruction of the mean flow around
a circular cylinder at Re = 150 confirm the validity of the developed sensor placement
methodologies, which enable a significant improvement in the fidelity of the reconstructed
flow with respect to the true one in multiple scenarios in terms of number of sensors and
initial network arrangements.

Key words:

1. Introduction

Reynolds-averaged Navier-Stokes (RANS)-based simulations remain essential for the
prediction of complex turbulent flows, despite their well-known limitations which origi-
nate from the need of modelling all turbulent scales in this framework. In parallel to the
continuation of more classical approaches to address the closure problem in the RANS
equations (Durbin 2018), the latter problematic is currently revisited through the con-
sideration of alternative strategies which may be interlinked, as will be detailed in the
following: uncertainty quantification (Xiao & Cinnella 2019), data assimilation (Lewis
et al. 2006) and data-driven modelling (Duraisamy et al. 2019). In particular, data as-
similation aims to merge experimental and numerical approaches in order to overcome
their inherent limitations, namely the difficulty in accessing the whole state of the flow
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in experiments (Heitz et al. 2010; Suzuki 2012; Gillissen et al. 2019) and the lack of
knowledge of the inputs and models in numerical simulations (Hayase 2015; Meldi &
Poux 2017; Chandramouli et al. 2020; Li et al. 2020; Da Silva & Colonius 2020).
Such a data assimilation approach was proposed by Foures et al. (2014) in the context

of RANS, where the term that corresponds to the divergence of the Reynolds stress
tensor in the momentum equations for the mean flow is considered as an adjustable
forcing. The latter is optimized in order to match mean flow measurements relying on a
variational, i.e. adjoint-based, data assimilation technique (Le Dimet & Talagrand 1986).
This methodology was notably used in conjunction with particle image velocimetry (PIV)
data (Symon et al. 2017), and extended based on resolvent analysis for unsteady flow
reconstruction (Beneddine et al. 2017; He et al. 2019; Symon et al. 2019). In parallel,
the so-called field inversion approach was introduced by Singh & Duraisamy (2016). The
latter still relies on variational data assimilation, but the variables with respect to which
optimization is performed, which may be referred to as the control vector, correspond
to a multiplicative correction to the production term in the governing equation for the
turbulent viscosity in the framework of the Boussinesq approximation. In this study, an
application of data assimilation to uncertainty quantification was also illustrated, as data
assimilation may provide statistics of quantities of interest in the RANS predictions that
are conditioned by the available data (Wikle & Berliner 2007; Xiao & Cinnella 2019).
Going one step further, Parish & Duraisamy (2016); Holland et al. (2019) proposed
to generalize the model corrections obtained through data assimilation with machine
learning techniques, thereby resulting in data-driven predictive RANS models. It may
be worth noting that non-intrusive methodologies based on ensemble Kalman filtering
were also applied to the identification of turbulence model corrections (Kato et al. 2015;
Xiao et al. 2016). However, adjoint-based techniques will still be employed in the present
study due to their efficiency in evaluating both first- and second-order sensitivities, as
discussed in the following. Data assimilation therefore appears as a prominent tool in all
above mentioned data-driven approaches in the context of RANS modelling. The question
of the appropriate choice of the model correction which forms the control vector in the
data assimilation procedure remains open, and is discussed in Xiao & Cinnella (2019);
Franceschini et al. (2020).
Whether data assimilation is employed to identify model corrections or especially to

extrapolate experimental measurements, it may rely on incomplete data, i.e. the data do
not correspond to the full mean flow. Instead, we consider in the present study the case
where mean velocity data are only available at a few locations in the flow, which could
have been obtained, for example, through laser-Doppler or hot-wire anemometry in an
experimental setting. In such a situation, one may wonder how to determine appropriate
measurement locations in order to enhance the fidelity of the reconstructed flow with
respect to the true one. While this so-called sensor placement problem may be addressed
in the context of other flow reconstruction techniques that are based, for example, on the
proper orthogonal decomposition (Mokhasi & Rempfer 2004; Cohen et al. 2006; Willcox
2006; Yildirim et al. 2009) or sparsity promoting techniques (Manohar et al. 2018), or
in connection with flow control (Chen & Rowley 2011; Belson et al. 2013; Juillet et al.
2013; Akhtar et al. 2015; Oehler & Illingworth 2018), it will be here investigated in the
framework of variational data assimilation for RANS.
More specifically, the present study is based on the above mentioned approach of

Foures et al. (2014) where a forcing term in the momentum equations is adjusted through
data assimilation. The aim of the proposed sensor placement strategies will therefore be
to improve the performances of this flow reconstruction procedure. In the following,
the distinction between two objectives for sensor placement will be emphasized. On
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one hand, we will aim to improve the extrapolation capacities of data assimilation, i.e.
the reconstruction of the full mean velocity field from a few punctual measurements.
On the other hand, the enhancement of the inversion abilities of data assimilation will
be targeted, i.e. the correct identification of the forcing term from the measurements.
These two objectives are clearly related, as achieving an asymptotic low error on the
forcing should also lead to an improvement in the estimation of the mean velocity field.
Nevertheless, they may still be treated separately in order to take into account their
respective requirements, in particular in terms of number of sensors, as will be illustrated
in the following.
The elaboration of methodologies to directly enhance the reconstruction of the mean

velocity field will be first investigated. In the context of unsteady flows past a rotationally
oscillating cylinder, Mons et al. (2017) proposed a first-order adjoint-based procedure
to maximize the sensitivity of the observations with respect to changes in initial and
boundary conditions. In the present study, we rely on a possibly more comprehensive
framework, namely the analysis of the singular vectors of the linearized model equations
(Palmer et al. 1998; Buizza & Montani 1999). The approach in Mons et al. (2017) may
thus be reinterpreted as looking for capturing such dominant singular vectors, but with-
out distinguishing between them (Rabier et al. 1996). Appropriate sensor locations for
mean velocity field reconstruction will be here identified as follows. After evaluating the
singular vectors of the linearized RANS equations around a given mean flow, the sen-
sor placement will be optimized in order to enable the reconstruction of the dominant
modes, as the latter may be interpreted as the most efficient in adjusting the whole
mean velocity field. This approach may be considered as based on a steady resolvent
analysis, as well-established for the characterization of turbulent flows (Beneddine et al.
2016; McKeon 2017). In addition to provide optimized sensor locations for mean velocity
field reconstruction, the developed methodology may also provide an estimation of the
required number of sensors to achieve a given degree of reconstruction accuracy through
the analysis of a resolvent gain.
In order to improve the well-posedness of the data assimilation problem and the iden-

tification of the forcing, we will build on adjoint-based sensor placement methodologies
as proposed in the atmospheric sciences community, mainly in the context of unsteady
problems. A large proportion of these approaches rely on the prescription of a verification
cost function that measures the discrepancies in some features between the reconstructed
state and a so-called verification state, which should ideally be as close as possible to
the true one. Sensors may then be placed through the minimization of this verification
cost function, or by directly considering its gradient. This gradient may be evaluated
through an usual, first-order, adjoint approach (Baker & Daley 2000; Langland & Baker
2004; Daescu & Navon 2004), or by also relying on a second-order adjoint model (Daescu
2008; Godinez & Daescu 2011; Hossen et al. 2012; Cioaca & Sandu 2014). The second-
order adjoint technique (Wang et al. 1992; Le Dimet et al. 2002) allows to rigorously
take into account all nonlinearities in the data assimilation procedure and to solve meta-
optimization problems that are constrained by the latter. This relatively unique ability of
the variational formalism of data assimilation has favored the consideration of the latter
over stochastic and ensemble-based data assimilation techniques in the present study.
While the computational developments and costs that are associated to the application
of the second-order adjoint approach may appear prohibitive for unsteady systems, it
should still be affordable for steady problems (Peter & Dwight 2010), as will be con-
firmed in the following. Despite their effectiveness, the above mentioned approaches for
sensor placement may be limited by the need of the prescription of the verification state,
which is supposed to be unknown in a pragmatic setting. Such an approach will still
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be considered in the present study to assess the performances of other sensor placement
criteria.
Another type of technique for sensor placement is based on the spectrum of the Hes-

sian operator, or of an approximation, that is associated to the cost function in the data
assimilation problem which measures the discrepancies between the available measure-
ments and the estimation of the flow. Sensor placement may then be formulated as the
maximization of the smallest eigenvalue of this Hessian operator, or as the minimization
of its condition number, in order to make all possible variations in the control vector of
the data assimilation problem (here a forcing in the momentum equations) identifiable
from the measurements (Kang & Xu 2012; Gejadze & Shutyaev 2012; Mons et al. 2019;
Yoshimura et al. 2020). Such approaches, which do not require knowledge about the true
state beyond the available measurements, therefore enhance the well-posedness of data
assimilation as an inverse problem (Alekseev & Navon 2001), as it is well established for
linear problems (Ranieri et al. 2014). These methodologies may also be derived in the
stochastic formulation of data assimilation. The above mentioned Hessian may indeed
be related to the covariance matrix that is associated to the control vector in the data
assimilation problem (Le Dimet et al. 2002; Gejadze et al. 2018). Minimizing the con-
dition number of the Hessian may thus amount to minimizing the uncertainties in the
optimal control vector. It may be emphasized that when addressing the sensor placement
problem, the above studies generally considered a linear, or linearized, inverse problem
(Kang & Xu 2012; Mons et al. 2019; Yoshimura et al. 2020). In the present study, we
aim to derive such a sensor placement methodology based on Hessian analysis that takes
into account all nonlinearities in the data assimilation procedure in the context of RANS.
We here propose to apply second-order adjoint techniques both to evaluate the Hessian
operator and to evaluate the sensitivity of its spectrum with respect to sensor locations
in order to optimize the latter. Through comparisons with fully linear approaches, it will
be illustrated in the following that taking into account the dependency of the Hessian
spectrum with respect to modifications in the reconstructed mean flow that are induced
by alterations in the sensor network appears indeed necessary to actually improve the
performances of data assimilation in the present case.
The paper is organized as follows. After recalling the RANS equations and specifying

the considered measurements, fully linear sensor placement approaches are discussed in
§2. These methodologies focus either on the reconstruction of the mean velocity field or
on the identification of a forcing in the RANS equations. The data assimilation procedure
developed by Foures et al. (2014) to infer the full mean flow from the measurements is also
recalled in this section. These techniques are applied in §3 to the reconstruction of the
mean flow around a cylinder at Re = 150. Motivated by the limitations of some of the
present linear sensor placement approaches, second-order adjoint-based methodologies
are proposed in §4 to take into account all nonlinearities in the present inverse problem.
They are then assessed in §5. Finally, concluding remarks are drawn in §6.

2. Linear sensor placement approaches for mean flow reconstruction

In this section, the mean flow equations for incompressible flows are first recalled in
§2.1. Following Foures et al. (2014), the divergence of the Reynolds stress tensor is here
considered as an unknown forcing term in the momentum equations which has to be
determined through data. Punctual mean velocity measurements are here considered
to infer this forcing. Based on a linear framework that is detailed in §2.2, two sensor
placement approaches to adjust the locations of the velocity measurements are then
discussed in §2.3 and §2.4. These methodologies focus respectively on enhancing the
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reconstruction of the full mean velocity field or that of the forcing. The reconstruction
of the mean flow from the measurements is performed through the data assimilation
procedure proposed by Foures et al. (2014), which is recalled in §2.5.

