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Abstract Just like any software, libraries evolve to incorporate new features,
bug fixes, security patches, and refactorings. However, when a library evolves,
it may break the contract previously established with its clients by introducing
Breaking Changes (BCs) in its API. These changes might trigger compile-time,
link-time, or run-time errors in client code. As a result, clients may hesitate
to upgrade their dependencies, raising security concerns and making future
upgrades even more difficult.

Understanding how libraries evolve helps client developers to know which
changes to expect and where to expect them, and library developers to un-
derstand how they might impact their clients. In the most extensive study to
date, Raemaekers et al. investigate to what extent developers of Java libraries
hosted on the Maven Central Repository (MCR) follow semantic versioning
conventions to signal the introduction of BCs and how these changes impact
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client projects. Their results suggest that BCs are widespread without regard
for semantic versioning, with a significant impact on clients.

In this paper, we conduct an external and differentiated replication study
of their work. We identify and address some limitations of the original protocol
and expand the analysis to a new corpus spanning seven more years of the
MCR. We also present a novel static analysis tool for Java bytecode, Maracas,
which provides us with: (i) the set of all BCs between two versions of a library;
and (ii) the set of locations in client code impacted by individual BCs.

Our key findings, derived from the analysis of 119, 879 library upgrades and
293, 817 clients, contrast with the original study and show that 83.4% of these
upgrades do comply with semantic versioning. Furthermore, we observe that
the tendency to comply with semantic versioning has significantly increased
over time. Finally, we find that most BCs affect code that is not used by any
client, and that only 7.9% of all clients are affected by BCs. These findings
should help (i) library developers to understand and anticipate the impact of
their changes; (ii) library users to estimate library upgrading effort and to pick
libraries that are less likely to break; and (iii) researchers to better understand
the dynamics of library-client co-evolution in Java.

Keywords software evolution, API evolution, breaking changes, backwards
compatibility, Maven Central

1 Introduction

Just like any software, libraries evolve to incorporate new features, bug fixes,
security patches, and refactorings. It is critical for clients to stay up to date
with the libraries they use to benefit from these improvements and to avoid
technical lag [18, 52]. When a library evolves, however, it may break the contract
previously established with its clients by introducing Breaking Changes (BCs)
in its public Application Programming Interface (API), resulting in compilation-
time, link-time, or run-time errors. These errors burden client developers given
the sudden urgency to fix issues without intrinsic motivation. As a result,
clients may hesitate to upgrade their dependencies, raising security concerns
and making future upgrades even more difficult [27, 34].

BCs are language-specific: they vary with the syntax and semantics of a
particular programming language. In Java, seemingly innocuous changes such
as altering the visibility or abstractness modifier of a type declaration, or simply
inserting a new method into an abstract type can, under certain conditions,
break client code [19]. Most refactoring operations, though essential to maintain
and evolve libraries, also induce BCs. Thus, it does not come as a surprise that
BCs are widespread in Java libraries [48]. It is, however, essential to realize
that not all BCs are intrinsically harmful. Nonetheless, they should not come
unannounced and take clients by surprise: it should be clear for clients what
consequences upgrading their dependencies will have on their own software, so
they can make an informed decision beforehand.
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To this end, Java library developers can leverage various mechanisms to
communicate with their clients on the stability of their APIs and the effort
required to upgrade to a newer version. These mechanisms enable them to
specify when and where BCs are to be expected. On the one hand, semantic
versioning (semver) enables developers to use well-defined versioning conventions
to classify new library releases as major releases (which may introduce BCs),
minor releases (which may introduce new backward-compatible features but
should not introduce any BC), patch releases (which should not affect the
public API whatsoever), and initial development releases (which may break
anything at any time) [37]. On the other hand, annotations directly placed
on source code elements (e.g., Google’s @Beta and Apache’s @Internal) and
naming conventions (such as internal and experimental packages) can be used
to indicate that certain parts of the public API are exempt from compatibility
guarantees and subject to sudden changes.

Clients who upgrade towards a new major release of a library or early
adopters who rely on beta-stage APIs are well aware of the consequences.
It is thus crucial to distinguish between libraries that evolve gracefully by
introducing BCs only when and where appropriate, and those that “break bad”
by introducing BCs in minor and patch releases or in allegedly stable APIs.

In the most extensive study to date, Raemaekers et al. dissect backwards
compatibility issues in the Maven Central Repository1 (MCR) with respect to
semantic versioning [42]. The study uses the tool clirr to infer the list of BCs
between two versions of a Java library and measures their impact on client code
using the Java compiler itself. The empirical evaluation is carried on a complete
snapshot of MCR, up to the year 2011. To name but a few of their findings,
the study concludes that: (i) BCs are widespread without regard for versioning
conventions; (ii) the adherence to semantic versioning principles has increased
over time, and; (iii) BCs have a significant impact on clients. The relevance and
quality of this study for understanding the API-client co-evolution problem
motivate us to replicate and expand its protocol and corpus.

In this paper, we conduct an external and differentiated replication study [32]
of the study by Raemaekers et al. [42], which from now on we will refer to as
the original study. After reviewing the original protocol, we introduce major
changes to alleviate some of its limitations and address key threats to its
validity. The main differences between our study and the original study are as
follows:

– We refine the original protocol by introducing new filters and sanity checks
to avoid analysing Maven artefacts that are not used as libraries and versions
that are not meant to be used by clients—only 12% of all artefacts in our
replication corpus are indeed used as libraries;

– We implement a new tool built atop japicmp,2 Maracas, more accurate than
clirr, which we use to analyse Java bytecode and compute the set of BCs

1 https://search.maven.org
2 https://siom79.github.io/japicmp

https://search.maven.org
https://siom79.github.io/japicmp
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between two versions of a library, as well as to compute how client projects
are impacted by individual changes;

– We re-analyse the original corpus to assess the impact of our new protocol
and tool, and expand the analysis to a new corpus spanning seven more
years of the MCR (from 144K Maven artefacts to 2.4M).

We focus on a subset of three of the research questions investigated in the
original study which are central to the API-client co-evolution problem, eluding
other less relevant questions related to deprecation tags and characteristics of
libraries that break more, among others. Our research questions are as follows:

Q1 How are semantic versioning principles applied in the Maven Central
repository in terms of BCs?

Q2 To what extent has the adherence to semantic versioning principles in-
creased over time?

Q3 What is the impact of BCs on clients?

Our results show that, overall, library and client projects on Maven Central
Repository are not “breaking bad”. First, 83.4% of all library upgrades comply
with semver principles, introducing BCs only when they are expected. However,
20.1% of non-major releases are breaking, being a potential threat to their
clients. Second, the tendency to comply with semver practices has significantly
increased over time. In particular, the ratio of non-major releases introducing
BCs has gradually decreased from 67.7% in 2005 to 16.0% in 2018. Third, only
7.9% of clients are actually impacted by BCs introduced in library releases.
In most cases, clients do not use the breaking declarations (i.e., the library
declarations affected by BCs)—but when they do, they are very likely to break.
These results should help library developers to understand and anticipate the
impact of their changes; library users to estimate library upgrading effort and to
pick libraries that are less likely to break, and; researchers to better understand
the dynamics of client-library co-evolution in Java and prioritize research in
the future.

The remainder of this paper is organized as follows. We first introduce
background notions on Maven, semver, and backwards compatibility in Java in
Section 2. We then briefly present the original study in Section 3. In Section 4,
we detail the key differences in the protocol and datasets for our replication
study. We discuss our new results in Section 5 and then present related work
in Section 6. We then discuss the key findings and implications of our study in
Section 7 and finally conclude the paper and discuss future work in Section 8.

2 Background

In this section, we first introduce some background notions on Apache Maven,
APIs, and backwards compatibility in Java. We also discuss the mechanisms
available to developers to communicate the stability of their libraries through
versioning conventions and source code annotations.
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2.1 Apache Maven

Apache Maven (simply referred to as Maven hereafter) is a build automation
tool particularly popular in the Java ecosystem. Maven follows a plugin-oriented
architecture that enables developers to specify the dependencies of a particular
piece of software and how to build it. When used to build Java projects, it
enables developers to convert Java source code to Java bytecode (.class files)
typically bundled as Java ARchives (JARs), which potentially depend on
other JARs. These artefacts can be deployed to and retrieved from remote
Maven repositories. The most popular Maven repository is the Maven Central
Repository (MCR) which, as of May 2021, hosts 6, 723, 367 artefacts.

The cornerstone file defining a Maven project is the Project Object Model
(POM) file. Typically, the POM file is an XML file that contains metadata
about the current project, its dependencies, and additional configurations
required to build it. Listing 1 illustrates the typical structure and tags defined
within a POM file, using the Spring TestContext Framework as an example. The
modelVersion tag specifies the POM version of the file; the groupId tag identifies
the organization or group that develops the project (org.springframework); the
artifactId tag identifies the project itself (spring-test); the version tag specifies
the current version of the project (4.2.5.RELEASE); and the packaging tag specifies
how the project is packaged (jar). Together, the group, artefact, and ver-
sion (also known as project coordinates and denoted groupId:artifactId:version)
uniquely identify a Maven artefact.

Dependencies of a project are declared within the dependencies tag. Each
dependency points to a unique Maven artefact (using its project coordinates),
possibly supplemented with additional metadata. In particular, the scope tag
specifies when the dependency is needed and thus in which classpath(s) it
is included (e.g., compile-time, test-time, or run-time dependencies). One
can automatically determine which libraries a Maven artefact depends on by
parsing its POM file. In Listing 1, the Spring TestContext Framework declares
a compile-time dependency towards the JavaServlet library version 3.0.1. Note
that dependencies may employ version constraints (e.g., [1.0, 2.0)), letting the
dependency resolver find a suitable version within this range.

Listing 1: Excerpt of the POM file of the Spring TestContext Framework
project version 4.2.5.RELEASE.
<project>

<modelVersion>4.0.0</modelVersion>

<groupId>org.springframework</groupId>

<artifactId>spring-test</artifactId>

<version>4.2.5.RELEASE</version>

<packaging>jar</packaging>

<dependencies>

<dependency>

<groupId>javax.servlet</groupId>

<artifactId>javax.servlet-api</artifactId>
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<version>3.0.1</version>

<scope>compile</scope>

</dependency>

</dependencies>

</project>

2.2 API Evolution & Backwards Compatibility

An Application Programming Interface (API) is an interface that exposes the
set of services from a library that can be invoked by client projects. In Java
and other object-oriented languages, this interface consists of programming
constructs such as packages, types, methods, and fields. To delimit this inter-
face, library developers use visibility modifiers and other dedicated constructs
provided by the host language [14].

As an environment changes, software used in such an environment face
the need to change accordingly. This is what Lehman [30] coined as software
evolution, later formalized as the eight Lehman’s laws that synthesizes observa-
tions about software evolution [17, 31]. Consequently, APIs—being software
themselves—undergo continual and progressive change over time. The moti-
vation behind this evolution is to provide more value to users by patching
security issues, adding new features, simplifying the current API, fixing bugs,
and improving maintainability [13, 28].

API evolution comes with the introduction of changes that can be classified
according to how they affect client projects [14] and specifically whether they
ensure backwards compatibility. In Java, backwards compatibility is defined at
the source, binary, and behavioural levels [13]. Source compatibility is checked
by the compiler when recompiling a client project with the new version of
an API. Binary compatibility is checked by the Java Virtual Machine (JVM)
during the linking process, as described in Chapter 13 of the Java Language
Specification (JLS) [12, 19]. Lastly, behavioural compatibility can only be verified
at run time to check whether the program exhibits a behaviour that is different
from its previous version, without triggering compilation or linkage errors [13].

