N
N

N

HAL

open science

Stochastic Rounding: Implementation, Error Analysis,
and Applications

Matteo Croci, Massimiliano Fasi, Nicholas J Higham, Théo Mary, Mantas
Mikaitis

» To cite this version:

Matteo Croci, Massimiliano Fasi, Nicholas J Higham, Théo Mary, Mantas Mikaitis. Stochastic Round-

ing: Implementation, Error Analysis, and Applications. Royal Society Open Science, In press.

03378080

HAL Id: hal-03378080
https://hal.science/hal-03378080

Submitted on 14 Oct 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-03378080
https://hal.archives-ouvertes.fr

ROYAL SOCIETY
OPEN SCIENCE

rsos.royalsocietypublishing.org

Research 1)

updates

Draft version of October 13, 2021

Subject Areas:
Mathematics, Computer Science

Keywords:

Floating-point Arithmetic, Rounding
Error Analysis, Computer Arithmetic,
IEEE 754, binary16, bfloat16, Low
Precision, Ordinary Differential
Equations, Partial Differential
Equations

Author for correspondence:
Mantas Mikaitis

e-mail:
mantas.mikaitis@manchester.ac.uk

THE ROYAL SOCIETY

PUBLISHING

Stochastic Rounding:
Implementation, Error
Analysis, and Applications

Matteo Croci', Massimiliano Fasi?,
Nicholas J. Higham?, Theo Mary4, and

Mantas Mikaitis®

IMathematical Institute, University of Oxford, Oxford,
OX2 6GG, United Kingdom.

2Department of Computer Science, Durham University,
Durham, DH1 3LE, United Kingdom.

3Department of Mathematics, The University of
Manchester, Manchester, M13 9PL, United Kingdom.
4Sorbonne Université, CNRS, LIP6, Paris, F-75005,
France.

Stochastic rounding randomly maps a real number
to one of the two nearest values in a finite precision
number system. First proposed for use in computer
arithmetic in the 1950s, it is attracting renewed
interest. If used in floating-point arithmetic in the
computation of the inner product of two vectors of
length n, it yields an error bounded by /nu with high
probability, where u is the unit roundoff, which is not
necessarily the case for round to nearest. A particular
attraction of stochastic rounding is that, unlike round
to nearest, it is immune to the phenomenon of
stagnation, whereby a sequence of tiny updates to a
relatively large quantity are lost. We survey stochastic
rounding, covering its mathematical properties and
probabilistic error analysis, its implementation, and its
use in applications, including deep learning and the
numerical solution of differential equations.

1. Introduction

Rounding is the act of mapping a given number to one
having a certain number of digits in a given base. For
illustration, consider the task of rounding in base 10 a 2-
significant-digit number to 1 significant digit. If we round
to the closest 1-digit number then 1.4 rounds to 1 and
1.7 rounds to 2, for example. We denote the rounding
operator by fl, thus we write f1(1.4) =1 and f1(1.7) = 2.

© 2021 The Authors. Published by the Royal Society under the terms of the
Creative Commons Attribution License http://creativecommons.org/licenses/
by/4.0/, which permits unrestricted use, provided the original author and
source are credited.

http://crossmark.crossref.org/dialog/?doi=10.1098/rsos.&domain=pdf&date_stamp=
mailto:mantas.mikaitis@manchester.ac.uk
mailto:mantas.mikaitis@manchester.ac.uk

This rounding rule, called round to nearest (RN), is deterministic: the value of fl(x) depends only
on z, and repeating the rounding will not yield a different result.

Suppose we want to compute 1 + 0.1 in 1-digit base-10 arithmetic. With round to nearest we
obtain f1(1 4 0.1) = 1. Another option is to round to either of the two nearest 1-digit numbers with
a probability that depends on the distances to those numbers. If in our example we define f1(1 +
0.1) as 1 with probability 0.9 and as 2 with probability 0.1, then the expected result is 0.9 x 1 +
0.1 x 2= 1.1, which is the exact answer. This probabilistic rounding is called stochastic rounding
(SR), and this simple example demonstrates why it can be useful in practice.

SR was first proposed over sixty years ago, but until recently had proved useful only in rather
specialised contexts. In the last five years or so, however, this rounding mode has enjoyed a
resurgence of interest, mainly because of the increasing availability of low precision floating-
point arithmetic in hardware. When solving large problems in low precision, the accumulation
of rounding errors can cause all accuracy to be lost with standard rounding modes. Using SR in
place of round to nearest can attenuate the growth of worst-case error bounds and provide more
accurate solutions, since statistical effects allow errors to cancel out, at least to some extent.

The aim of this work is to survey SR, describing

¢ its history,

* its basic properties compared with RN,

* how it can be implemented,

e its probabilistic rounding error analysis, and
* how and why it is being used in applications.

2. What is stochastic rounding?

Let F' C R denote a number system. For x € R, define the two rounding candidates
lz] =max{ye F:y<z}, [z]l=min{yeF:y>x},

so that |z] <z < [z], with equality throughout if x € F. Note that when x ¢ I, the two numbers
|z] and [z] are adjacent in F'. We denote by fl any rounding operator that maps numbers in R to
either of the two nearest numbers in F'.
For z € R\ F, SR is defined by
() = { [«] with probability ¢(z), 21)
|z] with probability 1 — g(z),

where ¢(x) € [0, 1]. The simplest choice is g(x) = 0.5, in which case we round up or down with
equal probability, independently of x. As is customary in the literature [1], [2], we call this less
commonly used form of SR mode 2 SR. Another choice is to set in (2.1)

z— |z]

q(x) 2= 2]’ 22
which means that we round « to the next (larger or smaller) number y with a probability that
is 1 minus the relative distance of = to y. The choice (2.2) yields mode 1 SR, which is the most
interesting stochastic rounding mode from a numerical point of view. Unless otherwise stated,
here SR means mode 1 SR. See Figure 2.1 for an illustration.

For the rest of this paper, we take F' to be a floating-point number system, unless otherwise
stated, as this is the case of most interest.

In RN, which is the default rounding mode in most floating-point arithmetics, fl(z) is the
number in F' nearest to x, with some tie-breaking strategy for handling the case where z is
equidistant from the next and previous floating-point numbers. While SR and RN share some
important properties, they also differ in some important respects. We first describe some features
that they have in common.

10000000 “10s usdo 905 Y Bio"BuiysigNdAIsIo0s|eAos SOSI

@ <—— 8

lz|+[x]
] ! [2]
Figure 2.1. Stochastic rounding rounds the real number x to the next smaller number |z] in F or to the next larger
number [z] in F. In this example, RN rounds z to [z], whereas mode 1 SR can round to either |z | or [z] but is more
likely to round to [x].

e If x €R, then fl(fl(z)) =fl(z), that is, rounding a floating-point number leaves it
unchanged.

e If x and y are floating-point numbers with y/2 < z < 2y then fl(z — y) = z — y (assuming
subnormal numbers are supported). This result, known as Sterbenz’s lemma [3, Thm. 2.5],
[4, Thm. 1.8.2], holds for any rounding mode.

¢ In base-2 arithmetic, any floating-point numbers z and y such that x <y satisfy the
inequalities

pc MY < 3
which do not hold for all bases.

SR and RN differ in some key properties, however. For example, if ¢ F' then in general
f1(|z|) # | fl(z)| and f1(—x) # — fl(z) for SR. Moreover, SR is not monotonic: z < y does not imply
that fl(z) <fl(y), as can be seen by considering any pair of reals and y lying between two
adjacent floating-point numbers.

Several results are available that describe how simple identities for real numbers are (partially)
preserved for floating-point numbers under RN. Generally similar, but weaker, results hold for
SR. For a binary format with RN, for example, we have that fI(vz2) = |z| if = is a floating-
point number [3, Prob. 2.20], barring underflow and overflow. For SR, however, if z is a
floating-point number in the interval (1,2) then f1(v22) € {|z| — ez, |2, || + enr}, where)y
is the machine epsilon defined in Section 4(a). A consequence of this fact is that the inequality
fl(z/+/2? + y?) < 1, which is always satisfied by RN [3, Prob. 2.21], is not necessarily true when
SR is used.

Full details of the above results, as well as other properties that differ between SR and RN,
are given by Connolly, Higham, and Mary [1, Sec. 3]. Before replacing RN with SR it is vital to
consider whether a certain computation relies on properties of RN that go beyond the standard
model of floating-point arithmetic (6.1) below, and if so, whether these properties remain true for
SR. The solution of the quadratic equation az? 4 bz 4 ¢ =0 is a striking example of the subtle
issues that may occur when switching from RN to SR: if evaluated using SR, the discriminant
b? — 4ac can be negative even when b2 > 4ac. This is a consequence of the non-monotonicity of SR
which in some cases may lead one to conclude, incorrectly, that an equation has no real solutions
when in fact it has two almost identical real roots.

3. Early history of stochastic rounding

To the best of our knowledge, the earliest proposal of SR was in a one-paragraph abstract of
a communication presented by Forsythe in 1949 at the fifty-second meeting of the American
Mathematical Society [5]. The abstract claims that SR can be used to reduce the accumulation
of round-off errors observed by Huskey [6] in solving a simple system of ordinary differential
equations (ODEs). The numerical integration that Forsythe and Huskey consider entails a sum

10000000 108 Uado 008 Y Bi0"BulysIgNdAIBI00S|eA0I SOS!

of real values which is further reduced to a sum of integers, most likely intended as fixed-
point representations of reals. The suggestion is to perform this rounding by random round-off,
a suggestive name for mode 1 SR. The abstract concludes by stating that numerical tests on some
unspecified IBM equipment confirm that SR can eliminate the “peculiarities” noticed by Huskey
on the ENIAC'.

The first hardware implementation of SR we are aware of was described by Barnes et al. [7] in
1951. The authors describe a digital computer with 8-digit decimal arithmetic and explain that
using SR rather than RN in multipliers and dividers simplified the implementation. As their
implementation rounds up or down with equal probability, this constitutes an early example of
mode 2 SR.