2.1. Mean-flow equations and measurements

We consider unsteady incompressible Newtonian flows. The total non-dimensional ve-
locity and pressure fields (U(x, t)⊤, P (x, t))⊤ can be decomposed as the sum of a time-
averaged mean flow (u(x)⊤, p(x))⊤ and fluctuations (u′(x, t)⊤, p′(x, t))⊤. The mean flow
is thus solution of the steady Reynolds-Averaged Navier-Stokes equations (RANS), which
may be written in a compact form as

N (q) = Pf , (2.1)

where

q =

�

u

p

�

, N (q) =

�

(u ·∇)u +∇p−Re−1Δu

∇ · u

�

, P =

�

I

0

�

. (2.2)

The operator P in (2.1)-(2.2) makes the forcing term f act on the momentum conserva-
tion equations only. In the RANS equations, this forcing is related to the divergence of
the Reynolds stress tensor according to

f = −∇ · u′ ⊗ u′, (2.3)

where ◦ denotes time average. While in usual RANS simulations equations (2.1) are
closed and solved by modelling f , e.g. by invoking the turbulent-viscosity hypothesis, we
here rely on punctual mean velocity measurements and the data assimilation procedure
in §2.5 to determine f . It should be emphasized that this forcing is here directly targeted
following Foures et al. (2014); Symon et al. (2017); Franceschini et al. (2020), instead
of the individual components of the Reynolds stress tensor. This may make the data
assimilation problem better posed and exempts, among others, from the consideration
of realizability conditions as investigated in Xiao et al. (2016). It may be noticed that if
one is specifically interested in recovering the Reynolds stress tensor, the latter may still
be extracted from f (Foures et al. 2014).
The considered punctual measurements are performed at Ns locations and are gath-

ered in the vector y = (y(1)⊤,y(2)⊤, · · · ,y(Ns)⊤)⊤ which is related to the mean flow q

according to the compact relation

y = h(q), (2.4)

where h is referred to as the observation operator in the following and whose application
can be detailed as follows

y(i) =

�

Ω

δ(x− x(i)
s )Rq(x) dΩ i ∈ {1, 2, · · · , Ns}, R = (I 0), (2.5)

where x
(i)
s refers to the location of the i-th sensor,Ω is the flow domain, and the restriction

operator R extracts the velocity components from the full mean flow q, i.e. Rq = u. In
the next sections, we will discuss sensor placement strategies to determine appropriate

sensor locations (x
(i)
s )i∈ {1,2,··· ,Ns} to infer the forcing and the corresponding full mean

flow from these measurements.

2.2. Linearized mean-flow equations and gain in observation space

Despite the nonlinearity of the RANS equations (2.1), we investigate in this section the
possibility of deriving sensor placement criteria in a simplified, linear framework. To
that end, we first consider perturbations f̃ around a reference forcing f which induce
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variations q̃ in the corresponding mean flow q. The question of the choice of the reference
flow, which will appear to be determinant for some of the following methodologies, will
be investigated in §3.3. At first order, the perturbations f̃ and q̃ can be related through
the resolvent operator R|q according to

q̃ =

�

ũ

p̃

�

= R|q(f̃), R|q =

�

∂N

∂q

�

�

�

q

�−1

P, (2.6)

which involves the tangent linear operator that is associated to the RANS equations (2.1)
and is defined as

∂N

∂q

�

�

�

q
(q̃) =

�

(◦ ·∇)u + (u ·∇) ◦ −Re−1Δ◦ ∇◦
∇ · ◦ 0

�

q̃. (2.7)

The notation ◦|q emphasizes the dependency of this operator with respect to the reference
mean flow q around which linearization is performed. In the context of mean-flow stability
analysis (Beneddine et al. 2016; McKeon 2017), R|q may be considered as the resolvent
operator for zero-frequency fluctuations. The resolvent operator for fluctuations with
angular frequency ω is indeed defined as R(ω)|q = (iωB + (∂N/∂q)|q)

−1P, where the
matrix B allows to add the contribution iω to the first row and first column component
of (∂N/∂q)|q only.

As a second building block for the following methodologies, the impact of variations f̃
on the values of the measurements is then quantified through the gain

GO =
kh(q̃)k2O
kf̃k2F

, (2.8)

where k ◦ kO and k ◦ kF refer to the norms that are associated to the observation and
forcing spaces, respectively, with kyk2O = y⊤y and kfk2F =

�

Ω
f⊤f dΩ. Perturbations f̃

that are associated to small values of the gain GO are hardly distinguishable from the
reference forcing around which linearization is performed, while forcing variations with
high gain values should be easily identifiable from the measurements. We will denote by
λL
max and λL

min the maximum and minimum values of the gain GO, respectively, which
appear to correspond to the maximum and minimum eigenvalues of the operator

HL
O|q = R|†qh

†
hR|q. (2.9)

The operator HL
O|q is self-adjoint. It involves the adjoint of the observation operator h

in (2.4), that is defined by

h†(y) = P

�

Ns
�

i=1

y(i)δ(x− x(i)
s )

�

, (2.10)

as well as the adjoint R|†q of the resolvent operator. It is expressed as

R|†q = R

�

�

∂N

∂q

�

�

�

q

�†
�−1

. (2.11)

This operator involves the adjoint of the tangent linear model for the RANS equations,
which is defined according to

�

∂N

∂q

�

�

�

q

�†

(q†) =

�

◦ · (∇u)⊤ − (u ·∇) ◦ −Re−1Δ◦ −∇◦
−∇ · ◦ 0

�

q†. (2.12)

The application of the adjoint observation operator h† according to (2.9) thus generates
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a forcing to the adjoint RANS equations (2.12) that acts at the sensor locations only.
The superscript L in the above expressions, as in the following ones, is used to emphasize
the fact that the operator HL

O|q and associated eigenvalues are derived from a linear
analysis, in contrast to the methodologies which will be presented in §4.
The extremum values λL

max and λL
min of the gain GO, as any eigenvalue λL

i of HL
O|q,

verify

HL
O|q(f̃

(i)

O ) = λL
i f̃

(i)

O , q̃
(i)
O = R|q(f̃

(i)

O ), ũ
(i)
O = Rq̃

(i)
O , (2.13)

where f̃
(i)

O is the eigenforcing that is associated to the eigenvalue λL
i , q̃

(i)
O refers to the

corresponding mean flow perturbation whose velocity components are denoted by ũ
(i)
O .

Eigenmodes are implicitly ordered by decreasing value of λL
i .

In this linear framework, the reconstructed forcing lies in the subspace that is spanned

by the NO eigenvectors (f̃
(i)

O )i∈ {1,2,··· ,NO}, where NO refers to the rank of HL
O|q. The

latter is NO = 2Ns, i.e. twice the number of sensors, as the two velocity components of
the considered two-dimensional mean flow will be measured at each sensor location.

2.3. Linear sensor placement for mean velocity field reconstruction

While the forcing f in (2.3) forms the unknown which has to be determined through
data assimilation, one could only be interested in the correct estimation of the full mean
velocity field from the few punctual measurements. Directly expressing the sensor place-
ment problem in terms of mean velocity reconstruction may be justified by the fact that
improving the identification of the forcing does not necessarily imply enhancing the es-
timation of the full mean velocity field. This should however be asymptotically always
true with increasing number of sensors. A second motivation, which will be illustrated
in §3.2, is that it may be easier to extrapolate the mean velocity field than correctly
inferring the forcing, in the sense that less information, i.e. less sensors, is needed in the
former case than in the latter one.
Relying on the linear approximation and resolvent operator R|q in (2.6), we start the

derivation of a sensor placement criterion for enhancing the reconstruction of the mean
velocity field by quantifying global variations in the latter through the following new gain

GU =
kũk2U
kf̃k2F

, kũk2U =

�

ΩU

ũTũ dΩU , (2.14)

where the variations in the mean velocity ũ are evaluated in a subdomain of interest
ΩU ⊂ Ω, which will be specified in the following. Similarly as in §2.2, the gain GU may
be associated with the following operator HL

U |q and its eigenmodes

HL
U |q(f̃

(i)

U ) = γL
i f̃

(i)

U i ∈ {1, 2, · · · , NU}, HL
U |q = R|†qR

†RR|q, (2.15)

where NU is the number of considered eigenforcings (f̃
(i)

U )i∈ {1,2,··· ,NU} with correspond-

ing eigenvalues (γL
i )i∈ {1,2,··· ,NU}, and the adjoint R† of the restriction operator in (2.5)

is defined with respect to the scalar product used for the mean velocity space U in (2.14).
As the operator HL

U |q may be of full rank, the NU eigenforcings here refer only to a sub-
set of all modes of HL

U |q. Furthermore, only the leading eigenmodes are relevant in the
following analysis.

The most dominant eigenforcings (f̃
(i)

U )i∈ {1,2,··· ,NU}, which are associated to the largest
values of the gain GU , may be interpreted as the most effective forcing variations in ad-
justing the whole mean velocity field in the domain of interest ΩU . Accordingly, it may
be desirable that the forcing which is inferred from the measurements has a significant
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projection onto these eigenmodes, making it able to globally correct the estimation of
the mean velocity field. In the present linear framework, as mentioned in §2.2, the recon-

structed forcing lies in the subspace spanned by the eigenforcings (f̃
(i)

O )i∈ {1,2,··· ,NO} in
(2.13). A sensor placement strategy may therefore consist in adjusting the sensor loca-

tions, and so the modes (f̃
(i)

O )i∈ {1,2,··· ,NO}, so that the latter allow the best representation

of the considered leading eigenforcings (f̃
(i)

U )i∈ {1,2,··· ,NU}. This may be formulated as the
minimization of the following total residual

min
(x

(k)
s )k ∈ {1,2,··· ,Ns}

�

EU =
1

C

NU
�

i=1

γL
i Ei

�

, Ei =

�

�

�

�

�

f̃
(i)

U −

NO
�

j=1

�

f̃
(i)

U , f̃
(j)

O

�

F
f̃
(j)

O

�

�

�

�

�

2

F

, (2.16)

where Ei is the residual for the i-th mode f̃
(i)

U in the basis formed by (f̃
(j)

O )j ∈ {1,2,··· ,NO}

and is weighted by the corresponding eigenvalue γL
i in order to promote the most domi-

nant modes, with C =
�NU

i=1 γ
L
i .

The minimization in (2.16) is performed with an iterative gradient-based descent
method, more specifically the Polak-Ribière variant of the nonlinear conjugate gradient
method. It is supplemented by the backtracking-Armijo line search algorithm (Armijo
1966) to identify the step size that weights the descent direction. Such an optimization
technique thus requires the gradient of the total residual EU with respect to the sensor
locations. The latter is obtained from the linear combination of the gradients for each
residual Ei according to (2.16). The gradient of the residual Ei with respect to the k-th
sensor location is given by

∂Ei

∂x
(k)
s

= 2

NO
�

j=1

∇
�

ũ
(j)⊤
O ṽ(ij)

�

(x(k)
s ). (2.17)

The above sensitivity thus corresponds to the spatial gradient, which is evaluated at

the sensor locations, of the scalar product between the velocity field ũ
(j)
O in (2.13) and

ṽ(ij) = Rs̃(ij). This pseudo velocity field is computed from s̃(ij) = R|q(g̃
(ij)), where the

pseudo forcing g̃(ij) is obtained from the inversion of

�

HL
O|q − λL

j I
�

(g̃(ij)) =
�

f̃
(i)

U , f̃
(j)

O

�

F
δf̃

(i)

U ,
�

g̃(ij), f̃
(j)

O

�

F
= 0, (2.18)

where δf̃
(i)

U = f̃
(i)

U −
�NO

j=1hf̃
(i)

U , f̃
(j)

O iF f̃
(j)

O .
Once a reference forcing and associated mean flow are chosen, starting from an initial

sensor arrangement, the minimization problem (2.16) mainly requires the computation of
the eigendecomposition of the operatorHL

O|q for the current sensor network, which is used
both to evaluate the total residual EU and to efficiently solve (2.18). Once the gradients
(2.17) are assembled, the latter allow to update the sensor locations, this procedure being
repeated until convergence.