There are two types of API changes, namely breaking and non-breaking
changes. On the one hand, breaking changes (BCs) are not backwards com-
patible: client projects using an API entity affected by a BC might break
when migrating to a more recent version of the API [14]. On the other hand,
non-breaking changes (NBC) are backwards compatible, meaning that they
do not trigger any source, binary, or behavioural incompatibility. If an API
only introduces backwards compatible changes, it is said to be stable. It is
important to note that some BCs break several kinds of compatibility (e.g.,
removing a public method is both source and binary incompatible), but none
is a superset of the other [24]. In this paper, to align with the original study,
we only consider binary compatibility and the associated set of BCs.

To illustrate how backwards incompatible changes might impact client
projects, we refer to the Spring TestContext Framework example. The JavaServlet
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public interface HttpServletRequest

extends ServletRequest {

public String getAuthType();

public String getMethod();

[...]

}

(a) JavaServlet version 3.0.1.

public interface HttpServletRequest

extends ServletRequest {

public String getAuthType();

public String getMethod();

public String changeSessionId();

[...]

}

(b) JavaServlet version 3.1.0.

public class MockHttpServletRequest implements HttpServletRequest {

@Override public String getAuthType() {

return this.authType;

}

@Override public String getMethod() {

return this.method;

}

// MockHttpServletRequest must implement method HttpServletRequest.changeSessionId()

}

(c) Spring TestContext Framework version 4.2.5.RELEASE.

Fig. 2.1: Breaking change example: Adding a new abstract method in the
HttpServletRequest interface will break the client type MockHttpServletRequest.

library releases version 3.1.0 in April 2013. This happens almost two years
after its latest major release (i.e., 3.0.1) in July 2011. This new version intro-
duces backwards incompatible changes that might break client code. Some of
those changes include adding new abstract methods to classes and interfaces.
These changes can potentially impact the Spring TestContext Framework in
its 4.2.5.RELEASE version. In some cases, stating that a BC affects client code is
straightforward. For instance, removing a type, method, or field that is used
by a client will obviously break this client. However, client code may also break
when inserting new declarations in the library, for instance when inserting a new
abstract method in an interface. This change will break client code if it extends
this interface, as illustrated in Figure 2.1. In this case, the changeSessionId()

method is added to the HttpServletRequest class within the JavaServlet library.
Given that the MockHttpServletRequest class in the Spring TestContext Frame-
work implements such an interface, it will be forced to implement the new
abstract method resulting in broken code. The literature often overlooks the
BCs induced by uses of a library in an Inversion of Control (IoC) style (i.e.,
where the client extends types exposed in the library, following the Hollywood
principle “don’t call us, we’ll call you! ”) [6, 48]. In contrast, we include all of
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those in our analyses. An exhaustive list of the 31 BCs we consider in this
paper is available on the companion webpage.3

2.3 API Stability Conventions

It is critical for clients to be able to pinpoint which versions and which parts
of an API introduce changes that might break their code. Semantic versioning,
also known as semver, is a popular convention to announce the introduction
of BCs, and its use is encouraged in many software ecosystems (e.g., npm,
RubyGems, Cargo, Maven Central) [11]. This versioning scheme is used to label
library versions according to compatibility guarantees. Each version number
is specified in the form <major>.<minor>.<patch>, where major, minor, and patch

are non-negative integers. A change in the major version signals the possible
introduction of backwards-incompatible changes. Changes in the minor or patch

versions signal the introduction of new features or bug fixes in a backwards-
compatible fashion [37]. Initial development releases, which use zero as the
major version, should also be considered unstable (“[m]ajor version zero (0.Y.Z)
is for initial development. Anything MAY change at any time. The public
API SHOULD NOT be considered stable” [37]). Finally, version numbers may
be suffixed with hyphen-separated qualifiers specifying pre-releases or build
metadata (e.g., 2.1.1-beta2).

At the code level, library developers may use annotations such as Google’s
@Beta and Apache’s @Internal to signal unstable declarations. For instance,
Guava developers state that “APIs marked with the @Beta annotation at the
class or method level are subject to change. They can be modified in any way,
or even removed, at any time,”4 and Apache POI developers state that “Pro-
gram elements annotated @Internal are intended for [...] internal use only. Such
elements are not public by design and likely to be removed, have their signature
change, or have their access level decreased [...] without notice.”5 Naming con-
ventions on packages (e.g., internal and experimental packages) are sometimes
used for the same purpose [9]. For instance, the following comment is attached
to the class Finalizer contained in the package com.google.common.base.internal of
Guava: “While this class is public, we consider it to be *internal* and not part
of our published API. It is public so we can access it reflectively across class
loaders in secure environments”.6 This comment highlights the lack of mecha-
nisms for developers to fine-tune the boundaries of their APIs in languages such
as Java. Some elements are made public because of technical constraints and
not because of the desire to expose these elements in the API; developers must
therefore rely on band-aid solutions such as naming conventions. When used
in relation to semver, these code-level mechanisms enable library developers to
delimit a portion of their API that escapes the strict rules regarding backwards

3 https://crossminer.github.io/maracas/detections
4 https://guava.dev/#important-warnings
5 https://poi.apache.org/apidocs/dev/org/apache/poi/util/Internal
6 https://guava.dev/releases/9.0/api/docs/com/google/common/base/internal/Finalizer

https://crossminer.github.io/maracas/detections
https://guava.dev/#important-warnings
https://poi.apache.org/apidocs/dev/org/apache/poi/util/Internal
https://guava.dev/releases/9.0/api/docs/com/google/common/base/internal/Finalizer
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compatibility. That is, BCs can be introduced in declarations labelled with
these mechanisms without regard for semver.

3 Original Study

In this section, we briefly introduce the original study object of this replication.
We present its goal, main findings, and the protocol used to answer its research
questions.

The original study by Raemaekers, van Deursen, and Visser, entitled “Se-
mantic versioning and impact of breaking changes in the Maven repository” and
published in The Journal of Systems and Software in 2017, investigates whether
API developers use versioning practices to signal backwards incompatibility,
and how unstable interfaces impact client projects in terms of compilation
errors [42]. Although the original study is organized around seven research
questions, we decide to focus our effort on three of them that are specifically
aimed at understanding the API-client co-evolution problem. In particular,
they address the relationship between BCs and versioning conventions, and
the impact of BCs on client code. The main findings of the original study
are summarized in the following statements. Each of these answers one of the
research questions we selected: statement Hi corresponds to question Qi. In
this paper, we reuse these results as new hypotheses, which we aim to test
under different conditions for replication purposes.

Q1 How are semantic versioning principles applied in the Maven Central
repository in terms of BCs?
H1 BCs are widespread without regard for semantic versioning principles.

Q2 To what extent has the adherence to semantic versioning principles in-
creased over time?
H2 The adherence to semantic versioning principles has increased over

time.
Q3 What is the impact of BCs on clients?

H3 BCs have a significant impact in terms of compilation errors in client
systems.

On the one hand, the study relies on clirr [29] to study backwards compat-
ibility. This tool is used to compute the list of changes between two versions of
a Java library. However, the development of clirr has stopped in 2005, and
Jezek and Dietrich [23] later showed that it is the least sound of a list of 9
tools for BCs detection in Java. On the other hand, to identify the impact
of BCs on client code, the original study uses a novel approach that isolates
individual changes on the newer version of the API, and injects them one by
one in the older version. Then, clients are recompiled against each variant of
the old version. The number of compilation errors raised by the Maven compiler
is used as a proxy to measure the impact of BCs. As the main corpus, the
study uses a snapshot of MCR dated July 2011, consisting of 148,253 JARs
and named the Maven Dependency Dataset. In the next section, we dive deeper
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Maven Corpus
(MDD or MDG)

Upgrades
⟨v1, v2⟩

Dependencies

Δ-models

Detection
models

Q1
Q2

Q3

Compute BCs
(Maracas)

Extract relevant
library upgrades

Analyse

Compute impact
(Maracas)

Analyse

Extract dependencies

Fig. 4.1: Overview of the analysis protocol.

into the design of our replication study to highlight how it differs from the
original study in terms of protocol and corpora.

4 Design of the Replication Study

In this section, we present the protocol of our replication study, summarized in
Figure 4.1. The source material of our study is extracted from two different
corpora: the Maven Dependency Dataset (MDD) [40], which is used in the
original study, and the Maven Dependency Graph (MDG) [3]. These two
corpora are snapshots of MCR containing metadata information about artefacts,
versions, and dependencies between artefacts. The MDD includes all artefacts
from the MCR up to 2011, while the MDG spans seven more years up to 2018.
However, due to subtle differences in the methodology used to build these
snapshots, the MDD is not strictly a subset of the MDG. In this study, we run
the very same analysis protocol on both corpora. On the one hand, re-analysing
the MDD enables us to assess the impact of our updated protocol on the results
obtained in the original study. On the other hand, analysing the MDG enables
us to broaden the scope of analysed artefacts and strengthen our conclusions.

First, to answer Q1 and Q2, we extract relevant upgrades for all libraries
in the corpora, i.e., pairs of adjacent releases (e.g., JavaServlet versions 4.0.0
and 4.0.1) that conform to the selection criteria presented in Section 4.1.2. The
outputs of this task are the upgrades datasets Do

u (for the MDD) and Dr
u (for

the MDG). Then, we use our tool Maracas to compute delta models (∆-models)
that store the list of BCs introduced in a particular upgrade between two
versions of a library. We analyse the resulting ∆-models in Section 5 to answer
our first two research questions.

Second, to uncover the impact of BCs on client code and answer Q3, we
build the dependencies datasets Do

d and Dr
d which consist of all clients in the

corresponding corpus that might be impacted by the changes identified in a
∆-model (i.e., all artefacts declaring a dependency towards a library upgrade
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extracted previously). We again use Maracas to identify locations in these clients
that are impacted by BCs. The output is stored in a set of detection models,
where BCs are linked to affected locations in client code. We analyse the
resulting models in Section 5 to answer our last research question.

The remainder of this section is structured as follows. Section 4.1 describes
the data extraction process of the protocol. Then, Section 4.2 gives an overview
of our static analysis tool, Maracas. Finally, in Section 4.3, we highlight the key
differences between our protocol and the original study’s protocol in terms of
data selection, filtering, and treatment.

4.1 Data Extraction

In this section, we introduce the two corpora used in this study, together with
the datasets derived from them to answer our research questions.

4.1.1 Corpora

Our study relies on two corpora: the Maven Dependency Dataset (MDD) and
the Maven Dependency Graph (MDG). The former is used to verify whether
the main findings of the original study hold when following a different protocol,
while keeping the same base data. The latter is included to assess whether
the conclusions of the original study remain valid on a larger population, and
whether the phenomenon under study (BCs and semver in MCR) has evolved
between 2011 and 2018.

The Maven Dependency Dataset (MDD). The MDD is a publicly available snap-
shot of the MCR dated July 30, 2011 [38]. The corpus contains 148,253 JARs
plus additional metadata stored in three different database formats: MySQL,
Berkeley DB, and Neo4j [40]. For our purpose, we rely on the metadata stored
in the MySQL database. More specifically, we consider the files table which
stores information about the groupId, the artifactId, and the version of each
JAR in the corpus. There is a minor difference in the number of JARs reported
in the original study [42] and the dataset paper [40]. We consider the informa-
tion presented in the latter after manually validating the data exposed in the
MySQL database.

