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Résumé :
Un écoulement de base combinant cisaillement, rotation et stratification verticale en densité, avec les paramètres re-
spectifs S (taux de cisaillement), f (paramètre de Coriolis) et N (fréquence de Brumt-Waisala), satisfait l’ équation d’
Helmholtz à condition d’ ajouter une composante horizontale au gradient moyen de densité. Cette situation reproduit les
conditions d’ apparition de l’ instabilité barocline, mais en permettant une décomposition du champ fluctuant en modes
de Fourier advectés par le cisaillement moyen, en accord avec l’ homogénéité statistique restreinte aux fluctuations. Il
est alors possible de calculer la réponse linéaire, et donc la dynamique de “distorsion rapide” en fonction du nombre de
Richardson N2/S2 et du rapport barocline ε = Sf/N , puis de comparer ces résultats à une simulation numérique directe
de type pseudo-spectral en boite cisaillée, afin d’ ajouter la dynamique non-linéaire et l’ étude de structures instantanées.
Une partie de la réponse linéaire paramétrique est fournie par un modèle sans pression, qui donne analytiquement les
évolutions des tensions de Reynolds dans le cas instable Ri < 1, mais ne peut décrire la stabilité linéaire au voisinage
de Ri = 1. Les résultats de simulation directe prolongent ces analyses; ils peuvent être aussi considérés comme une
contribution à la turbulence développée en présence de stratification et de rotation, soumise à un forçage physiquement
pertinent dans l’atmosphère et l’ océan: l’ instabilité barocline. Enfin, la stratégie de notre équipe est mise en perspective
à cette occasion avec les communautés utilisant la même formulation spectrale.

Abstract :
The coupled effects of mean shear, density-stratification and system rotation are investigated in the context of strong
turbulence, i.e. accounting for the baroclinic instability. Although there exists a large literature in the rotating shear case
and the stratified shear case, with linear approaches, Direct or Large Eddy Simulations, very few studies consider the
combined three ingredients in the context of distorted homogeneous turbulence.
One first has to define an admissible flow condition for including all three effects, in order to be able to treat properly
the homogeneity condition in the numerical simulations. Then, we solve numerically the complete nonlinear equations
for the rotating stratified shear homogeneous turbulent flow, using a pseudo-spectral method. The most relevant param-
eters for these Direct Numerical Simulations (DNS) are chosen from a preliminary comprehensive parametric study that
includes two simplified approaches: (a) Rapid Distorsion Theory (RDT) with the related stability analysis technique; (b)
a simplified “pressure-less” stability analysis.

Keywords : instabilité barocline, théorie linéaire spectrale, simulation numérique directe

