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Introduction
• Question: can fluid mechanics be reduced (in the limit) to a system 

of particles in classical mechanics?


• Methodology: 


• focusing on ‘‘limiting reduction’’(Nickles 1973, Batterman 
2020)


• analyzing recent results in applied mathematics


• Claim: fluid mechanics fails to be reduced in the limit to classical 
mechanics, in the current state of science.
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1. Limiting reduction


2. From classical mechanics to fluid mechanics


3. Failure of limiting reduction

Outline
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Limiting reduction
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1. Limiting reduction — 2. From classical mechanics to fluid mechanics — 3. Failure of limiting reduction



Limiting reduction
• Nickles (1973): 


• reduction1: logical consequence (Nagelian reduction)


• reduction2: mathematical operations (e.g., mathematical limits)


• Batterman (1995, 2002, 2020, …): limiting reduction to account for 
how physical theories are interconnected
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1. Limiting reduction — 2. From classical mechanics to fluid mechanics — 3. Failure of limiting reduction

• Limiting reduction: a physical theory Tf reduces in the limit to the 
theory Tc :

(Batterman 2002, p. 18; 2020, sect. 2)



• Limiting reduction holds when limits are regular, i.e., when the behaviour of 
the system approaching the limit is the same as the behaviour of the 
system at the limit


• E.g., special relativity and classical mechanics: when v/c → 0, the 
Einsteinian momentum pE= mv(1-(v/c)2)-1/2 tends to the classical 
mechanics momentum pC=mv


• Limiting reduction fails with singular limits, i.e., when the behaviour of the 
system approaching the limit is qualitatively different from the behaviour of 
the system at the limit


• E.g., wave optics and geometrical optics: when λ→ 0, the intensity of 
an interference pattern is singular at λ=0 (Berry 1994, Batterman 1995)
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Limiting reduction
1. Limiting reduction — 2. From classical mechanics to fluid mechanics — 3. Failure of limiting reduction



Regular limit: a toy example
Consider the equation (Batterman 2020):


                                                      x2 + x −9 ε =0 


• Take ε = 0, the equation changes to: x2+x =0


Two solutions: x=0 and x=-1 


• Take ε ≠ 0, the equation has two solutions (which depend on ε): x1 and  x2. 


When ε → 0, x1 → 0  and x2 → -1


The behaviour of the equation approaching the limit is the same as the 
behaviour of the equation at the limit
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1. Limiting reduction — 2. From classical mechanics to fluid mechanics — 3. Failure of limiting reduction



Singular limit: a toy example
Consider the equation (Batterman 2020):


                                                      ε x2 + x − 9=0  

• Take ε = 0, the equation changes to: x-9 =0


One solution: x=9


• Take ε ≠ 0, the equation has two solutions (which depend on ε): x1 and x2


When ε → 0, x1 → ∞  and x2 → - ∞


The behaviour of the equation approaching the limit is qualitatively different 
from the behaviour of the equation at the limit
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1. Limiting reduction — 2. From classical mechanics to fluid mechanics — 3. Failure of limiting reduction



From classical mechanics 
to fluid mechanics
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1. Limiting reduction — 2. From classical mechanics to fluid mechanics — 3. Failure of limiting reduction
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Classical mechanics  
Microscopic scale

Hard-spheres gas

• N hard spheres: mass m, 
diameter a


• motion equations of 
classical mechanics


• elastic collisions

Liouville equation

1. Limiting reduction — 2. From classical mechanics to fluid mechanics — 3. Failure of limiting reduction
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Classical mechanics  
Microscopic scale Liouville equation

Kinetic theory of gases  
Mesoscopic scale Boltzmann equation  

Hard-spheres gas
1. Limiting reduction — 2. From classical mechanics to fluid mechanics — 3. Failure of limiting reduction

(Boltzmann-Grad limit: N → ∞, a → 0, Na2~1) Lanford’s theorem  
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Classical mechanics  
Microscopic scale Liouville equation

Kinetic theory of gases  
Mesoscopic scale Boltzmann equation  

Fluid mechanics 
Macroscopic scale

Navier-Stokes equations   

Hard-spheres gas
1. Limiting reduction — 2. From classical mechanics to fluid mechanics — 3. Failure of limiting reduction

Asymptotic expansions (hydrodynamic limit: Na2 → ∞)     

(Boltzmann-Grad limit: N → ∞, a → 0, Na2~1) Lanford’s theorem  



Due to: Lanford, Cercignani, Spohn, Gallagher, Golse, Saint-Raymond…


Hilbert’s sixth problem (International Congress of Mathematicians): 


to develop “mathematically the limiting processes [ . . . ] which lead from 
the atomistic view to the laws of motion of continua”(Hilbert 1900)