2.4. Linear sensor placement for forcing identification

In order to ensure the well-posedness of the present data assimilation problem, namely
the correct identification of the forcing f in (2.3) from the measurements, the sensor
placement problem may rather be formulated as seeking after sensor locations that al-
low to differentiate between all possible forcings. In the present linear framework, this
amounts to identifying sensor placements that make all forcing perturbations induc-
ing non-negligible and similar energy perturbations in observation space as quantified
through the gain GO in (2.8). More specifically, optimal sensor placement may be here
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expressed as the minimization of the ratio between the maximum and minimum values
of the gain GO, i.e.

min
(x

(k)
s )k ∈ {1,2,··· ,Ns}

λL
max

λL
min

. (2.19)

This criterion may also be interpreted as the minimization of the condition number of
the operator HL

O|q in (2.9). Similarly as in §2.3, the minimization in (2.19) is performed
through the nonlinear conjugate gradient method, which requires the ability of evaluating
the sensitivity of eigenvalues of HL

O|q with respect to the sensor locations. The gradient
of the eigenvalue λL

i with respect to the k-th sensor location is given by

∂λL
i

∂x
(k)
s

= ∇
�

ũ
(i)⊤
O ũ

(i)
O

�

(x(k)
s ) = 2

�

∇ũ
(i)
O (x(k)

s )
�⊤

ũ
(i)
O (x(k)

s ), (2.20)

which again involves the velocity field ũ
(i)
O that is associated to λL

i according to (2.13).
After (2.20) is applied to the maximum and minimum eigenvalues of HL

O|q, the gradient
of their ratio in (2.19) with respect to the sensor locations is straightforwardly obtained.
As in §2.3, the evaluation of the eigendecomposition of HL

O|q accounts for most of
the computational cost that is required to solve (2.19). It may noticed that this sensor
placement criterion explicitly requires the smallest eigenvalue of HL

O|q. As networks that
are formed by at most a few tens of sensors are considered in the following, as further
discussed in §3.2, the computation of λL

min remains feasible (see §2.2). In the case of
significantly larger sensor networks, one could consider replacing λL

min in the criterion
(2.19) with an approximation in a subset of eigenvalues of HL

O|q, which should still be
representative of the modes with lower gain values.

2.5. Variational data assimilation for mean flow reconstruction

Once the sensor network is selected, the variational data assimilation procedure proposed
by Foures et al. (2014) is employed to actually infer the unknown true forcing f t from
punctual mean velocity measurements of the true mean flow qt under consideration. As
we here consider sparse data, in addition to the minimization of the misfit between the
measurements y and the mean flow prediction, we also consider the penalization of the
H1 norm of the forcing. Accordingly, the data assimilation problem is here formulated
as the following optimization problem

min
f

�

J =
1

2
ky − h(q)k2O +

α

2

�

kfk2F + k∇fk2G
�

�

, N (q) = Pf , (2.21)

where the mean flow q satisfies the RANS equations (second equality), and the positive
real parameter α allows to adjust the penalization of the H1 norm of the forcing. The
considered penalization term appears essential to prevent from nonphysical, very localized
forcings due to the use of sparse measurements. On the other hand, the reconstructed
mean velocity field remains here adequately smooth even without any regularization,
which might be ascribed to the relatively low Reynolds number of the flow configuration
which is considered in the following and described in §3.1. The choice of an appropriate
value for α along with the precise impact of regularization on the reconstructed flow are
further discussed in §3.1 and in appendix B where comparisons between the use or not
of penalization are provided.
The scalar product for the space G in (2.21) is defined in a very similar way as for

F in (2.8), and differ from the latter only to take into account the different number of
components in ∇f compared to f . As for the sensor placement problems in this section,
the cost function J in (2.21) is minimized relying on a gradient-based descent method, and
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we here prefer to employ the low-memory Broyden–Fletcher–Goldfarb–Shanno (BFGS)
method (Nocedal 1980). The step size for the descent direction is still determined through
the backtracking-Armijo line search algorithm. The gradient of J with respect to the
forcing is given by

∂J

∂f

�

�

�

f
= u† + α(f −Δf ), (2.22)

where the velocity field components u† = Rq† of the adjoint variable q†, which is intro-
duced to take into account the constraint N (q) = Pf , is obtained from

u† = R|†q(h
†(h(q)− y)), (2.23)

where the various adjoint models are defined in (2.10)-(2.12). Further details about the
derivation of the gradient (2.22) are provided in appendix A. Starting from the first
guess f = fb = 0, whose corresponding mean flow qb will be referred to as the base
flow, equations (2.1) and (2.23) are successively inverted in order to evaluate the gradient
(2.22), which is used to update the estimation of the forcing term, this procedure being
repeated until convergence. The outcome of this procedure will be referred to as the
reconstructed, or assimilated flow in the following, whose corresponding forcing and mean
flow will be denoted as fa and qa, respectively.
As detailed in Foures et al. (2014), observations of the mean velocity field alone al-

low to reconstruct the solenoidal part of the true forcing f t only, as fa can only be
divergence free. Accordingly, in the following, f t is implicitly replaced with its solenoidal
contribution f s

t according to the Helmholtz decomposition f t = f s
t+∇φ, with ∇·f s

t = 0.
It might be worth noting that data assimilation is here considered from a deterministic

point of view. The extension of the present methodologies to a stochastic formulation
in order to take into account, among others, measurement noise may simply consist in
modifying the definition of the above scalar products to include the covariance matrices
that are associated to uncertainties in the measurements and to a prior estimation of the
forcing (Lewis et al. 2006; Wikle & Berliner 2007).

3. Application of linear sensor placement

In this section, the data assimilation and linear sensor placement procedures of §2
are applied to the reconstruction of the two-dimensional mean flow around an infinite
circular cylinder from a limited number of punctual velocity measurements. Details about
the flow configuration and numerical methods are provided in §3.1, while applications of
the sensor placement procedures to specifically enhance the reconstruction of the mean
velocity field or that of the forcing are performed in §3.2 and §3.3, respectively.

3.1. Flow configuration and numerical setup

Similarly as in Foures et al. (2014), we consider the two-dimensional mean flow around
an infinite circular cylinder. The Reynolds number Re based on the diameter D of the
cylinder and the inlet velocity U∞ is chosen as 150. All computations rely on the software
FreeFEM++ (Hecht 2012) which is based on the finite element method. Taylor-Hood el-
ements that are respectively quadratic and linear for velocity and pressure are employed.
The two-dimensional computational domain is a square of side 60D with the circular
cylinder at its center, as illustrated in figure 1. The considered mesh corresponds to ap-
proximately 7.4 · 104 degrees of freedom. In the above derivations, as in the following, all
quantities are nondimensionalized using U∞ and D. For the RANS model (2.1), which
is solved using the Newton method, u = uex + vey = ex is imposed at the inlet, sym-
metry boundary conditions (∂u

∂y
, v) = (0, 0) are used for the top and bottom boundaries,



Sensor placement strategies for mean flow reconstruction via data assimilation 11

Figure 1. Schematic of the flow configuration with the computational domain. The small open
circles symbolise the adjustable locations of velocity sensors which will be used for mean flow
reconstruction.

the no-slip condition u = v = 0 is imposed at the cylinder, while the outflow condition
(Re−1 ∂u

∂x
− p, ∂v

∂x
) = (0, 0) is enforced at the outlet. The adjoint model in (2.12) is imple-

mented following the discrete adjoint approach (Peter & Dwight 2010). The optimization
procedures to solve the sensor placement and data assimilation problems (2.16), (2.19)
and (2.21) rely on the same stopping criterion, which corresponds to a relative variation
in the corresponding objective function inferior to 10−3 between two successive iterations.
Concerning specifically the data assimilation procedure, an adjustable aspect is the

regularization parameter α in the cost function J in (2.21) that allows to penalize the
H1 norm of the forcing f . Assuming that U∞ and D are appropriate scalings for the
divergence of the Reynolds stress tensor for the present flow configuration, i.e. the velocity
and forcing fields are assumed to have similar magnitudes and spatial variations after
nondimensionalization, we choose the value α = 10−2 in order to keep the observation
contribution largely dominant in the cost function J while still regularizing the data
assimilation problem. It was checked that relatively large variations around the considered
value (increasing or decreasing it by one order of magnitude) do not entail significant
modifications in the reconstruction results. The case α = 0 (no regularization) is discussed
in appendix B.
In order to assess the performances of the sensor placement and data assimilation

procedures, the following relative errors between the assimilated and true flows will be
considered

εf =

�

ΩU
δf⊤

a δfa dΩU
�

ΩU
δf⊤

b δfb dΩU

, εu =

�

ΩU
δu⊤

a δua dΩU
�

ΩU
δu⊤

b δub dΩU
, (3.1)

where δf = f t − f is the discrepancy field between a forcing f and the true forcing f t,
while δu = ut − u is its counterpart for the velocity field. ΩU in (3.1) refers to the flow
domain that is included in the domain [−1, 3]× [−1.5, 1.5] (see figure 2(a)), whose extent
is chosen to include the whole recirculation bubble and slightly beyond in all directions,
in particular upstream of the cylinder. This subdomain is the same as the one that will
be chosen for the sensor placement criterion (2.16). It can be noticed that in (3.1) the
discrepancies between the true and assimilated flows are normalized by those between
the true flow and the base flow, i.e. the first-guess of the data assimilation procedure, in
order to directly provide the improvement in the estimation of the mean flow through
data assimilation compared to the latter.
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(a) (b)

(c) (d)

Figure 2. Top row: true streamwise components of (a) the mean flow around a cylinder at
Re = 150 and (b) corresponding forcing. Bottom row: (c) streamwise velocity for the base flow
and (d) associated discrepancy field. The domain of interest ΩU , which is used in both the
reconstruction errors (3.1) and the sensor placement criterion (2.16), is reported in (a).

The considered mean flow measurements y for the cylinder flow at Re = 150 are
generated by solving the unsteady Navier-Stokes equations relying on similar numerical
methods as described above. The true mean flow and associated forcing are illustrated
in figure 2, along with the base flow. For the sake of compactness, in this figure as in
the following ones, only the streamwise component of these fields is reported. In the
following, conclusions drawn from the analysis of the streamwise component will be also
valid for the crossflow one, while it might be worth emphasizing that both components
are taken into account in the quantitative error assessment (3.1).

3.2. Enhancing the reconstruction of the mean velocity field

We here apply the sensor placement methodology of §2.3 to specifically enhance the
reconstruction of the mean velocity field from the few punctual measurements. The goal
of the sensor placement procedure will thus be to determine sensor locations so that the
inferred forcing is the most effective in correcting the estimation of the mean velocity field
in the domain of interest ΩU (see figure 2(a)). As discussed in §2.3, this may amount to
identify sensor locations which allow the best representation of the forcings that induce
the largest perturbations in the mean velocity field according to the gain GU in (2.14).
It is chosen to perform the analysis around the base flow, i.e. all linearizations in §2.2
and §2.3 are made around the latter, which seems a natural choice as the base flow
forms the first-guess for the data assimilation procedure. Figure 3 reports the first four

eigenforcings f̃
(i)

U with the largest values of the gain GU . Through the minimization of
the residual EU in (2.16), we thus aim for the best representation of these eigenforcings in

the basis formed by the modes (f̃
(j)

O )j ∈ {1,2,··· ,NO} which are associated to the gain GO in
observation space (2.8). From figure 3, a distinction may be made between the first two

forcings f̃
(i)

U , which appear most efficient in adjusting the mean velocity outside of the
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 3. First four dominant eigenmodes (from most to less dominant going from top to
bottom row) which are associated to the gain GU in (2.14) evaluated around the base flow:

streamwise component of the eigenforcing f̃
(i)

U (left column) and associated velocity perturbation

ũ
(i)
U = RR|qb

(f̃
(i)

U ) (right column). The corresponding value of the gain γL
i = GU (f̃

(i)

U ) is also
reported in the figures.

wake, and the third and fourth modes, which have a strong impact on the recirculation
region. The rationale behind the consideration of only these four modes is discussed
below.
Before proceeding further, it may be instructive to further analyse the gain GU and

relative eigenforcings in order to get insights in the respective difficulties that lie in the
extrapolation problem, i.e. the possibilities of getting the full mean velocity field from
the measurements, which is of interest in the present section, and the inverse problem,



14 V. Mons and O. Marquet

i
100 101 102

γ
L i
/
γ
L m
a
x
,

ε(
i) f t

10-4

10-2

100

(a)

i
100 101 102

hf
t,
f̃
(i
)

U
i/
k
f t
k
k
f̃
(i
)

U
k

0

0.2

0.4

0.6

0.8

1

(b)

Figure 4. (a) Gain γL
i = GU (f̃

(i)