A note by Forsythe, originally written in 1950 and reprinted in 1959 [8] (see [8, footnote
1]), provides more details about the proposal to round stochastically when solving ODEs. The
document suggests to implement mode 1 SR for decimal arithmetic as follows:

“On a decimal machine, instead of adding a 5 in the most significant position of the digits to be
dropped (ordinary rounding off), one adds a random decimal digit to each of the digital positions to
be dropped. As with ordinary rounding off, the addition carry-over determines whether the rounding

7o

off is ‘up” or ‘down’.

It is not clear whether this excerpt refers to a hardware implementation or to a modification that
could be done in software on the computers of the time. This technique has been used in recent
hardware implementations for rounding binary numbers [9], [10].

In a 1966 paper, Hull and Swenson [11] test various probabilistic rounding error models by
comparing the results of stochastically rounded operations to the expected error predicted by
the models. According to the description provided at the beginning of the section “Simulation of
the Models” [11, p. 109], however, the implementation of SR that Hull and Swenson consider
differs from the one we examine. In order to round stochastically the result of an arithmetic
operation they first perform the operation in binary64 arithmetic, then add a pseudo-random
number between —1/2 and 1/2 of the unit in the last place of the upper 32 bits of the binary64
result. Subsequent calculations use the modified 64-bit value, which presumably includes the
original quantity of the bottom 32 bits and the added random quantity. Despite the different
spirit, we mention this contribution here as it is one of the earliest manuscripts we are aware of
that considers non-deterministic rounding.

4. Floating-point arithmetics

Before describing the finer details of SR, we recall some necessary background on floating-point
arithmetic. We discuss the formats in the IEEE 754 standard for floating-point arithmetic and two
other formats of practical interest, bfloat16 and TensorFloat-32.

(a) IEEE 754 standard floating-point arithmetics

The IEEE standard 754 for floating-point arithmetic was first released in 1985 [12] and then
revised in 2008 [13] and 2019 [14]. The standard dictates the encoding rules for binary and
decimal floating-point data types, the precision and exponent range of some standard formats,
and the accuracy requirements of basic arithmetic operations. It also prescribes how to handle
exceptional cases and specifies a set of recommended mathematical functions that software
and hardware floating-point libraries should provide in order to ensure a consistent numerical
behaviour. Table 4.1 reports the parameters for the four binary floating-point data types defined
in the latest revision of the standard. Most hardware implements the data types binary32 and
binary64, previously known as single and double precision, respectively. Of the remaining formats,
binary16 is defined only as a storage format, but it has been implemented in hardware by several

!Electronic Numerical Integrator and Computer—first programmable, general-purpose digital computer made in 1945.

10000000 “10s usdo 905 Y Bio"BuiysigNdAIsIo0s|eAos SOSI

Table 4.1. Parameters of various binary floating-point formats: number of digits of precision including the implicit bit (p),
endpoints of the exponent range (emin and emax), machine epsilon (¢ ,), smallest positive representable normal (finin)
and subnormal (s;uin) numbers, and largest positive number (fmax). The “binaryxy” formats are from the IEEE 754

standard.

bfloatl6 binary16 binary32 binary64 binary128
P 8 11 24 53 113
€max 127 15 127 1023 16383
€min —126 —14 —126 —1022 —16382
en 97 910 9—23 9—52 g—112
Fni 9—126 9—14 9—126 9—1022 9—16382

min

Semin 9—133 9—24 9—149 9—1074 9—16494

fmax 21272277y 2l5(2 _ 9710y 9l27(9 9-23) ol023(5 9—52) 9163849 o5—112y

manufacturers. While binary128 is mainly supported in software, it is also available in hardware
on the IBM Power9 [15] and z13 [16] processors.

We now briefly recall some key aspects of IEEE floating-point number systems and the
definitions and main properties of normalization and subnormal numbers. We focus on binary
formats, since most commercially available hardware implements only binary arithmetic. A
binary floating-point number x has the form

(=1)* x m x 2¢7PH1

where s is the sign bit, p is the precision, m € [0, 2P — 1] is the integer significand, and e €
[€min; €max], With epin =1 — emax, is the integer exponent. In order for # 0 to have a unique
representation, the number system is normalised so that the most significant bit of m—the
implicit bit in IEEE 754 parlance—is always set to 1 if |z| > 2°min. Therefore, all floating-point
numbers with m >2P~! are normalised. Numbers that have absolute value below that of
the smallest normalised number 2°™* are said to be subnormal: they have exponent e = ey,
integer significand m < 2P~!, and therefore precision lower than that of normalised values
(from p — 1 bits to just 1 bit). Subnormal numbers provide the means to represent values in
the subnormal range (—2%min 2°min) and are necessary in order to ensure that a floating-point
number system has desirable properties such as Sterbenz’s lemma or gradual underflow. Because
of the variable precision, however, they require special treatment in both software and hardware
implementations of floating-point arithmetics. This is likely to cause performance and chip area
overhead, therefore it is not uncommon for hardware manufacturers not to support subnormal
numbers. Two important numbers related to the precision p are the machine epsilon

ey =217, (4.1)
which is the spacing of the floating-point numbers just to the right of 1, and the unit roundoff

P = %EM, 4.2)

which is an upper bound on the relative error that occurs when rounding a real value to a
precision-p floating-point representation using RN. For further details we refer the reader to [3,
Ch. 1] and [17, Ch. 2].

The latest revision of the IEEE 754 standard defines six rounding modes, which are listed in
Table 4.2. Four rounding modes are required for a floating-point arithmetic to be compliant: round
to nearest with ties to even (RN), round toward positive (or toward +oo, or up, RU), round toward
negative (or toward —oo, or down, RD), and round toward zero (RZ).

The IEEE 754-2019 standard recommends extended or extendable precisions [14, Sec. 3.7] to
enhance the basic formats listed in Table 4.1. As an example, Intel provides an 80-bit extended
precision format that has a 15-bit exponent and a 64-bit significand—the bit to the left of the

u=2

10000000 108 Uado 008 Y Bi0"BulysIgNdAIBI00S|eA0I SOS!

Table 4.2. Rounding modes defined in the 2019 revision of the IEEE 754 standard [14].

Round mode Description

To nearest Round to a nearest floating-point value and if the two nearest

with ties to even (RN) floating-point values are equally close, round to the one with an
even least significant digit. This is a default rounding mode.

To nearest Round to a nearest floating-point value and if the two nearest

with ties to away floating-point values are equally close, round to the number with
larger magnitude. Only required for decimal floating-point data
types.

To nearest Round to a nearest floating-point value and if the two nearest

with ties to zero floating-point values are equally close, round to the number with
smaller magnitude. Only required for augmented operations [14,
Sec. 9.5].

Toward positive (RU) Round to a nearest floating-point value that is no less than the
argument.

Toward negative (RD) Round to a nearest floating-point value that is no larger than the
argument.

Toward zero (RZ) Round to a nearest floating-point value that is no larger in

magnitude than the argument.

radix point stored explicitly in this case, as opposed to the IEEE754 formats, which rely on the
implicit bit convention and use the value of the exponent field to determine the leading bit of
the significand. Arithmetic operations can be performed in higher precision and the results need
not be rounded to binary64 until the final result of a computation leaves the higher precision
registers. Note that such use of 80-bit arithmetic is not immune to double rounding, whereby a
value may be rounded incorrectly to the target format whenever is rounded to an intermediate
format (extended precision, in this case) first [18], [19].

(b) Non-IEEE arithmetics

Among the non-IEEE floating-point formats implemented in recent hardware, we are particularly
interested in those based on binary32: bfloat16 and TensorFloat-32, which lower the precision p
from 23 to 8 and 11 bits, respectively. The main idea behind these formats is to reduce the memory
and hardware arithmetic costs without narrowing the dynamic range; this contrasts with the aim
behind the binary16 format, which allocates to the exponent field fewer bits than binary32 and
therefore has a more limited dynamic range.

Bfloat16, which was originally proposed by Google and formalised by Intel [20], is available
on the Armv8 architecture [21], on the NVIDIA Ampere chips [22] and on some Intel
microarchitectures [23].

TensorFloat-32 is a format used internally in the tensor cores (matrix multiply-accumulate
units) of the NVIDIA Ampere microarchitecture [22]. This 19-bit format is meant to be a low
precision replacement for binary32, but is not used for data storage and is not available in any
other arithmetic unit on these GPUs.

5. Implementation

Here we discuss how to implement SR. Table 5.1 summarises the features of SR in a number of
implementations.

10000000 108 Uado 008 Y Bi0"BulysIgNdAIBI00S|eA0I SOS!

Table 5.1. Summary of SR implementations. Here, p is the target precision of rounding; k is the precision of the random
number in SR; the “Type” column has “I” for integer or fixed-point arithmetic and “F” for floating-point arithmetic; the “Op”
column indicates the class of operations supported or “Any” if rounding of any operation is supported; the H/S column
has H if SR is in hardware and S if software; and in the “Applications” column ML and QC stand for machine learning and
quantum computing, respectively.

