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Yusuf Yiğit Pilavcı, Pierre-Olivier Amblard, Simon Barthelmé, Nicolas Tremblay

CNRS, Univ. Grenoble Alpes, Grenoble INP, GIPSA-lab, Grenoble, France

ABSTRACT
Large dimensional least-squares and regularised least-squares
problems are expensive to solve. There exist many approx-
imate techniques, some deterministic (like conjugate gra-
dient), some stochastic (like stochastic gradient descent).
Among the latter, a new class of techniques uses Determinan-
tal Point Processes (DPPs) to produce unbiased estimators
of the solution. In particular, they can be used to perform
Tikhonov regularization on graphs using random spanning
forests, a specific DPP. While the unbiasedness of these algo-
rithms is attractive, their variance can be high. We show here
that variance can be reduced by combining the stochastic esti-
mator with a deterministic gradient-descent step, while keep-
ing the property of unbiasedness. We apply this technique
to Tikhonov regularization on graphs, where the reduction in
variance is found to be substantial at very small extra cost.

Index Terms— graph signal processing, smoothing, vari-
ance reduction, random spanning forests.

1. INTRODUCTION

In linear least-squares problems, given measurements y ∈ Rn
and predictors A ∈ Rn×p, we seek the vector x̂ verifying:

x̂ = argmin
x∈Rp

||Ax− y||22 + λxtPx (1)

where λxtPx is a regularization term. x̂ can be computed ex-
actly at cost O(np2), but for very large n or p this is costly,
and approximate methods may be used instead. There are
dozens of such methods, either deterministic or stochastic in
nature. The best known example of the former are the various
gradient descent methods [1], while among the latter the most
popular is certainly stochastic gradient descent [2]. An attrac-
tive alternative to stochastic gradient descent is to use meth-
ods based on Determinantal Point Processes, which, roughly,
consist in finding a well-chosen, random subset of the rows of
A so that solving the least-squares problem for just these rows
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gives an unbiased estimator for the solution to the full prob-
lem [3, 4]. This contrasts with stochastic gradient descent,
where the estimator is generally biased after a finite number
of steps.

One drawback of this new class of methods is that sam-
pling a subset of rows with the right properties may be ex-
pensive, so that reducing the variance by simply increasing
the number of estimates becomes rapidly too costly. We
show below that a very simple way to reduce variance is to
combine a stochastic estimator with (at least one) step of
gradient descent. The result is another unbiased estimator,
one that is guaranteed to have lower variance. We apply our
technique to Tikhonov regularization on graphs, where DPP-
based estimators are particularly well-adapted [5, 6]. As in
standard applications of gradient descent, most of the diffi-
culty consists in determining how large the gradient descent
step should be. In graphs this problem turns out to be quite
tractable, with good heuristics available. Numerical results
confirm that the reduction in variance obtained is substantial,
at small computational cost.

Main idea The main idea of the paper is extremely sim-
ple. Solving a least-squares problem of the form of Eq.(1) is
equivalent to minimizing a quadratic form

f(x) =
1

2
xtQx− rtx. (2)

Minimising f by gradient descent consists in taking steps of
the form

xt = xt−1 − α∇f(xt−1) = xt−1 − α(Qxt−1 − r),

where α is the step size. Since the gradient is zero at the solu-
tion, x̂ = argmin f(x) is a fixed point of the iteration. Now
suppose that x̄ is an unbiased estimator of x̂, i.e., a random
variable such that E(x̄) = x̂. Then, it is easy to check that

E (x̄− α(Qx̄− r)) = x̂,

meaning that x̄ stays unbiased after one step of gradient de-
scent (or indeed several). We show below that setting the step
size α correctly guarantees a reduction in variance, and give
practical solutions for finding an appropriate step size in a
graph signal processing setting.



2. BACKGROUND

Tikhonov regularization in graphs. The regularised least-
squares estimator we are interested in is graph Tikhonov reg-
ularisation (GTR), a method for denoising graph signals. A
“graph signal” is a vector of measurements associated with
the nodes of a graph, for instance brain activity in n brain
regions, where the graph models neural connectivity across
regions. GTR also occurs as a subproblem in other methods,
like semi-supervised learning [6], which is why finding an ef-
ficient approximation algorithm is of high interest.