U ) in (2.14) (dashed lines) and error ε
(i)
ft

in (3.2) against the

number i of modes (f̃
(j)

U )j ∈ {1,2,··· ,i} (full lines). (b) Projection of the true forcing onto the modes

f̃
(i)

U . The analysis is performed either around the base flow (black lines) or the true one (grey
lines).

namely the reconstruction of the forcing. Figure 4(a) reports the value of GU for the

modes f̃
(i)

U , along with the error that is committed on the representation of the true
forcing f t in the basis formed by an increasing number of these same modes. This error
when relying on i modes is defined as

ε
(i)
ft

=

�

ΩU
δf

(i)⊤
t δf

(i)
t dΩU

�

ΩU
f⊤
t f t dΩU

, δf
(i)
t = f t −

i
�

j=1

�

f t, f̃
(j)

U

�

F
f̃
(j)

U . (3.2)

It appears that the value of the gain GU decays at a relatively high rate and that only
a few modes induce significant variations in the mean velocity field. This suggests that
a small number of sensors is required to correctly reconstruct the full mean velocity
field in the present case. In particular, it may be noticed that the value of GU for the
fourth dominant mode is already one order of magnitude smaller than the maximum
value. Accordingly, based on the fact that the true forcing has a non-zero projection on
the most dominant modes as illustrated in figure 4(b), and assuming that a number of
n sensors allow to reconstruct n modes, a network of four sensors seems sufficient to
already provide a correct estimation of the true velocity field, as will be confirmed in this

section. On the other hand, the error ε
(i)
ft

decays at a much lower rate, which originates
from the relatively low projection of the true forcing on the dominant modes, as reported
in figure 4(b). Around 20 modes, and thus possibly the same number of sensors, seem
necessary to decrease this error to 0.1. This was used to prescribe the maximum size
of the considered sensor networks in this study, namely Ns = 24, such configurations
being investigated in §5.5. This discussion thus suggests that the present extrapolation
problem is easier to address compared to the inverse problem, which may further justify
the distinction between the two sensor placement strategies in §2.3 and §2.4. While the
above discussion completely discards nonlinearity, it might still be supported by the fact
that considering the base flow or the true one provides similar trends in figure 4.
The sensor placement criterion (2.16) is now applied to the optimization of two sensors,

as illustrated in figures 5 and 6. The initial sensors are chosen to lie in the cylinder
wake and are placed relatively close to the y-axis. At first sight, this choice might seem
appropriate as the discrepancies between the base and true flow are large at such locations
due to the significant overestimation of the extent of the recirculation bubble in the base
flow (see figure 2(d)). In the present case, as in the following numerical experiments,
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Figure 5. Optimization of the locations of two sensors (initial ((b) and (d)) and optimized ((c)
and (e)) sensors are denoted with open circles) to enhance the reconstruction of the mean velocity
field according to (2.16): (a) total residual EU ( ) versus the iteration of the optimization
procedure. EU here includes the residuals E1 ( ) and E2 ( ) for the first two modes

f̃
(i)

U (NU = 2). The residuals E3 ( ) and E4 ( ) for the third and fourth modes are

also reported. The streamwise component of the first two dominant modes f̃
(i)

O are reported in
the second and third rows for the initial ((b) and (d)) and optimized ((c) and (e)) networks.

the sensor network is chosen symmetric with respect to the y-axis. As the true mean
flow itself is symmetric, one could actually rely on only half of the sensors (so here
only one) placed on either side of the y-axis. However, in order to get a flow with the
correct symmetries through the data assimilation procedure, it would still be necessary
to duplicate and symmetrize the measurement values. Otherwise, the adjoint equations
(2.23) could be forced in a asymmetric way, which would ultimately result in asymmetric
assimilated forcing and mean flow.

As two sensors are used, we choose to evaluate the residual EU in (2.16) with NU=2,

i.e. we only aim to correctly represent the two most dominant modes f̃
(i)

U of figures 3(a)

and 3(c) in the basis (f̃
(i)

O )i∈ {1,2,··· ,NO}. As may be inferred from figure 5(a), the value
of EU is close to the maximum possible value 1 (0.96) for the first-guess sensors. This
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indicates that the corresponding eigenforcings f̃
(i)

O , which are illustrated in figures 5(b)

and 5(d), do not form an appropriate basis for the first two modes f̃
(i)

U . Rather, they

seem more adequate for representing the third and fourth modes f̃
(i)

U that specifically
enable an adjustment of the recirculation region. The minimization of the total residual
EU is performed in 12 iterations, each of them requiring the eigendecomposition of the
operator HL

O|qb
in (2.9) evaluated at the base flow, reaching the value EU = 0.11. The

sensors of the so obtained optimized network have been moved away from the y-axis,

enabling a much better representation of the first two modes f̃
(i)

U , as illustrated by the
similarities between figures 3(a) and 3(c), on one hand, and 5(c) and 5(e), on the other
hand. However, this was achieved at the expense of the representation of the third and

fourth modes f̃
(i)

U , as confirmed by the overall increase in the associated residuals E3

and E4 in figure 5(a). The sensor placement procedure has thus traded the ability to
adjust the recirculation bubble for a better identification of more energetic variations in
the mean velocity field outside of the wake, as confirmed below.

The assimilated flows obtained with the initial and optimized sensor networks through
the data assimilation procedure of §2.5 are illustrated in figure 6. In both cases, the
reconstructed forcing appears far from the true one in figure 2(b), with associated error
εf = 0.68 and εf = 0.81 in (3.1) for the initial and optimized networks, respectively.
These errors are also reported in table 1 for all cases in this study. The improvement
with respect to the first-guess forcing fb = 0 thus remains limited. This is in line with
the above discussion on figure 4 and the required number of sensors to satisfactorily
solve the inverse problem. Concerning the reconstruction of the mean velocity field, the
performances of the initial sensors are also poor, as the discrepancies between the assim-
ilated and true fields are quantified as εu = 0.88. While the prediction of the extent of
the recirculation region has been much improved compared to the base flow, as might
have been anticipated, the assimilated flow significantly underestimates the intensity of
the mean velocity in the rest of the domain. Interestingly, as may be inferred from the
comparison between figures 3(b), 3(d) and 6(e), the discrepancies between this assimi-
lated flow and the true one bear strong similarities with the mean velocity perturbations

that are induced by the two dominant modes f̃
(i)

U , which are not well captured by this
sensor network. The optimized sensors achieve much better performances in terms of
mean velocity reconstruction, with εu = 0.19. It may be worth emphasizing that this
drastic improvement was obtained despite a deterioration in the forcing estimation com-
pared to the use of the initial sensors. Similarly, while it was noticed above that the third

and fourth modes f̃
(i)

U were less satisfactorily represented with the optimized sensors
than with the initial ones, the remaining discrepancies between the assimilated and true
mean velocity fields in figure 6(f) seem very similar in shape to the velocity variations
induced by the third mode in figure 3(f). The errors are indeed mainly concentrated in
the cylinder wake due to the still overestimated recirculation length with the optimized
sensors. All these findings seem to support the relevance and efficiency of the present
sensor placement procedure to enhance the reconstruction of the mean velocity field.

The criterion (2.16) is finally applied to the determination of appropriate locations
for four sensors. Figure 7 directly reports results obtained with the optimized configura-
tion, the first-guess network having been formed by the combination of the initial and
optimized arrangements of the previous two-sensor case, aiming to correctly reconstruct
both the recirculation bubble and outside of the wake region. The present optimized

four-sensor network was optimized to correctly infer the NU = 4 modes f̃
(i)

U in figure 3,
reaching the value 0.17 for the total residual EU . The shape of these eigenforcings may
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(a) (b)

(c) (d)

(e) (f)

Figure 6. Optimization of the locations of two sensors to enhance the reconstruction of the
mean velocity field according to (2.16): results for the initial (left column) and optimized (right
column) networks of figure 5. The streamwise component of the assimilated forcing and mean
velocity field obtained with these sensor networks are reported in the first and second rows. The
discrepancy fields between the assimilated and true velocity fields are also reported in the third
row. The reconstruction errors εf and εu in (3.1) are indicated for the two networks.

indeed be visually identified in the modes f̃
(i)

O which are reported in figures 7(a)-7(d).
While the assimilated forcing obtained with this network is still relatively far from the
true one, with εf = 0.36, the discrepancies between the assimilated and true mean ve-
locity fields are decreased to εu = 0.08, with a correct prediction of the flow both in the
recirculation region and away from the wake as intended. As evoked in the discussion on
figure 4, four sensors appear indeed enough to already have a good agreement with the
true mean velocity field. This further confirms the validity of the present linear sensor
placement procedure, while it may be worth emphasizing the fact that the latter did not
require any information about the true flow, as it was performed considering the base
flow only.

3.3. Enhancing the reconstruction of the forcing

From now on, we will focus on the determination of sensor arrangements to enhance
the more challenging reconstruction of the forcing, and here apply the sensor placement
procedure described in §2.4, which aims to make all variations in the forcing observ-
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(a) (b)

(c) (d)

(e) (f)

Figure 7. Optimized network of four sensors to enhance the reconstruction of the mean velocity
field according to (2.16). The corresponding streamwise component of the first four eigenmodes

f̃
(i)

O are reported in (a)-(d), along with the streamwise component of the assimilated forcing (e)
and mean velocity field (f) obtained with this network.
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Figure 8. Optimization of the locations of 16 sensors to enhance the reconstruction of the
forcing according to (2.19): ratio λL

max/λ
L
min versus the iteration of the optimization procedure

when the latter is evaluated at the base flow (dotted line), at the assimilated flow obtained with
the initial 16 equally spaced sensors (dashed line), or at the true flow (full line). Assimilated
flows obtained with the thus optimized sensors are illustrated in figure 9.
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Ns sensors εf εu figure

2 initial 0.68 0.88 6
2 minEU (qb) (2.16) 0.81 0.19 6
4 minEU (qb) (2.16) 0.36 0.08 7
16 initial 0.34 0.06 9
16 minλL

max/λ
L
min (qb) (2.19) 0.37 0.34 9

16 minλL
max/λ

L
min (qa) (2.19) 0.27 0.04 9

16 minλL
max/λ

L
min (qt) (2.19) 0.23 0.04 9

16 min λNL
max/λ

NL
min (4.8) 0.16 0.03 11

16 minλNL
max/λ

NL
min (4.8) (x-constrained) 0.19 0.03 14(a)

16 min λNL
max/λ

NL
min (4.8) (y-constrained) 0.36 0.07 14(b)

16 minF (4.11) 0.11 0.02 12
24 initial (y-refined) 0.11 0.03 15(b)
24 min λNL

max/λ
NL
min (4.8) 0.10 0.01 15(c)

24 initial (x-refined) 0.30 0.05 15(d)
24 min λNL

max/λ
NL
min (4.8) 0.13 0.03 15(e)

Table 1. Reconstruction results for the different sensor networks in this study. Ns refers to
the number of sensors, the sensor networks correspond either to initial arrangements or have
been optimized through one of the sensor placement criteria. The errors εf and εu in (3.1) for
the assimilated flows obtained with the different networks are provided, along with the figure
numbers for the corresponding fields. For the linear sensor placement criteria (2.16) and (2.19),
the reference flow around which linearizations are performed is also specified among the base
flow (qb), the assimilated flow obtained with the initial 16 sensors (qa), or the true flow (qt).

able and inducing non-negligible changes in the measurement values. The objective of
the sensor placement thus consists in minimizing the ratio λL

max/λ
L
min in (2.19) which

corresponds to the ratio between the maximum and minimum values of the gain GO in
observation space (2.8), or equivalently the condition number of the operator HL

