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Abstract—Jupyter notebooks have gained popularity in educa-
tional settings. In France, it is one of the tools used by teachers
in post-secondary classes to teach programming.

When students complete their assignments, they send their
notebooks to the teacher for feedback or grading. However, the
teacher may not be able to reproduce the results contained in the
notebooks. Indeed, students rely on the non-linearity of notebooks
to write and execute code cells in an arbitrary order. Conversely,
teachers are not aware of this implicit execution order and expect
to reproduce the results by running the cells linearly from top
to bottom. These two modes of usage conflict, making it difficult
for teachers to evaluate their students’ work.

This article investigates the use of immediate visual feedback
to alleviate the issue of non-reproducibility of students’ notebooks.
We implemented a Jupyter plug-in called Notebook Reproducibil-
ity Monitor (NoRM) that pinpoints the non-reproducible cells of
a notebook under modifications. To evaluate the benefits of this
approach, we perform a controlled study with 37 students on a
programming assignment, followed by a focus group. Our results
show that the plug-in significantly improves the reproducibility
of notebooks without sacrificing the productivity of students.

Index Terms—notebooks, reproducibility, computer science
education.

I. INTRODUCTION

The Jupyter Notebook is an open-source web-based interac-
tive environment that combines multi-language programming,
rich text, mathematical equations, plots and more, into a single
document. They are used by data scientists and teachers [1] to
share “literate programming” documents [2].

In France, Jupyter notebooks are now proposed by the
Ministry of National Education as part of its virtual learning
environment for teachers and students. The context and
challenges of this paper arise from our experience with the
computer science courses of CPGE students. Scientific CPGEs
are selective and intensive post-secondary curricula consisting
of two years of study to prepare students before they enter
engineering schools. Algorithms, data science, modeling, and
simulation are at the heart of the computer science course for
these students, and Jupyter notebooks are an ideal environment
for teaching these subjects [3].

During programming assignments with notebook and Python,
students write programs in code cells that yield an optional
output in a dedicated area when executed. Students then use

these outputs to check that their programs produce the expected
result. While completing the assignment, students are free to
add, modify, delete and (re-)execute code cells in any order.
Once they are satisfied with the results, they send the notebook
to their teacher.

Then, having no way of knowing the execution order
followed by the students, teachers re-execute the cells linearly,
from top to bottom, to make sure that they obtain the same
results [4]. Ideally, the last outputs obtained by the students and
those obtained by the teacher when re-executing the notebook
should be the same. In such a case, the notebook is said to
be reproducible, a key aspect of the scientific method [5].
Unfortunately, it is common for teachers to obtain different
outputs when re-executing the notebooks due to a different
execution order. Different outputs do not necessarily imply that
the students failed. Therefore, the teacher must understand how
the student arrived in this state to understand its reasoning and
grade appropriately. This complex task could be avoided if the
notebook was reproducible in the first place.

A naive solution would be to force the students to reset the
notebook state and to execute the notebook linearly to ensure
its reproducibility. However, this approach typically reveals
several reproduciblity issues within the same notebook, making
it difficult for the students to debug. In this paper, we propose
to alleviate this problem with a simple Jupyter plug-in (NoRM)
that gives immediate visual feedback [6, 7, 8, 9] to students
regarding reproducibility while they are writing their notebooks.
Our plug-in continuously attempts to reproduce the notebook
in the background and highlights which cells are reproducible
or not using colors. It allows the students to become aware of
reproducibility issues as soon as possible to take action before
they accumulate.

To assess the usefulness of our tool, we performed a
controlled study involving 37 CPGE students on a two hours
programming assignment to investigate the following questions:

RQ1 What are the most common reproducibility mistakes in
non-reproducible notebooks?

RQ2 Does our plug-in improve the reproducibility of student
notebooks?