1 Introduction
This study is in the line of a general approach to turbulent flows subjected to mean (velocity and/or density)
gradients and/or body forces (e.g. Coriolis, buoyancy, Lorentz force in MHD). The linear theory, often (im-
properly) referred to as RDT (Rapid Distortion Theory) is used to explore the general tendencies, with a first
insight to a comprehensive parametric study. Pseudo-spectral DNS’s in deformed coordinates (e.g. illustrated
by Rogallo [1]) are a natural continuation, taking into account explicitely the nonlinearities, but using the same
characteristic lines (trajectories of the mean flow in physical space, related solutions of an eikonal equation
in Fourier space) as in the linear ‘RDT’ problem. Of course, the results from the —unexpensive— linear ap-
proach, which permits a very large sweeping of the parameters’ range, pave the way for the —expensive—
DNS study.
In these combined linear/nonlinear aproaches, two points are original in our team:
First, The mean flow which is the source of linear distortion of the fluctuating one is systematically chosen
as a particular solution of basic equations (Navier-Stokes and coupled fields). Mathematically, this way is
consistent with statistical homogeneity restricted to the fluctuating field , if statistics are considered, and with
the related stability analysis using ‘admissibility conditions’ (e.g. Craik [2]). Physically, this allows to take
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into account relevant mechanisms like the baroclinic torque in rotating stratified turbulence with vertical shear
[3],[4], and the gyroscopic torque in precessing rotating flows with additional Coriolis force [5].
Second, when linear theory is used, the linear response is characterized by the most general deterministic infor-
mation: a Green’s function which links any realization of the fluctiating field at time t to its initial counterpart
at time t0. This formulation allows us to predict the second-order statistics, as in conventional ‘RDT’, but also
gives access to higher order statistics. In addition, it is possible to incorporate the Green’s function as a build-
ing block in fully nonlinear models and theories, in which nonlinear terms, more or less related to stochastic
stirring forces, are treated as a source in the right-hand-side of linearized equations [6].
It is perhaps useful to make a rapid survey of the linear approach. Not less than three communities are using
it, with often different motivations and objectives. The fact that they use specific jargons or parlances, and that
they publish in different journals, masks their common base. Of course, we think that our general formalism
based on a determistic Green’s function can help in reconciling the different avatars of the linear theory.
The RDT limit is obtained by dropping nonlinear (and often viscous) terms in the governing equations for ve-
locity fluctuations, in the presence of a mean flow with space-uniform gradients. Emphasis is put on prediction
of low-order statistics, with isotropic initial data, in order to characterize the first stages of the development of
anisotropy.
Studies in the area of hydrodynamic stability have the same starting point as ‘RDT’, considering an extensional
admissible base flow to which disturbances are superposed in the form of advected Fourier modes. The ‘base
flow’ is the ‘mean flow’ of RDT, in agreement with statistical homogeneity of the fluctuating flow, whereas
no reference to statistics appears in the stability analysis: e.g., no need to say that the base flow is the mean
one, that the disturbance flow is the fluctuating one, that use of Fourier modes for the second is consistent with
statistical homogeneity.
A third community is concerned with applications to astrophysics. The linear response of turbulence to various
effects of shear, density-stratification and rotation is used for a better modelisation of the turbulence in accretion
disks, mainly (see, e.g. [7].) Analogies and partial balance between (self)-gravitational, centrifugal, and
buoyancy forces are studied, not to mention the Lorentz force in the important context of the magneto-rotational
instability. Linear operators are not systematically considered as dominant over the non-linear ones, as in
conventional RDT, and the linear response (Green’s function) is involved with stochastic nonlinear modelling
[8]. A well-known application is the calculus of an alpha effect, which can be seen as a direct feed-back from
small-scale turbulence to the mean flow. Identification of various coefficients, from a possible alpha term to
an effective viscosity tensor, may result from the simple analysis of the linear response of the Reynolds stress
tensor to the external ‘mean distortion’, in the presence of a stochastic force (e.g. [9]) with a very simple
spectrum (isotropic homogeneous, white-noise in time.)
The application chosen here illustrates the baroclinic instability and its use as a physical forcing of rotating
stratified turbulence [10]. The mean, or ‘base’ flow, with velocity Ui and buoyancy force B (within the Boussi-
nesq appoximation, details in [6],[4]) consists of three ingredients: a vertical shear, uniform in space, with
rate S = ∂U1/∂x3, a vertical, stabilizing, mean density gradient ∂B/∂x3 ∝ N2, characterized by the Brumt-
Waisala frequency N of gravity waves, and the vertical system vorticity 2Ω (or f the Coriolis parameter for
applications to atmosphere and ocean.) Indices 1, 2, 3 denote the streamwise, vertical and spanwise directions
of the mean shear flow, respectively. It can be shown that the mean shear flow, with or without stable stratifica-
tion, is not a particular solution in a frame rotating around the vertical axis: a spurious vorticity component is
generated with rate S.f in the streamwise direction, looking at the Helmholtz equation for the mean flow in the
rotating frame. Instead of balancing this spurious vorticity component by an artificial body force, as done by,
e.g., Yu and Girimaji [11] in the different context of oscillating shear, we choose to equilibrate it by a new hor-
izontal component of the mean buoyancy (density or temperature) gradient or ∂B/∂x1 = f.S/(N2)∂B/∂x2.
The mean flow pattern characterized by (S, f,N) is shown in Fig. 1. The mean flow with additional horizontal
mean density gradient is an exact solution of Helmholtz equations, the exact balance allowed by the additional
horizontal component of the density gradient corresponds to the geostrophic adjustment. Accordingly, the rate
ε = fS/N2 characterizes the tilting of mean isopycnal surfaces from purely horizontal planes, in agreement
with triggering a baroclinic instability. Important nondimensinal parameters are

Ri =
N2

S2
, Ro =

S

f
, Bu =

N2

f2
, ε =

Sf

N2
, (1)

or the Richardson number, the Rossby number, The Burgers number and the baroclinic cofficient. Two of
them can be chosen independently for the parametric analysis of the response of turbulence, in addition to the
Reynolds number.