O|q in
(2.9). Based on the results of §3.2, it is chosen to directly rely on networks with more
sensors than in previous numerical experiments in order to get relatively correct estima-
tions of the true forcing. In the following, as an initial sensor arrangement, we consider
the network formed by 16 equally spaced sensors in the domain [1, 3] × [−1, 1] that is
illustrated in figures 9(a)-9(b). Similarly as in §3.2, the base flow is first chosen as the
flow around which linearizations in §2.2 are performed and the ratio λL

max/λ
L
min is evalu-

ated. The corresponding optimization procedure is illustrated in figures 8 and 9(c)-9(d).
As reported in figure 8 with the dotted line, the ratio λL

max/λ
L
min has been decreased

by more than one order of magnitude in 17 iterations. Despite this encouraging result,
it appears that the assimilated flow obtained with the thus optimized sensors in figures
9(c)-9(d) exhibits larger discrepancies with respect to the true flow compared to the use
of the initial equally-spaced sensors. In particular, the intensity of both the forcing and
the mean velocity field is further underestimated with these optimized sensors outside of
the wake region. The errors in (3.1) are εf = 0.34 and εu = 0.06 for the initial sensors,
which corresponds to only a small improvement compared to the four-sensor case in §3.2,
while εf = 0.37 and εu = 0.34 with the optimized sensors. It might be interesting to
note that this large alteration in the estimation of the mean velocity field was induced by
a comparatively small increase in the error on the forcing. These poorer reconstruction
performances point out the limitations of the analysis of §2.4, and the base flow appears
too far from the true one to make the ratio λL

max/λ
L
min a relevant indicator for sensor

placement. In other words, enhancing the detection of small perturbations induced by
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 9. Optimization of the locations of 16 sensors to enhance the reconstruction of the
forcing according to (2.19): streamwise component of the assimilated forcing (left column) and
mean velocity field (right column) obtained with the initial sensor network (first row) and with
the optimized sensors when the ratio λL

max/λ
L
min is evaluated at the base flow (second row), at

the assimilated flow obtained with the initial sensors (third row), or at the true flow (fourth
row).

variations in the forcing through the linear analysis of §2.4 is not necessarily appropriate
if linearizations are performed around a reference flow that is a too crude estimation of
the true one.
The above results thus motivate the consideration of reference flows that are closer

to the true one for the sensor placement criterion (2.19). Starting from the same ini-
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tial equally-spaced network, we now rely on the assimilated flow which was obtained
with these sensors in figures 9(a)-9(b) to evaluate the ratio λL

max/λ
L
min and perform its

minimization, as illustrated in figures 9(e)-9(f) and figure 8 with the dashed line. Com-
parisons between these figures and figures 9(c)-9(d) confirm the impact of nonlinearity
in the present inverse problem. Firstly, while the same initial sensor network is employed
in both cases, it appears from figure 8 that the value of the ratio λL

max/λ
L
min at the begin-

ning of the minimization procedure is significantly affected by the choice of the reference
flow around which it is evaluated. In addition, the optimized sensor network that is re-
trieved in the present case in figures 9(e)-9(f) differs significantly from the previous one
in figures 9(c)-9(d). Contrary to this previous case, the assimilated flow obtained with
the optimized sensors is here closer to the true flow compared to the use of the initial
equally-spaced network, with εf = 0.27 and εu = 0.04 (versus εf = 0.34 and εu = 0.06
for the initial sensors). The remaining discrepancies between assimilated and true flows
may be better visualized in figure 13 which will be discussed in §5.3. It is still possible
from figures 9(e)-9(f) to identify improvements in the assimilated flow compared to the
use of the initial sensors, in particular in the subdomain x ∈ [1, 1.5], where the forcing
exhibits larger positive and negative values which induce an improvement in the mean
velocity in the same region with a better estimation of the recirculation length. These
encouraging performances could suggest the design of an iterative procedure, where the
assimilated flow obtained with the sensor network designed at previous iteration is used
to perform the linearizations in §2.2 and the minimization of the ratio λL

max/λ
L
min to get

a new sensor arrangement, and then a new assimilated flow for a next iteration. It was
thus attempted to consider the assimilated flow in figures 9(e)-9(f) and the corresponding
sensors to determine a new optimal arrangement according to (2.19) (results not shown
here for the sake of brevity), but the sensor locations were hardly changed during the
process, compromising the point of the above mentioned iterative procedure.
The true flow itself is finally considered to perform the minimization of the ratio

λL
max/λ

L
min, as reported in figures 9(g)-9(h) and figure 8 with the full line, still starting

from the equally-spaced network. The thus obtained optimized sensors are different from
those in the two previous cases, further illustrating the impact of nonlinearity. As might
have been expected, the assimilated flow obtained with these sensors appears further
improved compared to the use of the previously retrieved optimized arrangements, in
particular in terms of forcing identification, with εf = 0.23 (and εu = 0.04). While these
results confirm that the minimization of the ratio λL

max/λ
L
min is more and more relevant

for sensor placement as it is performed around a closer approximation of the true flow,
this also further points out the limitations of this approach, as we had to consider the true
flow itself to get a significant improvement in the quality of the assimilated flow compared
to the use of the initial equally-spaced network. These relatively poor performances may
be attributed to the fact that all nonlinearities were neglected in the derivations of the
criterion (2.19). Accordingly, in order to further improve the estimation of the true flow
through optimal sensor placement without having to rely on extra information about the
latter besides the available measurements, one may now want to take into account the
dependency of the ratio λL

max/λ
L
min with respect to the mean flow during its minimization,

which is the subject of the following sections.

4. Nonlinear sensor placement strategies

As discussed in §3, while the linear sensor placement procedure of §2.3 to specifically
enhance the reconstruction of the mean velocity field appeared effective, the methodology
of §2.4 to improve the estimation of the forcing showed some limitations, as it requires
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a good approximation of the true mean flow of interest to actually provide a better
forcing estimate. In §4.1-§4.2, an extension of this methodology is made, which consists
in always evaluating an equivalent of the ratio λL

max/λ
L
min in (2.19) at the assimilated

flow obtained with the current network design during the sensor placement procedure.
The sensor locations are adjusted while taking into account all nonlinearities in the data
assimilation problem, including the dependency of the ratio λL

max/λ
L
min with respect to

the current assimilated flow. This is achieved through the development of a second-order
adjoint-based procedure, which is also used to design a second nonlinear sensor placement
criterion for validation purposes in §4.3.

4.1. Nonlinear sensor placement for forcing identification

The linear sensor placement procedure of §2.4 to enhance the estimation of the forcing
is here extended to take into account all nonlinearities in the present inverse problem.
This is first performed by considering variations δJ in the value of the cost function
for the data assimilation problem J = 1

2ky − h(q)k2O + α
2

�

kfk2F + k∇fk2G
�

which are
induced by perturbations δf in the forcing f . The perturbation δJ can be expressed up
to second-order as

δJ = J(f + δf )− J(f ) ≃

�

∂J

∂f

�

�

�

f
, δf

�

F

+
1

2
hHJ |q(δf ), δfiF , (4.1)

where the first-order term in the right-hand side of (4.1) involves the gradient of J with
respect to the forcing in (2.22), while the second-order contribution involves the Hessian
operator HJ |q. The application of this operator to a forcing vector can be decomposed
according to

HJ |q(δf) = HNL
O |q(δf ) + α(δf −Δδf ), (4.2)

where HNL
O |q refers to the Hessian associated to the observation part of the cost function

J , i.e 1
2ky − h(q)k2O, while the remaining term in (4.2) originates from the penalization

contribution. The application of HNL
O |q to δf is performed according to

HNL
O |q(δf) = δu† = R|†q

�

h†(h(δq))−Pb̃(u†, δu)
�

, δq =

�

δu
δp

�

= R|q(δf ). (4.3)

Equation (4.3) thus amounts to evaluating the variation δu† in the adjoint velocity field
u† = R|†q(h

†(h(q) − y)) which was introduced for the data assimilation problem (see

§2.5). The computation of δu† first requires the application of the resolvent operatorR|q
to δf , and then that of its adjoint forced by the combination of the observation term
h†(h(δq)) and the quadratic contribution b̃(u†, δu). The latter arises from the convection
term in the RANS equations (2.1) and is defined as

b̃(u†, δu) = u† · (∇δu)⊤ − (δu ·∇)u†. (4.4)

It is worth noting that by removing this contribution from (4.3), one recovers the defini-
tion of the operator HL

O|q in (2.9) that was associated to the gain in observation space
in §2.2. The superscript NL is thus employed to emphasize the presence of this supple-
mentary term in HNL

O |q. Equation (4.3) forms the second-order adjoint model that is
associated to the RANS equations (2.1) (Wang et al. 1992; Le Dimet et al. 1997, 2002).
As the second-order contribution (4.4) is similar to terms that are already present in the
first-order adjoint model (2.12), its implementation is straightfoward in the present case.
Of particular interest to quantify the uncertainties in the assimilated flow is to express

the variation δJ for the latter. In this case, the first-order contribution vanishes, and
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(4.1) for perturbations δf around the assimilated forcing fa and mean flow qa becomes

δJ ≃
1

2

�

HJ |qa
(δf ), δf

�

F
. (4.5)

In the following, similarly as in §2.4, we aim to design sensor networks that are able
to distinguish between all possible variations around the assimilated forcing fa. To this

end, we first consider as forcing perturbations the eigenmodes f
(i)
O of HNL

O |qa
. The latter

therefore verify

HNL
O |qa

(f
(i)
O ) = u

† (i)
O = λNL

i f
(i)
O , kf

(i)
O k2F = 1, u

(i)
O = RR|qa

(f
(i)
O ), (4.6)

where λNL
i is the eigenvalue of HNL

O |qa
that is associated to f

(i)
O , which is normalized to

1, with relative mean velocity perturbation u
(i)
O . For such eigenmodes, (4.5) becomes

δJ ≃
1

2
λNL
i +

α

2

�

1 + k∇f
(i)
O k2G

�

. (4.7)

Putting aside the contribution in (4.7) that is weighted by α and comes from the regu-

larization part in J , the interpretation of the eigenforcings f
(i)
O may be as follows. Eigen-

forcings with small eigenvalues do not entail significant perturbations in the observation
part of the cost function according to δJ ≃ 1

2λ
NL
i and are thus hardly differentiable from

the assimilated forcing fa. In other words, the assimilated forcing is highly uncertain in
the space spanned by such eigenmodes. On the contrary, eigenforcings that are associated
to large eigenvalues correspond to states which have been accurately captured from the
observations. The mapping from the forcing space to the observation one through HNL

O |qa

is illustrated in the right part of figure 10, assuming a two-dimensional forcing space for
the sake of illustration. Similarly as in §2.4, in order to design sensor networks that are
able to differentiate between all possible variations in the assimilated forcing, the sensor
placement problem is here formulated as

min
(x

(k)
s )k ∈ {1,2,··· ,Ns}

λNL
max

λNL
min

, (4.8)

where λNL
max and λNL

min correspond to the largest and smallest eigenvalues of HNL
O |qa

. It
may be worth emphasizing that (4.8) forms a meta-optimization problem, as the ratio
λNL
max/λ

NL
min has always to be evaluated at the assimilated flow for the current sensor

network in order to remain consistent with the above analysis. In other words, each
time the sensor locations are updated during the minimization of λNL

max/λ
NL
min, it is first

required to solve the data assimilation problem (2.21) with the measurements at the
new sensor locations. When evaluating sensitivities, this has to be taken into account
through the consideration as an equality constraint of the first-order optimality condition
∂J/∂f |fa

= 0 using (2.22). The full Lagrangian that may be introduced to solve (4.8)
is given in (C 1). The gradient of an eigenvalue λNL

i as involved in (4.6) and (4.8) with
respect to the location of the k-th sensor can be obtained through

∂λNL
i

∂x
(k)
s

= 2
�

∇u
(i)
O (x(k)

s )
�⊤

u
(i)
O (x(k)

s ) +∇
�

(ua − y(k))⊤v(i)
�

(x(k)
s ). (4.9)

Similarly as in §2.4, once (4.9) is applied to λNL
max and λNL

min, one can get the gradient
of their ratio. The first contribution in the sensitivity (4.9), which involves the mean

velocity u
(i)
O in (4.6), is similar to the gradient ∂λL

i /∂x
(k)
s in (2.20). It reflects the direct

dependency of HNL
O |qa

with respect to the observation locations. On the other hand, the
second term in (4.9) takes into account the dependency of HNL

O |qa
with respect to the
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Figure 10. Summary of the iterative procedure to minimize the ratio λNL
max/λ

NL
min in (4.8). For

the sake of illustration only, the mapping from the forcing space to the observation one through
the operator HNL

O |qa
in (4.3) is depicted assuming a two-dimensional forcing space.

assimilated flow, which varies as the sensors are moved. It may be noticed that this con-
tribution involves the gradient of the assimilated mean velocity field ua, but also that of
the measurements y at the sensor locations. The present sensor placement procedure thus
requires the possibility of performing mean velocity gradient measurements. However, it
is believed that this does not necessarily prevent the application of this methodology to
practical settings, as well-known experimental techniques such as the hot wire method
or Laser Doppler Anemometry can give access to velocity gradients.
The most computationally demanding step in the evaluation of the gradient (4.9) is to

obtain the mean velocity field v(i). While proper definitions and derivations are provided
in appendix C, the evaluation of v(i) mainly involves the inversion of a system of the
form

HJ |qa
(g(i)) = w(i), (4.10)

where the unknown pseudo forcing g(i) allows to determine v(i) according to (C 2), and
the right-hand-side w(i) is defined in (C 3)-(C 5). The whole procedure to minimize the
ratio λNL

max/λ
NL
min is summarized in §4.2.