RQ3 Since having to deal with reproducibility problems early
might make the writing of a notebook more tedious, does
our plug-in affect the productivity of students?978-1-6654-4592-4/21/$31.00 ©2021 European Union



Among the non-reproducible notebooks in the control group,
we observed the same root causes as those identified in other
studies [4, 10, 11, 12, 13, 14]. Our results show that the
students using the plug-in were able to significantly improve the
reproducibility of their notebooks (only 6% of non-reproducible
notebooks compared to 47% in the control group). Moreover,
the students using the plug-in were able to complete the
assignment as well as the ones in the control group. In a focus
group with students conducted after our study, one participant
told us that: in the absence of the plug-in I don’t know exactly
when the notebook is no longer in a reproducible state.

II. NOTEBOOK REPRODUCIBILITY

To study reproducibility, we consider that a notebook is a
list of code cells and their output.

A. The Student’s Point of View

When the student writes her notebook, she unknowingly uses
a notebook kernel, i.e., a computational engine that executes
the code contained in the cells, updates the current memory
state, and writes the output in the corresponding output cells.

Students mainly use the Run Cell command of Jupyter to
execute individual cells in an arbitrary order. This execution
mode is particularly suitable in the exploratory phase, where
students write their notebooks incrementally following a trial-
and-error approach. It enables them to edit and re-execute
previous code cells as desired to experiment with their code.

In Figure 1a, the student wrote a first version of the Syracuse
algorithm. The student then refactors her code with meaningful
variable names (s becomes syracuse) but forgets to update one
reference (Figure 1b, Cell 2, line 3). This issue goes unnoticed,
as the variable s is still stored in memory and the algorithm still
produces the expected result when running the entire notebook
linearly. Then, in Figure 1c, the student expands the notebook
with another usage of the algorithm in Cells 4 and 5. In her
mind, the reader should first execute Cell 4 to initialize the
variables, then Cell 2 to compute the Syracuse suite, and finally
Cell 5 to display the results.

Once the assignment is finished, the student shares her
notebook with her teacher via a file where the code cells
and associated outputs are serialized, but not the kernel state.

B. The Teacher’s Point of View

When the teacher opens the student’s notebook, she is not
aware of the execution order used by the student to obtain the
outputs. Instead, she expects to reproduce the same results by
executing the cells linearly. However, doing so on the notebook
of Figure 1c yields a different output for Cell 5.

Indeed, Cell 2 must be re-executed every time the variable
N is assigned a new value to compute the Syracuse suite. This
example highlights the difference between non-linear and linear
executions: the notebook executes successfully but does not
produce the same outputs and thus is not reproducible.

If the teacher had received the second version of the notebook
(Figure 1b), the situation would be worse. Running the cells
linearly would yield a Python NameError on Cell 2, as depicted

in Figure 1d. In this case, the notebook is not even fully
executable by the teacher.

In the notebooks of Figure 1, Jupyter displays an execution
count on the left of each code cell (e.g., “[9]” for cell 3 in
Figure 1c). It indicates the total number of code cell executions
since the kernel was started, at the time of executing this cell.
When the student re-executes a cell, it overwrites the previous
execution count. As a consequence, the list of execution counts
does not necessarily start from 1 (if the first executed cell was
re-executed afterwards) and is not necessarily continuous.

One might think that executing the notebook in the order
given by the execution counts of the notebook will help, but
this is not the case [10, 4]. Executing the notebook of Figure 1c
following the execution counts (i.e., [c4, c5, c3, c2, c1]) will also
yield different outputs. In addition, execution counts are not
guaranteed to appear if the student did no execute all cells
before saving and sharing her assignment with the teacher or
if the notebook was reset.

When grading, the teacher is left wondering if the code
written by the student is simply wrong or if the issues arise
from non-reproducibility, forcing her to conduct an in-depth
analysis of the notebook written by the student.

C. Reproducibility

We consider two roles manipulating the notebooks: the writer
(the student) and the reader (the teacher). As we have seen,
it is natural for the writer to enjoy the freedom of non-linear
execution when writing a notebook, and it is natural for the
reader to execute and read the same notebook linearly. A
notebook is reproducible if the outputs obtained by running
cells from top to bottom are the same as those saved in the
notebook. Our hypothesis is that students would benefit from
knowing immediately when reproducibility problems arise in
their notebooks to understand and solve them as early as
possible. For our experiments, we implemented a simple plug-
in (NoRM) highlighting reproducible cells in green and non-
reproducible cells in red (Figure 1c). The current version of
our plug-in compares, after each cell execution, the outputs
of the notebook with the ones produced linearly by a second
kernel using simple string comparison.

