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Friction mediated by transient elastic linkages : extension to loads of bounded variation

 naturally extend to this new setting, while only partial results can be obtained following the comparison principle introduced in [12].

Introduction

Cell motility plays a central role in several important phenomenons in biology : cancer cell migration, neutrophils' extravasation, chemotaxis, etc. The present paper fits in the modelling framework presented in [START_REF] Oelz | Modeling of the actin-cytoskeleton in symmetric lamellipodial fragments[END_REF][START_REF] Sfakianakis | Modelling cell-cell collision and adhesion with the filament based lamellipodium model[END_REF][START_REF] Manhart | An extended Filament Based Lamellipodium Model produces various moving cell shapes in the presence of chemotactic signals[END_REF]. The adhesive dynamics of actin filaments are at the heart of the project : they contribute to lamellipodium's stabilization and allow the cell to attach to the substrate or the surrounding tissue. This paper contributes to the better mathematical understanding of a minimal model introduced first in [START_REF] Milišić | On the asymptotic regime of a model for friction mediated by transient elastic linkages[END_REF], its aim is to extend results already obtained in [START_REF] Milišić | On the asymptotic regime of a model for friction mediated by transient elastic linkages[END_REF][START_REF] Milišić | On a structured model for load-dependent reaction kinetics of transient elastic linkages mediating nonlinear friction[END_REF] to the case of stiffer external loads.

More precisely, we are interested in the motion of a single binding site, linked to a one-dimensional substrate and subjected to an external force f . As in [START_REF] Milišić | On the asymptotic regime of a model for friction mediated by transient elastic linkages[END_REF][START_REF] Milišić | On a structured model for load-dependent reaction kinetics of transient elastic linkages mediating nonlinear friction[END_REF], the position of this binding site, denoted z ε , solves a Volterra integral equation

     1 ε ∞ 0 (z ε (t) -z ε (t -εa)) ρ ε (a, t) da = f (t), t ≥ 0, z ε (t) = z p (t), t < 0. (1) 
The kernel ρ ε above solves a non-local age-structured problem :

         ε∂ t ρ ε + ∂ a ρ ε + ζ ε ρ ε = 0, t > 0, a > 0, ρ ε (a = 0, t) = β ε (t) 1 - ∞ 0 ρ ε (t, ã) dã , t > 0, ρ ε (a, t = 0) = ρ I,ε (a), a ≥ 0, (2) 
where

β ε ∈ R + (resp. ζ ε ∈ R + )
is the kinetic on-rate (resp. off-rate) function. These possibly depend on the dimensionless parameter ε > 0. The past positions are stored in the Lipschitz function z p (t) ∈ R, prescribed for every t < 0.

Various mathematical issues related to this system have already been investigated [START_REF] Milišić | On the asymptotic regime of a model for friction mediated by transient elastic linkages[END_REF][START_REF] Milišić | On a structured model for load-dependent reaction kinetics of transient elastic linkages mediating nonlinear friction[END_REF][START_REF] Milišić | Tear-off versus global existence for a structured model of adhesion mediated by transient elastic linkages[END_REF]. In [START_REF] Milišić | On the asymptotic regime of a model for friction mediated by transient elastic linkages[END_REF], the authors have introduced a specific Lyapunov functionnal in order to study the convergence of (2) when ε goes to 0. Indeed, due to the saturation effect in the non-local boundary condition in [START_REF] Anevski | Riemann-stieltjes integrals[END_REF], neither the Generalized Relative Entropy [START_REF] Perthame | Transport equations in biology[END_REF][START_REF] Gabriel | Équations structurées en dynamique des populations[END_REF] nor more generic comparison principles [START_REF] Gripenberg | Encyclopedia of Mathematics and its Applications[END_REF] do apply. Then, concerning [START_REF] Ambrosio | Functions of bounded variation and free discontinuity problems[END_REF], under the assumptions that the force f is Lipschitz on R, and because the kernel ρ ε in (1) is non-negative, an extension of Gronwall's Lemma to integral equations, shows convergence of z ε towards z 0 the solution of (3), the limit equation associated to [START_REF] Ambrosio | Functions of bounded variation and free discontinuity problems[END_REF]. These two steps show that z ε -z 0 C 0 ([0,T ]) + ρ ε -ρ 0 C 0 (]0,T ];L 1 (R+)) → 0.

where z 0 it given by µ 1,0 (t)∂ t z 0 (t) = f (t), t > 0

z 0 (0) = z p (0) t = 0 (3) 
where µ 1,0 (t) := ∞ 0 aρ 0 (a, t)da, and ρ 0 solves :

   ∂ a ρ 0 + ζ 0 (a, t)ρ 0 = 0, t > 0, a > 0, ρ 0 (a = 0, t) = β 0 (t) 1 - ∞ 0 ρ 0 (t, ã) dã , t > 0. (4) 
In [START_REF] Milišić | On a structured model for load-dependent reaction kinetics of transient elastic linkages mediating nonlinear friction[END_REF], the authors weakened some assumptions concerning the off-rate ζ ε , by assuming that ζ ε is not necessarily non-decreasing passed a certain age a 0 . Then, they introduce a new variable u ε related to z ε which transforms (1) into a transport problem with a non-local source term :

             ε∂ t u ε + ∂ a u ε = 1 µ 0,ε (t) ε∂ t f + ∞ 0 ζ ε (ã, t)u ε (ã, t)ρ ε (ã, t) dã , t > 0, a > 0, u ε (a = 0, t) = 0, t > 0, u ε (a, t = 0) = u I,ε (a) := z ε (0) -z p (-εa) ε , a ≥ 0, (5) 
where µ 0,ε (t) := ∞ 0 ρ ε (ã, t) dã and according to [START_REF] Ambrosio | Functions of bounded variation and free discontinuity problems[END_REF], it holds that z ε (0) = 1 µ 0,ε (0) ∞ 0 z p (-εa)ρ I,ε (a) da + εf (0) .

If f ∈ Lip(R), systems (1) and ( 5) are equivalent. Nevertheless, (5) admits a stability result that allows to show a weak-* convergence of u ε /(1 + a) towards u 0 /(1 + a) in L ∞ (R + × (0, T )), where u 0 is the solution of the limit problem

     ∂ a u 0 = 1 µ 0,0 ∞ 0 ζ 0 u 0 ρ 0 dã, t > 0, a > 0,
u 0 (a = 0, t) = 0, t > 0, [START_REF] Heida | Topologies and measures on the space of functions of bounded variation taking values in a Banach or metric space[END_REF] which in turn provides the strong convergence of z ε in C([0, T ]) towards z 0 solving (3).

In our analysis, however, when f ∈ BV((0, T )), the derivative of f is neither a function nor it is bounded, since it is a Radon measure. Therefore, we cannot apply directly results from [START_REF] Milišić | On the asymptotic regime of a model for friction mediated by transient elastic linkages[END_REF]. Instead, defining f δ to be a specific regularization of f [20, Section 5.3] provides a regular function u δ ε solving (5). To do this, we use the framework already established in [START_REF] Milišić | On a structured model for load-dependent reaction kinetics of transient elastic linkages mediating nonlinear friction[END_REF]. Then we show that u δ ε satisfies certain a priori estimates that are uniform with respect to both δ and ε. These provide necessary compactness in order to pass to the limit with the regularization parameter δ and give existence and uniqueness of a weak solution u ε associated to [START_REF] Gabriel | Équations structurées en dynamique des populations[END_REF] with a load f ∈ BV((0, T )). The a priori estimates holding also in this weaker framework, we can consider convergence with respect to ε and prove consistency with the formal limit system. We show that, in the BV framework, the equivalence between ( 5) and (1) still holds. For the particular case when the kernel ρ ε is independent on time and on ε and under suitable hypotheses, we show error estimates to be compared with [START_REF] Milišić | On the asymptotic regime of a model for friction mediated by transient elastic linkages[END_REF], the comparison principle being applied to the integral of the error's modulus.

In order to clarify the interplay between parameters ε and δ, we make the following remarks : in the previous literature [START_REF] Milišić | On the asymptotic regime of a model for friction mediated by transient elastic linkages[END_REF][START_REF] Milišić | On a structured model for load-dependent reaction kinetics of transient elastic linkages mediating nonlinear friction[END_REF], not only existence (and uniqueness) but also convergence results were strongly related to the Lipschitz regularity of the load f . This motivates the present work since it is not clear that the convergence occurs with respect to ε in this weaker framework. This explains also why we first regularize the problem with the parameter δ, make δ tend to zero and then consider the convergence with respect to ε.