Reference Type p k Op. H/S Applications
Barnes et al. (1951) [7] I 8 1 %,/ H General
Gupta et al. (2015) [9] I 18 30 Dot prod. H ML
Davies et al. (2018) [24] - 7 - *, + H ML
Higham & Pranesh (2019) [2] F <64 64 Any S General
Hopkins et al. (2020) [25] I 32 2-32 * S ODE solve
Mikaitis (2020) [10], [26] ILF <32 32 Any H General
Meurant (2020) [27] ILF <64 64 Any S General
Fasi & Mikaitis (2020) [28] F <64 64 Any S General
Croci & Giles (2020) [29] F <32 32-64 +, %,/ S General /PDEs
Fasi & Mikaitis (2021) [30] F P p +,%, /v S General
Paxton et al. (2021) [31] F <32 32-64 Any S General
Klower (2021)2 F <32 32-64 Any S General
Krishnakumar & Zeng (2021) [32] I n m=n * - QC

(a) SR expressed in terms of other rounding modes

We can express the SR operator in terms of other rounding operators by writing, for = ¢ F,

fl(z) = {RA(CL‘), with probability ¢(z),

(5.1)
RZ(x), with probability 1 — g(x),

where RA denotes the operator that rounds away from zero and ¢(z) € [0, 1]. For mode 1 SR, we

can rewrite (2.2) as

_ x—RZ(x)

" RA(z) — RZ(z)"
In order to implement (2.1) or (5.1) in practice, we need to define a discrete version of the SR

operator. Given a positive integer k, which controls the number of bits used to approximate the

continuous definition (2.1), let P be a random precision-k floating-point number drawn from the

uniform distribution over the interval [0, 1).3 We have that, for z ¢ F,

q(z) (5.2)

. x — RZ(x)
oy RA(2), if P< s — CEIOL 55
RZ(z), ifP>—2— RZ(z)

~ RA(z) — RZ(x)’
where SR, RA, RZ round to some precision p. It is worth noting that the choice of the optimal & for
implementing SR is one of the main open questions surrounding this mode 1 SR. A lower value of

k makes a hardware implementation cheaper but is expected to reduce the accuracy benefit that
SR may potentially bring: setting k = 1, for example, gives mode 2 SR.

(b) Proposed IEEE 754 style properties of SR

The definition in the previous section does not cover edge cases such as overflow, underflow, and
rounding of infinities and NaNs (not-a-number). In the following we propose our definition of SR

thtps ://github.com/milankl/StochasticRounding. jl

3We remark that floating-point numbers are not uniformly distributed in [0, 1], but here we need the precision-k random
floating-point number to be sampled from that interval uniformly in the sense of real numbers. This is not a consideration
required in the hardware algorithms in Section 5(d)ii since there SR is performed at the bit level, using uniformly distributed
integers. Usage of other random number distributions in SR has been explored in [33].

10000000 “10s usdo 905 Y Bio"BuiysigNdAIsIo0s|eAos SOSI H

https://github.com/milankl/StochasticRounding.jl

for these edge cases by giving some properties of SR analogous to those of the rounding modes
defined in the IEEE 754 standard [14].

e If the exact number is in the range of the target format, SR should be performed as though
the number was originally held in p + k bits and then rounded to p bits according to (2.1).
Here £ bits refer to the precision of SR, as well as the number of random bits required.

¢ Overflows: if the exact number lies between the maximum representable number =+ fyqx
and the neighbouring value that is not representable (which has to be treated as +c0),
SR is performed in the usual way, as though the value is representable, to preserve the
statistical information about the round off bits.

* When the exact number is smaller than the smallest value representable in the target
format, SR should round stochastically to one of the two neighbouring floating-point
values in the target format, either zero or the smallest representable value, maintaining
the sign.

¢ When subnormals are disabled or not supported in the target format and the exact value
is in the range of underflow, SR should round either to zero or to the smallest normalised
value, again without changing the sign.

* +o00 and %0 should not be rounded (changed) by the SR operation. NaNs with payloads
that cannot be represented in the target format should not be stochastically rounded:
a NaN with an implementation-defined payload may be returned, as per IEEE 754
[14, Sec. 6.2.3] (relevant in mixed-precision setting, for example converting binary64 to
binary32).

* As in the standard rounding operations [14, Sec. 4.3], inexact, underflow, and overflow
exceptions should be signalled by the SR operation.

(c) Simulation of SR in software

SR can be simulated in software in a straightforward fashion by relying on high precision floating-
point arithmetic. The computation whose result is to be rounded stochastically is performed using
higher precision and then rounding the high-precision result using (5.1), where g(z) in (5.2) is
based on the (higher-precision) approximation to = rather than on its exact value. This approach
is easy to implement as long as higher-than-working-precision arithmetic is available, be it
in hardware, for instance when emulating binary32 rounding using binary64 arithmetic, or in
software, through arbitrary precision libraries such as the GNU Multiprecision Library (GNU
MPEFR) [34].

In practice, once the high precision solution has been computed, the rounding step can be
performed in several ways. The MATLAB function chop? [2] and the FLOATP_Toolbox® for
MATLAB [27] leverage the MATLAB random number generator to draw a random number r
from the uniform distribution over the open interval (0,1) and choose the rounding direction
depending on whether r is larger or smaller than g(z).

Most software favors the use of integer random numbers, integer arithmetic, and bit
manipulation.

The implementation of SR in the QPyTorch® package [35], for example, rounds stochastically
a binary32 number y to a floating-point format with precision p < 23 as follows. First, it generates
the 32-bit integer m by zeroing out the leading (p — 1) + 9 bits of a 32-bit random integer, since
the first 9 digits in the binary representation of y store its sign and exponent and the following
p — 1 store the p most significant bits of the significand using the implicit bit convention. Next,
the algorithm computes n =y + m, where y is the binary representation of y seen as an integer,
uses a bitmask to zero out the 24 — p trailing digits of n, as 24 is the number of precision bits in
a binary32 number, and finally returns the value thus obtained as a 32-bit floating-point number.
The implementations in the CPFloat’ C library [28] use an analogous technique when rounding

4https ://github.com/higham/chop

5https ://gerard-meurant .pagesperso-orange.fr/floatp.zip
®https://github.com/Tiiiger/QPyTorch
"https://github.com/mfasi/cpfloat

10000000 108 Uado 008 Y Bi0"BulysIgNdAIBI00S|eA0I SOS!

https://github.com/higham/chop
https://gerard-meurant.pagesperso-orange.fr/floatp.zip
https://github.com/Tiiiger/QPyTorch
https://github.com/mfasi/cpfloat

binary32 as well as binary64 floating-point numbers to lower precision. The same approach is
followed by Verificarlo® [36], an instrumentation tool which uses the GNU Compiler Collection
(GCC) quad format as extended precision for binary64, and binary64 as extended precision for
binary32.

The approach of simulating SR through extended precision is also used in the mcaquad
backend of the Valgrind tool Verrou’ [37], [38]. This tool offers also a second backend, which
bears the same name as the tool and rounds stochastically without using higher precision. The
technique implemented in the ve rrou backend is reminiscent of the algorithms used for double-
double arithmetic, and it exploits reduction operations [14, Sec. 9.4], also known as error-free
transformations, to approximate the distance between the result computed with 2p digits of
precision and the two precision-p rounding candidates. The random direction is then chosen by
comparing this value with that of a random integer.

Fasi and Mikaitis [30] propose a similar but more general approach for implementing
in software stochastically rounded elementary arithmetic operations: addition/subtraction,
multiplication, division, and extraction of the square root. For each operation, they propose two
algorithms, one that uses only RN, and one that combines it with RZ, RU, and RD. Both variants
are faster than an implementation that relies on the GNU MPEFR library, and the RN-only versions
are faster on x86 architectures, where switching the rounding mode incurs a high performance
penalty [17, Sec. 12.3.2].

Klower’s Julia software package StochasticRounding jI'? defines three new Julia floating-point
types that automatically include SR. These correspond to bfloat16, binary16, and binary32, and
use the Xoroshiro128Plus fast pseudo-random number generator (PRNG).!! Composability and
type flexibility in Julia enable SR computations in single and half precision in a large number
of numerical software and mathematical libraries. Automatic application of SR operations is
extremely advantageous from a user standpoint, as it allows significant code simplification.

In terms of fixed-point arithmetic with SR, Hopkins et al. [25] and Mikaitis [26] have recently
implemented a set of rounding and multiplication operations'? and used them on low power
ARM integer processors. Multiplication routines for various fixed-point formats in the ISO 18037
embedded C standard [39] were developed by exploiting the fact that ARM processors return the
full-precision result of integer multiplication using two registers: multiplying two 32-bit fixed-
point values, for example, returns the exact 64-bit result with all the information of integer and
fraction bits of products preserved. The bottom bits of the fraction can then be used to round the
results to one of the standard fixed-point formats stochastically.

(d) Hardware with SR

Now we review hardware designs discussed in the literature, some of which are already available
in commercial hardware, and describe how basic floating-point addition and multiplication
algorithms can be modified to support SR.

(i) Overview of available devices and patents

The Graphcore Intelligence Processing Unit (IPU) is a highly parallel machine learning accelerator
that supports SR for binary32 and binary16 arithmetic [40, Sec. 2.1], [41, Ch. 10], [42]. The patent
filed by Graphcore [43] reveals some technical details not specified in the documentation that may
reflect the hardware implementation of the IPU. The document explains how binary32 values are
stochastically rounded to binary16 precision in hardware by using a PRNG, also implemented in
hardware—this kind of conversion might be performed in the IPU, although this is not reported.
The algorithm begins by generating a 24-bit random number, that is, one random bit for each bit

8https://github.com/verificarlo/verificarlo

qhttps ://github.com/edf-hpc/verrou

10https ://github.com/milankl/StochasticRounding.jl
Uhttps://juliarandom.github.io/RandomNumbers.jl/stable/man/xorshifts/
Zhttps://github.com/SpiNNakerManchester/spinn_common/blob/master/include/round.h

10000000 108 Uado 008 Y Bi0"BulysIgNdAIBI00S|eA0I SOS!

https://github.com/verificarlo/verificarlo
https://github.com/edf-hpc/verrou
https://github.com/milankl/StochasticRounding.jl
https://juliarandom.github.io/RandomNumbers.jl/stable/man/xorshifts/
https://github.com/SpiNNakerManchester/spinn_common/blob/master/include/round.h

in the significand of a binary32 value. It then uses 13 or more of those bits to round a number to
binary16. The number of random bits that are actually used depends on whether rounding will
result in a normal or subnormal number.

Two patents filed by IBM disclose methods for implementing floating-point adders [44] and
multipliers [45] that use SR. The authors demonstrate the techniques on an 8-bit data type, but
mention binary32 and binary64 as examples of other formats to which the approach can be
applied. The procedures require a fixed number of random bits be loaded into a register, but
the patents do not explicitly mention how these bits should be generated. The adder [44] rounds
stochastically by using the bits that drop off in the significand alignment step. It is not mentioned,
however, whether the sum is normalised before being rounded, and if so whether the bits that are
to be shifted out during the normalization are also taken into account when rounding.