The Maven Dependency Graph (MDG). The MDG is a graph-based snapshot
of all artefacts on MCR as of September 6, 2018 [3, 4]. It is available as a
Neo4j graph database where nodes are Maven artefacts and edges are either
dependency relations between two artefacts (denoted :DEPENDS) or upgrade
relations between two artefacts of the same library (denoted :NEXT). The MDG
contains 2,4M libraries, 9,7M dependency relations, and 2,1M upgrade relations.
We rely on the MDG to extract libraries metadata (e.g., versions, clients), and
to identify dependency and upgrade relations from which we derive the datasets
required for our analyses.
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4.1.2 Derived datasets

In what follows, we present the datasets that are derived from each of the two
corpora: the upgrade datasets Do

u and Dr
u, and the dependencies dataset Do

d

and Dr
d.

Upgrades datasets. To answer Q1 and Q2, we derive datasets from our corpora
consisting of a set of library upgrades 〈v1→ v2〉. For our analysis to be accurate
and relevant, these library upgrades must fulfil a set of criteria.

As a first filter, we only consider library upgrades 〈v1→ v2〉 such that v1
and v2 are two versions of the same library (uniquely identified by its groupId

and artifactId) which comply with the semver scheme. More precisely, these
versions must be of the form X.Y[.Z], where X, Y, Z ∈ N, X is the major version,
Y the minor version, and Z the (optional) patch version. Versions suffixed with
an additional hyphen-separated qualifier often used to tag release candidates,
beta versions, or particular build metadata (e.g., -b01, -rc1, -beta, -issue101)
are discarded, as they are not meant to be used by the general public. In the
MDG, for instance, we find 328,448 suffixed versions for 8,251 unique suffixes.
The top five most frequent suffixes which we have discarded correspond to
release candidates and milestones, namely: -rc1 (20,007 occurrences, 6.1%),
-rc2 (12,373 occurrences, 3.8%), -M1 (10,614 occurrences, 3.2%), -rc3 (7,829
occurrences, 2.4%), and -M2 (7,780 occurrences, 2.4%). Looking closely at the
data, we also noticed that a number of versions, even though they technically
comply with semver, use dates as versions numbers (e.g., 2.5.20110712). We
decide to discard them, as they do not convey the meaning originally intended
by semver.

Second, v1 and v2 must either be adjacent versions (v2 was released immedi-
ately after v1) or separated with non-semver-compliant versions only (all interme-
diate versions connecting v1 and v2 through upgrade relations do not match our
criteria). For instance, considering the three versions 〈3.0.1→ 3.1-b01→ 3.1.0〉,
only 〈3.0.1→ 3.1.0〉 would be included.

Third, we only consider upgrades where v1 has at least one external client
in the dependency graph (either MDD or MDG). An external client c of a
library version v is a Maven artefact such that c depends on v and belongs to a
different groupId. This way, we confirm that the artefacts we analyse are indeed
used as libraries in practice, and that there are real clients potentially affected
by the changes between v1 and v2. In the MDG, 56% of all artefacts do not
have any client (1, 356, 413 out of 2, 407, 395), and only 12% of all artefacts
(293, 152) have at least one external client. In the MDD, 61% of all artefacts
do not have any client (89, 772 out of 148, 253), and only 17% of all artefacts
(24, 522) have at least one external client.

Fourth, as we are only interested in the Java language, we discard all JARs
that contain code written in any other JVM-based programming language (e.g.,
Scala, Clojure, Kotlin, Groovy), also hosted on MCR. Our heuristic reads the
source attribute of .class files, set by most bytecode compilers, to retrieve the
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3.0.1 3.1-b01 3.1.0 4.0.0-b01 4.0.0-b02 4.0.0 4.0.1

∆Minor ∆Major
∆Patch

Fig. 4.2: Extracting relevant upgrades from the JavaServlet project
(javax.servlet :javax.servlet-api) between versions 3.0.1 and 4.0.1. Dotted lines
denote upgrade relationships between Maven artefacts. Only major, minor, and
patch upgrades are analysed: release candidates, alpha and beta versions, and
other qualified versions are discarded. Here, ∆-models are computed for the
upgrades 〈3.0.1→ 3.1.0〉, 〈3.1.0→ 4.0.0〉, and 〈4.0.0→ 4.0.1〉.

source file that was used to produce the bytecode and infer the base language.
When languages other than Java are detected in a JAR, it is discarded.

Fifth, to ensure that Maracas can process the JARs accurately, we only
select library upgrades for which v1 and v2 are packaged as JAR files and are
compiled with a Java version up to 8 included, as the list and semantics of
BCs differ in later versions with the introduction of new language constructs.
This differs from the original study, given that Java 8 was released in 2014 and
the original snapshot dates from 2011. Thus, we expect to report new types
of BCs that were not considered for previous Java versions (e.g., insertion of
a new default method). The choice of Java 8 is motivated by its popularity:
looking at the data, we noticed that it was still by far the most popular Java
version on MCR.

Lastly, when looking for clients of libraries, we discard all dependency
relations that are not in the compile scope or test scope since they are either
not reliably resolvable (e.g. provided and system dependencies are not hosted on
MCR) or are not included in the compile-time and link-time classpaths of the
client and thus cannot impact binary compatibility (e.g. runtime dependencies).
Only dependencies in the compile and test scopes are considered.

As an illustration of the selection process, Figure 4.2 depicts how interesting
upgrades are picked up between versions 3.0.1 and 4.0.1 of the JavaServlet
library, and how ∆-models are classified as major, minor, or patch.

From the original corpus (MDD), we obtain the upgrades dataset Do
u con-

sisting of 11, 384 upgrade pairs, along with the associated ∆-models computed
using Maracas. This dataset differs from the one presented in the original study
which contains 126, 070 pairs [42]. This difference is explained by the additional
filters employed in our protocol: most upgrades are discarded because they
do not have any external client; 848 because they contain bytecode generated
from other JVM-based languages (2 in Clojure, 71 in Groovy, 76 in Scala, 699
a mix of these or other languages); 641 because of an invalid Java version;
306 because the JARs could not be retrieved from MCR; 2 because Maracas

raised an exception when processing the JARs; 31 because they use dates as
versions; 309 because the metadata states that v1 of the library was released
after v2, and; 27 that have an erroneous release date strictly greater than 2011.

From the replication corpus (MDG), we obtain the upgrades dataset Dr
u

consisting of 119, 879 upgrade pairs. Most upgrades are discarded because
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Table 4.1: Descriptive statistics of the datasets Do
u and Dr

u.

Dimension Min. Q1 Median Mean Q3 Max.

Do
u

External Clients 1 1 3 24.31 8 6,153
# of releases 1 1 1 1.23 1 55
Age (in months) 1 1 2 5.55 5 146
Releases / month 0.01 0.25 0.5 0.53 1 18
# of decls. 1 71 280 2,076 1,276 218,274
# of API decls. 1 49 200.5 1,515.6 891.2 159,478

Dr
u

External Clients 1 1 2 25.31 7 36,186
# of releases 1 7 20 39.4 49 587
Age (in months) 1 10 24 34.38 49 158
Releases / month 0.01 0.4 0.85 1.96 1.79 320
# of decls. 1 79 329 2,519 1,346 586,172
# of API decls. 0 52 220 1,850 974 561,465

they do not have any external client; 39, 986 because they are written in other
JVM-based languages (20 in Clojure, 1, 137 in Groovy, 1, 359 in Kotlin, 14, 402
in Scala, 23, 068 a mix of these or other languages); 852 because of an invalid
Java version; 10, 588 because the JARs could not be retrieved from Maven
Central; 271 because Maracas raised an exception when processing the JARs; 115
because they use dates as versions, and; 2, 929 because the metadata states
that v1 of the library was released after v2.

Table 4.1 and Figure 4.3 summarize some descriptive statistics of both
datasets. As most distributions are strongly skewed and difficult to visual-
ize (number of clients, size, etc.), Table 4.1 lists their minimum, maximum,
median, mean, and quartile values. As an illustration, the top five most popu-
lar libraries in Dr

u are commons-io 2.4 (36,186 clients), slf4j-api 1.7.21 (33,582
clients), commons-codec 1.10 (32,990 clients), slf4j-api 1.7.12 (25,317 clients),
and slf4j-api 1.7.7 (22,939 clients). We refer the reader to the companion
webpage and Zenodo repository7 to access and interact with the datasets.

Dependencies datasets. To answer Q3, for each upgrade in Do
u and Dr

u, we
compute the list of all clients potentially impacted. That is, all clients that
declare a compile-time or test-time dependency towards the library v1 in a
〈v1→ v2〉 upgrade pair, which are potentially affected by the ∆-model between
v1 and v2. We observe that, often, different versions of the same client (e.g.,
cv1 , cv2 , and cv3) all depend on the same library version v1. In such a case, it
is unlikely that cv1 would migrate to v2 as it is superseded by cv3 . Thus, we
only include cv3 in the resulting datasets to avoid counting the impact of the
∆-model between v1 and v2 on c multiple times. The resulting datasets for Do

u

and Dr
u are Do

d and Dr
d which contain, respectively, 35,539 and 293,817 clients.

7 https://zenodo.org/record/5221840

https://zenodo.org/record/5221840
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Fig. 4.3: Java versions and semver levels histograms.

4.2 Maracas

Maracas is a new static analysis tool written in Rascal [26] and Java, which
allows us to (i) automatically compute a ∆-model between two binary versions
of a library and (ii) detect locations in a client binary that are affected by the
BCs listed in a ∆-model.

4.2.1 ∆-models.

A ∆-model is a model that stores the list of BCs between two versions 〈v1 → v2〉
of a library. To compute the ∆-model between two versions of a library, Maracas
internally relies on japicmp. japicmp is a tool that compares two JAR files and
generates a list of BCs between these two JARs. It is able to identify 31
binary incompatible BCs as specified in the JLS 8th Edition [19]. Example of
BCs include removals (e.g., fieldRemoved, methodRemoved), changes in modifiers
(e.g., methodNowAbstract, classNowFinal) and visibilities (e.g., fieldLessAccessible),
type changes (e.g., methodReturnTypeChanged), to name a few.8 As we shall see
later in Section 5.3, some are more critical than others in terms of impact on
clients. A ∆-model in japicmp follows a tree structure and consists of a list of
modified types (classes, interfaces) that recursively contain all modified child
elements (e.g., methods, fields, modifiers). Modified elements themselves are
labelled with a kind of BC (e.g., classRemoved, fieldNowFinal). Maracas transforms
japicmp’s tree-structured models into a value in Rascal conforming to a ∆-model
Algebraic Data Type (ADT), which we use for further analysis. The choice of
japicmp is motivated by its high popularity and accuracy [23], and by its active
community.