The outline of the paper is as follows : in Section 2, collecting various results from the literature on BV-functions in one space dimension, we introduce the framework used in the rest of the paper. We make the link with the Riemann-Stieltjes integral, through a careful analysis of different definitions of BV-functions with respect to the boundary of the time domain (0, T ). In Section 3, we recall some results concerning (2) already established in [START_REF] Milišić | On the asymptotic regime of a model for friction mediated by transient elastic linkages[END_REF]. Then in Section 4, we establish uniform (with respect to ε) a priori estimates for the regularized system in u ε . After that, in Section 5, we show the weak convergence of u ε towards u 0 , the solution of the limit problem. This implies strong convergence of z ε in L ∞ (0, T ) as stated in Theorem 8. We establish, in Section ??, a specific comparison principle for Volterra equations when the density is constant in time and does not depend on ε.

Notations and main assumptions

We denote L p t L q a := L p ((0, T ); L q (R + )) for any real (p, q) ∈ [1, ∞] 2 and

X T := g ∈ L ∞ loc ((0, T ) × R + ) ; sup t∈(0,T ) g(t, a)w(a) L ∞ a < ∞ (8) 
where w(a) := (1 + a) -1 . The space Lip(I) is the set of Lipschitz functions on the interval I.

Assumptions 1. For any T > 0 possibly infinite, we assume that : i) The past condition z p is L zp -Lipschitz on R -i.e. :

|z p (a 2 ) -z p (a 1 )| ≤ L zp |a 2 -a 1 |, ∀(a 2 , a 1 ) ∈ R -× R -.
ii) The function

β ε (t) is in L ∞ (0, T ) and ζ ε (a, t) is in L ∞ (R + × (0, T )). iii) For limit functions β 0 ∈ L ∞ t and ζ 0 ∈ L ∞ t L ∞ a it holds that ζ ε -ζ 0 L ∞ a,t → 0 and β ε -β 0 L ∞ t -→ 0
as ε → 0. iv) There are upper and lower bounds such that

0 < ζ min ≤ ζ ε (a, t) ≤ ζ max and β min ≤ β ε (a, t) ≤ β max , for all ε > 0, a ≥ 0 and t > 0. Assumptions 2. The initial condition ρ I,ε ∈ L ∞ a (R + ) satisfies i) positivity ρ I,ε (a) ≥ 0 , a.e. in R + ,
moreover, on has also that the total initial population satisfies 0

< R+ ρ I,ε (a)da < 1 ;
ii) boundedness of higher moments,

0 < R+ a p ρ I,ε (a)da < c p , for p = 1, 2,
where c p are positive constants depending only on p;

Next, we introduce definitions of functions with bounded variation in one dimension, as well as some related properties. Definition 1. Let f : (0, T ) → R be a Lebesgue measurable function. The pointwise variation (or Jordan variation) of f on (0, T ) is pvar(f, (0, T )) := sup P var(f, P )

where var(f,

P ) := n k=1 |f (t k ) -f (t k-1 )| and P = {0 < t 0 < • • • < t n < T } is a partition of (0, T ).
Moreover, we denote BPV((0, T )) := {f ∈ L((0, T )), s.t pvar(f, (0, T )) < +∞}, the space of measurable functions with pointwise bounded variation, see for example, [1, section 3.2], [9, chapter 2] and [7, section 2.2, 2.3]. The pointwise variation of f is clearly dependent on the value of f at each point of the domain, and it differs from one a.e.-representative of f to another. For this reason, for every measurable function f , one defines the essential pointwise variation : epvar(f, (0, T )) := inf {pvar(g, (0, T )) : f (t) = g(t) a.e. t ∈ (0, T )} [START_REF] Manhart | An extended Filament Based Lamellipodium Model produces various moving cell shapes in the presence of chemotactic signals[END_REF] In [START_REF] Leoni | A first course in Sobolev spaces[END_REF]Chapter 6], another functional space is defined :

Definition 2.
Given an open interval (0, T ) ⊂ R, the space of functions with bounded variation BV((0, T )) is defined as the space of all functions f ∈ L 1 ((0, T )) for which there exists a signed Radon measure µ f such that

(0,T ) f φ dt = - (0,T ) φ dµ f , for every φ ∈ C 1 c ((0, T )) (11) 
for all φ ∈ C 1 c ((0, T )). The measure µ f is called the weak or distributional derivative of f . Remark 1.

i) We define the total variation of f ∈ L 1 ((0, T )) by

Df ((0, T )) = sup - (0,T ) f φ dt, φ ∈ C 1 c ((0, T )), |φ| ∞ ≤ 1 . (12) 
Moreover, f ∈ BV((0, T )) if Df ((0, T )) < +∞. ii) Definitions ( 9) and ( 12) are not equivalent. For instance, the Dirichlet indicatrix function χ Q∩[0,1] is not of pointwise bounded variation in (0, 1) in the sense of Definition 1 but is well defined in the sense of Definition 2. The equivalence between the two definitions holds up to a.e. equality. Moreover every integrable function f : (0, T ) → R such that pvar(f, (0, T )) < +∞, is in BV((0, T )) and Df ((0, T )) ≤ pvar(f, (0, T )).

On the other hand, if f belongs to BV((0, T )), then f admits a right continuous representative f with bounded pointwise variation such that pvar( f , (0, T )) = Df ((0, T )).

Fore more details, see, e.g., [9, theorem 7.3] and [START_REF] Heida | Topologies and measures on the space of functions of bounded variation taking values in a Banach or metric space[END_REF]. iii) Under the norm

f BV := f L 1 + epvar(f, (0, T )) < ∞ BV((0, T )) is a Banach space.
Next, we provide existence of the left and right limits of functions with bounded variation [7, Proposition 2.2].

Lemma 1. Let f ∈ BV((0, T )), Then both the limits

f (0 + ) = lim s→0,s>0 f (s) and f (T -) = lim s→T,s<T f (s) exist.
Additionally, if f is integrable, the left and right limits are as follows:

Lemma 2. Suppose that f ∈ BV((0, T )), then

f (0 + ) = lim ρ→0 + 1 ρ ρ 0 f (t) dt, f (T -) = lim ρ→0 + 1 ρ T T -ρ f (t) dt.
Next, we present a result used in the proof of Proposition 3, which relates the pointwise variation to the Lebesgue measure:

λ(f, h, Ω) := {t∈Ω:t+h∈Ω} |f (t + h) -f (t)| dt, Lemma 3. If f is in BPV((0, T )), then λ(f, h, (0, T ))/|h| is bounded. Moreover, λ(f, h, (0, T )) ≤ |h| pvar(f, (0, T )).
For the proof we can see [START_REF] Leoni | A first course in Sobolev spaces[END_REF]Theorem 2.20].

Finally, in [START_REF] Heida | Topologies and measures on the space of functions of bounded variation taking values in a Banach or metric space[END_REF], the authors add a new notion of variation containing the boundary value in order to expand the total variation of f to [0, T ]. This variation is defined as varw(f ) := sup

φ∈C 1 c ([0,T ]) |φ|∞≤1 φ(T )f (T -) -φ(0)f (0 + ) - (0,T ) f φ dt (13) 
Moreover, by summarizing the results of [7, Proposition 2.3, 2.6 and 2.7] all notions of variations coincide: epvar(f, (0, T )) = Df ((0, T )) = varw(f )

The previous result allows to extend Lemma 3 to BV((0, T )) functions :

Lemma 4. If f is in BV((0, T )), then λ(f, h, (0, T ))/|h| is bounded. Moreover, λ(f, h, (0, T )) ≤ |h| Df ((0, T ))
Proof. By taking the infimum over almost every equal measurable functions, one has

inf f = f a.e. λ( f , h, (0, T )) ≤ |h| inf f = f a.e.
pvar( f , (0, T )) = |h| epvar(f, (0, T )) = |h| Df ((0, T ))

Since the left hand side is a Lebesgue integral one has :

inf f = f a.e. λ( f , h, (0, T )) = λ(f, h, (0, T ))
which ends the proof.

Data regularization

Theorem 1. For every f ∈ BV((0, T )), there exists a sequence of smooth functions

(f δ ) δ in C ∞ ((0, T )) such that lim δ→0 (0,T ) |f δ -f |dt = 0 and lim δ→0 (0,T ) |f δ | dt = Df ((0, T )).
Although the proof is classical (see for instance [START_REF] Ziemer | Weakly differentiable functions. Sobolev spaces and functions of bounded variation[END_REF]Theorem 5.3.3 p.225]), we need the explicit form of f δ in the rest of the paper. For this reason, we present in Section A.1 the proof of Theorem 1.