Let us first set notation. We denote a graph by the set
G = (V, E , w) with |V| = n vertices and |E| = m edges.
w : V × V 7→ R+ is called the weight function and is non-
zero only for (i, j) ∈ E . In this work, we only consider con-
nected (i.e., there exists a path between any pair of nodes)
and undirected graphs (i.e., verifying ∀(i, j) ∈ E , w(i, j) =
w(j, i)). In addition, we use certain matrices to depict the
algebraic properties of graphs. These are the (weighted) ad-
jacency matrix W = [w(i, j)]i,j ∈ Rn×n, the diagonal de-
gree matrix whose diagonal entries are Di,i =

∑n
j=1 w(i, j)

and the graph Laplacian, L = D −W. It is well-known that
L ∈ Rn×n is a symmetric positive semi-definite matrix with
n eigenvalues λ1 = 0 < λ2 ≤ . . . ≤ λn for any undirected,
connected graph [7].

Given a noisy version y ∈ Rn of an underlying graph
signal x ∈ Rn that one wishes to recover, GTR consists in
solving the following minimisation problem to estimate x:

x̂ = argmin
z∈Rn

q||z− y||22 + z>Lz, (3)

where q ∈ R+ is a parameter that adjusts the balance between
the data fidelity term ||z − y||22 and the regularization term
z>Lz, which forces the solution to be smooth over the graph.
Note that this is a special case of eq. (1) with A = I, P = L
and λ = 1/q. The explicit solution to this problem reads:

x̂ = Ky with K = q(qI + L)−1

The direct computation of x̂ requires (a worst-case) O(n3)
elementary operations due to the inversion of (qI + L). As
n increases, this computation becomes prohibitive. In the
next section, we list state-of-the-art methods which avoid this
expensive computation.

DPP-based estimators for Graph Tikhonov Regularisa-
tion. In the special case of GTR, the most popular methods
are deterministic. For large n, state-of-the-art methods can
be divided roughly into two groups, namely iterative methods
(e.g. conjugate gradient [8]) and polynomial approximations
(e.g. Chebyshev polynomials [9]). Both classes of methods
run in linear time with the number of edges, m.

As an alternative stochastic method for GTR, we have
proposed in previous works unbiased Monte Carlo estima-
tors for approximating x̂ which also scale linearly with m

[5, 6]. Our method can be viewed as a DPP-based subsam-
pling of the rows of a matrix, but the case of GTR is partic-
ularly favourable. The appropriate DPP is the random forest
process [10], which is easy to sample from, and its analytic
properties enable variance reduction via conditional Monte
Carlo. The resulting estimator, called x̄ in [5, 6], is unbiased
(E(x̄) = x̂), can be obtained inO(m) elementary operations,
and takes a very simple form: based on the partition formed
by a random spanning forest, it averages the signal in each
part of the partition. We repeat this processN times and aver-
age to get a denoised signal. The details of the estimator can
be found in [6], but are irrelevant for what we discuss here.

3. PROPOSED METHOD

In this section, we propose an improved estimator for esti-
mating Ky. As described in the introduction, we combine our
unbiased estimator with a gradient descent step to reduce vari-
ance. This variance reduction technique can also be viewed
as an instance of the control variate method [11] in the Monte
Carlo literature.

3.1. The gradient descent update

Note that the solution to (3) also minimizes the cost function:

F (z) =
1

2
z>K−1z− z>y.

As stated in the introduction, applying the gradient step to x̄
yields a new estimator:

z̄ := x̄− α(K−1x̄− y). (4)

Proposition 1. z̄ is an unbiased estimator for x̂. Moreover,
assuming1 tr

(
Var(K−1x̄)

)
> 0, the MSE of z̄ is a quadratic

function of α which is minimized for:

α? =
tr
(
Cov(K−1x̄, x̄)

)
tr (Var(K−1x̄))

. (5)

Proof. Since x̄ is an unbiased estimator, the expectation of z̄
immediately reads E[z̄] = E[x̄]−α(K−1E[x̄]−y) = x̂.Now,
let us focus on the variance of this new estimator:

tr (Var(z̄)) = tr (Var(x̄)) + α2 tr
(
Var(K−1x̄)

)
− 2α tr

(
Cov(K−1x̄, x̄)

)
.

(6)

Eq. (6) is a quadratic function in α and is minimized at α?

given in Eq. (5):

1Looking closely at the definition of x̄ in [6] as well as its variance prop-
erty, one can show that tr

(
Var(K−1x̄)

)
= 0 only arises when y is a con-

stant vector, in which case x̄ is always equal to y whatever the sampled
forest, such that by Eq. (4), z̄ = x̄ and there is no point in using z̄.