4.2. Resolution method

The meta-optimization problem (4.8) is solved with the nonlinear conjugate gradient
method, as in the previous sensor placement procedures. This section summarizes the
four successive steps, sketched in figure 10, that allow to compute the gradient of the ratio
λNL
max/λ

NL
min with respect to the sensor locations. Details about numerical implementation

are also provided in the following.
The first step is to solve the data assimilation problem (2.21) based on the measure-

ments of the true flow at the current sensor locations. This iterative method, detailed
in §2.5, requires multiple applications of the resolvent R|q and adjoint R|†q operators,
defined in (2.6) and (2.11). They require to solve linear problems involving the linearized
RANS operator (∂N /∂q)|q and its adjoint ((∂N /∂q)|q)

†. To that aim, the mean flow
q at a given iteration of the data assimilation procedure is first used to assemble these
discrete operators and their inversion is then performed with a sparse direct solver. The
output of data assimilation is an assimilated forcing fa, the corresponding mean flow qa

and the adjoint velocity field u†
a, solution to the adjoint problem (2.23) at the end of the

data assimilation procedure.
The second step is the eigenvalue decomposition of the observation Hessian HNL

O |qa
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defined in (4.3) for the assimilated mean flow qa obtained from step 1. It is here performed
with an Arnoldi method (Saad 2011) that only requires the application of the observation
Hessian operator at each iteration of the algorithm. According to (4.3), this application
consists in successively applying the resolvent operator R|qa

and its adjoint R|†qa
(which

are thus always evaluated around the assimilated flow qa) to various vectors. In particular,
the adjoint velocity u†

a obtained in step 1 is involved in the definition of the vector
to which the adjoint resolvent applies. The outputs of the eigendecomposition are the
maximal λNL

max and minimal λNL
min eigenvalues and the associated eigenforcings fmax

O and
fmin
O . In addition, the mean velocity variations umax

O and umin
O are obtained by applying

the resolvent operator to the corresponding eigenforcings according to (4.6).
The third step consists in solving the linear problem (4.10) twice (for both maximum

and minimum eigenmodes), where the right-hand-side w(i) is built based on the eigen-
values and eigenmodes from previous step, as detailed in appendix C and (C 3)-(C5).
This requires the inversion of the total Hessian HJ |qa

, defined in (4.2)-(4.3), that is here
performed with the generalized minimal residual method (GMRES) (Cioaca et al. 2013).
Each iteration of the GMRES algorithm requires the inversions of the tangent linear
RANS equations and of their adjoint, similarly to the eigendecompoisiton in step 2, as
well as the application of the Laplacian operator (regularization term in (4.2)).
The fourth (and last) step is the determination of the gradient of the ratio λNL

max/λ
NL
min

with respect to the sensor locations, based on the solutions from previous step (pseudo
forcing g(i) in (4.10)) and equations (C 2) and (4.9). It then allows to update the sensor
locations according to the nonlinear conjugate gradient method.

4.3. Optimal forcing reconstruction

In the present case, the most ideal and straightforward criterion for optimal sensor place-
ment could be formulated as identifying sensor locations in order to minimize the dis-
crepancies between the assimilated forcing fa and the true one f t, namely

min
(x

(k)
s )k ∈ {1,2,··· ,Ns}

�

F =
1

2
kfa − f tk

2
F

�

. (4.11)

An obvious flaw of the criterion (4.11) is that the latter requires the unknown of the
present data assimilation problem itself f t, which prevents its use in practical appli-
cations. However, (4.11) will be here employed to identify the best achievable forcing
reconstruction for a given number of sensors, which will then be compared to the perfor-
mances of the previously introduced sensor placement procedures. Similarly as in §4.1,
as the criterion (4.11) involves the assimilated forcing fa, it forms a meta-optimization
problem whose resolution first requires solving the data assimilation problem (2.21) (step
1 in §4.2). The gradient of the cost function F in (4.11) with respect to the k-th sensor
location is given by

∂F

∂x
(k)
s

= ∇
�

(ua − y(k))⊤v
�

(x(k)
s ), (4.12)

where the mean velocity v is obtained from v = RR|qa
(g), where the forcing g is

computed through the inversion of

HJ |qa
(g) = f t − fa. (4.13)

The evaluation of the gradient (4.12) is thus performed in a similar way as in step 3
in §4.2, although with a different right-hand-side for the inversion of the total Hessian
HJ |qa

.
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Figure 11. Optimization of the locations of 16 sensors to enhance the reconstruction of the
forcing according to (4.8). (a) Ratio λNL

max/λ
NL
min versus the iteration of the main optimization

procedure, the minimization of the cost function J in (2.21) is reported in (b) with increasing grey
scale for the outer iterations. Second row reports the streamwise component of the assimilated
(c) forcing and (d) mean velocity field retrieved with the thus obtained optimized sensors.

5. Application of nonlinear sensor placement

5.1. Minimization of the ratio λNL
max/λ

NL
min (4.8)

The nonlinear sensor placement strategies of §4 are now applied to the optimization of
the locations of 16 sensors, as already considered in §3.3. Starting from the same initial
equally spaced network as in figures 9(a)-9(b), the criterion (4.8) is first employed here,
which is illustrated in figure 11. This sensor placement procedure consists in minimiz-
ing the ratio λNL

max/λ
NL
min in order to make all variations around the assimilated forcing

perceptible in the observation term of the cost function J for the data assimilation prob-
lem (2.21). As reported in figure 11(a), this meta-optimization problem is here solved
in 6 main iterations, each of these iterations first requiring minimizing J with the mea-
surements that are provided at the current sensor locations (see figure 11(b)) to obtain
the corresponding assimilated flow (step 1 in §4.2). Comparisons between the assimi-
lated flow obtained with the present optimized sensors and those in §3.3, which were
retrieved through the linear criterion (2.19) and the minimization of the ratio λL

max/λ
L
min

when evaluated around various reference flows, will be facilitated through figure 13 (see
also table 1). However, it may be already inferred from the comparison between figures
11(c)-11(d) and figure 9 that the present optimized sensors enable a significantly better
estimation of the forcing compared to all previously considered networks, in particular
around y = ±1. The corresponding errors in (3.1) are εf = 0.16 and εu = 0.03, confirm-
ing the improved performances compared to previous cases, both in terms of forcing and
mean velocity field reconstruction.
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Figure 12. Optimization of the locations of 16 sensors to enhance the reconstruction of the
forcing according to (4.11). (a) Discrepancies between the assimilated and true forcings F versus
the iteration of the main optimization procedure, the minimization of the cost function J in
(2.21) is reported in (b) with increasing grey scale for the outer iterations. Second row reports
the streamwise component of the assimilated (c) forcing and (d) mean velocity field retrieved
with the thus obtained optimized sensors.

5.2. Best achievable forcing reconstruction

In order to get the best achievable estimation of the forcing with 16 sensors, the criterion
(4.11) which is based on the minimization of the discrepancies between the assimilated
and true forcings is now considered, as illustrated in figure 12. The associated meta-
optimization problem is here solved in only 3 main iterations, and the thus obtained
optimized sensors allow, based on the knowledge of the true forcing itself, to outperform
all previous sensor networks, with εf = 0.11 and εu = 0.02 for the corresponding assim-
ilated flow. Compared to the previous case in figure 11, the sensor placement procedure
seems to have further improved the flow estimation around the y-axis.

5.3. Comparisons with linear approaches

Figure 13 reports the errors between the true and assimilated forcings that are obtained
with all previously discussed 16-sensor networks. It might be worth recalling that all
optimized sensor networks in figures 13(b)-13(f) were obtained starting from the equally
spaced network of figure 13(a). Figure 13 clearly illustrates the superiority of the nonlinear
sensor placement procedures (figures 13(e)-13(f)) over the linear sensor placement (2.19)
for forcing identification (figures 13(b)-13(d)). Interestingly, the optimized sensor network
obtained through the nonlinear criterion (4.8) based on the minimization of λNL

max/λ
NL
min in

figure 13(e) is similar to that in figure 13(d) which was retrieved from the linear criterion
(2.19) when λL

max/λ
L
min is evaluated at the true flow. It may be worth emphasizing that

the nonlinear criterion (4.8) only required measurements of the true mean velocity and
of its gradient at the sensor locations and still outperformed the linear criterion (2.19) in
this most favorable case for the latter. In addition, the assimilated flow obtained through
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Figure 13. Discrepancy fields between the true forcing and assimilated forcings obtained with
previously designed 16-sensor networks: (a) initial network, (b)-(d) optimized networks obtained
through the minimization of the ratio λL

max/λ
L
min in (2.19) evaluated at (b) the base flow, (c) the

assimilated flow obtained with the initial sensors, or (d) the true flow, (e) optimized network ob-
tained through the minimization of the ratio λNL

max/λ
NL
min in (4.8), (f) optimized network obtained

through the minimization of F in (4.11). The gradient ∂(λNL
max/λ

NL
min)/∂xs at the beginning and

the end of the corresponding sensor placement procedure is reported in (a) and (e) respectively
(black arrows).

the application of (4.8) appears relatively close to the best achievable reconstruction in
figure 13(f) which was identified through (4.11).
However, these better reconstruction results obtained through the nonlinear criterion

(4.8) should be contrasted with the significant increase in computational cost compared
to its linear counterpart (2.19). The CPU times to perform one iteration of the various
procedures that have been applied to the above-discussed 16-sensor case are reported in
table 2. The linear criterion (2.19), as all the linear approaches in §2, only relies on the
eigendecomposition of the operator HL

O|q in (2.9) to evaluate the ratio λL
max/λ

L
min and

its gradient with respect to the sensor locations, which here corresponds to a computa-
tional cost that is equivalent to ten times the integration of the RANS equations (2.1).
On the other hand, its nonlinear counterpart (4.8) requires, in addition, solving the data
assimilation problem (2.21) to get the ratio λNL

max/λ
NL
min (step 1) and inverting the total

Hessian HJ |qa
according to (4.10) to compute its gradient with respect to the sensor lo-
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Sensor placement Step 1 Step 2 Step 3
Total

procedure Data assimilation Eigendecomposition Hessian inversion

minλL
max/λ

L
min (2.19) (linear) – 10 – 10

minλNL
max/λ

NL
min (4.8) (nonlinear) 96 10 14 120

minF (4.11) (nonlinear) 96 – 14 110

Table 2. Normalized CPU time TCPU/Tt, where Tt refers to the CPU time to compute the
true flow through the RANS equations, for the different steps to perform in one iteration of the
sensor placement procedures that are applied in figure 13. These steps correspond to solving the
data assimilation problem (2.21) (step 1), computing the eigendecomposition of HL

O |q in (2.9)
or HNL

O |qa
in (4.3) (step 2), or inverting the total Hessian HJ |qa

according to (4.10) or (4.13)
(step 3).

cations (step 3). While this last step has similar requirements in terms of computational
cost as the eigendecomposition of HNL

O |qa
in (4.3) (step 2), the data assimilation step

is roughly ten times more demanding, and dominates the computational effort for this
sensor placement procedure. The same applies to the best forcing identification through
the minimization of F in (4.11). Overall, the present nonlinear sensor placement proce-
dures may thus be ten times more expensive than linear approaches in the present case.
However, in the case where this supplementary computational cost is affordable, the
benefits and better performances of nonlinear sensor placement may appear sufficiently
substantial to support their use.