A patent from AMD describes methods and circuits to use SR in conjunction with integer
adders or accumulators [46]. The document shows the design of 1) an adder that computes the
sum of two integers by using a random number passed in through a third input, and 2) a 32-bit
accumulator which takes as inputs both the next 16-bit value to accumulate and a 16-bit random
number, and outputs a 16-bit stochastically rounded sum. The pseudo-random numbers in the
proposed SR unit are generated with a linear-feedback shift register (LFSR), but no specific algorithm
is mentioned.

A patent from NVIDIA demonstrates a method to round stochastically floating-point values
to lower precision, using a fixed, programmable, or computable rounding bit position [47]. The
authors explain how to round binary64 values to binary32, and binary32 values to binary16 and
bfloatl6. A special feature of the design presented is that it performs SR by using a number of
bottom bits of the source value’s significand, without relying on a random number generator [47,
Fig. 2B]. For example, the 23-bit fraction of a binary32 number can be rounded to the 10-bit fraction
of a binary16 value by taking the bottom 8 bits, adding them to the top 8 bits of the bottom 13-
bit part of the significand (a carry may propagate to the top 10 bits), and finally setting the 13
least significant bits to zero, in order to produce the output. The authors note that this method for
performing SR has an advantage over using real random numbers, since it is deterministic and
cheaper to implement. They do not mention, however, whether replacing the random number
with part of the input causes SR to lose any of its desirable properties.

Gupta et at. [9] discuss the hardware prototype of a fixed-point matrix multiplier based on a
2D systolic array architecture and demonstrate experimental results from a field-programmable gate
array (FPGA) implementation. Each node of the systolic array is a multiply-and-accumulate digital
signal processing (MACC DSP) unit that multiplies two integers and accumulates the result into
an internal register. Each element of the matrix product is produced by a single MACC DSP. The
unit is generalised, but the authors report results for an implementation in which each MACC DSP
accepts inputs of at most 18 bits and accumulate the partial results in an internal 48-bit register.
When the matrix product is computed, each 48-bit element is passed through a SR unit (there is
one for each column of the 2D array of MACC DSPs) to produce the 18-bit rounded and saturated
results. The pseudo-random numbers needed to implement SR are generated using a LFSR, and
are added to the least significant bits of the number in the internal register of the MACC before
they are set to 0 and dropped off the 48-bit accumulator’s value. The bit width of the LFSR is
equivalent to the bit width of the part of the accumulator that is dropped, which is 30 in the
example discussed above.

The Intel Loihi [24] and the SpiNNaker2 [10], [26], [48] digital neuromorphic processors
include SR. The Intel Loihi processor has multiply-accumulate hardware that computes a 7-bit
approximation to z[t] = « - [t — 1] + ¢ - s[t] (with s[t] € {0, 1}, a a decay factor, and ¢ an impulse
amount added at each step). It is not specified where SR is applied in this computation, and
what precision and type of random numbers are used. The SpiNNaker2 SR accelerator rounds
and saturates 64-, 32-, or 16-bit to 32- or 16-bit fixed-point numbers with SR. As a special
case it also includes rounding from IEEE 754 binary32 to bfloat16. The random bits needed for
rounding are produced using the 32-bit hardware pseudo-random number generator available on

10000000 108 Uado 008 Y Bi0"BulysIgNdAIBI00S|eA0I SOS!

SpiNNaker?2 [48]. The number of bits to be used to round the fixed-point number is programmable
(it can be anything between 1 and 32 bottom bits of the input), while in the case of binary32 to
bfloat16 rounding it is fixed to round the bottom 16 bits of the significand.

(i) Modifying basic floating-point algorithms to include SR

Now we discuss how to modify classical algorithms for addition and multiplication of floating-
point numbers [17, Ch. 7], [49, Sec. 4.2.1], [50, Ch. 8] in order to obtain algorithms that support
SR and can readily be implemented in floating-point software or hardware. Algorithms for other
operations to include SR such as fused multiply-add (FMA) or division can be similarly derived
by modifying the original algorithms for the IEEE 754 arithmetic operations [17], [50].

Addition. The sum r =o(z + y), where o € {RN,RZ, RD, RU} and z and y are binary floating-
point numbers, can be computed by performing the following steps.
(i) Add or subtract the integer significands and set the exponent of the result.

(if) Normalise the sum’s significand and update the exponent.

(iii) Round the sum’s significand, and renormalise and adjust the exponent.

In more detail, let z=(—1)% x mgz x 2= P and y=(—1)% x my x 2° P! be two
normalised precision-p floating-point numbers. We assume that s; = sy = 0, which implies that
x and y are positive, in order to avoid considering sign interactions which may transform the
addition into a subtraction. This restriction does not affect our main observations pertaining to the
implementation of SR. The role that the sign of the operands plays in this algorithm is discussed,
for instance, in [17, Sec. 7.3]. We make additional observations about subtraction when necessary.

The sum 7 = o(z + y) = (—=1)*" x my x 27 "P+1 is computed as follows.

(i) If ey > ez, swap x and y to ensure that e; > ey.

(if) Alignment of the significands: compute my x 9~ (ez—ey) by shifting my to the right by
ex — ey places. Set e = ey. It is not necessary to keep all the bits that are shifted out:
maintaining only two bits plus a third sticky bit suffices—see below.

(iii) Sum of the significands: compute m¢ = mgz + my x 27 (€2 =€) At this step, my is an exact
sum of the significands.

(iv) Normalization of the result: since 0 < m; < 2° +1 we may need to normalise the result by
shifting m; to the right by one place (if m; > 2P) and increasing e, by 1 (note that a shift
left may be needed with subtraction—see below).

(v) Rounding: the significand of the rounded sum, m;, is computed by rounding the
normalised exact sum m; to p significant bits according to o, and renormalizing if
required. At this point r is the correctly rounded sum of z and y.

In order to perform the rounding at step (v) of the algorithm, it may seem necessary to preserve
all the bits that, being after the bit in the pth position, are dropped off during steps (ii) and (iv).
It can be shown, however, that for o € {RN,RZ, RD, RU} it suffices to keep only the first three
discarded bits after the one in position p. These are the guard bit G, in position p + 1, the round
bit R, in position p + 2, and the sticky bit T, in position p + 3, which is a logical OR of all the bits
after the (p + 2)nd. Together, these three bits are called in short the GRT bits [50, Sec. 8.4.3]. In the
algorithm above, they are formed in step (ii) and updated in step (iv) if normalization is required.

We now explain how the algorithm should be modified in order to include SR as an option
in step (v). We use the same notation as in Section 5(a), and use k to denote the number of bits
used for rounding, or equivalently the number of bits in the random number used to perform
the rounding. In step (ii), instead of computing the GRT bits from the dropped off bits, we shift
my by up to p + k — 1 places to the right and keep the k bottom bits beyond that in position p.
Depending on the implementation, it might be necessary to manipulate appropriately those extra
bits when subtraction is considered. An alignment of more than p + k — 1 bits is unnecessary,
as in that case SR with k bits would not have any effect and the largest summand = would be
returned unchanged. If a shift is required in step (iv), the whole significand has to be shifted by
p + k places, in order to keep the bottom k bits correct after the normalization. In order to perform

10000000 “10s usdo 905 Y Bio"BuiysigNdAIsIo0s|eAos SOSI H

step (v), it is necessary to generate k bits from a stream of uniformly distributed random bits. This
operation is expensive, but can be performed asynchronously at any point before reaching the
last step, as it does not require any information about z or y. Finally, the k bits from the random
stream are added to the bottom k bits of the normalised m; if this operation leads to a carry
out, we increment the top p bits of m; by 1 and truncate the bottom k bits to form the rounded
significand m-.

We need to consider normalization and whether the & bits required for rounding could be
altered by shifting. Shifting is necessary in three cases. First, when the addition of the significands
causes a carry out, my is shifted by one place to the right in order to normalise it, and this does
not violate the bottom k bits. Secondly, when the difference of exponents e; — ey is larger than 1,
the smaller operand is aligned so that there are multiple zeros at the front and consequently only
a left shift by one position may be required. For this reason, one extra bit is needed to make sure
that a 1 that drops off the p + k bits is shifted in correctly by the left shift. Thirdly, when the
exponent difference is 1 cancellation may occur and multiple left shifts are required to normalise
the result. Since the alignment was performed by shifting right by only one place, however, there
is no risk of any bits being shifted beyond the (p + k)th position, and therefore no incorrect bits
will be shifted in during the normalization. Therefore, only one extra bit is necessary, and the
width of m; should be p + k + 1 bits.

If the sum of two floating-point numbers is subnormal, then it is exact and no rounding is
required [17, Thm. 4.2]. If one of the inputs is subnormal then the significand alignment step
requires minor modification as per [17, Sec. 7.3.3] while the rest of the algorithm for the floating-
point addition with SR remains the same.

Addition of floating-point numbers can result in the following exceptions: overflow,
underflow, inexact, and NaN [50, p. 425]. With SR these may be handled as discussed Section 5(b).

Multiplication. Given two normalised positive floating-point numbers = and y as in the
previous section, the product r = o(z X y) can be computed as follows.
(i) Product of the significands: compute the 2p-bit integer m; =ms x my. The fact that
2P~ <y, my < 2P implies that 22772 <, < 272,
(if) Sum of the exponents: compute e, = ez + ey. At this point we have the exact product
m¢ X 267‘_2p+2.
(iii) Normalization of the result: if m; > 2°P~! we need to normalise the result by shifting the
significand by one place to the right and increasing e, by 1.
(iv) Rounding: the normalised exact product m; is rounded to p significant bits according to o,
giving m;. At this point m, is the rounded product of x and y.