Lemma 5. Let f ∈ BV((0, T )) ∩ L ∞ ((0, T )). Then the regularization function f δ defined as (60) is bounded in (0, T ).
Next, we compare the left and right limits of f and its' approximation f δ on the boundary: Lemma 6. Let f ∈ BV((0, T )) and f δ defined as (60), then

f δ (0 + ) = f (0 + ) and f δ (T -) = f (T -).
First we need the following result : Proposition 1. Let f ∈ BV((0, T )). For every δ > 0, and t 0 ∈ {0, T },

lim τ →0 + 1 τ Iτ ∩(0,T ) |f δ -f | dt = 0, (14) 
where

I τ = {t ∈ R : |t -t 0 | < τ }.
Proof. For a fixed t 0 ∈ {0, T } and t ∈ I τ ∈ (0, T ), we have

f δ (t) -f (t) = ∞ i=0 [χ δi * (φ i f ) -φ i f ]
by the definition of supp φ i (see ( 56)), we have 1/(j 0 +i+1) < τ < 1/(j 0 +i-1) then i > 1/τ -j 0 -1.

Since, R is an archimedean space then

∀τ > 0, ∃! i 0 := 1 τ -j 0 s.t i 0 ≤ 1 τ < i 0 + 1 ( 15 
)
which implies by using (58) that

Iτ ∩(0,T ) |f δ -f | dt = ∞ i=i0 Iτ ∩(0,T ) [χ δi * (φ i f ) -φ i f ] dt ≤ ∞ i=i0 δ2 -i ≤ δ2 -i0 ∞ i=0 2 -i = 2 j0+1 δ 2 -1 τ then 1 τ Iτ ∩(0,T ) |f δ -f | dt ≤ C δ 2 -1 τ τ using again (15), we have 2 -1 τ τ = exp(-1 τ ln 2) τ ≤ 2 exp(-1 τ ln 2) τ Finally, we conclude that lim τ →0 + 1 τ Iτ ∩(0,T ) |f δ -f | dt = lim τ →0 + 2 exp(-1 τ ln 2) τ = 0.
Proof of Lemma 6. According to the Lemma 2,

lim τ →0 + 1 τ τ 0 |f δ (t) -f δ (0 + )| dt = 0 and lim τ →0 + 1 τ τ 0 |f (t) -f (0 + )| dt = 0.
Moreover, we have, thanks to Proposition 1

lim τ →0 + 1 τ τ 0 |f δ -f | dt = 0.
Thus, for all ε > 0, there exist δ > 0 such that 0 < τ < δ implies

f δ (0 + ) -f (0 + ) = 1 τ τ 0 f δ (0 + ) -f (0 + ) dt ≤ 1 τ τ 0 f δ (0 + ) -f δ (t) dt + 1 τ τ 0 |f δ (t) -f (t)| dt + 1 τ τ 0 f (t) -f (0 + ) dt ≤ 3ε
which proves the required result. Similarly, we can prove that

f δ (T -) = f (T -).
In the previous setting, the weak derivative of f ∈ BV((0, T )) defines a linear continuous form on C((0, T )). In the next section, we show how to extend this measure on functions in C([0, T ]).

Definition and basic properties of Stieltjes integral

The Riemann-Stieltjes integral (RS-integral) is a generalization of the Riemann integral. Let P a tagged partition of [0, T ] , defined as

P := {(ξ i , [t i-1 , t i ]) : 1 ≤ i ≤ n} (16) 
where 0 = t 1 ≤ • • • ≤ t n = T , and on each interval [t i-1 , t i ] we choose a single value ξ i , for i ∈ {1, . . . , n}.

Definition 3. For any function f , g : [0, T ] → R and a partition P, we define the Riemann-Stieltjes sum by

S(f, dg, P, [0, T ]) := i f (ξ i )[g(t i ) -g(t i-1 )].
Moreover, the RS-integral of f with respect to g

(RS) [0,T ] f (t)dg(t)
exists and has a value I ∈ R, if, for every ε > 0, there exists δ > 0, such that the mesh size max i (t i -t i-1 ) < δ and for every

ξ i in [t i , t i+1 ], |S(f, dg, P, [0, T ]) -I| < ε. Lemma 7. Suppose that f is continuous on [0, T ] and g is of bounded pointwise variation on [0, T ], then [0,T ] f dg ≤ f ∞ pvar(g, [0, T ])
In the following Theorem we see that a Riemann-Stieltjes integral can be used to describe any bounded linear functional on C([0, T ]) (see [START_REF] Benedetto | Integration and modern analysis[END_REF]Theorem 7.1.1] and [8, Theorem 4.4-1] for more details)

Theorem 2. Let Γ f ∈ (C([0, T ])) , then there exist g ∈ BP V ([0, T ]) such that Γ f (ϕ) = [0,T ] ϕdg, ∀ϕ ∈ C([0, T ]).

Theorem 3. (Integration by parts). If one of the integrals

[0,T ]
f dg and

[0,T ]
gdf exists, then the other exists as well, and we have

[0,T ] f dg + [0,T ] gdf = [f g(t)] t=T t=0 . Moreover, If f ∈ C 1 ([0, T ]) and g ∈ BP V ([0, T ]), then df = f dt in the second term of the left hand side.
For the proof cf [14, Theorem 5.52] and [2, Lemma 2].

Lemma 8. Let f ∈ BV((0, T )). Then there exists g ∈ BPV([0, T ]) s.t

[f ϕ] t=T - t=0 + - (0,T ) f ϕ dx = [0,T ] ϕdg, ∀ϕ ∈ C 1 ([0, T ]) s.t. f (t) = g(t), a.e. t ∈ (0, T )
Proof. We regularize f ∈ BV((0, T )) by f δ ∈ C ∞ ((0, T )) as in Theorem 1, then we have :

s k t k f δ ϕdt + s k t k f δ ϕ dt = [f δ ϕ] t=s k t=t k =: L k , ∀ϕ ∈ C 1 ([0, T ])
where s k → T -and t k → 0 + . We define :

I k := s k t k f δ ϕdt, J k := s k t k f δ ϕ dt.
Thanks to Lebesgue's Theorem, one has that

lim k→∞ I k = I := T 0 f δ ϕdt, lim k→∞ J k = J := T 0 f δ ϕ dt
and thanks to Lemma 6 and the continuity of ϕ,

L k = L := f (T -)ϕ(T ) -f (0 + )ϕ(0), ∀k ∈ N
So that we have :

T 0 f δ ϕdt + T 0 f δ ϕ dt = [f ϕ] t=T - t=0 +
If we set

I f δ (ϕ) := T 0 f δ ϕdt,
it is a linear continuous form on C([0, T ]), since one has :

|I f δ (ϕ)| ≤ f δ L 1 ((0,T )) ϕ L ∞ ≤ { Df ((0, T )) + δ} ϕ L ∞ ((0,T )) (17) 
where we used estimates from the proof of [START_REF] Ziemer | Weakly differentiable functions. Sobolev spaces and functions of bounded variation[END_REF]Theorem 5.3.3]. Since it is a continuous linear form on C([0, T ]), by Theorem 2 there exists h δ ∈ BPV([0, T ]) s.t.

I f δ (ϕ) = [0,T ] ϕdh δ , ∀ϕ ∈ C([0, T ])
in the Stieljes' sense. But by using the integration by parts from Theorem 3, we have that

[f ϕ] t=T - t=0 + - (0,T ) f δ ϕ dt = [0,T ] ϕdh δ = [h δ ϕ] t=T t=0 - [0,T ] h δ ϕ dt, ∀ϕ ∈ C 1 ([0, T ]) (18) 
which implies that (0,T )

f δ ϕ dt = (0,T ) h δ ϕ dt, ∀ϕ ∈ D((0, T ))
and then we can apply [9, Lemma 7.4] and conclude that there exists c ∈ R, s.t.

f δ = h δ + c.
Then setting g δ := h δ + c provides a function s.t.

[

f δ ϕ] T 0 - T 0 f δ ϕ dt = T 0 ϕdg δ , ∀ϕ ∈ C 1 ([0, T ]) and s.t. f δ (t) = g δ (t), a.e. t ∈ (0, T ).
Thanks to [START_REF] Oelz | Modeling of the actin-cytoskeleton in symmetric lamellipodial fragments[END_REF], I f δ is a linear continuous form on C([0, T ]) uniformly bounded with respect to δ. It can be identified via the Riesz representation theorem as a Radon measure µ δ on [0, T ]. Therefore, there exist µ ∈ M 1 ([0, T ]) and a sub-sequence µ δ k such that

µ δ k * µ in σ(M 1 ([0, T ]), C([0, T ]))
with respect to the weak-* topology. By Theorem 2, there exists h ∈ BPV([0, T ]) s.t.