2 Linear approach, with and without effects of fluctuating pressure
Navier-Stokes equations with additional vertical buoyancy term and coupled buoyancy equation (within the
Boussinesq approximation) are linearized around the previously mentioned mean flow in a rotating frame,
which is characterized by S, N, f . Four equations are found for the fluctuating flow, with components u1, u2, u3
(fluctuating velocity), p (fluctuating pressure) and b (fluctuating buoyancy). A fifth equation, which allows the
system of equations to be closed, is the divergencefree constraint of the velocity field, which is recovered in
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Figure 1: Sketch of the mean flow, including: (a) system vorticity; (b) vertical stable stratification; (c) mean
shear. Tilting isopycnal surfaces can trigger the baroclinic instability, if (a)-(b)-(c) are simultaneously present.

the limit of low Mach number even if the density (or the buoyancy here, which replace either the density, for a
liquid, or the potential temperature, for a gaz) can fluctuate around hydrostatic equilibrium.
Because of the nonlocal relationship of pressure to velocity, the general linear response would involve a func-
tional Green’s function in physical space. A more tractable solution is obtained for the Fourier components
(û1(k, t), û2(k, t), û3(k, t), p̂(k, t), b̂(k, t)), taking advantage of the algebraic form of the divergencefree con-
straint k·û = 0 and related removal of the pressure term. A very general solution can be written as

u(i)(k(t), t) = gij(k, t, t0)u(j)(k(t0), t0) +
∫ t

t0

gij(k, t, t′)sj(k(t′), t′)dt′, (2)

in terms of only three components readily derived from the basic five-component set (u1, u2, u3, p, b: two com-
ponents for the velocity, u(1) and u(2), chosen in the plane normal to k, and one for the buoyancy, u(3), scaled
as a velocity component. In the previous equation, the only additional difficulty with respect to conventional
Fourier analysis or Fourier synthesis, is the fact that the phase of the basic Fourier mode exp(ık(t)·x) has to be
passively advected by the mean shear flow, rendering the wave vector k(t) time-dependent. Time-dependency
is expressed by the Cauchy matrix which gives the mapping from Lagrangian to Eulerian coordinates following
the mean flow trajectories, or

ki = F−1
ji (t, t0) kj(t0)︸ ︷︷ ︸

Kj

, with xi = Fij(t, t0)Xj . (3)

of course, here the Cauchy matrix reduces to the simple expression Fij = δij + S(t − t0)δi1δi2, with cor-
rresponding eq. (3) extensively used by Townsend in RDT. More generally, the first equation in (3) gives
the solution of the eikonal equation for k. Incidentally, one can illustrate different terminologies in the dif-
ferent communities: The time-dependent Fourier mode is often called ‘Kelvin mode’ in the community of
stability analysis, its purely shear-advected form is called a ‘shear wave’ in the ‘astrophysical’ community,
whereas mean-flow- related Lagrangian coordinates X,K are sometime called ‘Rogallo-space’ in the engi-
neering community dealing with RDT and DNS ! As a second remark about eq. (2), it is possible to take into
account a source term si, which represents the explicit nonlinear term, a stochastic forcing, or a combination
of both. Only the first term in eq. (2) gives the general linear solution of the initial-value problem.
The general form of the Green’s function in eq. (2) is not discussed here for the sake of brevity. It generates
the linear response and allows to discuss the stability, with exponential or algebraic growth of disturbances,
or amplification or inhibition of turbulence, in terms of the external parameters (Ri, ε) and in terms of the
orientation of the angle-dependent mode, for the initial value problem. Analysis is somewhat complicated by
the time-dependency induced by k, through eq. (3), in the matrix of the linear system. To what extent a much
simpler analysis can predict the main trends, growth or decay ? The pressure-less analysis (PLA hereinafter)
is used for this purpose. As a first remark, the success of this analysis for predicting the stability of the
shear flow rotating around the spanwise direction is perhaps misleading: as mentioned by Jim Riley (private
communication), the fact that the same criterion for stability can be found by a rigorous stability analysis and
by a pressure-less approach, such as the displaced-particle analysis, is almost fortuitous. An explanation was
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Figure 2: Deviatoric part of the Reynolds stress tensor, i.e. the anisotropy tensor components bij =
uiuj/unun − δij/3, showing a strong growth of the vertical diagonal component b33.