It is not complete proof (yet). However, there are promising partial results 
(notably on linearized cases)
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A mathematical derivation
1. Limiting reduction — 2. From classical mechanics to fluid mechanics — 3. Failure of limiting reduction



• The constructions of the Navier-Stokes equations from Newton 
equations (in physics textbooks)


�14

Other derivations in physics

• Not based on the microdynamics: 
applying Newton’s equations to 
volume elements of the fluid, not to 
hard spheres

• ’’This method fails to relate equations of state or transport 
coefficients to microscopic data.’’(Golse 2015)

1. Limiting reduction — 2. From classical mechanics to fluid mechanics — 3. Failure of limiting reduction
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From meso to macro

Kinetic theory of gases  
Mesoscopic scale Boltzmann equation  

Fluid mechanics 
Macroscopic scale

Navier-Stokes equations   

Asymptotic expansions (hydrodynamic limit: Na2 → ∞)     

1. Limiting reduction — 2. From classical mechanics to fluid mechanics — 3. Failure of limiting reduction



Failure of limiting reduction
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1. Limiting reduction — 2. From classical mechanics to fluid mechanics — 3. Failure of limiting reduction



The solution of the Boltzmann equation is expanded as infinite power 
series of the parameter ε (Hilbert expansion, Chapman-Enskog 
expansion)

�17

Asymptotic expansions

f =  ∑ εn fn

If truncated at the first order, this solution is asymptotic to the solution of 
the Navier-Stokes equations (Grad 1963, Gallagher 2019, Slemrod 2018)


When ε → 0,  f0 + ε f1 → the solution of the Navier-Stokes equations

ε = 1/Na2   is the mean free distance between particle collisions

1. Limiting reduction — 2. From classical mechanics to fluid mechanics — 3. Failure of limiting reduction



The Boltzmann equation used to asymptotically obtain the NS equations:
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Singular limit

∂f/∂t+ v∂f/∂x=1/ε Q(f,f)

Harold Grad: “the parameter ε enters into the Boltzmann equation 
in a singular manner, and the equation loses all meaning if ε =0. 
On the other hand, all solutions converge as ε → 0” (1963, p. 
148).

• when ε =0, the Boltzmann equation is not defined


• when ε → 0, the solution of the Boltzmann equation tends to the 
solution of the NS equations

1. Limiting reduction — 2. From classical mechanics to fluid mechanics — 3. Failure of limiting reduction

The asymptotic expansion is singular.
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Failure of the limiting reduction
The hydrodynamic limit ε → 0 that connects the Boltzmann equation to the 
Navier-Stokes equations is singular.


wave optics kinetic theory of gases

geometrical optics fluid mechanics

λ→ 0  ε → 0

shortwave limit hydrodynamic limit

Another instance of a failure of the limiting reduction between two 
physical theories

1. Limiting reduction — 2. From classical mechanics to fluid mechanics — 3. Failure of limiting reduction



‘‘The definition of u consists in intertwining the evolution of the 
Boltzmann equation with the invariance group of the Navier-Stokes 
equations’’(Golse 2005)
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Scale invariance: if u ≡ u(t, x) is a solution of the Navier-Stokes 
equations, then ⍺u(⍺2t, ⍺x) is also a solution of the Navier-Stokes 
equations

The definition of the fluid velocity requires the scale invariance of u.

1. Limiting reduction — 2. From classical mechanics to fluid mechanics — 3. Failure of limiting reduction

Failure of the limiting reduction
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The challenge of the reduction

However, fluid mechanics is not doomed to be irreducible

• Future scientific progress might be made to avoid a singular limit 
and asymptotic expansions

• We might have to (re)turn to other accounts of reduction 

1. Limiting reduction — 2. From classical mechanics to fluid mechanics — 3. Failure of limiting reduction

What philosophical morals?


No limiting reduction for fluid mechanics from this mathematical 
derivation of the Navier-Stokes equations 
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Divergent series and 
approximation

Asymptotic expansion in an infinite power series

Truncation at the first order, the solution is asymptotic to the solution of the 
Navier-Stokes equations


f =  ∑ εn fn

However, the infinite series is divergent (Grad 1963, p. 149)

Should we interpret these asymptotic expansions as providing approximations?

“While truncations of convergent expansions can naturally be 
interpreted as approximations, the same is not true of 
divergent expansions” (Miller forthcoming, p. 3).



Focus on the derivation of the Navier-Stokes equations from a hard-
spheres gas, by using the Boltzmann equation as an intermediate step.


Claim: the hydrodynamic limit (ε → 0) is singular, which prevents a 
limiting reduction


Another case for the literature on the limiting reduction and singular 
limits.


Further discussion is needed (divergent series)
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Conclusion
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