µ(ϕ) = T 0 ϕdh
where the left side is a Radon measure and the right hand side is the Riemann-Stieltjes integral.

Because f δ tends to f in the L 1 (0, T ) topology, one has then that

[f ϕ] t=T - t=0 + - (0,T ) f ϕ dt = [0,T ] ϕdh, ∀ϕ ∈ C 1 ([0, T ])
then using again integration by parts from Theorem 3, one concludes that

f (t) = h(t) + c, a.e. t ∈ (0, T )
and setting g = h + c ends the proof.

Corollary 1. There exists a sub-sequence (f δ k ) k∈N , s.t.

I f δ k (ϕ) := T 0 ϕf δ k dt → T 0 ϕdg, ∀ϕ ∈ C([0, T ]) when k → ∞

Mathematical background for the linkages' density

We list here some of the results proved in [START_REF] Milišić | On the asymptotic regime of a model for friction mediated by transient elastic linkages[END_REF] used in the next sections of the paper.

Theorem 4. Let Assumptions 1 and 2 hold, then for every fixed ε > 0 there is a unique solution

ρ ε ∈ C 0 (R + ; L 1 (R + )) ∩ L ∞ (R 2 + ) of the problem (2). It satisfies (2) in the sense of characteristics, namely ρε(a, t) =      βε(t -εa) 1 -R + ρε(ã, t -εa) dã exp - a 0 ζε(ã, t -ε(a -ã) dã), ∀a < t ε ρI,ε(a -t ε ) exp -1 ε t 0 ζε t-t ε + a, t d t , ∀a ≥ t ε (19) 10 
Moreover, it is a weak solution as well since it satisfies (cf [12, Lemma 2.1])

T 0 +∞ 0 ρ ε (a, t) (ε∂ t ϕ + ∂ a ϕ -ζ ε ϕ) da dt -ε +∞ 0 ρ ε (a, T )ϕ(a, T ) da + T 0 ρ ε (a = 0, t)ϕ(a = 0, t) dt + ε +∞ 0 ρ I,ε (a)ϕ(a, t = 0) da = 0 (20)
for every T > 0 and test function ϕ

∈ C ∞ (R 2 + ) ∩ L ∞ (R 2 +
). Now we define the moments of ρ ε which we denote by µ p,ε (t) := R+ a p ρ ε (a, t)da, with p = 1, 2.

Lemma 9. Let Assumptions 1 and 2 hold, then the unique solution

ρ ε ∈ C 0 (R + ; L 1 (R + )) ∩ L ∞ (R 2 + ) of (2) satisfies i) ρ ε (a, t) ≥ 0 for a.e (a, t) in R 2 + , ii) µ 0,min ≤ µ 0,ε (t) < 1, ∀t ∈ R + where µ 0,min < min µ 0,ε (0), βmin βmin+ζmax iii) µ p,min ≤ µ p,ε (t) ≤ k, where , µ p,min = min µ p,ε (0), µ p-1,min ζ max
The authors provide a Liapunov functional that reads :

H[u] := ∞ 0 u(a)da + ∞ 0 |u(a)|da ,
thanks to which they obtain the following convergence result for ρ ε :

Lemma 10. Let ζ min > 0 be the lower bound to ζ ε (a, t) according to Assumptions 1, and setting ρε := one has

H[(ρ ε -ρ 0 )(•, t)] ≤ H[ρ I,ε -ρ 0 (•, 0)] exp -ζ min t ε + 2 ζ min R ε L 1 a (R+) + |M ε | L ∞ t (R+) (21) with R ε := -ε∂ t ρ 0 -ρ 0 (ζ ε -ζ 0 ) and M ε := (β ε -β 0 )(1 - ∞ 0 ρ 0 da).
This ensures the convergence of ρ ε that reads :

Theorem 5. Let ρ ε the solution of the system (2) and let ρ 0 given by (4), then

ρ ε → ρ 0 in C 0 ((0, ∞); L 1 (R + )) as ε → 0 ,
where the convergence with respect to time is meant in the sense of uniform convergence on compact subintervals.

Existence, uniqueness and stability

Using the regularized function f δ introduced in Theorem 1, we consider an approximation of (1) : we denote by z δ ε := z δ ε (t) the function solving

   1 ε ∞ 0 z δ ε (t) -z δ ε (t -εa) ρ ε (a, t)da = f δ (t), t ≤ 0 z δ ε (t) = z p (t), t < 0 (22)
We also define u δ ε (a, t), an approximation of the elongation variable u ε , defined as the mild solution of

         ε∂ t u δ ε + ∂ a u δ ε = 1 µ 0,ε εf δ + ∞ 0 ζ ε u δ ε ρ ε da , t > 0, a > 0 u δ ε (a = 0, t) = 0, t > 0 u δ ε (a, t = 0) = u δ I,ε (a), a ≥ 0 (23) 
where

u δ I,ε (a) := z δ ε (0 + ) -z p (-εa) ε (24) 
and

z δ ε (0 + ) = 1 µ 0,ε (0) εf δ (0 + ) + ∞ 0 z p (-εa)ρ I,ε (a)da . ( 25 
)
More precisely, u δ ε is a solution of system (23) in the sense of characteristics, namely

u δ ε (a, t) = a 0 h(t -εã) dã, if t > εa t/ε 0 h(t -εã) dã + u δ I,ε (a -t/ε), if t ≤ εa, (26) 
where

h(t) := 1 µ 0,ε ε∂ t f δ + ∞ 0 ζ ε u δ ε ρ ε da .
By arguments similar to [12, Lemma 3], it is as well a weak solution of (23) i.e.

- T 0 ∞ 0 u δ ε (ε∂ t ϕ + ∂ a ϕ) da dt + ∞ 0 u δ ε (s, a)ϕ(s, a) da s=T s=0 = T 0 1 µ 0,ε εf δ + ∞ 0 ζ ε u δ ε ρ ε da ∞ 0 ϕ(t, ã) dã dt (27) 
for any function

ϕ ∈ C ∞ c ([0, T ] × R + ). Although, problem (22) 
can be defined for weaker data (typically L 1 ((0, T )) or the space of Radon measures M ((0, T ))), the elongation problem (23), requires to give a meaning to the time derivative of f , which is more restrictive. Nevertheless, as we are mainly interested in convergence results, f ∈ BV((0, T )) seems the weakest possible regularity to our knowledge. Theorem 6. Let Assumptions 1 hold, and let ρ ε be the unique solution of (2) then the system (23) has a unique solution u δ ε ∈ X T .

We are in the framework of [13, Theorem 6.1], but for sake of self-containtness, we recall in an abriged version the proof hereafter.

Proof. A Banach fixed point Theorem is used to prove this result. We define the mapping φ(v) = u such that by Duhamel's principle

u(a, t) = a 0 G(t -εã) dã, if t > εa t/ε 0 G(t -εã) dã + u δ I,ε (a -t/ε), if t ≤ εa. (28) 
where

G(t) := 1 µ 0,ε εf δ + ∞ 0 ζ ε (a, t)v(a, t)ρ ε (a, t)da
As in [START_REF] Milišić | On a structured model for load-dependent reaction kinetics of transient elastic linkages mediating nonlinear friction[END_REF], a simple computation shows that

u X T ≤ G L ∞ ((0,T )) T T + ε + u δ I,ε (•) 1 + a L ∞ (R+) Moreover, since ∂ t f δ ∈ L ∞ ((0, T )) G L ∞ ((0,T )) ≤ 1 µ 0,min ε f δ L ∞ ((0,T )) + ζ max (1 + k) µ 0,min v X T
where k is the upper bound of µ 1,ε proved in Lemma 9. Furthermore, by the same argument we can prove that φ is a contraction. Indeed, if

u i = φ(v i ) for i ∈ {1, 2} u 2 -u 1 X T ≤ C T T + ε v 2 -v 1 X T
for a constant C > 0. Then we can choose T < ε/C and we obtain the existence of a local solution in time of (23), by Banach-Picard's fixed point theorem. As the contraction time does not depend on the initial data, we shall extend the same result by continuation. This shows existence and uniqueness in X T for any T > 0.