As the CPU times in table 2 are reported for a 16-sensor network only, one may
wonder if these values would vary with respect to the number of sensors. Due to the
use of adjoint-based techniques, steps 1 and 3 in table 2 are not significantly affected by
the number of sensors Ns. However, the computational cost for the eigendecomposition
that is performed in step 2 is directly determined by the size of the sensor network, and
varies linearly with 2Ns, i.e. the number of non-zero eigenvalues. For networks with more
than 100 sensors, the computational cost for this eigendecomposition could thus become
similar to that for the data assimilation step. This could be circumvented by considering
alternative sensor placement formulations, as discussed in §2.4.

5.4. Constraining the sensor placement

Aside from numerical considerations, the potentialities of sensor placement would be ul-
timately determined by the degree of freedom that is offered by the experimental setting.
Firstly, specifically concerning the present nonlinear approaches, they would require the
possibility of generating new measurements as the sensor locations are adjusted. Sec-
ondly, it is unlikely that the sensor placement would be fully free in a realistic setting.
For instance, as an attempt to take into account physical limitations in experimental
measurement setups, we here consider the use of combs that are made of probes measur-
ing the velocity. The distance between combs may be varied, and it is also assumed that
the distance between individual probes inside a comb may be freely adjusted. In the first
considered case (figure 14(a)), the combs are placed vertically, so that the adjustment
of the sensor locations for a given comb is constrained to be uniform in the horizontal
(streamwise) direction. In the second case (figure 14(b)), the combs are now placed hor-
izontally and the sensor placement location is uniform in the vertical direction. As may
be simply deduced from a Lagrangian formalism, these constraints have been taken into
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(a) (b)

Figure 14. Discrepancy fields between the true forcing and assimilated forcings obtained with
optimized networks obtained through the minimization of the ratio λNL

max/λ
NL
min in (4.8) when the

sensor placement is constrained in the (a) streamwise or (b) crossflow direction. The location of
the most sensitive sensors of figure 13(e), which illustrates the unconstrained case, is reported

in figure (a) (filled black circle) along with the associated gradient ∂(λNL
max/λ

NL
min)/∂x

(k)
s (black

arrows). Dashed lines symbolize the virtual combs (see text).

account during the optimization of the sensor locations by averaging individual gradients
in the constrained directions.
It appears from figure 14(a) that constraining the displacements of the sensors in

the streamwise direction has a limited impact on the optimized network. The latter
seems actually very close to the one in the unconstrained case (figure 13(e)), and one
may wonder which differences between the two networks are responsible for the slight
deterioration in the reconstruction results (εf = 0.16 in the unconstrained case while εf =
0.19 with the present sensors). From the inspection of the gradient ∂(λNL

max/λ
NL
min)/∂xs for

the unconstrained optimized configuration in figure 13(e), it appears that this sensitivity
is roughly one order of magnitude higher for the sensors at xs ≃ 2 and ys ≃ ±1 than for
the rest of the network. If these sensors, which are also reported with filled symbols in
figure 14(a), are used in place of the two closest sensors in the constrained network, we
recover the value εf = 0.17, which becomes very close to the unconstrained case (εf =
0.16). On the other hand, as illustrated in figure 14(b), it appears detrimental to constrain
the sensor placement in the crossflow direction. The minimization of the ratio λNL

max/λ
NL
min

gets quickly stuck and the initial network is not significantly altered. In addition, the
quality of the assimilated flow obtained with the thus optimized network is even slightly
degraded compared to the use of the initial sensors (εf = 0.36 versus εf = 0.34). All these
results are consistent with the gradient ∂(λNL

max/λ
NL
min)/∂xs when evaluated for the initial

network in figure 13(a), which overall suggests a non-uniform adjustment of the sensor
locations in the crossflow direction. In the present case, a minimum margin of freedom in
the crossflow locations of the sensors thus seems required to benefit from optimal sensor
placement.

5.5. Robustness with respect to the choice of the initial sensor network

The criterion (4.8) is finally applied to the optimization of the locations of 24 sensors
starting from two different initial arrangements, as illustrated in figure 15. Both initial
arrangements were built from the equally-spaced 16-sensor network of figure 13(a), and
adding sensors either in the crossflow direction (figure 15(b)) or in the streamwise direc-
tion (figure 15(d)). As illustrated in figure 15(a), the initial value of the ratio λNL

max/λ
NL
min is

significantly different between these two cases, the value for the streamwise-refined initial
arrangement being almost twice that for the crossflow-refined one. This suggests that the
latter network forms a better first-guess for the criterion (4.8), and that the corresponding
assimilated flow is closer to the true one compared to the use of the streamwise-refined
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Figure 15. Optimization of the locations of 24 sensors to enhance the reconstruction of the
forcing according to (4.8). (a) Ratio λNL

max/λ
NL
min versus the iteration of the main optimization

procedure when starting from the crossflow-refined network of figure (b) (dashed line) or from
the streamwise-refined network of figure (d) (full line). (b)-(e) Discrepancy fields between the
true forcing and assimilated forcings obtained with the first-guess networks ((b) and (d)) or the
corresponding optimized sensors ((c) and (e))

initial arrangement. This is confirmed by the comparison between figures 15(b) and 15(d).
The crossflow-refined initial network indeed provides the best estimation of the forcing,
with εf = 0.11, while the streamwise-refined one barely enables improvements compared
to the use of the equally spaced 16-sensor network, with εf = 0.30. Similarly, as reported
in table 1, the crossflow-flow initial network also outperforms the second one in terms
of mean velocity field reconstruction. These results further confirm the relevance of the
ratio λNL

max/λ
NL
min to assess the performances of the sensor network and the quality of the

corresponding assimilated flow. The fact that detailed information in the crossflow di-
rection is more useful to distinguish between different flow solutions seems in accordance
with the findings of §5.4.
Starting from these two different initial arrangements, it appears from figure 15(a) that

the meta-optimization procedure to minimize the ratio λNL
max/λ

NL
min reaches a similar final

value in both cases, although more main iterations were necessary when employing the
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streamwise-refined initial network. It appears that, in both cases, the sensor placement
procedure enables a better estimation of the true flow. Even when starting from the al-
ready efficient crossflow-refined initial network, as illustrated through figures 15(b)-15(c),
the slight adjustment of the sensor locations allows to further decrease the discrepancies
with respect to the true forcing, in particular upstream of the cylinder, which also trans-
lates into an improvement in the mean velocity field (see table 1). The benefits of the
sensor placement procedure are more apparent when considering the streamwise-refined
initial network, as confirmed by figures 15(d)-15(e). In this case, the initial network has
been much further altered, and the final optimized sensors allow a significant decrease
in the discrepancies with respect to the true flow, both in terms of forcing and mean
velocity field, with εf = 0.13 and εu = 0.03, starting from εf = 0.30 and εu = 0.05.
While these results further demonstrate the efficiency of the sensor placement criterion

(4.8) in improving the estimation of the true flow, it also appears from figures 15(c) and
15(e) that, when starting from two different initial arrangements, the sensor placement
procedure has provided two different optimal networks. This indicates the existence of
multiple local minima for the criterion (4.8), which might have been expected given all
nonlinearities in this meta-optimization problem. Accordingly, the initial sensor network
should be designed with care, possibly guided by practical constraints. However, it may
be reassuring to note that, in the present case, while the two optimized sensor networks
differ, the discrepancy fields in figures 15(c) and 15(e) exhibit similar shapes and intensity
levels. In other words, even if these two optimized networks are not identical, they enable
a similar degree of accuracy in the estimation of the true flow. Furthermore, it was checked
that they significantly outperform optimized sensor networks obtained with the linear
criterion (2.19) (results not shown here for the sake of brevity), similarly as for the
previous 16-sensor case.

6. Conclusion

Mean flow reconstruction based on punctual velocity measurements and variational
data assimilation has been investigated. More specifically, sensor placement strategies
have been elaborated in order to ensure the quality of the assimilated flow, and have
been assessed on the flow past a cylinder at Re = 150. The sensor placement problem
has been examined from two perspectives. On one hand, it aimed to enhance the inversion
capabilities of data assimilation, namely here the correct identification of a forcing term in
the momentum equations which accounts for the divergence of the Reynolds stress tensor.
On the other hand, sensor placement directly targeted improvements in the extrapolation
of the full mean velocity field from the few available punctual measurements.
As suggested by a steady resolvent analysis and confirmed by numerical experiments,

achieving a similar degree of accuracy in the reconstructed forcing and mean velocity
field may require different numbers of sensors. In the present case, much fewer sensors
are needed to ensure a good estimation of the full mean velocity field than for the forc-
ing. Accordingly, depending on the number of available measurements, but also on the
application of interest, e.g. whether data assimilation is employed to complete experi-
mental data or to infer a model correction, focusing more on the enhancement of the
reconstruction of either of these two quantities may appear appropriate.
Concerning the reconstruction of the full mean velocity field, a linear sensor place-

ment procedure has been proposed which first consists in identifying the forcings that
induce the most important variations in the latter. Sensors are then placed so that these
dominant forcings can be accurately reconstructed from the measurements. Numerical
experiments confirmed the relevance of this approach, which succeeded in identifying
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optimal arrangements for networks that are formed by a very limited number of sensors
without the need of any knowledge or measurement data about the true mean flow. With
an optimized configuration of four sensors, the errors with respect to the true mean ve-
locity field were decreased by more than one order of magnitude with data assimilation
compared to the base flow which forms the initial estimate.

The improvement of the inversion capabilities of data assimilation has been formulated
in a general way as making all forcing variations having a non-negligible impact on the
measurement values. It has been first investigated in a purely linear framework, which
showed some limitations as this analysis had to be performed around a close estima-
tion of the true flow to be relevant. An extension of this criterion has therefore been
developed, which is based on the Hessian operator that is associated to the cost function
for the data assimilation problem. Due to the nonlinearity of the RANS equations, this
Hessian depends on the considered mean flow. In this framework, sensor placement has
been formulated as the minimization of the condition number of this Hessian evaluated
at the assimilated flow, which may amount to minimizing the uncertainties in the out-
come of data assimilation. The resolution of this meta-optimization problem was achieved
through the second-order adjoint model that is associated to the RANS equations, al-
lowing to evaluate the sensitivity of the Hessian’s spectrum with respect to the sensor
locations while taking into account the dependency of the Hessian with respect to the
assimilated flow. This methodology proved to significantly outperform its linear counter-
part, and provided reconstruction results that were comparable to the best achievable
forcing identification for a given number of sensors, which was also obtained through a
second-order adjoint-based approach. More generally, the proposed framework could help
improve the well-posedness of nonlinear inverse problems as often encountered in fluid
mechanics.

The potentialities in the application of the present sensor placement methodologies
should ultimately be determined by the constraints in experimental settings. Such con-
straints could be straightforwardly integrated during the optimization of the sensor loca-
tions, as suggested by the present results. These constraints could also guide the choice
of the sensor placement methodology. If an experimental setting may be adjusted in an
interactive way, this could support the deployment of the present nonlinear approaches.
On the other hand, if the position of a measuring apparatus is fixed once and for all prior
to an experimental campaign, the linear procedure to directly enhance the reconstruction
of the full mean velocity field could be more appropriate.

While the present methodologies were developed having in mind experimental tech-
niques that provide localized measurements such as laser-Doppler or hot-wire anemome-
try, it is believed that they might still be of some use for other approaches such as particle
image velocimetry (PIV). Specifically, some of the sensor placement procedures could be
adapted to guide the determination of the extent and the location of the PIV field of
view, which are two major points of concern in the design phase of such experiments,
as they have a direct impact on the flow scales that can be resolved. Such developments
should also take into account the spatial resolution of PIV measurements, which are
known to correspond to a filtering of the actual flow.