III. STUDY DESIGN

In this section, we describe the setup of our controlled study.

A. Procedure

Our participants are 37 CPGE students. In CPGE, the
computer science course teaches scientific computing topics
including the use of Python for data analysis and simulation.
Jupyter notebooks are well-suited to support these requirements
and prepare students for formatting their code and analyses
in the same document [15]. Prior to the study, the professor
(first author) introduced the notion of reproducibility and the
NoRM plug-in. Then, the students had two hours to complete
13 questions with the instruction to use as many cells as desired.
For every question, the subject contained the expected results
that the programs should output for some example input values.



(a) First version (b) Second version (c) Final version (d) Fresh execution of the second
version

Figure 1: Successive versions of a notebook implementing the Syracuse algorithm.

The students had to answer the questions while trying to keep
the notebook reproducible top-to-bottom. For the study, we
randomly assigned one group to the control group and the
other group to the experimental group (with plug-in).

B. Measures

To answer RQ1, RQ2, and RQ3, we used the following
metrics: reproducibility, executability (top-to-bottom), number
of code cells (markdown and text cells excluded) and number
of correct answers (evaluated by the professor).

C. Analysis

For RQ1, we use NoRM to assess non-reproducible cells
and manually analyze the causes of non-reproducibility.

For RQ2, we test the two following null hypotheses: our
plug-in has no effect on the reproducibility of notebooks and
our plug-in has no effect on the executability of notebooks. As
the reproducibility and executability of a notebook are Boolean
variables and as our sample size is small, we use Fisher’s exact
test to assess the significance.

For RQ3, we test the following null hypotheses: our plug-in
has no effect on the number of cells and our plug-in has no
effect on the number of correct answers. Since we have no
assumption about the distribution of the number of cells and
correct answers, we use a non-parametric two-tailed Mann-
Whitney test for both hypotheses to assess the significance.

Finally, to triangulate our quantitative results, we proceed
to a focus group with the two groups of participants.

IV. RESULTS

The examples, assignments, notebooks, data, and analyses
are available on a companion webpage [16].

A. RQ1

We extracted three main categories, described below.
a) Out-of-order execution of dependent cells: In this

category, non-reproducibility arises because the writer executed
the cells in an other order than the top-down order.

b) Missed cell execution after a code modification: In this
category, non-reproducibility arises because the writer modified
a cell, but forgot to execute the cell itself or a dependent cell.

c) Referencing a renamed or deleted variable: In this
category, non-reproducibility arises because the writer modifies
(or deletes) the name of a function or variable, and executes
the corresponding cell. However, the previous name still exists
in memory.

B. RQ2

In Figure 2a, 47% (9 out of 19) of the notebooks of the
control group are not reproducible while 6% (1 out of 18) of
the notebooks of the experimental group are in this situation.
In the study of Pimentel et al., 96% of the notebooks with an
unambiguous execution order were not reproducible [10]. In
our study, we are not affected by some reproducibility problems
such as incompatible environment or missing data. However,
about half of the notebooks are still not reproducible. In the
experimental group, the ratio of non-reproducible notebooks
is greatly reduced, with only one non-reproducible notebook.
To statistically assess the difference between the two groups,
we perform a Fisher exact test on the contingency table of
the amount of reproducible and non-reproducible notebooks in
the control and experimental groups. The test yields a p-value
p = 0.008∗∗∗ which is significant under a strict 0.01 threshold.
The risk ratio is 0.12, indicating that a notebook developed
with the plug-in has 88% less risk to be non-reproducible.