8 A complete list and description of these BCs is available on the companion webpage (https:
//crossminer.github.io/maracas/emse21) and Zenodo repository (https://zenodo.org/record/5221840)

https://crossminer.github.io/maracas/emse21
https://crossminer.github.io/maracas/emse21
https://zenodo.org/record/5221840
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Atop japicmp, we implement in Maracas a mechanism to classify declarations
in a library as stable or unstable. Unstable declarations are code elements (e.g.,
classes, methods, fields) that are explicitly marked with a specific annotation or
that are contained in a package not meant to be used by clients. For instance,
Google libraries use the annotation @Beta and Apache libraries use the annota-
tions @Internal to denote code elements that are subject to sudden changes or
that should not be used by clients. Similarly, Eclipse packages containing the
word internal and JDK packages starting with sun.* should not be considered
part of the API [9]. Because declarations that are explicitly marked as unstable
by developers escape the rules of semver, it is important to classify stable and
unstable declarations. To come up with a list of annotations to consider, we
automatically extracted all annotations used in the 100 most popular libraries
on MCR and manually reviewed their documentation to state whether they
are used to delimit unstable APIs. This way, we extracted 185 unique annota-
tions and a list of keywords that typically appear in their name (api, alpha,
beta, internal, protected, private, restricted, experimental, dev, access). Then,
we conducted a keyword-based search on the annotations used in the top
1,000 most popular libraries on MCR using as input the keywords extracted
manually. This way, we extracted 1, 258 annotations of which 48 matched a
keyword. The five most common API annotations encountered in these 1,000
libraries are as follows: @Beta (1,451 occurrences), @InterfaceAudience (1,819 oc-
currences), @InternalApi (1,414 occurrences), @Internal (716 occurrences), and
@SdkInternalApi (607 occurrences). In Maracas, we use the list of extracted
keywords to extract package and annotation names used to delimit unstable
APIs. Then, we classify each BC in the ∆-models according to whether they
affect a stable or unstable declaration of the library.

4.2.2 Detection models.

Prior work uses two main techniques to assess the impact of BCs on client
projects: either by tracing library types that are imported in client code
(through import statements in Java) [2, 48] or by measuring the ripple effect of
changes on clients that have already been migrated manually by developers [43].
The former approach largely over-estimates the impact of BCs (a client may
not use the broken declaration in the imported type) and the latter requires the
availability of migrated clients. The original study employs a novel technique
that consists in isolating and injecting each individual BC in the old library’s
source code. Then, every client is compiled against every ad-hoc version of
the library where a single BC is inserted to measure its impact in terms of
compilation errors [42]. To the best of our knowledge, however, it is rarely
possible to inject individual changes in a library without having to refactor
other parts of the API. Removing or renaming a method, for instance, triggers
a ripple effect within the library itself, which results in multiple changes being
inserted and impacting the clients. Therefore, we hypothesize that this technique
overestimates the impact of BCs on clients. Moreover, while measuring the
impact of source incompatible BCs by counting compilation errors is a valid



Semantic Versioning and Impact of Breaking Changes in Maven Central 17

approach, it is not appropriate to measure the impact of binary incompatible
BCs which are instead checked by the JVM linker. This motivates the need of
having a dedicated tool for identifying BCs impact using static analysis.

Maracas leverages the ∆-models and Rascal M3 models to link BCs to
affected client declarations using static analysis of binary code. An M3 model
is an ADT that models relations between Java elements, extracted from a JAR
file, in immutable binary relations (e.g., containment relations among classes
and method declarations, invocation relations among method declarations) [1].
Internally, M3 relies on the ASM framework9 to parse Java bytecode and
populate the relations. By combining information about breaking declarations
in ∆-models and uses of these declarations in client code using M3 model,
Maracas is able to mark affected client declarations. This detection algorithm is
based on the JLS specification [19], and its implementation in Maracas for each
kind of BC is detailed on the companion webpage. The output of this task is a
set of detections that point to the affected client element, the modified API
element, the way it is being used (e.g., methodInvocation, fieldAccess, implements),
and the type of BC. In the example of Figure 2.1, the affected client element is
MockHttpServletRequest which uses the modified API element changeSessionId()

through an implements relation due to a methodAddedToInterface change.

4.2.3 Limitations

Overridden methods. M3 models generated from Java binaries do not have
information related to overridden methods. This means that Maracas cannot
detect BCs impact on code that uses the API through method overriding. For
instance, the method now final BC breaks clients that override the now-final
method, but has no impact on clients that do not override this method. In
such a case, due to the lack of information, we follow a pessimistic approach
and report a detection in all cases.

Exceptions handling. Information related to thrown and caught exceptions is
not part of the M3 models. Maracas has no information related to the types of
exceptions handled in the try-catch statements of clients. Thus, if a method
in a library throws a new kind of checked exception, Maracas is not able to
state whether the client will be impacted. In this case, we follow a pessimistic
approach and always report a detection.

Inheritance hierarchy. Changing the type of a field, method, parameter, or any
other member, or casting might turn out to be a generalization or specialization
of the associated type. A type is generalized when it is changed to a supertype
and a type is specialized when it is changed to a subtype. In Maracas we only
have access to the client and to the analysed API binaries. Other APIs used
by the client are not part of the analysis. Therefore, when a type is changed
in a library, we cannot build the whole inheritance hierarchy to state whether

9 https://asm.ow2.io

https://asm.ow2.io
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this type change corresponds to a generalization or specialization. Without
this information, Maracas might report false positive detections, following a
pessimistic approach.

The super keyword. The super keyword in Java gets a special treatment when
detecting errors caused by BCs at the client level. When the visibility of a
constructor goes from public to protected, and the constructor is invoked
through the use of the super keyword in the subtype constructor, no error
should be reported. However, if the constructor is invoked without using the
super keyword, an error should be reported. Maracas is not able to differentiate
between these two types of invocations, and thus follows a pessimistic approach
to always report a detection.

The strictfp and native modifiers. japicmp does not report BCs related to the
strictfp and native modifiers. Therefore, Maracas is unable to detect client code
affected by changes related to these modifiers, directly affecting the recall of
the tool.

4.2.4 Validation.

Maracas is the cornerstone tool of our approach as it is used to both compute
the ∆-models revealing BCs (using japicmp under the hood) and the detection
models revealing their impact. To correctly interpret our results, it is essential
to analyse the accuracy of Maracas.

When Maracas cannot accurately state whether a BC actually has an impact
due to the limitations listed above, the approach we follow is to always over-
approximate the detections at the cost of sometimes reporting false positives,
while avoiding any false negative. This means that the results we obtain
regarding BCs and their impact might be slightly overestimated, but they are
not underestimated: every BC and detection we report does exist.

Binary compatibility is checked by the JVM linker. To evaluate Maracas, we
aim to compute its accuracy by comparing Maracas detections with the error
messages thrown by the JVM linker itself when encountering code impacted
by BCs. The JLS states that binary compatibility should be checked during
the loading and linking phases of the JVM, but the choice of implementing
lazy or eager initialization of classes is up to the implementors. In practice, the
reference implementation (OpenJDK HotSpot) implements lazy loading and
waits for class initialization to load and link a class. It follows that, to record
the errors thrown by the linker, it is necessary to execute a Java program
making use of breaking declarations. In addition, the Java linker throws an
exception and stops processing the class after the first error is encountered,
so the executed Java programs should contain only a single use of a breaking
declaration to record all errors.

To evaluate the accuracy of Maracas, we thus reuse and extend the benchmark
proposed by Jezek and Dietrich [23]. Their benchmark consists of a library v1,
a library v2 that breaks v1 in all possible ways, and a client c that uses all
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declarations of v1 in various ways. In order to trigger linking errors, client c
consists of a set of Main files. In the original version of the benchmark, however,
some Main files use several declarations of the library v1: if the first use fails,
the others are not evaluated by the linker. Thus, we split the client c into more
cases so that every case exercises a single declaration of v1.

Our final benchmark for detections consists of 345 cases, where each case
consists of a Java entry point (Main file and method) that exercises one particular
BC and one particular way of using it. The benchmark script first compiles v1,
v2, and c in their binary form (JAR), and then attempts to run every single
Main file in c, replacing v1 with v2 in its classpath. Whenever a linking error is
encountered, it is written to disk. Then, we run Maracas giving it v1, v2, and c
as inputs to get the list of detections. If a detection matches an error reported
by the linker, it is a true positive, if it does not match any linker error it is
a false positive, and if there is no detection for a particular linker error it is
a false negative. To support future research, we have made our benchmark
publicly available on the companion webpage.

Out of the 345 cases, the JVM linker reports 132 errors and Maracas reports
135 detections. Out of the 135 detections, 130 are true positives and 5 are false
positives. There are 2 false negatives. In this benchmark, Maracas achieves a
precision of 96.3% and a recall of 98.5%. The five false positives are due to
the limitation listed in the section above. The two false negatives are due to a
limitation of japicmp, which does not compute BCs related to the strictfp and
native modifiers.

In addition to this benchmark, we developed a test suite as part of Maracas

consisting of 402 test cases. Using our own test cases, we highlighted a bug
in japicmp which we fixed through a pull request accepted by the project
maintainers.10

4.3 Analysis Approach

In this section, we compile some of the most relevant aspects of the analysis
performed in this study, and we contrast them against the original study (cf.,
Table 4.2). We refer the reader to Section 4 of the original work for further
information.

Backwards compatibility. The original study computes binary incompatible
changes with clirr. However, clirr is not able to report BCs related to ex-
ceptions and generics and misinterprets changes related to inheritance and
other modifiers [23]. In this study, we use japicmp to compute both source and
binary incompatible changes. The latter performs better than clirr according
to Jezek and Dietrich [23]. Although japicmp is unable to identify changes
related to generics—which, due to type erasure in Java, does not impact binary
compatibility analysis—it accurately reports all changes related to exceptions

10 https://github.com/siom79/japicmp/pull/251

https://github.com/siom79/japicmp/pull/251
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Table 4.2: Main commonalities and differences between the original study and
the replication study protocols.

Original Study Replication Study

Corpus MDD [40] MDD+MDG [3]
Corpus date interval 2005–2011 2005–2018
Backwards compatibility type Binary Binary
Backwards compatibility tool clirr japicmp

Compared versions Adjacent Adjacent
Versioning scheme semver semver

Languages JVM-based Java
Clients per library ≥ 0 ≥ 1
Client impact detection Compilation errors Static analysis
Code-level mechanisms @Deprecated Annotations, package naming

and inheritance. In addition, it is more accurate than clirr when reporting on
changes associated with modifiers. We also contributed to the tool by fixing
a bug related to the detection of modifier changes. Other committers have
also made some contributions to improve japicmp accuracy in recent times.
With these changes, one new case within the Jezek and Dietrich [23]’s bench-
mark passes: the decrease of a nested interface access modifier from public to
protected.

Library and version selection. As is the case in the original study, we only
compute deltas between adjacent versions of an API, which strictly follow the
X.Y[.Z] version convention. However, in contrast, we only consider artefacts
that have at least one external client on the MCR. This way, we ensure that
the artefacts we analyse are indeed used as libraries by clients. It is a significant
difference with the original study, as only 17% of all artefacts in the MDD
and 12% of all artefacts in the MDG have at least one external client. We also
account for initial development releases (0.Y[.Z]) which are not considered in
the original study.

Parallel branches and maintenance releases. The original study does not ac-
count for maintenance releases that happen in practice. For instance, suppose
version 2.4 is released after 3.0, as a maintenance release for the 2.X branch. Us-
ing release dates to infer the order of versions, BCs for the upgrade 〈3.0→ 2.4〉
would be computed, even though this is not the expected behaviour. Instead, we
employ the MDG which properly represents these upgrade relations regardless
of release date, and accounts for maintenance releases.