Lemma 11. If Assumptions 1 holds, then the solution of system (23) satisfies the uniform a priori estimates

∞ 0 ρ ε (a, t)|u δ ε (a, t)| da ≤ t 0 |f δ | d t + R+ ρ I,ε |u δ I,ε | da ≤ C f BV((0,T )) , (1 + a)ρ I L 1 (R+) , z p L ∞ (R-) (29) 
where C is independent on ε and on δ.

Proof. Again, we proceed as in [13, Lemma 5.1], multiplying (23) by sgn(u δ ε ), testing against ρ ε , and integrating with respect to a gives :

d dt R+ u δ ε ρ ε da + R+ u δ ε ζ ε ρ ε da ≤ ε |f δ | + R+ u δ ε ζ ε ρ ε da
the rigorous proof relies on arguments exposed in [12, Lemma 3.1] and is left to the reader. Finally, after integration with respect to time, we conclude that

∞ 0 ρ ε (a, t)|u δ ε (a, t)|da ≤ t 0 |f δ |dt + R+ ρ I,ε |u δ I,ε |da since |u δ I,ε (a)| ≤ z δ ε (0 + ) -z p (0) ε + z p (0) -z p (-εa) ε ≤ 1 µ 0,ε (0) f δ (0 + ) + 1 ε ∞ 0 (z p (-εa) -z p (0))ρ I,ε (a) da + z p (0) -z p (-εa) ε ≤ 1 µ 0,min z p L ∞ (R-) µ 1,ε (0) + f δ (0 + ) + z p L ∞ (R-) a ≤ max 1 µ 0,min z p L ∞ (R-) µ 1,ε (0) + f δ (0 + ), z p L ∞ (R-) (1 + a),
the result follows.

In order to establish the convergence of u δ ε in X T , for a fixed ε, we introduce an intermediate variable w defined as w(a, t) := u δ ε (a, t) -

f δ (t) µ 0,ε (t) . ( 30 
)
It satisfies

                     ε∂ t w + ∂ a w = 1 µ 0,ε ε f δ ∂ t µ 0,ε µ 0,ε + ∞ 0 ζ ε u δ ε ρ ε da , t > 0, a > 0, w(a = 0, t) = -f δ (t) µ 0,ε (t) , t > 0, w(a, t = 0 + ) = u δ I,ε (a) - f δ (0 + ) µ 0,ε (0) , a ≥ 0, (31) 
The following crucial result holds:

Lemma 12. For a fixed δ and ε, and under the Assumptions 1, the unknowns w and u δ ε , are uniformly bounded in X T with respect to δ and ε.

Proof. Using arguments from [12, Lemma 2.1], one can show that w defined as w(a, t) := w(0, t -εa)

+ a 0 G w (t -εã) dã, if t > εa w(a -t/ε, 0 + ) + t/ε 0 G w (t -εã) dã, if t ≤ εa. ( 32 
)
is a weak solution of (31). In the latter definition G w (t

) := ε f δ ∂ t µ 0,ε µ 2 0,ε + 1 µ 0,ε ∞ 0 ζ ε ρ ε u δ ε da . A simple computation shows that w X T ≤ G w L ∞ ((0,T )) + w(0, .) L ∞ ((0,T )) + w(., 0) 1 + a L ∞ (R+)
.

It remains to estimate G w L ∞ (0,T ) . For every fixed ε, µ 0,ε is a Lipschitz continuous function. Indeed, µ 0,ε satisfies

ε∂ t µ 0,ε -β ε (1 -µ 0,ε ) + R+ ζ ε ρ ε da = 0
and then

ε∂ t µ 0,ε L ∞ t ≤ β ε L ∞ t + ζ ε L ∞ t,a ρ ε L ∞ t L 1
a , which shows, by using the result of Lemma 11 that G w , and also w, are uniformly bounded in L ∞ ((0, T )) with respect to δ and ε. Indeed,

G w L ∞ ((0,T )) ≤ ε∂ t µ 0,ε L ∞ ((0,T )) f δ L ∞ ((0,T )) µ 2 0,min + ζ max µ 0,min R+ ρ ε |u δ ε |da < +∞.
Finally, we have that

u δ ε X T ≤ w X T + f δ L ∞ ((0,T )) µ 0,min < +∞
which ends the proof.

Previous stability estimates allow to show :

Theorem 7. Under Assumption 1, one has for any fixed ε > 0,

u δ ε u ε weakly-* in X T
as δ → 0, where u ε solves the weak problem

- T 0 ∞ 0 u ε (ε∂ t + ∂ a )ϕ da dt + ε ∞ 0 u ε (a, s)ϕ(a, s) da s=T s=0 = ε T 0 ∞ 0 ϕ(ã, t)dã µ 0,ε dg + T 0 ∞ 0 ζ ε ρ ε u ε da µ 0,ε ∞ 0 ϕ(ã, t) dã (33) for any ϕ ∈ C 1 c ([0, T ] × R + ).
Proof. The uniform bound on u δ ε in X T , proved in Lemma 12, implies that

u δ ε 1 + a * u ε 1 + a in L ∞ ((0, T ) × R + )
in the weak-* sense and the limit function u ε belongs X T . For every ψ ∈ L ∞ ((0, T ) × R + ), we have

ζ ε (1 + a)ρ ε ψ ∈ L 1 ((0, T ) × R + ) and then T 0 ∞ 0 ζ ε ρ ε u δ ε ψ da dt → T 0 ∞ 0 ζ ε ρ ε u ε ψ da dt.
By Corollary 1, the first term of right-hand in (27) tends to

T 0 ∞ 0 ϕ(t, ã)dã/µ 0,ε dg as δ → 0, for any ϕ ∈ C 1 c ([0, T ] × R + ).
Regarding the second term of the right hand side in ( 27), one has that ζ ε ρ ε /µ 0,ε ∈ L 1 ((0, T ) × R + ) and this leads, thanks again to the weak-* convergence above to write :

t 0 1 µ 0,ε ∞ 0 ζ ε ρ ε u δ ε da d t -→ t 0 1 µ 0,ε ∞ 0 ζ ε ρ ε u ε da d t as δ → 0, (34) 
which ends the proof.

The latter theorem allows to prove a convergence result when returning to the z ε variable :

Proposition 2. Under the same assumptions as above, it holds that

z δ ε → z ε strongly in L ∞ ((0, T )) as δ → 0,
where z ε satisfies

z ε (t) = z ε (0 + ) + t 0 ε µ 0,ε dg + t 0 1 µ 0,ε ∞ 0 ζ ε u ε ρ ε da d t (35)
which is also a solution of (1).

Before showing this result, we make some comments : if u δ ε is a solution of (23) then z δ ε defined as Proof. First, by using (34) in the proof of Theorem 7, and Lemma 6, we have that f δ (0 + ) = f (0 + ) and z δ ε given by (36) converge strongly in L ∞ ((0, T )) to z ε which verifies (35). Using [13, Lemma 4.2], if z δ ε is defined as (36) it solves (22). Multiplying ( 22) by a test function ϕ ∈ L 1 (0, T ) gives :

z δ ε (t) := z δ ε (0 + ) + t 0 1 µ 0,ε ( t) εf δ ( t) + ∞ 0 ζ ε u δ ε ρ ε da d t (36) solves (22). Conversely, if z δ ε solves (22) then u δ ε , given by u δ ε (a, t) =      z δ ε (t) -z δ ε (t -εa) ε , if t > εa z δ ε (t) -z p (t -εa) ε , if t ≤ εa (37)
1 ε T 0 +∞ 0 (z δ k ε (t) -z δ k ε (t -εa)) ρ ε (a, t) ϕ(t) da dt = T 0 f δ k (t) ϕ(t) dt (38) 
As z δ k ε converges strongly in L ∞ (0, T ) to z ε , the difference z δ k ε (t)-z δ k ε (t-εa) converges almost every where for any fixed (a, t) in R + × (0, T ) towards z ε (t) -z ε (t -εa). Thanks to the L ∞ bounds on u δ k ε /(1 + a), and the bounds in L 1 (R + × (0, T )) on the first moment of ρ ε , there exists an integrable majorizing function g(a, t) on R + × (0, T ) s.t.

z δ k ε (t) -z δ k ε (t -εa) |ϕ(t)|ρ ε (a, t) ≤ g(a, t)
uniformly for every k. Thus one can apply the Lebesgue's Theorem in the right hand side of (38). Since f δ converges in L 1 (0, T ) the convergence occurs in (38) for every ϕ ∈ D(0, T ) and thus almost everywhere in (0, T ) and thus z ε solves (1).

Weak convergence when ε goes to zero

Next, we prove the weak convergence of u ε from which we deduce the strong convergence of z ε .