As with addition, the G and T bits are required to perform the rounding in step (iv) (the R
bit is not required since left shifts cannot occur here). After the normalization in step (iii), the
unrounded result will be in the top p bits, whereas the bottom p bits will be used for rounding. In
order to implement SR with k random bits (in this case k < p, as m; has at most 2p bits and there is
no need to consider larger values of k) we need to add a k-bit random number to the top k of the
bottom p bits of the internal significand m;: a carry will increment the pth bit of the top segment
of my, causing the number to round up. The significand of the stochastically rounded result will
consist of the top p bits of m;.

For subnormal values, a few modifications have to be incorporated in the multiplication
algorithm. First of all, if both inputs are subnormal, then the product will be in the underflow
range and SR can be handled as in Section 5(b). If the inputs are normalised but yield a subnormal
result, it is necessary to shift m; right by more than one place in step (iii), depending on how
much the product’s exponent differs from that of subnormals in the target format. If only one of
the inputs is subnormal, then the product can be either normal or subnormal. Two approaches
are taken in this case: either the subnormal input is normalised before the multiplication, or the
product’s significand is normalised by a left shift. We do not go into details as this does not

10000000 “10s usdo 905 Y Bio"BuiysigNdAIsIo0s|eAos SOSI

change the SR algorithm (SR is performed in step (iv) after the product has been normalised or
denormalised as required), and refer the reader to [17, Sec. 7.4.2].

Multiplication of floating-point numbers can result in the following exceptions: overflow,
underflow, inexact, and NaN [50, p. 438]. With SR these may be handled as discussed in
Section 5(b).

6. Rounding error analysis with SR

The standard model of floating-point arithmetic assumes that the elementary arithmetic
operations are rounded to nearest (as is the case for IEEE standard arithmetic with the default
rounding mode), so that they satisfy

fi(zopy)=(zopy)(1+4), [0 <u, ope{+,—*/} (6.1)

where the unit roundoff u is defined in (4.2). When multiple floating-point operations are
performed in a sequence, rounding errors accumulate. For example, if s =z1y1 + zoy2 + x3y3
is computed in floating-point arithmetic, the computed 5 satisfies

5= (($1y1(1 +61) + w2y2(1 + 62)) (1 + 03) + z3y3(1 + 54)) (1+65)
=x1y1(1+ 1) (1 + 63)(1 + d5) + z2y2(1 + 2)(1 + d3) (1 + 05) + 23y3(1 + d4)(1 + J5),

for some 91, ..., 05 of magnitude at most u. It is clear from this example that rounding error
analysis for vector and matrix operations involves dealing with multiple terms of the form
[Ti—; (1 + 6;). The following lemma [3, Lem. 3.1] bounds the distance of the product of n terms of
the form (1 + 6;)*! from 1 by

nu

’Yn:]-_nu7

a ubiquitous constant in rounding error analysis.

Lemma 6.1. If |§;| <wand p; ==+1fori=1,...,n,and nu <1, then

n
H(1+5i)pl =1+406n, [0n|<7n. (6.2)
i=1

Under SR we define the elementary floating-point operations +, —, *, / to be the stochastically
rounded exact ones. Therefore for SR, (6.1) holds with u replaced by 2u:

fl{fzopy)=(zopy)(L+9), |0|<2u, opée{+,—, %/} (6.3)

Standard rounding error analysis based on the model (6.1) clearly remains valid for (6.3), with u
replaced by 2u, but the statistical properties of SR can be exploited to obtain smaller, probabilistic
rounding error bounds.

(a) Probabilistic error analysis

Modeling rounding errors as random variables to obtain probabilistic error bounds is an old
idea going back to von Neumann and Goldstine [51], Henrici [52], [53], [54], and Hull and
Swenson [11], among others. This line of thought has led to the rule of thumb that in a worst-
case rounding error bound one can take the square root of some error constants to obtain a more
realistic bound, because of statistical effects in rounding error propagation; see, for example, [55,
p- 318]. Higham and Mary [56] provided the first rigorous proof of the validity of this criterion:
they showed that for random independent zero-mean rounding errors §;, the constant ,, in (6.2),

10000000 108 Uado 008 Y Bi0"BulysIgNdAIBI00S|eA0I SOS!

can be replaced by

Mru 4 nu?
1—u

T (X) = exp () —1=M\Vnu+ O(u?) (6.4)
with high probability. Subsequently, Higham and Mary [57] and Ipsen and Zhou [58] obtained a
probabilistic error bound for inner products that only requires mean independence of rounding
errors, an assumption weaker than independence. Finally, Connolly, Higham, and Mary [1]
derived the following probabilistic version of Lemma 6.1 under these assumptions [1, Thm. 4.6].
Here, E denotes the expectation of a random variable.

Theorem 6.2. Let 61,02, ...,0n be random variables of mean zero such that E(d; 41 |01,...,0;) =
E(§;+1)=0,fori=1,...,n— 1L If|0;| <wand p; ==%1, for i =1,...,n, then for any constant X\ > 0,

n
TL(L+ 607 =14 0ns 16a] €TV ©9)
=1

holds with probability at least 1 — 2 exp(—\?/2).

The assumptions in Theorem 6.2 on the zero mean and mean independence of rounding errors
are not guaranteed to hold for RN, and indeed it is easy to construct examples where either of
the assumptions fails and the backward error almost attains the worst-case bound (6.2) (and thus
exceeds the probabilistic bound (6.5) by a factor /n).

Importantly, however, SR satisfies the conditions of Theorem 6.2, as shown by the following
result [1, Lem. 5.2].

Theorem 6.3. Let the computation of interest generate rounding errors §1, 62, . .., in that order. If SR is
used then the §; are random variables of mean zero such that E((Si |61,..., 51-_1) =E(5;) (=0).

It follows that the probabilistic bound (6.5) holds unconditionally for SR (with u replaced by
2u in view of (6.3)). Hence for SR, the rule of thumb that one can replace nu in a worst-case error
bound by /nu is a rule.

The probabilistic bound is most favorable when the worst-case bound is approximately
attained, which happens when many tiny increments are applied to a relatively large quantity. If
¢ € Fis updated by increments h1, ha, ..., which have magnitude smaller than half of the spacing
around ¢, then using RN gives ¢ =fl(¢ + h1) =f{1(fl(¢ + h1) + h2) =..., and the information
in the updates is lost. This phenomenon, known as stagnation, commonly occurs in practical
applications. It arises, for example, in neural networks, when parameter updates become very
small, or in numerical methods for ODEs and partial differential equations (PDEs), when a very
small time step is chosen. SR avoids stagnation, as some of the updates will produce rounding
that changes the partial sum. This can be seen from the following result [1, Thm. 6.2].

Theorem 6.4 (inner products). Let y =a’ b, where a,b € R", be evaluated in floating-point arithmetic.
Under SR, the computed Y satisfies E(y) =y regardless of the order in which the sums of products are
evaluated.

Taking b; =1 in the theorem we see that the expected value of a sum is the true value under
SR. As a simple example, suppose we run the code

r=1
fori=1:10

r=x+ep/4
end

10000000 “10s usdo 905 Y Bio"BuiysigNdAIsIo0s|eAos SOSI

in floating-point arithmetic. Since the spacing of the floating-point numbers between 1 and 2 is u,
with RN every addition rounds down and the computed z = 1. With SR, however, each addition
has a probability 1/4 of rounding up, giving an increment of €;. Hence the expected result is
1+ 10-(1/4) - eps, which is the exact result (albeit not a floating-point number).

7. Applications

In applications, SR can replace existing rounding modes (usually RN) either globally or in certain
parts of an algorithm, and either true random numbers or pseudo-random numbers can be used.
The latter are often preferred as they ensure reproducibility of the result.

(a) Numerical linear algebra

For most numerical linear algebra algorithms rounding error analysis is built on Lemma 6.1
or some variation of it, thus these algorithms can benefit from the smaller probabilistic bound
n (A) guaranteed for SR by the probabilistic error analysis of Theorem 6.2. For inner product, in
particular, we have the following result [1, Thm. 4.8].

Theorem 7.1 (inner products). Let y = a™'b, where a, b € R™, be evaluated in floating-point arithmetic
with SR. Then the computed ¥y satisfies

J=(a+2Aa)Tb=a" (b+ Ab), |Aa|<Fn(Nlal], |Ab] <F,(N)]D] (7.1)

with probability at least 1 — 2n exp(—A2/2) regardless of the order of evaluation.

As a special case we can take b; =1 and deduce that

n n n
Zai — f] <Z ai> ‘ S;%,, Z|a1|
i=1 i=1 i=1

Figure 7.1 plots the relative errors for the sum > ;" ; f1(1/¢) computed in binary16 with RN and
SR for a range of n. Note that the summands are already converted to binary16 (with RN), so the
only errors are in the summation. This example models a very slowly growing sum of decaying
summands. We see that SR has much smaller errors than RN for larger n and that the errors for
SR are mostly well within the probabilistic bound with A = 1.

Matrix products are considered in the following result [1, Thm. 4.9].

Theorem 7.2 (matrix-matrix products). Let C = AB with A € R™*"™ and B € R™*P be evaluated in
floating-point arithmetic with SR. The jth column of the computed C satisfies

with probability at least 1 — 2mmn exp(—A?/2), and hence
€~ Cl<7(V)]A1B] (7.3)
with probability at least 1 — 2mnp exp(—\?/2).

This result is illustrated in Figure 7.2, which plots the backward error for computing a matrix-
vector product y = Az where A € R'%°*™ and x € R" have entries sampled from the uniform
distribution over [0, 1]. We see that RN attains its worst-case rate of error growth and hits a relative
error of 1, whereas SR has slower error growth and maintains some accuracy for all n.

As this rounding error analysis and the examples illustrate, SR is especially useful for large
scale and/or low precision computations.

10000000 108 Uado 008 Y Bi0"BulysIgNdAIBI00S|eA0I SOS!