Breaking changes impact. The original study detects client code affected by
BCs by means of injecting changes in the source code of an API. After the code
injection, the client is compiled against the modified API and new compilation
errors are recorded. There might be pre-existing compilation errors before
changes are injected in the API. These errors are intentionally excluded from
the analysis. However, this approach introduces a set of limitations that can
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affect the outcome of the study, some of them have already been identified
by Raemaekers et al. [42]. We describe them as follows: (i) injecting changes
in isolation might introduce compilation errors that must be fixed. In some
cases, multiple changes should be injected at the same time in order to avoid
introducing compilation errors; (ii) pre-existing errors might hide new errors
related to the injected BC; (iii) reporting on compilation errors gives us an
idea of how source compatibility is affected. However, binary compatibility is
not equivalent to source compatibility. Compilation errors account for source
incompatible changes and cases of binary incompatibility that are shared
between both sets; (iv) we cannot guarantee that all expected compilation
errors are reported by the compiler. For instance, if at least one imported
package in a class cannot be found, the compiler will not reach subsequent
errors [42]; (v) when injecting changes in the API, it is difficult to manage
cases where one piece of code is related to multiple BCs. For instance, we inject
a piece of code related to changes C1 and C2 in a given API. If we want to
measure the impact of both changes, we will end up with the same number
of compilation errors for both cases without discriminating their origin, and;
(vi) the compiler cannot tell the cause or the BC that produces a given error.

Overall, given the widespread use of the language features involved in the
above possible causes of inaccuracy, and their relation to the research questions,
we believe that developing and using a more accurate tool will have a significant
impact on the outcome. Thus, we use Maracas to detect affected code on the
client side and report on its accuracy.

Deprecated and unstable interfaces. The original study uses @Deprecated an-
notations to identify unstable interfaces. Occurrences of this annotation are
computed, except for nested cases. This means that the analysis will not detect
declarations within a deprecated class, where explicit annotations have not
been used [42]. These cases are considered in the present work. Moreover, there
are also other mechanisms to signal unstable interfaces. We argue that other
annotations, such as Google’s @Beta and Apache’s @Internal annotations, are
also used to signal instability in an API. In addition, naming conventions on
packages are also used for the same purpose. We then include the detection of
these cases to perform a deeper analysis of the derived datasets.

5 Results & Analysis

In this section, we analyse the data extracted using the protocol described
in Section 4. Each subsection describes the method, results, and analysis of a
particular research question.

5.1 Q1: How are semantic versioning principles applied in the Maven
repository in terms of BCs?
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5.1.1 Method

With Q1, we analyze when and where BCs happen and with which frequency.
We attempt to distinguish expected and unexpected BCs according to the
semver principles and the use of code-level mechanisms to signal unstable APIs.
In a first step, we seek to highlight the impact of the updated protocol described
in Section 4 on the results reported in the original study. To do so, we compute
the ∆-models between every 〈v1 → v2〉 ∈ Do

u, while distinguishing among
major, minor, patch, and initial development releases. In a second step, to
assess whether the results hold on the larger dataset Dr

u comprising seven more
years of Maven Central, we run the same analysis for every 〈v1 → v2〉 ∈ Dr

u.
The ∆-models distinguish between BCs that are introduced in stable and
unstable parts of the APIs, according to code-level annotations (such as @Beta

or @Internal, cf., Section 4), as well as naming conventions (such as internal).
As BCs in unstable parts of an API are to be expected, only BCs introduced
in the stable parts are included.

To know where to expect BCs or in which type of upgrades, we compare the
percentage of breaking upgrades per semver level. Alongside semver categories
(i.e., major, minor, patch, and initial development), we also consider the group
of non-major releases as a whole (i.e. minor and patch releases combined).
Then, to know how many BCs are usually introduced in each semver level, we
consider the distribution of BCs over all groups.

We wrap up the analysis of Q1 by studying the frequency of each type of
BC. From these results, we identify the most common BCs in our datasets and
compare these results against the ones presented in the original study.

5.1.2 Results

Breaking upgrades. Table 5.1 highlights the main results obtained for Q1. The
first block lists the results reported in the original study [42], the second block
the results obtained for Do

u (for replication purposes), and the third block the
results obtained for Dr

u.
First of all, we compare the results reported in the original study against

those obtained for Do
u. While we report a similar number of breaking upgrades

overall (cf., Total row: 32.2% in Do
u vs. 30.0% in the original study), we observe

that the difference in the ratio of breaking upgrades per semver level is stronger
(cf., Major, Minor, Patch, and Initial development rows). As expected, most
major upgrades in Do

u introduce BCs (72.7%), which contrasts with the results
obtained in the original study (35.9%). While the original study reports that
there are as many breaking major upgrades as breaking minor upgrades, we
observe a sharper difference between these two levels in the same corpus: 72.7%
of major upgrades (vs. 35.9% in the original study) and 50.1% minor upgrades
(vs. 35.7% in the original study) break in Do

u. With regards to patch upgrades,
we observe a similar percentage of breaking cases (24.2% in Do

u vs. 23.8% in
the original study). 39.3% of the initial development upgrades, which are not
considered in the original study, are breaking. Overall, we report that 30.5% of
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Table 5.1: Total and breaking upgrades in the original study, Do
u, and Dr

u

datasets.

Total Breaking

Level Count % Count %

Original study

Major 11,892 14.8 4,268 35.9
Minor 29,957 37.2 10,690 35.7
Patch 38,740 48.1 9,239 23.8
Dev n/a n/a n/a n/a
Non-major 68,697 85.3 19,929 29.0
Total 80,589 100 24,197 30.0

Do
u

Major 253 2.2 184 72.7
Minor 2,413 21.2 1,228 50.1
Patch 7,728 67.9 1,870 24.2
Dev 990 8.7 389 39.3
Non-major 10,141 89.1 3,098 30.5
Total 11,384 100 3,671 32.2

Dr
u

Major 2,431 2.0 1,503 61.8
Minor 23,309 19.4 8,837 37.9
Patch 75,282 62.8 11,031 14.6
Dev 18,857 15.7 5,036 26.7
Non-major 98,591 82.2 19,868 20.1
Total 119,879 100 26,407 22.0

non-major releases do not conform to semver, which matches the results obtained
in the original study (29.0%). Upgrades that comply with the scheme principles
(i.e., major upgrades, initial development upgrades, and non-breaking minor
and patch upgrades) represent 72.8% of all upgrades in Do

u.
For Dr

u, which spans seven more years of the MCR and comprises ten times
more upgrades, we observe that the tendency to comply with semver improves.
The ratio of breaking upgrades is lower overall (22.0% in Dr

u vs. 32.2% in
Do

u), and for each level: 61.8% for major upgrades, 37.9% for minor upgrades,
14.6% for patch upgrades, and 26.7% for initial development upgrades. This
amounts to 83.4% of all upgrades conforming to semver principles. However,
20.1% of non-major upgrades are still breaking and thus do not comply with the
versioning conventions. The difference in results between Do

u and Dr
u suggests

that the adherence to semantic versioning may have increased over time. This
intuition is investigated further in the next research question Q2.

Number of BCs. To study the frequency of BCs introduction, we first look at
the number of BCs introduced in breaking releases, i.e., releases that contain
at least one BC. Figure 5.1 shows the distribution in a logarithmic scale of BCs
per semver level for breaking releases in Do

u and Dr
u. Looking at the median

values, we notice that the number of BCs is higher in major upgrades (52 in
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Fig. 5.1: Violin plots of the number of BCs in breaking upgrades per semver

level. Inside each violin plot, we display the first quartile, the median and the
third quartile.

Do
u and 28 in Dr

u). Minor and initial development upgrades tend to have a
similar number of BCs in both datasets (13 and 12 in Do

u, and 9 and 8 in Dr
u,

respectively). Patch upgrades introduce the least number of BCs (6 in Do
u and

5 in Dr
u). This suggests that non-major development releases not only do break

less often, they also tend to introduce fewer BCs when they do.

BC types. Figure 5.2 presents the ratio of BC types (e.g., method removed,
field removed) using a bar plot, for both Do

u and Dr
u. BCs are discriminated

by semver levels and ordered from the most to the least frequent. We notice
that the ratio of BC types is consistent across semver levels (except perhaps for
the method return type changed and field type changed in the original dataset).
In both datasets, the 10 most common BC types and their associated ratios
remain mostly unchanged: method removed, field removed, interface removed,
constructor removed, superclass removed, class removed, interface added, method
added to interface, method return type changed, and field type changed. Similarly,
in both datasets, the BC kinds ranked after method return type changed are
very rare. Interestingly, the five most frequent BC kinds are all related to
the removal of API entities. We cannot directly compare these results with
the original study, given that not all reported BC types are identified in the
same way between the underlying tools (i.e., clirr and japicmp). However, our
observations align with the results reported in the original study where method,
class, and field removal headed the list. Naturally, the BCs methodNewDefault
and methodAbstractNowDefault do not occur in the Do

u dataset, as they relate
to the default operator which was only introduced in Java 8 (2014), while the
most recent artefacts in Dr

u date back to 2011.
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Fig. 5.2: BC types frequency per semver level.
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5.1.3 Analysis

Artefacts on MCR do not strictly follow semver, as an important ratio of non-
major upgrades are breaking (20.1% in Dr

u), confirming the main result from the
original study. However, we observe a sharp difference in the ratio of breaking
upgrades per semver level with our protocol (61.8% of major upgrades, 37.9%
of minor upgrades, 14.6% of patch upgrades, and 26.7% of initial development
upgrades break). This contrasts with the original study, which reports a similar
ratio of breaking upgrades for major and minor cases, with patch upgrades
only slightly more stable. In general, differences between the results reported
in the original study and Do

u are explained by the additional filters considered
in our protocol, the increased accuracy of Maracas and japicmp in detecting
BCs, and the consideration of APIs annotated as unstable at the source code
level (cf. Section 4.3). Differences between Do

u and Dr
u are mainly due to the

increased time span and the number of artefacts. This rationale applies to the
forthcoming analyses. Our results suggest that semver principles are followed to
some extent in practice, as 83.4% of the library upgrades we analyse do comply
with the backwards compatibility requirements of the versioning scheme.

We also notice that major upgrades not only result in a higher number
of breaking cases but also tend to introduce more BCs per breaking upgrade.
Patch upgrades are the ones introducing the least number of BCs. This suggests
that, even when a non-major release is breaking, the amount of work ending
on the clients’ shoulders is not as high as for a major release. Finally, the most
common BCs are aligned with results presented in the original study: removal
of API members is the most common type of BC occurring in libraries.

Q1: How are semantic versioning principles applied in the MCR?

H1 asserts that “BCs are widespread without regard for versioning princi-
ples.” From our analysis, we conclude that although semver principles are
not always strictly applied (20.1% of non-major releases are breaking),
they are largely followed: 83.4% of all upgrades comply with semver re-
garding backwards compatibility guarantees, and the differences between
semver levels are notable. Not only do minor and patch releases break less
often than major releases, they also introduce fewer BCs. This leads us to
reject H1.

5.2 Q2: To what extent has the adherence to semantic versioning principles
increased over time?

5.2.1 Method

To answer Q2, we first study how the ratio of breaking upgrades for the
various semver levels has evolved over time, aggregated per year. The ratio of
breaking upgrades corresponds to the number of upgrades containing at least
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Fig. 5.3: Q2: Evolution of the ratio of breaking upgrades per semver level in
Dr

u. Each data point aggregates the number of breaking upgrades of the given
type for an entire year. A vertical line delimitates the periods of the original
and updated datasets.

one BC over the total number of upgrades per semver level. We still consider
the four different semver levels plus the analysis of non-major upgrades as a
whole. Reported results are based on the data extracted from the Do

u and Dr
u

datasets. The latter spans fourteen years of Maven artefacts from MCR (2005
to 2018 included). We then contrast these results against the ones reported
in the original study. Studying the evolution of the adherence to semantic
versioning principles is especially relevant as the semver specifications are fairly
recent in the history of MCR: semver 1.0.0 was released in 2009 and semver 2.0.0
in 2013. It is thus likely that the principles of semver did not percolate yet in
the dataset used in the original study.