Theorem 8. Under the same assumptions as above, one has

u ε u 0 weakly-* in X T
as ε → 0, where u 0 satisfies ( 7) and ∞ 0 u 0 (a, t) ρ 0 (a, t) da = f (t) a.e t ∈ (0, T ).

Furthermore, it also holds that

z ε → z 0 strongly in L ∞ ((0, T )) as ε → 0.
Proof. The proof follows the same steps as in [START_REF] Milišić | On a structured model for load-dependent reaction kinetics of transient elastic linkages mediating nonlinear friction[END_REF]Theorem 6.2]. First, by Lemma 12, u δ ε is uniformly bounded in X T with respect to δ and ε, and therefore u ε is uniformly bounded in X T with respect to ε, then u ε is weakly convergent to u 0 in X T . On the other hand, Theorem 3.2 and Lemma 3.

4 imply that (1 + a)ρ ε → (1 + a)ρ 0 strongly in L 1 ((0, T ) × R + ). These arguments justify that for every ψ ∈ L ∞ ((0, T ) × R + ) one has T 0 ∞ 0 ζ ε ρ ε u ε ψ da dt → T 0 ∞ 0 ζ 0 ρ 0 u 0 ψ da dt.
Indeed, one has

T 0 ∞ 0 {ζ ε ρ ε u ε -ζ 0 ρ 0 u 0 } ψ da dt = T 0 ∞ 0 (ζ ε -ζ 0 )ρ ε u ε ψ da dt + T 0 ∞ 0 ζ 0 (ρ ε -ρ 0 )u ε ψ da dt + T 0 ∞ 0 ζ 0 ρ 0 (u ε -u 0 ) ψ da dt
As ζ ε → ζ 0 by Assumptions 1, and thanks to the weak convergence of u ε , both terms on the righthand side tend to zero as ε → 0. Note that this implies the weak convergence of R+ ζ ε ρ ε u ε da in L 1 ((0, T )), since we can choose ψ ∈ L ∞ ((0, T )). Moreover, thanks to Lemma 7 we obtain that

[0,T ] +∞ 0 ϕ da µ 0,ε dg ≤ C ϕ L ∞ t,a µ 0,min pvar(g, [0, T ]) ≤ C f BV((0,T )) .
As in [13, Theorem 6.2], passing to the limit in the weak formulation (33) we obtain

- T 0 ∞ 0 u 0 ∂ a ψ da dt = T 0 ∞ 0 ζ 0 ρ 0 u 0 ψ µ 0,0 da dt which implies that u 0 satisfies      ∂ a u 0 = 1 µ 0,0 ∞ 0 ζ 0 (ã, t)u 0 (ã, t)ρ 0 (ã, t) dã, t > 0, a > 0, u 0 (a = 0, t) = 0, t > 0, (39) 
Similarly, we have the weak convergence of

∞ 0 u ε (t, a) ρ ε (t, a) da towards ∞ 0 u 0 (t, a) ρ 0 (t, a) da in L 1 ((0, T )). Hence, one concludes that u 0 satisfies also ∞ 0 u 0 (t, a) ρ 0 (t, a) da = f (t), a.e. t ∈ (0, T ).
As the the right hand side of (39) does not depend on age, one has that u 0 = γ(t) a, where in order to satisfy the last compatibility condition implies that

γ(t) R+ aρ 0 (a, t)da = f (t), a.e. t ∈ (0, T ).
Thus u 0 (a, t) = f (t)/µ 1,0 (t)a for almost every t ∈ (0, T ) and every a ∈ R + . Using again the weak convergence of R+ ζ ε ρ ε u ε da in L 1 ((0, T )) combined with the strong convergence of µ 0,ε allows to pass to the limit in the third term of (35).

Moreover,

|z ε (0 + ) -z p (0)| = 1 µ 0,ε (0) ∞ 0 (z p (-εa) -z p (0)) ρ I,ε (a) da + εf (0 + ) ≤ εk z p L ∞ (R-) µ 0,min + ε|f (0 + )| µ 0,min -→ 0 as ε → 0
where k is the constant from Lemma 9.

All together this provides that z 0 solves :

z 0 (t) = z p (0) + t 0 f (τ ) µ 1,0 (τ ) R+ ζ 0 (a, τ )ρ 0 (a, τ )da µ 0,0 (τ ) dτ (40) 
but because ρ 0 solves (4), one has that aρ 0 solves :

∂ a (aρ 0 ) -ρ 0 + aζ 0 (a, t)ρ 0 = 0,
which after integration in time shows that

R+ aζ 0 (a, t)ρ 0 (a, t)da µ 0,0 (t) = 1
and this shows in turn that (40) reduces to

z 0 (t) = z 0 (0) + t 0 f (τ ) µ 1,0 (τ ) dτ
which is the integrated version of (3).

A comparison principle

In this section, we give error estimates between z ε and z 0 , the solution of the problem

   1 ε ∞ 0 (z ε (t) -z ε (t -εa)) (a) da = f (t), t ≥ 0, z ε (t) = z p (t), t < 0, (41) 
where is constant in time and satisfies

   ∂ a + ζ(a) = 0, a > 0, (0) = β 1 - ∞ 0 (ã) dã , (42) 
where the data of ( 41) and (42) satisfy

Assumptions 3. i) f ∈ BV((0, T )), ii) z p ∈ Lip(R -), iii) β ∈ R * + , iv) ζ ∈ L ∞ (R + ) such that 0 < ζ min ≤ ζ(a) ≤ ζ max , a.e. a ∈ R + .
Setting ẑε (t) := z ε (t) -z 0 (t), it solves :

ẑε (t) = 1 µ 0 t ε 0 ẑε (t -εa) (a)da + hε (t)
where

hε (t) = ε µ 0 t/ε 0 z 0 (t) -z 0 (t -εa) ε -a∂ t z 0 (t) (a) da + ε µ 0 +∞ t/ε z 0 (t) -z 0 (0) ε -a∂ t z 0 (t) (a) da + 1 µ 0 +∞ t/ε (z p (t -εa) -z p (0)) (a) da (43) 
where

µ 0 := +∞ 0 (a) da then |ẑ ε (t)| ≤ 1 µ 0 t ε 0 |ẑ ε (t -εa)| (a)da + | hε (t)| (44) 
Then integrating in time and setting

Ẑε (t) := t 0 |ẑ ε (τ )| dτ
one has that :

Ẑε (t) = t 0 |ẑ ε (τ )| dτ ≤ 1 µ 0 t 0 τ ε 0 |ẑ ε (τ -εa)| (a) da dτ + t 0 | hε (τ )| dτ
then, we change the order of integration and the domain of integration becomes D := {(a, τ ) ∈ (0, t/ε) × (εa, t)}. We use the change of variable t = τ -εa in order to write :

t 0 τ ε 0 |ẑ ε (τ -εa)| (a) da dτ = t ε 0 t εa |ẑ ε (τ -εa)| dτ (a) da = t ε 0 t-εa 0 |ẑ ε ( t)| d t (a) da = t ε 0 Ẑε (t -εa) (a) da
So that finally Ẑε solves :

Ẑε (t) ≤ 1 µ 0 t ε 0 Ẑε (t -εa) (a) da + t 0 hε (τ ) dτ = t 0 Ẑε (ã)K ε (t -ã) dã + t 0 hε (τ ) dτ
where K ε (ã) := 1 εµ0 ã ε is the kernel of the integral operator. We use a comparison principle [6, the Generalised Gronwall Lemma 8.2 p. 257] and construct a majorizing function U ε of the form U ε (t) = ε(K 0 + K 1 t) where K 0 and K 1 are suitably chosen, such that U ε ≥ | Ẑε | and U ε ∼ ε. The following two lemmas are required in order to apply this comparison principle :

Lemma 13. The Volterra kernel K ε satisfies :

K ε L ∞ (0,T ) := ess sup t∈(0,T ) t 0 |K ε (ã)| dã < 1
Proof. To prove this result, we need to show that

0 ≤ t 0 |K ε (ã)| dã = t ε 0 (a) da +∞ 0 (a) da < 1. (45) 
The kernel solves (42), thus it can be explicitly computed as

(a) = β 1 + βI exp - a 0 ζ(s)ds
one has the lower bound :

(a) ≥ β 1 + βI exp (-ζ max a) > 0, ∀a ∈ R + .
This in turn shows that

∞ t ε (a)da > 0
which is equivalent to the claim.