(a) binary16 arithmetic (b) bfloat16 arithmetic
looéumm\ "‘“Hl,-“-‘L‘m‘-‘-"‘!‘Jf,.‘*!% 100§Hmm\ \\HHH\,___HE___Hm__‘!_\\—!
= B it 8 = i
% 107* S 107!
= F
£ 10T E 10771 4
<] ¢ 1
B 10734 = 1073 ¢ E
]] g &
10—4 L T A S A Y A uuﬁ 10—4 L T A 1T uuﬁ
10t 10* 10® 10 105 10° ' 10* 10®° 10* 10° 10°
n n
—— RN —— SR ----min(nu,1) e min(y/nu, 1)

Figure 7.1. Relative errors for computing 7" ; 1/i with RN and SR. The dashed and dotted lines are the worst-case
error bound for RN and the probabilistic error bound for SR (with A = 1), respectively.

(a) binary16 arithmetic (b) bfloat16 arithmetic
100 j\ T T T T \r__\\\l__um T 100 j\ LU RRAL SR SRR PRIy
E //, ‘ E ,’/
N ’, r ,
§ [// [l,/
3 107t | 101 E .
el = ’ B s E
g S b r]
2 1072} = 107 2¢ E
M 4] i]
10—3q povol vl vl vl uuﬁ 10—3 L 2ol vl vl vl 1 uuﬁ
10t 10* 10 10* 10° 10° 10t 10° 10* 10* 10° 10°
n n
—e— RN —— SR ----min(nu,1) e min(y/nu, 1)

Figure 7.2. Backward error for computing iy = Az with RN and SR, where A € R109%X" is a random matrix with uniform
[0, 1] entries. The dashed and dotted lines are the worst-case error bound for RN and the probabilistic error bound for SR
(with A = 1), respectively.

(b) Machine learning

The use of SR in neural networks is not a new idea. Hohfeld and Fahlman [59], [60] proposed it in
1992, calling it probabilistic rounding. Today, SR is being used in machine learning in conjunction
with half precision arithmetic, not least because of its ability to avoid the problem of stagnation
that affects RN. Gupta et al. [9] show that SR can be used for training deep neural networks in
half precision fixed-point arithmetic, with little or no degradation in the classification accuracy.
Su et al. [61] successfully train neural networks in 8-bit fixed-point arithmetic using SR and offer

10000000 108 Uado 008 Y Bi0"BulysIgNdAIBI00S|eA0I SOS!

some suggestions as to why SR is beneficial in this context. Similarly, Wang et al. [62] train neural
networks in 8-bit floating-point arithmetic with SR, obtaining factor 2—4 speedups over 32-bit
training. Zamirai et al. [63] find that either of SR and compensated summation [3, Sec. 4.3] enables
training in bfloat16 to match 32-bit training. Liu et al. [64] propose a modification of (2.1) and show
faster convergence in training using 16-bit fixed-point numbers.

We note that the survey by Wang et al. [65] of custom hardware for deep learning includes a
review of work that uses SR.

Muller and Indivieri [66] use SR (called randomised rounding or online stochastic) to map
continuous neural network weights to a discrete low precision fixed-point representation. It was
shown that with SR the networks could perform well with lower precision weights than required
with the standard rounding.

Essam et al. [67] combine SR with dynamic precision fixed-point arithmetic formats (variable
integer scaling factors) in training neural networks. Na et al. [68] implemented SR with dynamic
fixed-point in hardware for neural network applications. Used to train neural networks with 24-
bit fixed-point numbers, SR provided performance similar to that of binary32, but with lower
hardware area and energy costs. The authors also show that without SR even 64-bit is not enough
to train the kinds of neural networks they used.

Mellempudi et al. [69] show that training neural networks using SR with 8-bit floating-point
numbers yields performance comparable to that of binary32. Ortiz et al. [70] compare 12-bit fixed-
and floating-point formats with and without SR with binary32 arithmetic in the training of neural
networks. They find that SR can be very useful in improving the accuracy: without SR training
accuracy was just 10%, whereas with SR 12-bit fixed-point improved substantially and the 12-bit
floating-point closely matched binary32 [70, Table 2].

Joardar et al. [71] implemented a 32- to 16-bit SR unit in an in-memory computing device for
neural network training, based on resistive random access memory (ReRAM), which sues an LFSR
16-bit pseudo-random number generator.

There are many more examples of SR being of use in low precision machine learning
applications. For more details, see the references cited in the papers discussed above.

(c) Numerical verification software

Numerical verification software uses SR to explore the propagation of rounding errors in
applications: a particular computation is repeated multiple times and the distribution of errors
from these runs is used to draw conclusions about the sensitivity of a code to rounding errors.
Mode 2 SR, known as stochastic arithmetic [72], is used for example in the CADNA library [73].

An approach that includes as options both mode 1 and mode 2 SR is Monte Carlo
arithmetic [74], [75], a method used by tools such as Verificarlo [36] and Verrou [37], [38]. Monte
Carlo arithmetic is more general than SR, not least because as well as randomly rounding the
result of a floating-point operation it can also randomly perturb its inputs and output.

(d) Ordinary differential equations

The analysis of rounding errors in ODEs typically follows the classical convergence theory of
timestepping methods [52], [76], in which the global error introduced by the ODE integration
procedure is expressed in terms of the local errors introduced at each time step, and the global
error is bounded in terms of the stepsize, h, which we will assume is fixed. These local errors
are comprised of both (local) truncation errors and (local) rounding errors. It is clear that unless
the contribution to the global error from rounding errors decays to zero at the same rate as
the contribution from truncation error the overall convergence of the method can be impacted.
Unfortunately, the analysis by Henrici [52], [76] shows that the global error of an order-p ODE
solver under RN is O(uh ™1 + h?). The O(uh~!) term is often overlooked in the literature, and
indeed in binary64 arithmetic the unit roundoff u is usually small enough to make it negligible

10000000 “10s usdo 905 Y Bio"BuiysigNdAIsIo0s|eAos SOSI H

@y =—y,y(0)=2"5, over [0, 1]. (b) y' = —45,y(0) =1 over [0,27°].
T T T T T T T T T T T T T T T UL A1 1 O B 11 B e R A1/ N N M RARIY
102
~
2
5 10~
8
=
§ o 1076
< "
m\s\# 10~8 [N
T N 1 M N1 AT l L T T A AT i
10t 102 10 10* 10° 10° 10t 10?2 10®° 10* 10° 10°
n n
—6— binary64
- x- bfloatl6 with RN - 4- binaryl6 with RN - - binary32 RN
—&=—bfloatl6 with SR —4— binary16 with SR binary32 SR

Figure 7.3. Absolute errors in the forward Euler method for an ODE with exponentially decaying solutions with different
floating-point arithmetics and rounding modes. The stepsize is the interval length divided by n. Diagrams adapted from
[30].

for the stepsizes h of interest, but the O(uh~!) term cannot be neglected when computations are
performed in reduced precision arithmetic.

While not explicitly mentioning SR, the early work by Henrici in the 1960s [52], [76] and
by Arat6 in the 1980s [77] considers rounding errors arising in ODE solvers as independent
(rather than mean-independent) random variables of zero mean. Henrici indicates that whenever
rounding errors have this random structure the term O(uAt™ ') can be replaced with a more
mildly growing term with respect to At. The analysis by Araté in [77] rewrites the problem of
estimating the global rounding error as the solution of a stochastic differential equation. It is
curious that stochastic differential equations have not yet appeared in the actual analysis of SR
errors for ODEs and PDEs.

It has been shown experimentally that SR can alleviate the accumulation of rounding errors
in ODE solvers. Hopkins et al. [25] and Mikaitis [26] use, on an ODE that models neurons in
two configurations, four different solvers including RK2 Midpoint and RK3 Heun. They compare
the results obtained in fixed-point arithmetic with those obtained using the same solvers on
the ODE configurations run in binary32 and binary64 arithmetics. The fixed-point solvers had
three rounding variants in the multiplication operation: bit truncation, RN, and mode 1 SR. In
the experiments, 32-bit fixed-point arithmetic with SR in multipliers showed accuracy similar to
that of binary64 arithmetic in all cases, while fixed-point arithmetic with RN and bit truncation,
as well as binary32 arithmetic, accumulated errors significantly in the progression of the ODE
system, ending up with very different neuron behaviour.

Some experiments have also been performed using floating-point arithmetics (binary16,
bfloat16, binary32) with SR in adds and multiplies by Fasi and Mikaitis [30]. ODEs exhibiting
exponential decay were solved with Euler, midpoint, and Heun solvers. For very small timesteps,
where rounding errors dominate the overall error of the solution, using SR produced a final
solution error lower than that of RN. Figure 7.3 shows this for the solution errors with the forward
Euler method solved in various arithmetics.

10000000 108 Uado 008 Y Bi0"BulysIgNdAIBI00S|eA0I SOS!

bfloatl6

binary16

(@n=2° (b) n=2° ()n=2" (d)yn=2%13
TT A T T T T] M1 T 1 7717 M1 T T 771 T T 17T 1]
i I P N R R]
1 [k [N .
! 1]k AT 1
., / : : ‘.\“\. .4’,/' : : I\\ t': 1 [. “ /R |
RN B A I R A I I B A I IR RN
(e)n=2° (Hn=2° (g)n=2" (h) n =216

7\\/\/*\\\\v~4\\7 M1 T 1 7717 M1 T T 771 T T 17T 1]
1 | I,/ \;f - {,«""""""-». —| — ,, —P——— \\ — o -
I 1T J n Fos sy T]
| ’I .':;. .“‘4‘. i | [‘(“? i | : : i | A".‘. i
o I I I 1| .
0H [B i i i i
.Y i S Y I/ Eoo 1 = v
I 20 I A SN LI X]
—1 - S’ T L N
L I Y T Y i} L N T Y | L N O T Y i} L T Y B RN

-1 0 1 —1 0 1 -1 0 1 -1 0 1

............ Exact SR ----RN

Figure 7.4. Computed solutions from the forward Euler method with SR and RN for the system (7.4). The exact solution is
the unit circle. The x- and y-axis represent u and v, respectively. Note that in (d) and (h) only a small part of the solution
computed with round-to-nearest is visible (marked with an arrow) since the ODE solver failed because of stagnation.
Diagrams adapted from [30].