5.2.2 Results

Figure 5.3 depicts how the ratio of breaking upgrades has evolved for major,
minor, patch, initial development, and non-major levels. Overall, the ratio of
breaking upgrades, regardless of the semver level, tends to decrease. As expected,
the ratio of breaking upgrades of major and initial development levels is more
chaotic since BCs are allowed in these releases. Nevertheless, even major and ini-
tial development releases contain fewer BCs in 2018 than in 2005. One possible
hypothesis is that clients’ tolerance for BCs has decreased over time and that
libraries are avoiding them more and more, even when allowed. Additionally,
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different ecosystems such as npm, RubyGems, Cargo, Maven Central [11], and
GitHub are encouraging library developers to follow semver guidelines. In par-
ticular, GitHub explicitly states in its official documentation: “We recommend
naming tags that fit within semantic versioning."11 Another relevant example
is the Maven ecosystem, which offers the maven-release-semver-policy module to
enforce the use of semver when releasing a project.

Over 14 years, the ratio of breaking minor upgrades has decreased almost
by a factor of three (from 84.4% to 30.1%) and the ratio of breaking patch
upgrades has decreased by a factor of six (from 59.7% to 9.6%). This is to be
contrasted with the results of the original study, which finds that, from 2005 to
2011, the number of non-major breaking upgrades has decreased from 28.4% to
23.7%. Conversely, we find that non-major breaking upgrades have decreased
from 67.7% in 2005 to 16.0% in 2018.

5.2.3 Analysis

As Maracas and japicmp are able to detect more types of BCs, the percentages
we report are higher than the ones reported in the original study, which makes
the decrease of the ratio of breaking non-major upgrades much steeper than
originally reported (a 44% reduction instead of a 5% decrease). However, the
decrease in the extended period is less evident: only a 9.2% decrease. Visually,
2011 appears as a turning point w.r.t. the decrease of breaking non-major
upgrades, as the slope is less steep after this date. Nonetheless, we found no
plausible explanation for this phenomenon. Overall, it confirms once more the
statement that even though not all artefacts on MCR follow semver guidelines,
there is an increasing tendency to comply with the versioning scheme principles.

Q2: To what extent has the adherence to semantic versioning
principles increased over time?

H2 states that “The adherence to versioning principles has increased over
time.” Our results confirm the results of the original study. They also show
that the improvement over time is much higher than initially reported
for the 2005–2011 period. The tendency persists in the 2011–2018 period,
although the slope is less steep. Thus, we cannot reject H2.

5.3 Q3: What is the impact of BCs on clients?

5.3.1 Method

In Q3, we investigate to which extent BCs introduced in Java libraries impact
their clients on MCR. More formally, for every ∆-model computed between
versions 〈v1 → v2〉 of a given library (cf., Q1), we extract all the clients c

11 https://docs.github.com/en/github/administering-a-repository/releasing-projects-on-github/

managing-releases-in-a-repository

https://docs.github.com/en/github/administering-a-repository/releasing-projects-on-github/managing-releases-in-a-repository
https://docs.github.com/en/github/administering-a-repository/releasing-projects-on-github/managing-releases-in-a-repository
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declaring a compile-time or test-time dependency towards v1 to uncover the
impact ∆〈v1, v2〉 would have on c if it was updated to v2. Concretely, we use
the static analysis capabilities of Maracas to pinpoint which code locations in c
are impacted by individual BCs of the corresponding ∆-model (cf., Section 4.2).

The impact a BC has on client code varies according to if and how the client
uses the declaration affected by the change (cf., Figure 2.1). Hence, determining
the impact of BCs requires a deep understanding of how clients and libraries
interact. For every client, we classify the impact of each individual BC in one
of three categories: (i) the declaration affected by the change is not used in
client code (unused); (ii) the declaration affected by the change is used in a
non-breaking way (non-breaking), and; (iii) the declaration affected by the
change is used in a breaking way (breaking).

As with the first two research questions, we report results for both the MDD
and the MDG corpora. The datasets Do

d and Dr
d contain, respectively, 35, 539

and 293, 817 clients which are potentially impacted by a ∆-model extracted in
Q1. As it would be impractical to analyse these cases exhaustively, we resort
to analyse a subset of them by performing a random sampling. The question
we ask for each case is: does client c break when upgrading from version v1
to version v2 of a library it uses? To answer this question with a confidence
level of 99% (c = 0.99), an error margin of 1% (e = 0.01), and an estimated
proportion of the population p = 0.5 (the more conservative value yielding
the largest sample size) of broken clients, we apply the standard Cochran’s
sample size formula to determine sample sizes for each kind of upgrade (i.e.,
major, minor, patch, and initial development). Then, we draw upgrades at
random, without replacement, from the set of all upgrades, all major upgrades,
all minor upgrades, all patch upgrades, and all development upgrades, yielding
the samples depicted in Table 5.2. For each tuple 〈c, v1, v2〉 in the corresponding
samples, we use Maracas to compute their detection models and analyse the
impact of ∆(v1, v2) on client c, distinguishing among unused declarations,
non-breaking uses, and breaking uses.

To uncover which kinds of upgrade break clients the most, we compare the
percentage of overall broken clients per semver level. Afterwards, we consider
the number of broken locations per client for each level.

5.3.2 Results

Broken clients. Table 5.2 depicts the size of each semver sample and the number
and proportion of broken clients for both Do

d and Dr
d. We observe that 9.5% and

7.9% of all clients for Do
d and Dr

d, respectively, would break if they upgraded
their dependency to the next release.

Taking into account the kind of upgrade yields interesting results: in both
datasets, initial development upgrades lead to the highest percentage of broken
clients (18.4% for Do

d and 16.8% for Dr
d), followed by major (12.7% for Do

d

and 11.7% for Dr
d), minor (11.9% for Do

d and 7.8% for Dr
d), and finally, patch

upgrades (6.0% for Do
d and 5.0% for Dr

d). This indicates that clients are more
likely to break when upgrading to a version of a library that is potentially
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Table 5.2: Samples derived from the population of dependencies.

All Major Minor Patch Dev

Do
d

Population size 35,539 2,861 13,444 17,425 1,809
Sample size 11,310 2,440 7,426 8,498 1,631
Broken clients 1,076 309 883 514 300
% broken clients 9.5% 12.7% 11.9% 6.0% 18.4%

Dr
d

Population size 293,817 29,847 111,830 123,286 28,854
Sample size 15,701 10,663 14,445 14,621 10,533
Broken clients 1,237 1,250 1,130 735 1,772
% broken clients 7.9% 11.7% 7.8% 5.0% 16.8%

Table 5.3: p-values and odds ratios across all pairs of semver levels in Dr
d.

semver level p-value Odds ratio

Major vs minor 7.45× 10−25 *** 0.64
Major vs patch 3.02× 10−83 *** 0.40
Major vs dev 6.34× 10−26 *** 1.52
Minor vs patch 1.80× 10−22 *** 0.62
Minor vs dev 2.13× 10−104 *** 2.38
Patch vs dev 1.37× 10−206 *** 3.82

breaking according to semver conventions, with initial development releases
being the most problematic. Conversely, clients that upgrade to minor and
patch releases are less likely to be affected.

As we resort to random sampling to estimate the proportion of broken
clients, we use statistical inference to assess our raw results. For the sake of
simplicity, we only perform the statistical analysis for the Dr

d dataset. We have
the following null hypothesis: “the proportion of broken clients is the same
across each semver level of library upgrades”. Note that in the remainder of this
section, we use * to label the significance of the p-values using the following
scale: * indicates a p < 0.1, ** a p < 0.05 and *** a p < 0.01. We run a X 2

(chi-squared) test on the table containing the amount of broken and non-broken
clients for each level. This test yields a p < 2.2× 10−16 ***, therefore, we reject
the null hypothesis and accept the alternative hypothesis “the proportion of
broken clients is different across each semver level of library upgrades”.

To assess the differences across semver levels, we conduct post-hoc analyses
for each pair of groups using Fisher’s exact test on the contingency tables.
We adjust the resulting p-values using a Holm-Bonferroni correction. Finally,
we assess the effect size using the odds ratio. We obtain the results shown
in Table 5.3.

The p-values are all significant considering a 0.01 threshold. If we look
at the direction of the odds ratios, the results are as expected w.r.t. the
differences among levels. The proportion of broken clients is higher for initial
development upgrades, then major upgrades, then minor upgrades, and finally
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Fig. 5.4: Number of detections per semver level.

patch upgrades. Looking at the values of the odds ratios, we note that the
difference in the odds of being broken depending on the semver level is perhaps
not as high as one would expect. For instance, for major versus minor the
odds of being broken in a minor upgrade is 0.6 times the odds of being broken
in a major upgrade. An interesting finding is that, in the Maven ecosystem,
initial development upgrades break a greater proportion of clients than major
upgrades.

Number of detections. Figure 5.4 presents the distribution in logarithmic scale
of the number of broken declarations (i.e., detections) per client. Figures are
presented for each semver sample in both Do

d and Dr
d. In these distributions we

only consider broken clients, that is, clients that have at least one declaration
affected by a BC. In both datasets Do

d and Dr
d, we observe a similar trend: major

upgrades yield the highest number of broken declarations (medians of 5 and 6,
respectively), followed by minor upgrades (medians of 4 and 3.5, respectively)
and patch upgrades (medians of 3 and 3, respectively). In Do

d, initial develop-
ment upgrades yield even more broken declarations than in major upgrades
(median of 6), as opposed to what we observe in Dr

d (median of 4).
As we resort to random sampling to estimate the number of breaking

declarations in broken clients, we use statistical inference to assess our raw
results. For the sake of simplicity, we only perform the statistical analysis
for the Dr

d dataset. We have the following null hypothesis: “the number of
broken declarations is the same across each semver level of library upgrades”.
We run a Kruskal-Wallis rank-sum test on the number of broken declarations
for each semver level. This test yields a p = 3.82 × 10−16 ***, therefore, we
reject the null hypothesis and accept the alternative hypothesis “the number of
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Table 5.4: p-values and Cliff’s delta across all pairs of semver levels in Dr
d.

semver levels p-value Cliff’s delta

Major vs minor 4.89× 10−11 *** 0.16 (small)
Major vs patch 2.79× 10−13 *** 0.20 (small)
Major vs dev 2.04× 10−8 *** 0.12 (negligible)
Minor vs patch 0.165 0.04 (negligible)
Minor vs dev 0.165 −0.04 (negligible)
Patch vs dev 0.004 *** −0.08 (negligible)

broken declarations of broken clients different across each semver level of library
upgrades”.

To make an in-depth assessment of the differences across semver levels,
we conduct post-hoc analyses for each pair of groups, using a two-tailed
Mann-Whitney test. We adjust the resulting p-value using a Holm-Bonferroni
correction. In addition, we compute Cliff’s delta to assess the effect size and
report the interpretation of its value using Cohen’s scale. We obtain the results
shown in Table 5.4.

We note that two pairs are not significant (minor versus patch and minor
versus dev), while the others are all significant at the 0.01 threshold. Looking at
the direction of Cliff’s deltas, the results are aligned with our expectations: the
number of breaking declarations in major upgrades is greater than in minor,
patch, and initial development upgrades, and the number of breaking decla-
rations in initial development upgrades is greater than in minor and patch
upgrades. Looking at the values of Cliff’s deltas, however, we note that the
differences are very small across the groups. It indicates that, when a client is
broken, the number of broken declarations it contains is similar whatever the
semver level of the upgrade is.