We note in Figure 2b that 47% (9 out of 19) of the notebooks
of the control group are not executable while 17% (3 out of 18)
of the notebooks of the experimental group are in this situation.
In the study of Pimentel et al., 75% of the notebooks with an
unambiguous execution order were not executable. Similarly
to the reproducibility, in our study, we are not affected by
some execution problems such as missing dependencies. In the
experimental group, the ratio of non-executable notebooks is
greatly reduced, with only three non-reproducible notebook.
To stastically assess the difference between the two groups,
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Figure 2: Number of a) reproducible and b) executable
notebooks in the control and experimental groups
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Figure 3: Number of a) correct answers and b) cells in the
control and experimental groups.

we perform a Fisher exact test on the contingency table of
the amount of reproducible and non-reproducible notebooks in
the control and experimental groups. The test yields a p-value
p = 0.078∗ which is significant under a loose 0.1 threshold.
The risk ratio is 0.35, indicating that a notebook developed
with the plug-in has 65% less risk to be non-executable.

C. RQ3

We analyzed the students’ notebooks to identify possible
adverse effects of the plug-in on the number of correct answers
and the total number of cells. In Figure 3a, the median number
of correct answers appears slighlty greater in the experimental
group, and the interquartile range is also greater in this group.
To statistically assess the difference between the two groups,
we perform a non-parametric two-tailed Mann-Withney test
that yields a p-value p = 0.78. Thus, we cannot reject the null
hypothesis that there is no difference between the groups.

In Figure 3b, the median number of cells is a little lower
in the experimental group, and the interquartile range is also
lower. To statistically assess the difference between the two
groups, we perform a non-parametric two-tailed Mann-Withney
test that yields a p-value p = 0.21. Thus, we cannot reject the
null hypothesis that there is no difference between the groups.

D. Focus group

We first questioned the students about the notion of repro-
ducibility and the importance they attached to it. As future
engineers the students think that it is an important notion

when it comes to sharing their work in physics, mathematics
and chemistry. We then asked them if they could define the
link between reproducibility and notebook. We received two
spontaneous answers: “the notebook can pose reproducibility
problems when sharing it with someone because it will be
necessary to execute the cells in the order they need to be
executed for it to work”, “when you save the file and open it
later on, it doesn’t work or it doesn’t give the same thing as
when you opened it”.

In a second step we asked the students if they made an effort
to consider reproducibility when writing a notebook. Only 25%
admit to thinking about it. Students say: “when I look for the
solution I don’t think about reproducibility”, “it is difficult to
know when the notebook is no longer reproducible”.

Finally we asked student of the experimental group what
were the advantages and drawbacks of the plug-in. Students
say: “when a cell is red I know there is a problem”, “when
it’s green it’s reassuring”, “there is something missing to help
us correct when it is red”.

E. Threats to Validity
a) Internal validity: All the students did not necessarily

have the same level in programming and the best students may
have ended up in the same group. A statistical study of the
correct answers suggests that there is no significant difference.

b) External validity: The problem given to students has
been specially designed to evaluate the plug-in in a controlled
environment (no non-deterministic code or modules that could
be problematic). Our study has a small sample size with a
limited number of students and it lasted for only two hours.

V. RELATED WORK

Reproducibility is usually assessed after the notebook is
finished [17, 12] to reconstruct a possible execution order for
the cells. Wang et al. added the detection of packages needed to
reproduce the results of a notebook [18]. Macke et al. developed
a custom Jupyter kernel that uses run-time tracing and static
analysis to automatically manage lineage associated with cell
execution and global notebook state [14]. There are also two
other exciting directions that we have not explored. The first
allows data scientists to record the development history of the
notebook [1, 19] and the second proposes a number of changes
to the notebook core and interface that allow users to explicitly
encode dependencies between cells by adding a unique and
persistent identifier to each cell [4].

VI. CONCLUSION

In this paper, we study the reproducibility of notebooks in the
context of programming courses for post-secondary students.
We designed and implemented an approach giving immediate
visual feedback on the reproducibility of a notebook’s cells, as
well as a prototype implementation, NoRM. To demonstrate
the benefits of our approach, we conducted a controlled study
showing that: (i) it significantly reduces the reproducibility
problems of student notebooks, (ii) it has no significant adverse
effects on the productivity of students and (iii) it is well
perceived by the students.
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