The ODE system
d()=v(t), u(0)=1,

o (1) = —u(t), v(0)=0, (7.4)

whose solution is the unit circle in the (u,v) plane, was solved using binaryl6 and bfloatl6
arithmetics for increasingly smaller integration steps [30, Sec. 8.3.2]. The results in Figure 7.4 for
the forward Euler method with h = 27/n demonstrate that with RN the computed solutions are
not meaningful for very small integration steps, while with SR the computed solution reproduces
the unit circle quite well.

(e) Partial differential equations

Little is known about the interplay between SR and the typical algorithmic components of
PDEs solvers, namely sparse iterative solvers, preconditioning, optimization, and timestepping
methods.

Croci and Giles [29] analyze the effects of RN and SR in the solution of the heat equation
with Runge-Kutta methods and finite differences, and explain how the numerical scheme should
be implemented to reduce rounding errors. The analysis for RN yields the same O(uAt™1h)
rate in all dimensions as in Henrici’'s work on ODEs [52], [76], and in related work on the
heat equation by Jézéquel [78]. On the other hand, using SR yields considerably smaller error
bounds. In fact, Croci and Giles prove that the leading-order component of the rounding errors
introduced by SR are zero-mean random variables that are independent in space and mean-
independent in time. Thanks to this lack of correlation, much milder blow-up rates are obtained

10000000 108 Uado 008 Y Bi0"BulysIgNdAIBI00S|eA0I SOS!

for the global rounding errors, essentially O(uAt71/4) in 1D, O(u| log(At)|1/2) in 2D, and O(u)
in 3D. Interestingly, rounding errors become asymptotically smaller as the dimension increases:
the larger the dimension, the more error cancellation happens due to the spatial independence of
the SR errors.

The lack of error correlation and the zero-mean property are not solely responsible for the
success of SR for this problem. Croci and Giles also show that the RN solution is prone to
stagnation, and in fact the phenomenon may occur from the very first step if A¢ is small enough
to cause the RN solution to never move away from the initial condition. On the other hand, SR is
resilient to stagnation, which did not affect the SR solution in numerical experiments.

In unpublished work, these results have been extended to linear parabolic PDEs and the
finite element method and, together with numerical experimentation in binaryl6 and bfloat16
precision, show that while RN can fail to compute meaningful solutions, SR computations always
exhibit near-machine-precision accuracy for sufficiently small timesteps and mesh sizes. We
expect similar results as in the parabolic case to hold for hyperbolic PDEs, with the exception
perhaps of the stagnation behaviour.

Here we consider a diffusion equation with Dirichlet boundary conditions,

{ ur(t,2) =V - (D(@)Vu(t,z)) + f(z), zeD=[0,1]%, te0,1], -
w(0,z) =ugp(x), wu(t,s)=1, s€ 0D, te[0,1], ’

where

%(sin(mc)2 + 1), in 1D,

1 sin(mzy)?+1 sin(7xzy) COS(TF.’EQ)] .
3 [sin(ﬂwl) cos(mxa) cos(maa)?+1 » in2D,

and f(z) is chosen so that the exact solutions to (7.5) at steady-state are
up (00,) =16(z(1 — 2))> +1, usp (oo,) = (16z122(1 — 21)(1 — 22))* + 1.

By using the bfloat16 format with RN and SR, in Figure 7.5 we show the effect of stagnation on
the numerical steady-state solution of this problem in 1D as we vary the initial condition. We
solve (7.5) using the finite element method with piecewise linear basis functions using forward
and backward Euler. We note that the RN solution always stagnates close to the initial condition,
while SR successfully captures the correct steady-state solution.

In Figure 7.6 we plot the relative (i.e., normalised by the roundoff unit) global rounding errors
for both RN and SR against the theoretical bounds derived in [29]. While the RN error indeed
grows linearly with At~ until stagnation, the SR error increases very mildly in 1D and almost
unnoticeably in 2D. For a similar 3D problem (not shown), the errors are just bounded by a
multiple of machine precision. It therefore seems that SR is able to control the growth of rounding
errors without requiring more accurate summation techniques such as that in [79].

Paxton et al. [31] investigate experimentally the effects of RN and SR in chaotic ODE and
PDE systems related to climate modelling: the Lorenz system, heat diffusion, a nonlinear shallow
water model for turbulent flow over a ridge, and a coarse resolution global atmospheric model
with simplified parameterisations. They simulate these models in various precisions using from
62- to 10-bit floating point formats and they compare their results via the Wasserstein distance, a
metric used to measure the discrepancy between probability distributions. They find that SR can
effectively mitigate rounding error growth in both simple heat diffusion and turbulent models.
Furthermore, they report the occurence of stagnation when RN is used to solve the heat equation,
confirming the results in [29].

Overall, the findings by Paxton et al. show that reduced precision with SR is a valid alternative
to standard double precision computations. The authors also suggest that SR might become
relevant in next-generation climate models.

10000000 108 Uado 008 Y Bi0"BulysIgNdAIBI00S|eA0I SOS!

r T T T T T
2 | .
g 1.8 B]
E I |
8 | -
° 1.6 *
£ | |
T 14l .
[[ot .. N
o} Lo T .
@ [7 Sos, 1
=) [i /', RN \'\ S, 1
g 12 At gt oo N\
5 [!/ 7 SO0 / v
Z 1 e =
e’ ’ ~_ - -
7‘\ I. n
-\ I' -
0.8 | ‘\‘ ./. .
L \\'»-’.\, | L L | L L | L L | L |
0 0.2 0.4 0.6 0.8 1
T
—— double (same as exact) - RN, ug=3/2 — |z — 1/2|
—— SR, all initial conditions --- RN, ug =1 + noise
—RN,ug=1 --=--RN, ug =1 + sin(4nz)

Figure 7.5. Comparison between the numerical steady-state solutions obtained with RN and SR with forward Euler and
the bfloat16 format for different initial conditions. All SR solutions essentially converge to the same steady-state. On the
other hand when RN is used different initial conditions lead to different steady-state solutions. The noise term in the initial
condition has been obtained by sampling independent standard Gaussian random variables at each mesh node.

(f) Quantum mechanics

In quantum mechanics, an integer variant of SR has been used by several authors in order
to estimate the dominant eigenvalues of Hamiltonian matrices using Monte Carlo versions of
the power iteration. The goal is to compute the ground-state eigenvector o of a Hamiltonian
matrix H as a linear combination of a set of basis states |0), ..., |n). The coefficients of the linear
combination, or basis-state amplitudes, are the inner products ¢; = (i|pg). At each step of the power

method, the coefficient ¢; is approximated by an integer nl(-k), and for all 7 the approximations at
step k + 1 are computed from those at step k. Once the iteration has converged numerically, the
basis-state amplitude for the state |¢) will be estimated as the average value of ngk) over k.

Nightingale and Blote [80] were the first to suggest the use of SR for the solution of this
problem. They used a random walk model, and in their work the integers ngk) count the number

of random walkers that are in state |¢) at iteration k. The integer SR function used in this work is
[z] + 1, with probability z — [z],
fl(z) = P v (7.6)
[x], with probability 1 — (z — [z]),
where [z] denotes the integer part of € R, defined by

x| x>0,
m:{u >

[z] x<O.

10000000 “10s usdo 905 Y Bio"BuiysigNdAIsIo0s|eAos SOSI H

1D 2D
A LIS e B e o M R T T T T T 7
F E 10° .
5 10°F 4 &]
5 10% E
SRR UEES E -]
ks | | 10" | £
g 10 I é
r - i ol |
100 AR R W Fe- -0 g g5
B I A1 R mivinl Lol Lol |
10°* 107* 1072 10* 1073 1072
At At
-%- RN-FE -4- RN-BE ——O(At™1)
SR-FE - ¢- SR-BE ----1D: O(At~/*), 2D: O([log(At)[/?)

Figure 7.6. Plot of the relative global rounding error in the L2 norm for the solution of (7.5) in 1D (left) and 2D (right) with
forward and backward Euler (FE and BE respectively) and the bfloat16 format. We circled the RN data points for which
the solution stagnates at the initial condition. The error behavior matches the theoretical predictions from [29].

Allton, Yung, and Hamer [81] improved on this idea by suggesting a new scheme, called
stochastic truncation, which was further developed by Hamer et al. [82] and Hamer and Court [83].
All these variants of the stochastic truncation method use essentially the same rounding
function (7.6).

A variation of (7.6) which essentially applies integer SR only to a specific interval was proposed
by Price, Hamer, and O’Shaughnessy [84], who suggested the use the rounding function

z, ifx>1,
fllz)=<1, ifl>z>P, (7.7)
0, ifP>x>0,

where P is a random number from the interval [0, 1]. This rounding operator keeps the “exact”
value of « for large = but allows some of the values below 1 to be stochastically replaced by 0.

(9) Quantum computing

Krishnakumar and Zeng [32] show how to implement mode 1 and 2 SR for quantum computing
applications and demonstrate that mode 1 provides accuracy or circuit complexity improvements.
Mode 1 SR in this work is called quantum rounding. It is shown that quantum rounding can
be implemented by utilizing the fact that quantum computing has a probabilistic component—
measuring a state of a quantum register can return different results with certain probabilities.
The authors show that a quantum rounding circuit can be made to round with proportional
probabilities according to mode 1 SR of (2.1). Once such a circuit is used multiple times to measure
the value of a quantum register (as is commonly done in quantum computing in order to improve
confidence in the results), the average value will be more accurate due to the properties of mode
1 SR. Using a fixed-point quantum multiplication operation as a benchmark application, the
authors show that 2 to 3 times less resources are required to implement it, compared with when
round to nearest is used, for the same accuracy targets.

10000000 “10s usdo 905 Y Bio"BuiysigNdAIsIo0s|eAos SOSI

(h) Other applications

Various other applications use SR in one way or another. We give overviews of a few such
applications.

SR was applied in digital signal processing [85] (called random rounding) using fixed-point
arithmetic. The authors demonstrated a simple filter in 16 bits that is more accurate with SR than
with the standard rounding. Two hardware implementations of SR are also demonstrated, and
one of them interestingly does not require random number generation but uses a value that is
perturbed on each rounding operation.