Connection with control variates. The proposed method is
a particular instance of the control variate method. This tech-
nique leverages an additional random variable, called control
variate, with a known expectation to improve the Monte Carlo
performance. In our case, the control variate is K−1x̄ whose
expectation is the input signal y.
Implementation. z̄ requires the computation of the control
variate per sample in addition to x̄. The nontrivial part of this
computation includes the matrix-vector product Lx̄. How-
ever, we can avoid to repeat this product per sample. Instead,
we can calculate the sample mean 1

N

∑N
i=1 x̄(i), then do the

product once to directly compute the sample mean for z̄.

3.2. How to select α?

Unfortunately, calculating the optimal value α? requires in-
formation that is not readily available. However, as the MSE
(Eq. (6)) is a quadratic function in α minimized in α?, we
know that any choice of α ∈ (0, 2α?) will necessarily de-
crease the variance (see an illustration of this in Fig. 1). We
now discuss several options to find such appropriate –yet not
optimal– α. Our examination can be separated into two parts,
each proposing a choice of αwith different motivations. First,
we look for a constant for α that is cheap to compute and
ensures variance reduction. Second, we consider how to ap-
proximate α? within the Monte Carlo simulations.

A first option. To ensure variance reduction, z̄ must verify:

E[||z̄− x̂||2] ≤ E[||x̄− x̂||2].

Notice that this inequality is satisfied if the following is true
for all x̄, z̄ ∈ Rn:

||z̄− x̂||2 ≤ ||x̄− x̂||2. (7)

We use this inequality to find a safe range for α and propose to
choose the largest α within this range. This particular choice
costs O(1) to calculate for a given graph.

Proposition 2. Let dmax be the maximum degree of the
graph. Then, setting α = 2q

q+2dmax
ensures that:

||z̄− x̂||2 ≤ ||x̄− x̂||2.

Proof. The following must hold to satisfy Eq. (7)

||x̄− x̂− α(K−1x̄− y)||2 ≤ ||x̄− x̂||2
||(I− αK−1)(x̄− x̂)||2 ≤ ||x̄− x̂||2.

(8)

This inequality holds for all x̄, x̂ if and only if (I− αK−1) is
a contraction mapping which means:

|µi| ≤ 1, ∀i ∈ {1, . . . , n},

where µi’s are the eigenvalues of the matrix (I − αK−1).
Rewriting this constraint in terms of the eigenvalues of the
graph Laplacian, we have: ∀i, |1 − αλi

q − α| ≤ 1, i.e.:
∀i 0 ≤ α ≤ 2q

λi+q
. The tightest upper bound is given by

λi = λn and recalling λn ≤ 2dmax [7] finishes the proof.
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Fig. 1: Empirical squared error of x̄ (orange horizontal line) and
z̄ (blue parabola) w.r.t α on two graphs generated by random mod-
els. On the left is a random regular graph with n = 1000 and
m = 10000. On the right is a Barabasi-Albert model with parame-
ter k = 10 resulting in n = 1000 and m = 9900. The green (resp.
red) vertical dashed line shows α = 2q

q+2dmax
(resp. the estimated

α̂ from the samples). The blue dot represents the best possible vari-
ance reduction obtained for α = α?. The number of Monte Carlo
samples is set toN = 10 and the error results are averaged over 200
realizations. The signal is a random vector generated from N (0, I).

A second option. In this section, we approximate α? from
the samples. Let us define ȳ := K−1x̄. Then, Eq. (5)
may be re-written as α? = tr(Cov(x̄,ȳ))

tr(Var(ȳ)) . Using N samples

x̄(1), . . . , x̄(N) and the corresponding ȳ(1), . . . , ȳ(N), we can
empirically estimate α∗ with the sample covariance matrices:

α̂ =
tr(Ĉov(x̄, ȳ))

tr(V̂ar(ȳ))
. (9)

The analysis in [12, Ch 8.9] shows that along with α̂, z̄ may
yield a biased estimator. However, there are heuristics indi-
cating that the bias diminishes with rate O(N−1) which is
often negligible for large N w.r.t. the estimation error.

An empirical comparison of these two options for α is given
in Fig. 1. In a graph with a regular degree distribution, fixing
α to 2q

q+2dmax
gives a performance close to optimum. How-

ever, in the case of a graph with a broad degree distribution,
2q

q+2dmax
fails to provide a good approximation for α?, and

one needs to resort to α̂ in order to leverage the full variance
reduction potential offered by this gradient descent step.

