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INTRODUCTION

In linear least-squares problems, given measurements y ∈ R n and predictors A ∈ R n×p , we seek the vector x verifying:

x = argmin x∈R p ||Ax -y|| 2 2 + λx t Px (1) 
where λx t Px is a regularization term. x can be computed exactly at cost O(np 2 ), but for very large n or p this is costly, and approximate methods may be used instead. There are dozens of such methods, either deterministic or stochastic in nature. The best known example of the former are the various gradient descent methods [START_REF] Nesterov | Introductory lectures on convex optimization: A basic course[END_REF], while among the latter the most popular is certainly stochastic gradient descent [START_REF] Bottou | Stochastic learning[END_REF]. An attractive alternative to stochastic gradient descent is to use methods based on Determinantal Point Processes, which, roughly, consist in finding a well-chosen, random subset of the rows of A so that solving the least-squares problem for just these rows
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gives an unbiased estimator for the solution to the full problem [START_REF] Derezinski | Determinantal point processes in randomized numerical linear algebra[END_REF][START_REF] Fanuel | Diversity sampling is an implicit regularization for kernel methods[END_REF]. This contrasts with stochastic gradient descent, where the estimator is generally biased after a finite number of steps.

One drawback of this new class of methods is that sampling a subset of rows with the right properties may be expensive, so that reducing the variance by simply increasing the number of estimates becomes rapidly too costly. We show below that a very simple way to reduce variance is to combine a stochastic estimator with (at least one) step of gradient descent. The result is another unbiased estimator, one that is guaranteed to have lower variance. We apply our technique to Tikhonov regularization on graphs, where DPPbased estimators are particularly well-adapted [START_REF] Yusuf Y Pilavci | Smoothing graph signals via random spanning forests[END_REF][START_REF] Yusuf | Graph tikhonov regularization and interpolation via random spanning forests[END_REF]. As in standard applications of gradient descent, most of the difficulty consists in determining how large the gradient descent step should be. In graphs this problem turns out to be quite tractable, with good heuristics available. Numerical results confirm that the reduction in variance obtained is substantial, at small computational cost.

Main idea

The main idea of the paper is extremely simple. Solving a least-squares problem of the form of Eq.( 1) is equivalent to minimizing a quadratic form

f (x) = 1 2 x t Qx -r t x. (2) 
Minimising f by gradient descent consists in taking steps of the form

x t = x t-1 -α∇f (x t-1 ) = x t-1 -α(Qx t-1 -r),
where α is the step size. Since the gradient is zero at the solution, x = argmin f (x) is a fixed point of the iteration. Now suppose that x is an unbiased estimator of x, i.e., a random variable such that E(x) = x. Then, it is easy to check that

E (x -α(Qx -r)) = x,
meaning that x stays unbiased after one step of gradient descent (or indeed several). We show below that setting the step size α correctly guarantees a reduction in variance, and give practical solutions for finding an appropriate step size in a graph signal processing setting.

BACKGROUND

Tikhonov regularization in graphs. The regularised leastsquares estimator we are interested in is graph Tikhonov regularisation (GTR), a method for denoising graph signals. A "graph signal" is a vector of measurements associated with the nodes of a graph, for instance brain activity in n brain regions, where the graph models neural connectivity across regions. GTR also occurs as a subproblem in other methods, like semi-supervised learning [START_REF] Yusuf | Graph tikhonov regularization and interpolation via random spanning forests[END_REF], which is why finding an efficient approximation algorithm is of high interest.

Let us first set notation. We denote a graph by the set G = (V, E, w) with |V| = n vertices and |E| = m edges. w : V × V → R + is called the weight function and is nonzero only for (i, j) ∈ E. In this work, we only consider connected (i.e., there exists a path between any pair of nodes) and undirected graphs (i.e., verifying ∀(i, j) ∈ E, w(i, j) = w(j, i)). In addition, we use certain matrices to depict the algebraic properties of graphs. These are the (weighted) adjacency matrix W = [w(i, j)] i,j ∈ R n×n , the diagonal degree matrix whose diagonal entries are D i,i = n j=1 w(i, j) and the graph Laplacian, L = D -W. It is well-known that L ∈ R n×n is a symmetric positive semi-definite matrix with n eigenvalues λ 1 = 0 < λ 2 ≤ . . . ≤ λ n for any undirected, connected graph [START_REF] Van Mieghem | Graph spectra for complex networks[END_REF].