BC types. Figure 5.5 shows the ratio of breaking and non-breaking uses of
broken declarations for each BC type in Dr

d. We note that most BCs result
in breaking clients as soon as they use the broken declaration. Interestingly,
we find several BCs that, in most cases, do not break clients even when the
broken declaration is used in the client code. On the other hand, apart from
the interface removed and interface added BCs, all other popular BCs (as
computed in Section 5.1.2) are prone to break clients. However, it should be
noted that, for most types of BCs, there is not enough data to support a
definitive conclusion. This prevents us from proceeding to a reliable statistical
analysis.

5.3.3 Analysis

Considering the results for the MDG corpus, we find that initial development
and major releases tend to impact a higher number of clients (11.7% and 16.8%,
respectively), as compared to minor and patch releases (7.8% and 5.0%, respec-
tively). The same tendencies can be observed in the MDD corpus. Additionally,
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not only do clients break more often in major and initial development upgrades,
but they also tend to break more. In general, clients are rarely impacted by
breaking declarations in the libraries they use because they do not explicitly
use the affected declaration. However, when a client uses a declaration that is
affected by a BC, it is likely to break. These results are probably explained by
the fact that library developers introduce BCs in parts of their API that are less
likely to be used by their clients. This intuition has already been investigated
in the literature [20], and our results are aligned with their observations.



34 Lina Ochoa et al.

Q3: What is the impact of breaking changes on clients?

H3 asserts that “BCs have a significant impact in terms of compilation
errors in client systems.” Conversely, we observe that in most cases break-
ing declarations are not used by client projects, which instead yields a
low number of broken clients (7.9% for all releases). The number is even
lower in the case of minor and patch upgrades. However, when a breaking
declaration is used by a client, there is a high chance that it will be
impacted. These results contrast with those of the original study and lead
us to reject H3.

5.4 Threats to Validity

In this section, we discuss the main threats to the validity of our replication
study, following the structure recommended by Wohlin et al. [46].

Internal validity. As explained in Section 4.2, the tool we implemented and used
to detect BCs and their impact on client code is not perfectly accurate, which
impacts the metrics we compute. As a sanity check, we reused and extended a
benchmark for Java evolution and compatibility to evaluate the accuracy of
our tool, using the reference implementation of the Java linker itself as ground
truth. Maracas obtained a precision of 96.3% and a recall of 98.5%, making the
impact of this threat very low. Moreover, our tool is designed to be pessimistic
and to over-approximate the impact of BCs in case of uncertainty. Therefore,
the impact of this threat is to slightly overestimate the number of broken
clients. Maracas does not reach 100% recall because of two false negatives: these
are due to limitations of the underlying tool japicmp which is not able to detect
BCs related to the strictfp and native modifiers. However, we do not expect
that BCs related to these modifiers are common in practice.

We identified unstable API declarations of the libraries using a pre-defined
list of naming conventions and annotations that was extracted by semi-
automatically analysing the top-1000 most popular libraries on MCR. However,
this list is not exhaustive and cannot account for library-specific or organization-
specific conventions. As a result, we have probably misidentified some API
declarations as stable. Assuming that unstable declarations are more likely to
break than stable ones, the impact of this threat is to overestimate the number
and impact of BCs.

Since it is not possible to reliably state whether a particular Maven artefact
is a library or not, we consider that an artefact from MCR is a library if it
has as least one external client. As a result, we potentially misidentified some
artefacts as libraries. Assuming that libraries are more likely to be careful about
BCs than other kinds of projects, the impact of this threat is to overestimate
the number and impact of BCs.

Our protocol excludes every library version suffixed with a qualifier (e.g.,
-beta1, -rc2) as they are not final and are not meant to be used by the general
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public. This complies with the Maven principle stating that every qualified
version is anterior to the corresponding non-qualified version. However, we
found some libraries that always tag their versions with specific qualifiers. For
instance, the developers of the popular Google Guava library tag every version
released since 2017 with a -jre or -android suffix: there are no unqualified
versions. Google Guava versions released after 2017 are thus excluded from our
datasets—even though they are legitimate, while anterior versions are included.
The impact of this threat is however low, as most of the qualifiers we found in
our datasets correspond to pre-releases (cf., Section 4.1.2).

The corpora we used to extract our datasets (MDD and MDG) do not
contain any information regarding version ranges and constraints. Concrete
dependency versions have been resolved at the time the corpora were created,
so a dependency with a version range (or no version at all) would be replaced
with a concrete version picked by the Maven dependency resolver. As a result,
even if some artefacts were using version ranges, we are not able to see and
analyse them. We expect the impact of this threat to be low, as version ranges
are not popular in the Maven repository.

External validity. Our study targets Java libraries and clients inside the MCR
ecosystem. Since the definition of BCs is specific to a particular programming
language and since ecosystems have very different practices when it comes to
BCs and versioning culture and habits [11], there is no guarantee that our
results generalize to the ecosystems of other programming languages or other
Java ecosystems.

6 Related Work

Prior research in the field of library evolution has focused on understanding why
and how evolution happens [15]. Answering the why involves understanding
the motives triggering the need to change a library and its API. In particular,
researchers study the social factors motivating software change [2, 6, 5, 49].
Conversely, to understand how library evolution occurs, researchers analyse
the API evolution process and the evolving software itself. In this section, we
discuss a set of studies that aim at understanding how software libraries evolve
over time. We consider studies that analyse the evolution of software ecosystems
as a whole; the nature of change in terms of backwards compatibility; and the
impact that API evolution stirs up on client projects.

6.1 Ecosystems Evolution

Several studies aim at understanding the evolution of a software ecosystem on
its own (e.g., Eclipse, Apache). This is done to catch a glimpse of the evolution
practices and expectations within the ecosystem community [5]. As a direct
consequence, researchers are able to create models and claims that support the
development process within the studied ecosystem.
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In the case of the Eclipse ecosystem, Businge et al. [7] evaluate the applica-
bility of Lehman’s laws of software evolution to their corpus. In a later study,
the same authors analyse to which extent client plug-ins rely on unstable and
internal Eclipse APIs [8]. They claim that more than 40% of Eclipse plug-ins
depend on this type of libraries. Likewise, Wu et al. [47] study API changes
and usages in both Eclipse and Apache ecosystems. The Apache ecosystem is
also studied by Bavota et al. [2] and Raemaekers et al. [39]. On the one hand,
Bavota et al. [2] report on the evolution of dependencies among projects within
the ecosystem. As the main conclusion, they discover that both the size of the
ecosystem and the number of dependencies grow exponentially over time. On
the other hand, Raemaekers et al. [39] measure Apache APIs stability with a
set of metrics based on method removal, modification, and addition.

The Squeak and Pharo ecosystems have also been a target of research.
Robbes et al. [43] study the ripple effects caused by method and class depre-
cation in these ecosystems. They state that 14% of the deprecated methods
and 7% of the deprecated classes impact at least one client project. Hora et al.
[22] complement Robbes et al. [43] findings. They conclude that 61% of client
projects are impacted by API changes, and more than half of those changes
trigger a reaction in affected clients. In addition, Decan and Mens [11] perform
an empirical study where they analyse the compliance to semver principles
of projects hosted in four software packaging ecosystems (i.e., Cargo, npm,
Packagist, and RubyGems). They discover that certain ecosystems, such as
RubyGems, do not adhere to semver principles when analysing dependency
constraints.

The abovementioned studies give a good overview of the evolution of certain
ecosystems. However, conclusions drawn by these studies do not hold outside
the studied ecosystem [45]. Our study contributes to this body of knowledge
by complementing the original results of Raemaekers et al. [42] regarding the
adherence to semver and the impact of BCs in the Maven Central ecosystem.

6.2 Backwards Compatibility

The growing interest in BCs and NBCs is related to the need of analysing
the stability of APIs and the impact these changes have on client projects.
One of the main observations in the literature is that backwards incompatible
changes are often introduced between two versions of an API. In fact, in a
corpus of Java APIs, Dietrich et al. [13] find that 75% of library upgrades
introduce breaking changes between adjacent versions. This study was later
enhanced by Jezek et al. [24] who argue that 80% of API releases are backwards
incompatible. Mostafa et al. [35] also report that 76.5% of the releases they
analyse introduce behavioural incompatible changes. Nevertheless, there is still
disagreement regarding these figures. For instance, Xavier et al. [48] claim
that only 14.78% of the changes in their dataset are backwards incompatible,
while Brito et al. [6] state that 39% of the introduced changes are classified
as breaking. These differences are due to the diversity of libraries that are



Semantic Versioning and Impact of Breaking Changes in Maven Central 37

analysed and their characteristics, and the criteria used to select them (for
instance, the most popular Java libraries hosted on GitHub). In this study, we
detail a protocol that enables us to give a clear overview of the state of BCs in
MCR over the past 13 years.

In addition, Raemaekers et al. [41, 42] conduct a study that relates semver

with backwards incompatibility. The authors discover that semver is not strictly
followed in practice. That is, BCs are also introduced in minor and patch
releases [24, 41]. They also claim that minor releases introduce more changes
than major releases [42]. Similarly, some studies relate the nature of the API
with the tendency to introduce BCs. Xavier et al. [48] find that APIs with a
higher frequency of BCs introduction tend to be more popular, larger, and active.
They also argue that the frequency of BCs increases over time. Raemaekers et al.
[42] partially confirm this claim: larger libraries tend to introduce more BCs.
However, they also conclude that more mature APIs do not introduce more
BCs, which seems counter-intuitive when contrasting the results against Xavier
et al. [48] study. Decan and Mens [11] study adherence to semver principles at
the dependency constraints level. They find out that newer ecosystems tend to
follow semver guidelines, and that semver practices have become more popular as
time passes. Our study complements these results by studying the adherence
to semver in Maven Central.

It is also important to be aware of the type of changes that are usually
introduced during API evolution. Cossette and Walker [10] analyse a set of
binary BCs based on the affected entity type (i.e., class, method, field) and
its visibility (i.e., protected, public). In more recent work, Wu et al. [47]
undergo a study that analyses 23 types of changes related to API types and
methods [12, 19]. They find that missing classes and methods are important
types of BCs affecting client projects. Ketkar et al. [25] study type changes
and required code adaptations. They find out that type changes are more
common than renamings, and that they usually appear on public entities.
Furthermore, a particular kind of NBC has drawn much attention from the
community: API deprecation [6, 41, 43, 45]. While deprecating an API entity
does not immediately break client code, it signals that BCs may be coming in
the future—as the semantics of the annotation suggests. However, Raemaekers
et al. [41, 42] notice that API developers tag deprecated API entities without
ever removing them from their API. In other cases, they do quite the opposite:
API developers remove declarations from the API without deprecating them
first. Brito et al. [6] point out that this is to reduce the required maintenance
effort by API developers.

In spite of the contributions and findings of the abovementioned studies,
there is still a long way to go. First, some studies do not define a clear scope of
the applicability of their conclusions. In essence, it is not clear if findings account
for source, binary, or behavioural incompatibility. Moreover, how to detect
and classify behavioural incompatibilities is still an open problem. Second,
the selection and study of the subset of BCs seems arbitrary, incomplete, and
in some cases incorrect. For instance, some studies concluding on backwards
compatibility claim that adding a method to a class is an NBC. Although this
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change is indeed binary compatible, it will break source compatibility when the
method is added to an abstract class that is extended by client code. Third,
there is a lack of consensus in research findings across studies. This is the
case when reporting on the percentage of incompatible API releases and the
correlation between API properties and BCs frequency. This might be related to
the underlying datasets: some studies analyse only popular projects [6, 35, 48],
and others consider few libraries [28, 44].