4. EXPERIMENTS

We illustrate the improved estimator z̄ over real data sets and
compare it with x̄.
Tikhonov denoising. The first data set consists of the trip
records of taxis in New York City 2 over 260 zones. From
their geographical positions, we build a k = 5-nearest neigh-
bour graph. The signal, in our case, is the median of the total
amount charged to passengers at 260 drop-off zones. In the

2The dataset is available at https://www1.nyc.gov/site/tlc/
about/tlc-trip-record-data.page

https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page
https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page
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Fig. 2: Tikhonov denoising on New York City’s taxi network. A
k = 5-nn graph with |V| = 260, |E| = 777 is built based on
the proximity of the zones. The original signal in (a) is the me-
dian of the total amount charged to passengers in drop-off loca-
tions. The noisy signal (b) is generated by adding noise drawn from
a Gaussian distribution N (x, 25). (c) is the exact solution Ky with
q = 0.32. In (d), peak signal to noise ratio is plotted for y, x̄, z̄ with
α = 2q

q+2dmax
and z̄ with α̂ as in Eq. (9).

experiments, we add artificial Gaussian noise to the signal and
reconstruct it via Tikhonov denoising and its estimates x̄ and
z̄. Fig. 2 summarizes the results. In Fig. 2d, we can clearly
see the improvement via z̄ w.r.t. x̄ in denoising performance.
We observe that z̄ with a constant α slightly outperforms the
case with α̂. This is probably due to the poor estimation of α̂
with N = 2.

Node classification. In the second illustration, we use z̄ for
solving the semi-supervised node classification problem. The
purpose is to classify each vertex by leveraging the underly-
ing graph while the class information is available over only a
few vertices. We define a labeling Y = [y1, . . . ,yk] ∈ Rn×k
for k classes where yl(i) is 1 whenever node i is known to
be in class j, otherwise it is 0. Given the set of labeled ver-
tices `, typically |`| � |V|, the goal is to find a classification
function F = [f1, . . . , fk] ∈ Rn×k. One approach is general-
ized semi supervised learning framework by Avrachevkov et
al. [13] which calculates the following solution:

F = D1−σKDσ−1Y with K = (D +
2

µ
L)−1D (10)
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Fig. 3: Classification performance on the Cora and Citeseer
datasets. m denotes the number of labeled vertices per class. In
the experiments, we use µ = 1.0, σ = 0 and α = 2µ

µ+4
. The number

of Monte Carlo samples is 50 and the experiments are repeated 100
times for each m.

where µ ∈ R+ and σ ∈ [0, 1] are the hyperparameters of the
algorithm. The cumbersome operation in this solution occurs
in the calculations involving K due to the matrix inversion.
In [5], we have already showed that x̄ can approximate these
calculations with a certain setting:

z̄ = D1−σ(x̄− α(K−1x̄− yl))D
σ−1.

Adapting the calculations in Prop. 2, one obtains the safe
option as α = 2µ

µ+4 . In the experiments, we examine the clas-
sification accuracy of the exact solution and RSF estimates on
the benchmark data sets Cora and Citeseer citation network3.
Fig. 3 presents the classification accuracy given by x̂, x̄ and
ẑ. We observe that z̄ with the constant α performs quite simi-
lar to z̄ with α̂ while both outperforming x̄: for this particular
example 2µ

µ+4 gives a very good approximation for α?.

5. CONCLUSION

The main idea in this work is that, given an unbiased estimator
of the solution to a large-scale least-squares problem (such as
in the recent lines of works based on DPPs [3, 4]), then one (or
in fact several) step of classical deterministic gradient descent
leaves the estimator unbiased while potentially significantly
reducing its variance, for a very small extra cost.

We illustrate this idea on graph Tikhonov regularization
via random spanning forests, where we show that the variance
of the estimator may easily be divided by several factors if one
chooses correctly the gradient descent step α. The simplest
(and free to compute) choice for α is by far 2q/(q + 2dmax).
Even though this choice is shown to necessarily decrease the
variance, its performance is hindered when the degree distri-
bution of the graph is broad and dmax becomes a crude upper
bound of the distribution’s mode.

A natural workaround that we will explore in future work
is to precondition the gradient step by D−1 yielding (still un-
biased) estimators of the form z̄ := x̄− αD−1(K−1x̄− y).

3These datasets are available at https://linqs.soe.ucsc.edu/data
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