Given a noisy version y ∈ R n of an underlying graph signal x ∈ R n that one wishes to recover, GTR consists in solving the following minimisation problem to estimate x:

x = argmin z∈R n q||z -y|| 2 2 + z Lz, (3) 
where q ∈ R + is a parameter that adjusts the balance between the data fidelity term ||z -y|| 2 2 and the regularization term z Lz, which forces the solution to be smooth over the graph. Note that this is a special case of eq. ( 1) with A = I, P = L and λ = 1/q. The explicit solution to this problem reads:

x = Ky with K = q(qI + L) -1
The direct computation of x requires (a worst-case) O(n 3 ) elementary operations due to the inversion of (qI + L). As n increases, this computation becomes prohibitive. In the next section, we list state-of-the-art methods which avoid this expensive computation.

DPP-based estimators for Graph Tikhonov Regularisation. In the special case of GTR, the most popular methods are deterministic. For large n, state-of-the-art methods can be divided roughly into two groups, namely iterative methods (e.g. conjugate gradient [START_REF] Saad | Iterative methods for sparse linear systems[END_REF]) and polynomial approximations (e.g. Chebyshev polynomials [START_REF] David I Shuman | Chebyshev polynomial approximation for distributed signal processing[END_REF]). Both classes of methods run in linear time with the number of edges, m.

As an alternative stochastic method for GTR, we have proposed in previous works unbiased Monte Carlo estimators for approximating x which also scale linearly with m [START_REF] Yusuf Y Pilavci | Smoothing graph signals via random spanning forests[END_REF][START_REF] Yusuf | Graph tikhonov regularization and interpolation via random spanning forests[END_REF]. Our method can be viewed as a DPP-based subsampling of the rows of a matrix, but the case of GTR is particularly favourable. The appropriate DPP is the random forest process [START_REF] Avena | Two applications of random spanning forests[END_REF], which is easy to sample from, and its analytic properties enable variance reduction via conditional Monte Carlo. The resulting estimator, called x in [START_REF] Yusuf Y Pilavci | Smoothing graph signals via random spanning forests[END_REF][START_REF] Yusuf | Graph tikhonov regularization and interpolation via random spanning forests[END_REF], is unbiased (E(x) = x), can be obtained in O(m) elementary operations, and takes a very simple form: based on the partition formed by a random spanning forest, it averages the signal in each part of the partition. We repeat this process N times and average to get a denoised signal. The details of the estimator can be found in [START_REF] Yusuf | Graph tikhonov regularization and interpolation via random spanning forests[END_REF], but are irrelevant for what we discuss here.

PROPOSED METHOD

In this section, we propose an improved estimator for estimating Ky. As described in the introduction, we combine our unbiased estimator with a gradient descent step to reduce variance. This variance reduction technique can also be viewed as an instance of the control variate method [START_REF] Botev | Variance reduction[END_REF] in the Monte Carlo literature.

The gradient descent update

Note that the solution to (3) also minimizes the cost function:

F (z) = 1 2 z K -1 z -z y.
As stated in the introduction, applying the gradient step to x yields a new estimator:

z := x -α(K -1 x -y). (4) 
Proposition 1. z is an unbiased estimator for x. Moreover, assuming1 tr Var(K -1 x) > 0, the MSE of z is a quadratic function of α which is minimized for:

α = tr Cov(K -1 x, x) tr (Var(K -1 x)) . (5) 
Proof. Since x is an unbiased estimator, the expectation of 

z immediately reads E[z] = E[x]-α(K -1 E[x]-y) = x.
Eq. ( 6) is a quadratic function in α and is minimized at α given in Eq. ( 5):

Connection with control variates. The proposed method is a particular instance of the control variate method. This technique leverages an additional random variable, called control variate, with a known expectation to improve the Monte Carlo performance. In our case, the control variate is K -1 x whose expectation is the input signal y. Implementation. z requires the computation of the control variate per sample in addition to x. The nontrivial part of this computation includes the matrix-vector product Lx. However, we can avoid to repeat this product per sample. Instead, we can calculate the sample mean 1 N N i=1

x(i) , then do the product once to directly compute the sample mean for z.

How to select α?