Lemma 14. Consider the expectation value of a given density with respect to the tail a > t/ ,

A 1 [ ](t) := +∞ 0 a (a + t ) da +∞ 0 (a + t ) da (46) 
then under Assumptions 3, one has

A 1 [ ](t) ≤ ζ max ζ 2 min . Proof. Setting q(a, t) := (a + t ) ( t ) , (47) 
it solves ∂ a q(a, t) + ζ(a + t/ ) q(a, t) = 0, q(0, t) = 1.

This problem admits an explicit solution of the form q(a, t) = exp -

a 0 ζ(ā + t/ ) dā = exp - a+t/ t/ ζ(â) dâ . (48) 
Then, we shall rewrite (46) as : where C 1 depends on µ 2 ,µ 1 , ∂ t z 0 BV((0,T )) and on z p Lip(R-) but not on ε.

Proof. Recalling the definition of hε in (43), we split t 0 hε (τ ) dτ into three parts. First, we define

I 1 := ε µ 0 t 0 τ /ε 0 z 0 (τ ) -z 0 (τ -εa) ε -a∂ t z 0 (τ ) (a) da dτ
Since ∂ t z 0 ∈ BV((0, T )), then I 1 can be written in the form

I 1 = 1 µ 0 t 0 τ /ε 0 τ τ -εa ∂ t z 0 ( t) -∂ t z 0 (τ ) d t (a) da dτ
by switching the integration order between τ and a, and using the change of variable t = τ + h, we get that

I 1 ≤ 1 µ 0 t/ε 0 t εa τ τ -εa ∂ t z 0 ( t) -∂ t z 0 (τ ) d t dτ (a) da ≤ 1 µ 0 t/ε 0 t εa 0 -εa |∂ t z 0 (τ + h) -∂ t z 0 (τ )| dh dτ (a) da ≤ 1 µ 0 t/ε 0 0 -εa t εa |∂ t z 0 (τ + h) -∂ t z 0 (τ )| dτ dh (a) da (49) 
and thus applying Lemma 3, one has the estimate of the inner integral of the latter right hand side :

t εa |∂ t z 0 (τ + h) -∂ t z 0 (τ )| dτ ≤ |h| ∂ t z 0 BV , ∀h ∈ (-εa, 0)
which implies that

I 1 ≤ ∂ t z 0 BV µ 0 t/ε 0 0 -εa |h| dh (a) da ≤ ε 2 ∂ t z 0 BV 2µ 0 t/ε 0 a 2 (a) da.
Next, we set:

I 2 = ε µ 0 t 0 +∞ τ /ε z 0 (τ ) -z 0 (0) ε -a∂ t z 0 (τ ) (a) da dτ ≤ 1 µ 0 t 0 +∞ τ /ε τ 0 ∂ t z 0 ( t)d t -τ ∂ t z 0 (τ ) (a) da dτ + 1 µ 0 t 0 +∞ τ /ε |τ -εa| |∂ t z 0 (τ )| (a) da dτ =: I 2,1 + I 2,2
As in the estimates of I 1 , first, one switches the order of integration and then one integrates on

D := {(a, τ ) ∈ (0, t/ε) × (0, εa)} ∪ {(a, τ ) ∈ (t/ε, +∞) × (0, t)}, (50) 
and one makes the change of variable t = τ + h in order to obtain

I 2,1 = 1 µ 0 t/ε 0 εa 0 0 -τ |∂ t z 0 (τ + h) -∂ t z 0 (τ )| dh dτ (a) da + 1 µ 0 +∞ t/ε t 0 0 -τ |∂ t z 0 (τ + h) -∂ t z 0 (τ )| dh dτ (a) da = 1 µ 0 t/ε 0 0 -εa εa -h |∂ t z 0 (τ + h) -∂ t z 0 (τ )| dτ dh (a) da + 1 µ 0 +∞ t/ε 0 -t t -h |∂ t z 0 (τ + h) -∂ t z 0 (τ )| dτ dh (a)
da also, by using Lemma 4, we get that

I 2,1 ≤ ∂ t z 0 BV µ 0 t/ε 0 0 -εa |h| dh (a) da + ∂ t z 0 BV µ 0 +∞ t/ε 0 -t |h| dh (a) da ≤ ε 2 ∂ t z 0 BV 2µ 0 t/ε 0 a 2 (a) da + ∂ t z 0 BV 2µ 0 +∞ t/ε t 2 (a) da ≤ ε 2 ∂ t z 0 BV 2µ 0 t/ε 0 a 2 (a) da + ε 2 ∂ t z 0 BV 2µ 0 +∞ t/ε a 2 (a)da ≤ ε 2 µ 2 ∂ t z 0 BV µ 0 .
The second term I 2,2 is estimated in the same way as I 2,1 . We have

I 2,2 = 1 µ 0 t 0 +∞ τ /ε |τ -εa| |∂ t z 0 (τ )| (a) da dτ = 1 µ 0 t/ε 0 εa 0 + +∞ t/ε t 0 |τ -εa| |∂ t z 0 (τ )| dτ (a) da ≤ ε 2 ∂ t z 0 ∞ 2µ 0 t/ε 0 a 2 (a) da + ε 2 ∂ t z 0 ∞ 2µ 0 +∞ t/ε a 2 (a) da ≤ ε 2 µ 2 ∂ t z 0 ∞ µ 0 .
Finally, by similar computations, one has

1 µ 0 t 0 +∞ τ /ε |z p (τ -εa) -z p (0)| (a) da dτ ≤ ε 2 z p Lip(R-) µ 2 µ 0
Theorem 9. Under Assumptions 3, z ε tends to z 0 , the solution of (3), strongly in L 1 (0, T ) as ε goes to zero. Moreover, there exists a generic constant C depending only on the data of the problem but not on ε, such that :

z ε -z 0 L 1 (0,T ) ≤ εC.
Proof. We have proved in Lemma 13 that the Volterra kernel K ε is non-positive and bounded (with a bound strictly less than one) in the sense of [ 

Ẑε (ã)K ε (ã) dã ≤ h1,ε (t) + h2,ε (t)
We construct a function U ε which satisfies,

U ε (t) - t 0 U ε (ã)K ε (ã) dã ≥ h1,ε + h2,ε (51) 
We split the integral operator applied to U ε in two parts

U ε (t)- t 0 U ε (ã)K ε (ã) dã = U ε (t) - 1 µ 0 t/ε 0 U ε (t -εa) (a) da = 1 µ 0 +∞ 0 (U ε (t) -U ε (t -εa)) (a) da :=H1,ε + 1 µ 0 +∞ t/ε U ε (t -εa) (a) da :=H2,ε
and we shall specify U ε such that H 1,ε ≥ Hε (t) and H 2,ε ≥ 0. To this end we set

U ε (t) := ε(K 0 + K 1 t), ∀t ∈ R (52) 
with constants K 0 and K 1 to be specified. One has obviously that

H 1,ε (t) = ε 2 K 1 µ 1 µ 0 ≥ ε 2 C 1 ≥ Hε (t)
a.e. on R + , provided that K 1 is chosen as

K 1 > µ 0 µ 1 C 1 
Using (52) and the change of variable ã = -t/ε + a, we obtain that

H 2,ε = +∞ 0 (K 0 -εK 1 ã) (ã + t/ε) dã = (K 0 -εK 1 A ε [ ](t)) R+ t ε + a da
We are in the hypotheses of Lemma 14 : A ε [ ](t), the expectation of a given density with respect to the tail a > t/ε is bounded by a positive constant

A max A ε [ ](t) := R+ a ( t ε + a) da R+ ( t ε + a) da ≤ A max .
Therefore it suffices to chose K 0 > εK 1 A max in order to obtain that H 2,ε ≥ 0. These computations show that U ε is a super-solution. Then the comparison principle implies that, for all 0

≤ t ≤ T , 0 ≤ Ẑε (t) = t 0 |z ε (s) -z 0 (s)| ds ≤ U ε (t) = ε(K 0 + K 1 t) → 0 as ε → 0, hence Ẑε → 0 in C([0, T ]), which ends the proof since z ε -z 0 L 1 (0,T ) ≤ Ẑε C([0,T ]) .