Instead of relying on the laminar RANS equations, future work could include the
consideration of an actual turbulence model in order to tackle higher Re flows, as per-
formed by Franceschini et al. (2020). Incidentally, this study suggested that punctual
measurements could still be relevant for the reconstruction of turbulent mean flows. The
consideration of non-intrusive ensemble-based techniques as complete or partial substi-
tutes to the present adjoint-based data assimilation and sensor placement procedures
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could significantly foster their application in conjunction with more elaborate turbulence
models and numerical techniques.
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Appendix A. Gradient for the data assimilation problem

As detailed in Foures et al. (2014), one may consider the following Lagrangian function
to obtain the gradient of the cost function J in (2.21) with respect to the forcing f

L =
1

2
ky − h(q)k2O +

α

2

�

kfk2F + k∇fk2G
�

−
�

q†,N (q)−Pf
�

M
, (A 1)

where the adjoint variable q† allows to take into account the equality constraint that is
formed by the RANS equations (2.1). First-order variations in the Lagrangian L that are
induced by changes δq in the mean flow are given by
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(q†), δq
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M
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(A 2)

The various linearized and adjoint operators in (A 2) are defined in §2.2. Cancelling (A 2)
for all perturbation δq leads to the adjoint problem (2.23). It should be noted that the
integrations by parts that are performed to obtain the final expression of these variations
also generate integrals over the boundary of the flow domain Ω which are here omitted
for the sake of simplicity. These contributions still provide boundary conditions for the
adjoint variable q†. Similarly, relying on integration by parts, first-order variations in L
due to perturbations δf in the forcing may be written as
�

∂L

∂f
, δf

�

F

= α
�

hf , δfiF + h∇f ,∇δf iG
�

+
�

q†,Pδf
�

M
=

�

α(f −Δf ) + u†, δf
�

F
,

(A 3)
with u† = Rq†. Using the fact that the partial derivative of L with respect to the forcing
identifies with the (total) gradient of the cost function J still with respect to f , (A 3)
directly provides the required sensitivity in (2.22).

Appendix B. Impact of regularization

The impact of the penalization of the H1 norm of the forcing in the data assimilation
problem (2.21) is here investigated. While in all previous results penalization was consid-
ered with α = 10−2 in (2.21), figure 16 reports assimilated fields that have been obtained
with the same equally-spaced 16-sensor network as in figures 9(a)-9(b) but without penal-
ization (α = 0). The corresponding reconstruction errors on the forcing and on the mean
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(a) (b)

Figure 16. Streamwise component of the assimilated forcing (a) and mean velocity field (b)
obtained with the same 16-sensor network as in figures 9(a)-9(b) but without penalization.

εf ε∇f εu ε∇u

with penalization 0.34 0.65 0.06 0.27
no penalization 0.42 4.67 0.06 0.31

Table 3. Errors εf on εu in (3.1) and similarly defined errors ε∇f and ε∇u on the gradients
of the reconstructed forcing and mean velocity field that are obtained with the equally-spaced
16-sensor network when penalization is considered (figures 9(a)-9(b)) or not (figure 16).

velocity field, along with those on their gradients, are reported in table 3 and compared
with the use of penalization. It appears that the quality of the assimilated mean velocity
field and even of its gradient is relatively unaffected by the use of localized measurements
and by the consideration or not of regularization. On the other hand, without regulariza-
tion, the assimilated forcing in figure 16(a) exhibits strongly positive or negative values
at the sensor locations. This is particularly visible for the sensors closer to the centerline
and for x > 2. As reported in table 3, such nonphysical and localized adjustments of the
forcing lead to large errors in the estimation of its gradient. The absence of regularization
also results in spurious values at the top and bottom of the cylinder which are absent in
the true forcing (figure 2(b)) or in the one that is reconstructed with penalization (figure
9(a)). Incidentally, these shapes may also been identified in the modes in figures 3(a) and
3(c) which are the most efficient in adjusting the whole mean velocity field.

Appendix C. Derivations for nonlinear sensor placement sensitivity

The Lagrangian L that may be introduced to evaluate the gradient of an eigenvalue
λNL
i as involved in (4.6) and (4.8) is given by

L =λNL
i +
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based on (2.1), (2.22), (2.23), (4.3) and (4.6). From the first-order optimality conditions

in terms of variations in λNL
i , qa, q

†
a, f

(i)
O , q

(i)
O and f

† (i)
O , one can get the total derivative

of λNL
i with respect to the sensor locations in (4.9). The latter expression involves the

mean velocity field v(i), which is obtained according to

s(i) = R|qa

�

g(i) − 2(u
(i)
O ·∇)u

(i)
O

�

, v(i) = Rs(i), (C 2)

where the adjoint forcing g(i) has to be determined trough the inversion of the total
Hessian HJ |qa

in (4.2) according to

HJ |qa
(g(i)) = w(i) = d(i) + e(i). (C 3)

The right-hand-side of equation (C 3) is given by
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It may be noticed that all above expressions originate from the convection term in the
RANS equations (2.1).
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Heitz, D., Mémin, E. & Schnörr, C. 2010 Variational fluid flow measurements from image
sequences: synopsis and perspectives. Experiments in Fluids 48, 369–393.

Holland, J. R., Baeder, J. D. & Duraisamy, K. 2019 Field Inversion and Machine Learning
With Embedded Neural Networks: Physics-Consistent Neural Network Training. AIAA
Aviation 2019 Forum p. 3200.

Hossen, M. J., Navon, I. M. & Daescu, D. N. 2012 Effect of random perturbations on
adaptive observation techniques. International Journal for Numerical Methods in Fluids
69, 110–123.

Juillet, F., Schmid, P. J. & Huerre, P. 2013 Control of amplifier flows using subspace
identification techniques. Journal of Fluid Mechanics 725, 522–565.

Kang, W. & Xu, L. 2012 Optimal placement of mobile sensors for data assimilations. Tellus
A 64, 17133.

Kato, H., Yoshizawa, A., Ueno, G. & Obayashi, S. 2015 A data assimilation methodology
for reconstructing turbulent flows around aircraft. Journal of Computational Physics 283,
559–581.

Langland, R. H. & Baker, N. L. 2004 Estimation of observation impact using the NRL
atmospheric variational data assimilation adjoint system. Tellus A 56, 189–201.

Le Dimet, F.-X., Navon, I. M. & Daescu, D. N. 2002 Second-Order Information in Data
Assimilation. Monthly Weather Review 130, 629–648.

Le Dimet, F.-X., Ngodock, H.-E., Luong, B. & Verron, J. 1997 Sensitivity Analysis in
Variational Data Assimilation. Journal of the Meteorological Society of Japan 75, 245–255.

Le Dimet, F.-X. & Talagrand, O. 1986 Variational algorithms for analysis and assimilation
of meteorological observations: theoretical aspects. Tellus A 38A, 97–110.

Lewis, J. M., Lakshmivarahan, S. & Dhall, S. K. 2006 Dynamic data assimilation: a least



38 V. Mons and O. Marquet

squares approach, Encyclopedia of Mathematics and its Applications, vol. 104. Cambridge
University Press.

Li, Y., Zhang, J., Dong, G. & Abdullah, N. S. 2020 Small-scale reconstruction in three-
dimensional Kolmogorov flows using four-dimensional variational data assimilation. Journal
of Fluid Mechanics 885, A9.

Manohar, K., Brunton, B. W., Kutz, J. N. & Brunton, S. L. 2018 Data-Driven Sparse
Sensor Placement for Reconstruction: Demonstrating the Benefits of Exploiting Known
Patterns. IEEE Control Systems Magazine 38, 63–86.

McKeon, B. J. 2017 The engine behind (wall) turbulence: perspectives on scale interactions.
Journal of Fluid Mechanics 817, P1.

Meldi, M. & Poux, A. 2017 A reduced order model based on Kalman filtering for sequential
data assimilation of turbulent flows. Journal of Computational Physics 347, 207–234.

Mokhasi, P. & Rempfer, D. 2004 Optimized sensor placement for urban flow measurement.
Physics of Fluids 16, 1758–1764.

Mons, V., Chassaing, J.-C. & Sagaut, P. 2017 Optimal sensor placement for variational
data assimilation of unsteady flows past a rotationally oscillating cylinder. Journal of Fluid
Mechanics 823, 230–277.

Mons, V., Wang, Q. & Zaki, T. 2019 Kriging-enhanced ensemble variational data assimila-
tion for scalar-source identification in turbulent environments. Journal of Computational
Physics 398, 108856.

Nocedal, J. 1980 Updating Quasi-Newton Matrices With Limited Storage. Mathematics of
Computation 35, 773–782.

Oehler, S. F. & Illingworth, S. J. 2018 Sensor and actuator placement trade-offs for a
linear model of spatially developing flows. Journal of Fluid Mechanics 854, 34–55.

Palmer, T. N., Gelaro, R., Barkmeijer, J. & Buizza, R. 1998 Singular Vectors, Metrics,
and Adaptive Observations. Journal of Atmospheric Sciences 55, 633–653.

Parish, E. J. & Duraisamy, K. 2016 A paradigm for data-driven predictive modeling using
field inversion and machine learning. Journal of Computational Physics 305, 758–774.

Peter, J. E. V. & Dwight, R. P. 2010 Numerical sensitivity analysis for aerodynamic opti-
mization: A survey of approaches. Computers & Fluids 39, 373–391.

Rabier, F., Klinker, E., Courtier, P. & Hollingsworth, A. 1996 Sensitivity of forecast
errors to initial conditions. Quarterly Journal of the Royal Meteorological Society 122,
121–150.

Ranieri, J., Chebira, A. & Vetterli, M. 2014 Near-Optimal Sensor Placement for Linear
Inverse Problems. IEEE Transactions on Signal Processing 62, 1135–1146.

Saad, Y. 2011 Numerical methods for large eigenvalue problems: revised edition. SIAM.
Singh, A. P. & Duraisamy, K. 2016 Using field inversion to quantify functional errors in

turbulence closures. Physics of Fluids 28, 045110.
Suzuki, T. 2012 Reduced-order Kalman-filtered hybrid simulation combining particle tracking

velocimetry and direct numerical simulation. Journal of Fluid Mechanics 709, 249–288.
Symon, S., Dovetta, N., McKeon, B. J., Sipp, D. & Schmid, P. J. 2017 Data assimilation

of mean velocity from 2D PIV measurements of flow over an idealized airfoil. Experiments
in Fluids 58, 61.

Symon, S., Sipp, D. & McKeon, B. J. 2019 A tale of two airfoils: resolvent-based modelling
of an oscillator versus an amplifier from an experimental mean. Journal of Fluid Mechanics
881, 51–83.

Wang, Z., Navon, I. M., Le Dimet, F.-X. & Zou, X. 1992 The Second Order Adjoint
Analysis: Theory and Applications. Meteorology and Atmospheric Physics 50, 3–20.

Wikle, C. K. & Berliner, L. M. 2007 A Bayesian tutorial for data assimilation. Physica D
230, 1–16.

Willcox, K. 2006 Unsteady flow sensing and estimation via the gappy proper orthogonal
decomposition. Computers & Fluids 35, 208–226.

Xiao, H. & Cinnella, P. 2019 Quantification of model uncertainty in RANS simulations: A
review. Progress in Aerospace Sciences 51, 1–31.

Xiao, H., Wu, J.-L., Wang, J.-X., Sun, R. & Roy, C. J. 2016 Quantifying and reducing
model-form uncertainties in Reynolds-averaged Navier-Stokes simulations: A data-driven,
physics-informed Bayesian approach. Journal of Computational Physics 324, 115–136.



Sensor placement strategies for mean flow reconstruction via data assimilation 39

Yildirim, B., Chryssostomidis, C. & Karniadakis, G. E. 2009 Efficient sensor placement
for ocean measurements using low-dimensional concepts. Ocean Modelling 27, 160–173.

Yoshimura, R., Yakeno, A., Misaka, T. & Obayashi, S. 2020 Application of observability
Gramian to targeted observation in WRF data assimilation. Tellus A 72, 1–11.

View publication statsView publication stats