Unfortunately, calculating the optimal value α requires information that is not readily available. However, as the MSE (Eq. ( 6)) is a quadratic function in α minimized in α , we know that any choice of α ∈ (0, 2α ) will necessarily decrease the variance (see an illustration of this in Fig. 1). We now discuss several options to find such appropriate -yet not optimal-α. Our examination can be separated into two parts, each proposing a choice of α with different motivations. First, we look for a constant for α that is cheap to compute and ensures variance reduction. Second, we consider how to approximate α within the Carlo simulations.

A first option. To ensure variance reduction, z must verify:

E[||z -x|| 2 ] ≤ E[||x -x|| 2 ].
Notice that this inequality is satisfied if the following is true for all x, z ∈ R n :

||z -x|| 2 ≤ ||x -x|| 2 . ( 7 
)
We use this inequality to find a safe range for α and propose to choose the largest α within this range. This particular choice costs O(1) to calculate for a given graph.

Proposition 2. Let d max be the maximum degree of the graph. Then, setting α = 2q q+2dmax ensures that:

||z -x|| 2 ≤ ||x -x|| 2 .
Proof. The following must hold to satisfy Eq. ( 7)

||x -x -α(K -1 x -y)|| 2 ≤ ||x -x|| 2 ||(I -αK -1 )(x -x)|| 2 ≤ ||x -x|| 2 . ( 8 
)
This inequality holds for all x, x if and only if (I -αK -1 ) is a contraction mapping which means:

|µ i | ≤ 1, ∀i ∈ {1, . . . , n},
where µ i 's are the eigenvalues of the matrix (I -αK -1 ).

Rewriting this constraint in terms of the eigenvalues of the graph Laplacian, we have: ∀i, |1 -α λi q -α| ≤ 1, i.e.: ∀i 0 ≤ α ≤ 2q λi+q . The tightest upper bound is given by λ i = λ n and recalling λ n ≤ 2d max [START_REF] Van Mieghem | Graph spectra for complex networks[END_REF] finishes the proof. A second option. In this section, we approximate α from the samples. Let us define ȳ := K -1 x. Then, Eq. ( 5) may be re-written as α = tr(Cov(x,ȳ)) tr(Var(ȳ)) . Using N samples x(1) , . . . , x(N) and the corresponding ȳ(1) , . . . , ȳ(N) , we can empirically estimate α * with the sample covariance matrices:

α = tr( Cov(x, ȳ))
tr( Var(ȳ))

.

The analysis in [START_REF] Owen | Monte Carlo theory, methods and examples[END_REF]Ch 8.9] shows that along with α, z may yield a biased estimator. However, there are heuristics indicating that the bias diminishes with rate O(N -1 ) which is often negligible for large N w.r.t. the estimation error.

An empirical comparison of these two options for α is given in Fig. 1. In a graph with a regular degree distribution, fixing α to 2q q+2dmax gives a performance close to optimum. However, in the case of a graph with a broad degree distribution, 2q q+2dmax fails to provide a good approximation for α , and one needs to resort to α in order to leverage the full variance reduction potential offered by this gradient descent step.

EXPERIMENTS

We illustrate the improved estimator z over real data sets and compare it with x. Tikhonov denoising. The first data set consists of the trip records of taxis in New York City2 over 260 zones. From their geographical positions, we build a k = 5-nearest neighbour graph. The signal, in our case, is the median of the total amount charged to passengers at 260 drop-off zones. In the experiments, we add artificial Gaussian noise to the signal and reconstruct it via Tikhonov denoising and its estimates x and z. Fig. 2 summarizes the results. In Fig. 2d, we can clearly see the improvement via z w.r.t. x in denoising performance. We observe that z with a constant α slightly outperforms the case with α. This is probably due to the poor estimation of α with N = 2.