A simple example

We construct by hand solutions of problems ( 1) and (3) when the load f is explicitly defined as

f (t) :=      1/2 if 0 < t ≤ 1 3 , 1 if 1 3 < t ≤ 2 3 , 3/2 if 2 3 < t < 1, (53) 
and the kernel is a simple exponential (see more precise statements below). So defined f is of course of bounded variation on (0, 1). The solution z ε solving (1) and its limit z 0 show different regularities (see Figure 1) : the adhesive approximation is rougher than the limit solution. This is an interesting feature of our approach. Assumptions 4. i) the load f is defined in (53), ii) the on and off rates are constants defined as :

ζ ε = ζ 0 = ζ, β ε = β 0 = β.
iii) the initial condition is at equilibrium :

ρ I,ε = ρ 0 = βζ β + ζ e -ζa .
Lemma 15. Under Assumptions 4, one has that µ

0,ε = µ 0,0 = β/(β + ζ), µ 1,ε = µ 1,0 = β/(ζ(β + ζ)
) and ρ 0 (a) = µ 0,0 ζe -ζa . Then the solution z ε of ( 1) is BP V ([0, 1]) and it is explicitly given by

z ε (t) = t 0 f µ 1,0 ds + ε f (t) µ 0,0 + 1 µ 0,0 +∞ 0 z p (-εa)ρ 0 da and hence, z ε (t) -z 0 (t) = ε f (t) µ 0,0 + 0 -∞ z p (s) exp ζs ε ds with z 0 (t) = z p (0) + t 0 f (s)ds/µ 1,0 is a continuous functions in [0, 1]
. Note that the last term is an ε order term according to Assumption 1, indeed it holds that

0 -∞ z p (s) exp ζs ε ds ≤ ε ζ z p W 1,∞ (R-) .
Proof. The specific choice of data and kernel allows to rephrase (1) as

z ε (t) - ζ ε t 0 z ε (s) exp - ζ(t -s) ε ds = ε f (t) µ 0,0 + ζ ε 0 -∞ z p (s) exp - ζ(t -s) ε ds.
Next, setting

q ε (t) = z ε (t) exp ζt ε , t ≥ 0.
Then we can rewrite (15) for all t ≥ 0 as

q ε (t) - ζ ε t 0 q ε (s)ds = ε exp ζt ε f (t) µ 0,0 + ζ ε 0 -∞ z p (s) exp ζs ε ds. (54) 
By differentiating (54) in time and using (6), we prove that q ε solve the equation and therefore q ε is explicitly given by

         qε (t) - ζ ε q ε (t) =
q ε (t) = exp ζt ε ε f (t) µ 0,0 + ζ ε 0 -∞ z p (s) exp ζs ε ds + t 0 f (s) µ 1,0 ds
which gives the formula of z ε . Moreover, it is clear that z ε is of bounded variation since f is it and z 0 is an absolutely continuous function.

A Auxiliary proofs

In this appendix, the domain Ω is an open set of R n .

A.1 Proof of Theorem 1

As in the proof of [9, Theorem 14.9], the aim is to show that for every δ > 0, there exists a sequence {f δ } δ in C ∞ (Ω) such that Since the total variation Df (Ω) is bounded, lim j→+∞ Df (Ω \ {t, dist(t, ∂Ω) > 1/j, |t| < j}) = 0 then for fixed δ > 0, there exists a j 0 ∈ N such that for all j ≥ j 0 , Df (Ω \ {t, dist(t, ∂Ω) > 1/j, |t| < j}) ≤ δ.

For i ∈ N, we define the subdomain Ω i of Ω by Ω i := {t ∈ Ω, dist(t, ∂Ω) > 1/j 0 + i, |t| < j 0 + i} such that Ω i ⊂⊂ Ω i+1 and ∞ i=0 Ω i = Ω. Let W 0 = Ω 1 and W i = Ω i+1 \ Ωi-1 , where Ω -1 = Ω 0 := ∅, and let {φ i } be a partition of the unity subordinate to the covering

{W i } i∈N φ i ∈ C ∞ 0 (W i ), 0 ≤ φ i ≤ 1, ∞ i=0 φ i = 1.
For i ∈ N, the idea is to find δ i > 0 so small that supp χ δi * (φ i f ) ⊂ W i (56) which allows to write

χ δi * (φ i f ) -φ i f L 1 (Ω) = χ δi * (φ i f ) -φ i f L 1 (Wi) (57) 
and then from the local approximation Theorem (see Theorem 2 p.125 in [START_REF] Evans | Measure theory and fine properties of functions[END_REF]),

χ δi * (φ i f ) -φ i f L 1 (Wi) < Cδ
and also by convenience, we can take C = 1 2 i . Hence we conclude that

Ω |χ δi * (φ i f ) -φ i f | dt < δ 2 -i (58) Ω |χ δi * (f φ i ) -f φ i | dt < δ 2 -i . ( 59 
)
for a positive mollifiers χ δ defined as

χ δ (t) := 1 δ χ( t δ ), χ(t) = 1 if |t| < 1 0 if |t| > 2 Define f δ = ∞ i=0 χ δi * (φ i f ). ( 60 
)
By the construction of {W i }, we have W i ∩ W i+1 = ∅ and W i ∩ W i+1 ∩ W i+2 = ∅ which give that for every t ∈ Ω, #{i ∈ N : χ δi * (φ i f )(t) = 0} ≤ 2 and since the finite sum of infinitely differentiable functions is infinitely differentiable, we conclude that f δ ∈ C ∞ (Ω) and Let ψ ∈ C ∞ c (Ω) be such that |ψ| ∞ ≤ 1. Since φ i f ∈ BV(Ω) for every i ∈ N, we have by Lemma 14.10 in [START_REF] Leoni | A first course in Sobolev spaces[END_REF] that 

Ω |f δ -f |dt ≤ ∞ i=1 Ω |χ δi * (φ i f ) -φ i f | dt < ∞ i=1 δ 2 i ≤ δ,

  is a solution of (23). For more details see[START_REF] Milišić | On a structured model for load-dependent reaction kinetics of transient elastic linkages mediating nonlinear friction[END_REF] Lemma 4.1 and Lemma 4.2].

A 1 [

 1 t) da by using hypothesis iv) from Assumptions 3, one has exp(-ζ max a) ≤ q(a, t) ≤ exp(-ζ min a) , t)da ≤ +∞ 0 a exp(-ζ min a)da = 1 ζ 2 min which shows the final upper bound. Proposition 3. Under Assumptions 3, for 0 < t < T one has the estimates : Hε (t) := t 0 hε (τ ) dτ ≤ ε 2 C 1
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 1 Figure 1: The solutions z ε and z 0 as a function of time, for a fixed ε = 10 -1 on the left y-axis. The load f on the right y-axis.

  t) + εf (t)) , t > 0, q ε (0 + ) = εf (0)/µ 0

Ω

  |f -f δ | dt < δ and |Df δ |(Ω) < Df (Ω) + δ.

∞

  i=0 f φ i . Thus f δ → f in L 1 (Ω) as δ → 0. Using the theorem of Lower semi-continuity of variation measure (see chap 5,[START_REF] Evans | Measure theory and fine properties of functions[END_REF]), we haveDf (Ω) ≤ lim inf δ→0 |Df δ |(Ω).(61)it remains to show that lim sup δ→0 |Df δ |(Ω) ≤ Df (Ω).

Ωχ

  δi * (φ i f ) ψ dt = Ω φ i f (χ δi * ψ) dt (62)let ψ δi = χ δi * ψ, and using the fact that support of ψ is compact and that the partition of unity is locally finite, we have thatΩ f δ ψ dt = +∞ i=1 Ω χ δi * (φ i f ) ψ dt = +∞ i=1 Ω φ i f ψ δi dt = +∞ i=1 Ω f ((φ i ψ δi ) -φ i ψ δi ) dt := I 1 + I 2 since supp(φ i ψ δi ) ⊂ W i and |φ i ψ δi | ∞ ≤ 1, it follows that I 1 = Ω f (φ i ψ δi ) dt + +∞ i=2 Ω f (φ i ψ δi ) dt ≤ Df (Ω) + +∞ i=2 Df (W i ) ≤ Df (Ω) + 3 Df (Ω \ Ω 1 )≤ Df (Ω) + 3δ since each t ∈ Ω belongs at most two of the sets U i . On the other hand, by Fubini's theorem we haveI 2 = -+∞ i=1 Ω χ δi * (f φ i )ψ dt = -+∞ i=1 Ω (χ δi * (f φ i ) -f φ i ) ψ dtby using the fact that +∞ i=1 φ i = 0. We now use (59) and the fact that |ψ| ∞ ≤ 1, to conclude that I 2 ≤ δ and then we obtain thatΩ f δ ψ dt ≤ Df (Ω) + 3δ.By taking the supremum and passing to the limit when δ → 0, we obtain that lim sup δ→0 Df δ (Ω) ≤ Df (Ω) (63)Finally, (61) and (63) together concludes the proof.

A.2 Proof of Lemma 5:

Let f ∈ BV(Ω) ∩ L ∞ (Ω). By using (60) and (56) we can write for all t in Ω,

which ends the proof.