6.3 Refactorings

Refactorings are changes aimed at improving the structure of a project without
changing its observable behaviour [16]. One of the main inquiries concerning
refactorings in API evolution is understanding to what extent API changes are
actual refactorings. Dig and Johnson [15] discover that between 3% and 27%
of changes on two common Java APIs are refactorings. Furthermore, they find
that at least 81% of BCs in four Java APIs are due to refactorings. However,
in more recent studies this number might be lower. For instance, Brito et al.
[6] show that 47% confirmed BCs in their corpus are actual refactorings, and
these are the most common types of BCs. Additionally, Kula et al. [28] state
that refactorings break less than 37% of all clients of a given API. They find a
tendency to find more BCs and refactorings in API internal entities [6, 28].

The main limitation of these studies is the level of abstraction at which the
analysis is performed. That is, a refactoring might be composed of multiple BCs
and, in some cases, by multiple refactorings. For instance, method renamed
could be recorded in a delta as both a method removed and method added
change. Analysing these changes requires an additional effort in dissecting
compound cases.

6.4 Impact of API Evolution

More recent studies attempt to understand how client projects are impacted
by API evolution. In some of them [2, 13, 43, 48] we find the same claim: there
is no massive impact of API changes on client code. In fact, Bavota et al. [2]
state that only around 5% of the projects in their corpus are impacted by
API evolution; Xavier et al. [48] discover that only 2.54% client projects in
the dataset are impacted by API BCs; and Robbes et al. [43] show that 14%
and 7% of class and method deprecations, respectively, impact client projects.
From a different perspective, Kula et al. [28] state that BCs are more likely
to appear in API entities that are not used by client code. Later, Raemaekers
et al. [42] relate the number of compilation errors with the introduced BCs.
They do so by individually inserting BCs in the API source code.

Regarding API-client co-evolution, there is a growing interest in under-
standing why, when, and how client projects upgrade to a newer version of
an API. On the quest of answering the why and when, Raemaekers et al. [41]
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show that API upgrading tends to be performed when major API updates are
released. Bavota et al. [2] indirectly confirm this claim by stating that client
projects upgrade to a newer version of an API only when substantial changes
are introduced. Regarding the how, Bavota et al. [2] highlight that even though
few client projects might be affected by API evolution, certain dependencies
that offer cross-cutting services can strongly impact them. To support these
first insights, Robbes et al. [43] find that resolving the first 25% ripple effects in
the Squeak and Pharo ecosystem, requires more than 14 developers. In addition,
several commits are registered to resolve the issue, which suggests the existence
of non-trivial changes. Both Robbes et al. [43] and Sawant et al. [45] claim
that finding systematic changes in affected client code is rare. There are many
cases where impacted code is simply dropped, or an ad-hoc solution is provided.
These findings are contrary to what developers postulate in Brito et al. [6]
study: they argue that API migration results in minor and easy changes. In
addition, Mostafa et al. [35] claim that 67% of bugs introduced by behavioural
changes can be fixed by simple changes (e.g., replacing arguments, converting
return values).

Despite the new contributions in the field, few papers study both how APIs
evolve and how this evolution impacts client projects. Moreover, when they
analyse API usage there is a misalignment between the API change and usage
types. For instance, Wu et al. [47] label inheritance for IoC as an API usage
type. However, this type of usage can be split into other categories, such as
method overriding, class extension, and interface implementation. With this
differentiation it is possible to relate API changes at different levels (i.e., class,
method, and field levels) with atomic API usages; and accurately point to
affected client members. Finally, as in the case of studies related to backwards
compatibility, we perceive contradicting results that are most likely due to
differences in the studied datasets.

7 Discussion

In this section, we discuss the main implications of our findings for library
developers, library clients, and researchers.

Implications for library developers. The introduction of BCs is inherent to soft-
ware evolution and cannot always be avoided. Although libraries are encouraged
to preserve backwards compatibility, the need to introduce new features and im-
prove the quality of the library sometimes results in incompatible changes. We
claim that introducing BCs is tolerable as long as they are properly announced
in advance to not take clients by surprise. Versioning conventions or code-level
mechanisms (e.g., annotations, naming conventions) are regularly used for this
purpose. In addition, many software ecosystems such as Maven, GitHub, and
npm encourage their users to adhere to the semver policies. They even offer
core tooling to support developers on this quest for quality and compliance.
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The semantics of such policies might differ among ecosystems, thus, library
developers are exhorted to carefully understand and follow such rules.

Introducing too many BCs may, however, hurt the reputation of a library.
It is very hard for developers to manually detect BCs in source code, so we
believe that the use of tools such as japicmp and Maracas is important to help
library maintainers make the right decisions. The Apache Commons developers,
for instance, use japicmp on every new release of their libraries to check for
backwards compatibility.12 These tools are also able to automatically generate
reports that help clients to anticipate the changes.13 The first step towards a
more disciplined evolution of libraries is to detect and communicate on BCs,
two aspects addressed by these tools. As we have shown in our analysis of Q3,
some BCs appear to be more critical than others for client developers. We thus
encourage library developers to interpret the output of these tools wisely and
to account for the severity of different changes.

The ability of Maracas to infer the impact of BCs on client code is also bene-
ficial for library developers. Developers may run Maracas as part of a continuous
integration pipeline to check that a particular commit, pull request, or release
does not significantly impact their clients, and reconsider the changes if the
impact is too high. This type of tooling can also yield valuable information on
how unstable or unsafe parts of APIs are being used by client projects. With
this information, library developers can either decide to promote internal inter-
faces to public ones, including new features in their list of public interfaces [21].
They can also analyse to what degree unsafe declarations are impacting client
projects, and based on these results, they can even come up with new designs
to transform an unsafe interface into a safe one [33].

Implications for client developers. The main implication of our results for client
developers is that the situation is not as bad as reported in the literature. In
MCR, most releases comply with semver requirements and avoid BCs in non-
major releases. Besides, as we have shown in Q2, the situation has significantly
improved over time.

Each ecosystem has its own policy regarding versioning conventions and
the treatment of BCs. Cargo, npm, Packagist, and Rubygems, for instance, do
not apply semantic versioning in the same way [11]. Client developers should
thus pay attention to ecosystem-specific guidelines and pick an ecosystem
that advocates a strict policy to minimize the risk of being impacted by
unwanted changes. Additionally, identifying unstable declarations in used APIs
via semver or other code-level mechanisms is important to avoid client broken
code after upgrading to more recent releases. Naming conventions [9] and use
of annotations are some of the signaling mechanisms that client developers
should look for.

Tools such as Maracas should also be beneficial to client developers. When
faced with the possibility of upgrading a dependency, developers may employ

12 https://garygregory.wordpress.com/2020/06/14/how-we-handle-binary-compatibility-at-apache-commons
13 https://commons.apache.org/proper/commons-lang/japicmp

https://garygregory.wordpress.com/2020/06/14/how-we-handle-binary-compatibility-at-apache-commons
https://commons.apache.org/proper/commons-lang/japicmp


Semantic Versioning and Impact of Breaking Changes in Maven Central 41

Maracas to evaluate the impact of different versions, and choose the one that
addresses their requirements without causing too much disruption.

Implications for researchers. As we have seen, the use of code-level mechanisms
to delimit unstable APIs relies on conventions that might vary from one
organization to the other or from one library to the other (@Beta for Google,
@Internal for Apache, sun.* packages in the JDK, etc.). Contrary to semantic
versioning, there is no standardization of these mechanisms, which makes it
hard for clients to understand which declarations should be considered stable
or unstable. Besides, it is not clear how semver and code-level mechanisms
interact: the semver specification only mentions the @Deprecated annotation.
Should developers release a major revision when they introduce a BC in a
beta-stage API? We believe that clarifying the role of code-level mechanisms
and their relation with semver would be beneficial. Another interesting line
of work would be to incorporate better mechanisms to delimit APIs directly
in programming languages: developers are currently forced to make some
declarations public only for technical reasons (cf., Section 2) even though they
are not part of the intended API.

Researchers should also strive to design and implement benchmarks to
compare tools related to library evolution objectively. The benchmark of Jezek
and Dietrich [23], which we reuse and extend to evaluate the accuracy of
Maracas, is the first step in this direction and should be complemented with
other benchmarks, for instance, related to behavioural compatibility.

Furthermore, when analysing software evolution, the design of a study pro-
tocol and the creation of the underlying datasets should be carefully performed.
Sampling bias is a recurrent threat to validity that can hurt the interpretation
of API evolution studies. For instance, selecting only the most popular libraries
on a repository, or only the ones related to a particular ecosystem hurts the
generalization of the study findings. To cope with this issue, representative and
diverse samples are required to come up with relevant conclusions [36].

Finally, because BCs are not always avoidable, researchers should continue
to develop tools and methods that assist client developers in automatically
migrating their code [10, 50, 51].

8 Conclusion

In this paper, we conduct an external and differentiated replication study of the
work presented by Raemaekers et al. [42]. The motivation behind this study is
to better understand which kind of BCs happen in libraries hosted on the MCR,
and what is their impact. We rely on semver principles to draw conclusions that
are aligned with versioning conventions that signal API instability. Our protocol
addresses some limitations of the original study and expands the analysis to a
new dataset spanning seven more years of the MCR. We implement and use
Maracas to compute BCs between adjacent versions of libraries, and to detect
locations in client code that are affected by such BCs.
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The main results of the study are as follows:

Q1: How are semantic versioning principles applied in the MCR?
83.4% of all upgrades on MCR do comply with semver principles. Still, 20.1%
of non-major releases are breaking, threatening client projects.

Q2: To what extent has the adherence to semantic versioning princi-
ples increased over time? The tendency to comply with semver practices
has significantly increased over time: the number of non-major breaking
releases has decreased from 67.7% in 2005 to 16.0% in 2018.

Q3: What is the impact of breaking changes on clients? Only 7.9%
of the clients we analyse are impacted by the BCs introduced in adjacent
library releases. However, when breaking declarations are used by client
projects, they are likely to break.

According to these results, we state that libraries and client projects on the
Maven ecosystem are not “breaking bad”. To be precise, developers of Maven
projects tend to follow semver principles and are for the most part disciplined
when introducing BCs. While the situation has improved over time, there is
still room for improvement. Although the impact of BCs on client projects is
low, more research is needed to support clients that are impacted and need to
migrate their code. Differences with results reported in the original study are
explained by major changes introduced in the protocol and the extended time
span of the new corpus.

As future work, we first would like to perform qualitative analyses to comple-
ment our findings. In particular, we would like to explain the phenomenon we
observed: what are the motivations behind inserting BCs in non-major releases,
and why has the adherence to semantic versioning increased so significantly.
These questions could be answered by interviewing library maintainers and
clients. Second, we would like to study how the evolution of the Java language
itself impacts the definition of BCs, and how this affects libraries and clients.
As new constructs are made available in Java (e.g., the default operator in
Java 8 or the record data type in Java 15), new BCs appear. At the same time,
these new constructs provide new strategies to deal with certain BCs (e.g.,
default methods allow to gracefully evolve an interface without forcing changes
in existing implementations). Third, we believe that the understanding of how
client projects react to BCs is another step towards finding a way to support
library-client co-evolution. Thus, we aspire to study how clients react in the
wild and which patterns can be identified from these reactions. Finally, we also
would like to study behavioral incompatible changes in Java libraries.
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