Node classification. In the second illustration, we use z for solving the semi-supervised node classification problem. The purpose is to classify each vertex by leveraging the underlying graph while the class information is available over only a few vertices. We define a labeling Y = [y 1 , . . . , y k ] ∈ R n×k for k classes where y l (i) is 1 whenever node i is known to be in class j, otherwise it is 0. Given the set of labeled vertices , typically | | |V|, the goal is to find a classification function F = [f 1 , . . . , f k ] ∈ R n×k . One approach is generalized semi supervised learning framework by Avrachevkov et al. [START_REF] Avrachenkov | Generalized optimization framework for graph-based semi-supervised learning[END_REF] which calculates the following solution: where µ ∈ R + and σ ∈ [0, 1] are the hyperparameters of the algorithm. The cumbersome operation in this solution occurs in the calculations involving K due to the matrix inversion. In [START_REF] Yusuf Y Pilavci | Smoothing graph signals via random spanning forests[END_REF], we have already showed that x can approximate these calculations with a certain setting:

F = D 1-σ KD σ-1 Y with K = (D + 2 µ L) -1 D (10) 
z = D 1-σ (x -α(K -1 x -y l ))D σ-1 .
Adapting the calculations in Prop. 2, one obtains the safe option as α = 2µ µ+4 . In the experiments, we examine the classification accuracy of the exact solution and RSF estimates on the benchmark data sets Cora and Citeseer citation network 3 . Fig. 3 presents the classification accuracy given by x, x and ẑ. We observe that z with the constant α performs quite similar to z with α while both outperforming x: for this particular example 2µ µ+4 gives a very good approximation for α .

CONCLUSION

The main idea in this work is that, given an unbiased estimator of the solution to a large-scale least-squares problem (such as in the recent lines of works based on DPPs [START_REF] Derezinski | Determinantal point processes in randomized numerical linear algebra[END_REF][START_REF] Fanuel | Diversity sampling is an implicit regularization for kernel methods[END_REF]), then one (or in fact several) step of classical deterministic gradient descent leaves the estimator unbiased while potentially significantly reducing its variance, for a very small extra cost. We illustrate this idea on graph Tikhonov regularization via random spanning forests, where we show that the variance of the estimator may easily be divided by several factors if one chooses correctly the gradient descent step α. The simplest (and free to compute) choice for α is by far 2q/(q + 2d max ). Even though this choice is shown to necessarily decrease the variance, its performance is hindered when the degree distribution of the graph is broad and d max becomes a crude upper bound of the distribution's mode.

A natural workaround that we will explore in future work is to precondition the gradient step by D -1 yielding (still unbiased) estimators of the form z := x -αD -1 (K -1 xy).

  Now, let us focus on the variance of this new estimator: tr (Var(z)) = tr (Var(x)) + α 2 tr Var(K -1 x) -2α tr Cov(K -1 x, x) .

Fig. 1 :

 1 Fig. 1: Empirical squared error of x (orange horizontal line) and z (blue parabola) w.r.t α on two graphs generated by random models. On the left is a random regular graph with n = 1000 and m = 10000. On the right is a Barabasi-Albert model with parameter k = 10 resulting in n = 1000 and m = 9900. The green (resp. red) vertical dashed line shows α = 2q q+2dmax (resp. the estimated α from the samples). The blue dot represents the best possible variance reduction obtained for α = α . The number of Monte Carlo samples is set to N = 10 and the error results are averaged over 200 realizations. The signal is a random vector generated from N (0, I).

  PSNR vs q, N = 2

Fig. 2 :

 2 Fig. 2: Tikhonov denoising on New York City's taxi network. A k = 5-nn graph with |V| = 260, |E| = 777 is built based on the proximity of the zones. The original signal in (a) is the median of the total amount charged to passengers in drop-off locations. The noisy signal (b) is generated by adding noise drawn from a Gaussian distribution N (x, 25). (c) is the exact solution Ky with q = 0.32. In (d), peak signal to noise ratio is plotted for y, x, z with α = 2q q+2dmax and z with α as in Eq. (9).

Fig. 3 :

 3 Fig. 3: Classification performance on the Cora and Citeseer datasets. m denotes the number of labeled vertices per class. In the experiments, we use µ = 1.0, σ = 0 and α = 2µ µ+4 . The number of Monte Carlo samples is 50 and the experiments are repeated 100 times for each m.

Looking closely at the definition of x in[START_REF] Yusuf | Graph tikhonov regularization and interpolation via random spanning forests[END_REF] as well as its variance property, one can show that tr Var(K -1 x) = 0 only arises when y is a constant vector, in which case x is always equal to y whatever the sampled forest, such that by Eq. (4), z = x and there is no point in using z.

The dataset is available at https://www1.nyc.gov/site/tlc/ about/tlc-trip-record-data.page

These datasets are available at https://linqs.soe.ucsc.edu/data