provided by [12] (and references therein,) who showed how the instability is governed by solenoidal modes
with dominant variability in the spanwise direction, which are naturally pressureless, but are different from
the set of two-component primitive variables, u1 and u3 here, used in the two-component displaced particle
analysis. More generally, the fact that the PLA cannot ensure the solenoidal (divergencefree) property for
the fluctuating velocity field is an impediment for calculating two-point statistics, but PLA can keep some
relevance for calculating single-point statistics. Looking at the evolution of the Reynolds stress tensor (RST),
for instance, a correct prediction by PLA means that the pressure-strain rate tensor has small impact in the RST
budget, with respect to the ‘production’ tensor.
In addition, as for the case of shear rotating around the spanwise direction, the energy growth rate given by
PLA is relevant in the case of dominant ‘production’ terms. Here, the PLA is consistent with instability for
Ri < 1 since the following eigenvalues become real with a positive one that gives the growth rate:

σ = ±
(
−(Ri + Ro−2) +

√
(Ri−Ro−2)2 + 4Ro−2

)1/2
(4)

Single-point statistics may then be computed analytically. For instance, the anisotropy tensor components bij ,
i.e. the deviatoric part of the Reynolds stress tensor, are plotted in fig. 2. Asymptotic values can be calculated
analytically in terms of Ri and Ro [4]. In this case, RDT amounts to reintroducing ‘rapid’ pressure-strain rate
terms in the evolution of the RST, in agreement with the underlying linear approach in terms of solenoidal
modes (first term in the r-h-s of eq. (1)). The agreement between RDT and PLA results is excellent in fig. 3.
On the other hand, discrepancies appear in the stabilizing case, for Ri = 1 and larger values, not to mention
the fact that PLA is irrelevant for predicting two-point statistics, or related spectra, even if it works for linear
prediction of the RST.

3 Typical DNS results
The fluctuating fields are developped on a basis of Fourier modes in the three spatial directions, and the equa-
tions for the spectral coefficients, derived from the equations in physical space, are written in a Lagrangian
framework attached to the deformable k-space, due to shear. Periodic remeshing is required to restore the
skewed computational box to a cube, an operation that does not seem to induce significant energy loss. Full
de-aliasing is performed when treating the nonlinear terms by direct and inverse Fourier-transforms. Finally,
a second-order accurate time-stepping is applied. The curves of figures 3 show the evolution of the kinetic
energy from the isotropic initial conditions, this time computed by both viscous RDT and DNS, for two para-
metric cases at ε = 0.2: Ri = 2 and Ri = 0.99. As expected, the first case (figure 3-left) exhibits a steady
decay of the kinetic energy, and not much difference between the linear model and the full nonlinear simula-
tions at this limited Reλ = 49 value.
In the case at Ri = 0.99 (figure 3-right), the instability is present and captured by both RDT and DNS, although
the growth rate is larger in the former model. This may be explained by the presence of the nonlinear energy
transfer terms that start cascading a part of the energy produced by the instability at different scales than the
primary instability mode. In addition, the rate of the exponential growth fitted on numerically computed RDT
(fig. 3-right) is in good agreement with eq. (4).

4 Discussion of general issues in rotating stratified flows
The reader is referred to [13] for a recent study of the baroclinic instability, at a Burgers number close to 1.
This suggests to refine our comparison between our ‘statistically homogeneous’ approach to more realistic
flow cases subject to this instability.
On the other hand, our approach can be seen as a more physical forcing (more realistic than artificial large-
scale stochastic forcings commonly used in DNS) of rotating stratified turbulence. For instance, a typical
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Figure 3: Time evolution of the kinetic energy computed by RDT computations (a.k.a. DRN in key) and 1283

DNS at Reλ = 49: (left) ε = 0.2, Ri = 2; (right) ε = 0.2, Ri = 0.99.

Figure 4: (left) isosurfaces of the buoyancy fluctuation in the zonal spanwise-vertical plane, from DNS at
ε = 0.2, Ri = 0.99, Reλ(t = 0) = 66 [10]. (right) High Reynolds number DNS results of Riley & de
Bryunkops, 2003, for stably stratified turbulence without mean shear or mean horizontal density gradient. The
top panel shows part of a horizontal slice through the vertical velocity; the bottom panel shows the density on
a vertical slice along the white dashed line.
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structuration of the buoyancy field is shown in figure 4-left, comparing the structure of our sheared rotating
stratified velocity field to that of the purely stratified case obtained by Riley and deBruynkop [14] (figure 4-
right): DNS forced by baroclinic instability exhibit horizontal layering with Kelvin-Helmholtz-type structures,
that ressembles that in a purely vertically stratified flow at sufficiently high Reynolds number.
More DNS results compared to RDT ones and contrasted with existing works will be shown in our oral presen-
tation. A recent point is that potential vorticity remains a Lagrangian invariant even in the presence of mean
shear, with exciting consequences on both linear (RDT) and nonlinear results.
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