Bargh et al. [86] and Tran et al. [87] address the problem of preserving privacy when publicly
releasing data sets. Their goal is to find the best ways to minimise the disclosure of personal
information and share only data that does not infringe peoples’ privacy. One of the aspects
considered is how to transform sensitive information in specific cells of tabulated data. In [86,
Sec. 4.2.2], rounding is discussed as an alternative to suppression, which is the simple removal of
values that are at risk of disclosing private information, a process which may potentially delete
useful data. In this research SR, under the name of random rounding [88, Sec. 5.4.3], is used to round
numerical data to one of the two nearest integer multiples of a given base. In base 10, for example,
the number 26 would be rounded to 20 or to 30 with probabilities 40% and 60% respectively. SR
is useful here as it does not always increase large values and decrease small ones as round to
nearest would [86]. Being unbiased, moreover, SR can hide the information about the original
data [88], and may even provide protection against differencing, where sensitive information can
be extracted from the differences in multiple tables [88].

Rounding to integer in a stochastic fashion is also considered by Gosgens et at. [89] in the
study of models for the spread of infections, by Matter and Potgieter [90], to solve a problem
of resource allocation, and by Horls and Balac [91], for exploring travel demand in cities using
transport simulations.

Wu [92] explores SR and a modification of it called dither rounding in the context of stochastic
computing. Dither rounding is more complex than SR, as it requires that one keeps track of
the number of rounding operations that have been performed. However, Wu shows that dither
rounding can produce similar accuracy results, but with lower variance, in matrix multiplication
and digit classification machine learning applications.

There is some connection between SR and the technique of dither that is a common component
in audio analog-to-digital conversion and back [93-95]. In analog-to-digital conversion, dither
relates to the randomization of the analog signal before it is converted to some low precision
quantised digital representation [94]. However, the same term is used by the authors to refer
to the randomization at the other end, digital back to analog conversion. For example, the
following excerpt from [94] discusses a method of dither of the digital signal that is similar to
an implementation of SR mode 1 where a set of random bits are added to the part of fraction to
be truncated.

If a digital manipulation (such as a gain reduction) is performed, there may be a tendency to take
the intermediate higher precision numbers generated by the multiplication and simply truncate or
round them to the bit width of the system. This will in many cases leave the signal improperly
dithered. [...] The fractional truncated bits have some influence on the dither, in keeping with their
relative position. If cost or processing time were no object, then any digital manipulation should be
carried out with full accuracy, and the dither carry bit (0 or 1) can be determined by an appropriate
digital random number added to the bits to be truncated. In practice such schemes would probably
work well by considering only the first 3 or 4 bits to be truncated.

See also [94, Fig. 9] for a diagram that sketches an implementation of SR mode 1 in an integer
multiplier.

10000000 108 Uado 008 Y Bi0"BulysIgNdAIBI00S|eA0I SOS!

8. Conclusions

Hardware with stochastic rounding in computer arithmetic units is not yet widely available,
but has started to appear: as we explained in Section 5(d), Graphcore and Intel have produced
processors with SR built-in. Patents from AMD, NVIDIA, IBM, and other computing companies
describing implementations of SR in fixed- or floating-point arithmetic units show that this
rounding mode could become more widely available in the future.

When hardware is not available, simulation in software of arithmetics with SR can be used
to explore its behaviour. Multiple simulators have been developed, as discussed in Section 5(c).
These are available in various forms in MATLAB, C, Julia, and Python.

Rounding error analysis with SR, discussed in Section 6, shows that compared with the
standard rounding modes SR promises smaller probabilistic errors bounds in applications that
involve inner products and avoids the problem of stagnation (Section 6(a)), where small values
are lost to rounding when they are added to an increasingly large accumulator. This explains
the success of SR in the applications described in Section 7. We covered work utilizing SR in
various forms, in numerical linear algebra, machine learning, ODE and PDE solvers, quantum
computing, and other areas. The wide array of applications in which SR, once tried, has lead
to improved accuracy demonstrates that it is a useful technique to consider when arithmetics
with standard rounding modes fail or are insufficiently accurate. SR is a competitive alternative
to extended precision registers, arbitrary precision libraries, multi-word representation and
arithmetic, compensated algorithms, and other methods for improving accuracy.

Ethics. This statement is not relevant to this work
Data Accessibility. This article has no additional data.

Authors” Contributions. All authors collected and reviewed the literature, wrote drafts of the survey, and
approved the final version for publication.

Competing Interests. The authors declare no competing interests.

Funding. MC, NJH, and MM were supported by Engineering and Physical Sciences Research Council
grant EP/P020720/1. MF was supported by Wenner-Gren Foundations grant UPD2019-0067. NJH was also
supported by the Royal Society. TM was supported by the InterFLOP project (ANR-20-CE46-0009) of the
French National Agency for Research.

References

1. Connolly MP, Higham NJ, Mary T. 2021 Stochastic Rounding and Its Probabilistic Backward
Error Analysis. SIAM |. Sci. Comput. 43, A566-A585. (Cited on pp. 2, 3, 14, 15.)

2. Higham NJ, Pranesh S. 2019 Simulating Low Precision Floating-Point Arithmetic. SIAM J. Sci.
Comput. 41, C585-C602. (Cited on pp. 2,7, 8.)

3. Higham NJ. 2002 Accuracy and Stability of Numerical Algorithms. Philadelphia, PA, USA: Society
for Industrial and Applied Mathematics second edition. (Cited on pp. 3, 5,13, 17.)

4. Sterbenz PH. 1974 Floating-Point Computation. Englewood Cliffs, NJ, USA: Prentice-Hall.
(Cited on p. 3.)

5. Forsythe GE. 1950 Round-off errors in numerical integration on automatic machinery. Bull.
Amer. Math. Soc. 56, 55-64. (Cited on p. 3.)

6. Huskey HD. 1949 On the Precision of a Certain Procedure of Numerical Integration. J. Res.
Nat. Bur. Standards 42, 57-62. With an appendix by Douglas R. Hartree. (Cited on p. 3.)

7. Barnes RCM, Cooke-Yarborough EH, Thomas DGA. 1951 An Electronic Digital Computor
Using Cold Cathode Counting Tubes for Storage. Electronic Eng. 23, 286-291. (Cited on pp. 4,
7.)

8. Forsythe GE. 1959 Reprint of a Note on Rounding-Off Errors. STAM Rev. 1, 66aAS67. (Cited
onp.4.)

9. Gupta S, Agrawal A, Gopalakrishnan K, Narayanan P. 2015 Deep Learning with Limited
Numerical Precision. In Bach F, Blei D, editors, Proceedings of the 32nd International Conference

10000000 “10s usdo 905 Y Bio"BuiysigNdAIsIo0s|eAos SOSI

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

on Machine Learning vol. 37Proceedings of Machine Learning Research pp. 1737-1746 Lille, France.

PMLR. (Cited on pp. 4,7, 10, 16.)

Mikaitis M. 2021 Stochastic Rounding: Algorithms and Hardware Accelerator. In 2021

International Joint Conference on Neural Networks (I[CNN) Shenzhen, China. Institute of

Electrical and Electronics Engineers. (Cited on pp. 4,7, 10.)

Hull TE, Swenson JR. 1966 Tests of Probabilistic Models for Propagation of Roundoff Errors.

Comm. ACM 9, 1084AS113. (Cited on pp. 4, 13.)

IEEE Computer Society. 1985 IEEE Standard for Binary Floating-Point Arithmetic, ANSI/IEEE

Standard 754-1985. Piscataway, NJ, USA: Institute of Electrical and Electronics Engineers.

Reprinted in SIGPLAN Notices, 22(2):9-25, 1987. (Cited on p. 4.)

IEEE Computer Society. 2008 IEEE Standard for Floating-Point Arithmetic, IEEE Std 754-2008

(revision of IEEE Std 754-1985). Piscataway, NJ, USA: Institute of Electrical and Electronics

Engineers. (Cited on p. 4.)

IEEE Computer Society. 2019 IEEE Standard for Floating-Point Arithmetic, IEEE Std 754-2019

(revision of IEEE Std 754-2008). Piscataway, NJ, USA: Institute of Electrical and Electronics

Engineers. (Cited on pp. 4,5, 6,8,9.)

Trader T. 2016 IBM Advances Against x86 with Power9. Accessed 21 May 2021. (Cited on
.5.

Eich)tenau C, Carlough S, Mueller SM. 2016 Quad Precision Floating Point on the IBM z13. In

Proocedings of the 23rd IEEE Symposium on Computer Arithmetic pp. 87-94. (Cited on p. 5.)

Muller JM, Brunie N, de Dinechin F, Jeannerod CP, Joldes M, Lefevre V, Melquiond G, Revol

N, Torres S. 2018 Handbook of Floating-Point Arithmetic. Birkhduser 2nd edition. (Cited on pp. 5,

9,11,12,13.)

Roux P. 2014 Innocuous Double Rounding of Basic Arithmetic Operations. J. Formaliz. Reason.

7,131-142. (Cited on p. 6.)

Rump SM. 2017 IEEE754 Precision-k base-8 Arithmetic Inherited by Precision-m Base-3

Arithmetic for k < m. ACM Trans. Math. Software 43, 14AS15. (Cited on p. 6.)

Intel Corporation. 2018 BFLOAT16—Hardware Numerics Definition. White paper. Document

number 338302-001US. (Cited on p. 6.)

Limited A. 2020 Arm Architecture Reference Manual. Technical Report ARM DDI 0487G.b

(ID072021). Accessed 9 August 2021. (Cited on p. 6.)

NVIDIA Corporation. 2020 NVIDIA A100 Tensor Core GPU architecture. NVIDIA whitepaper

v1.0. (Cited on p. 6.)

Intel Corporation. 2021 Intel Architecture Instruction Set Extensions and Future Features

Programming Reference. Technical Report 319433-044. Accessed 9 August 2021. (Cited on
. 6.

%avzes M, Srinivasa N, Lin TH, Chinya G, Cao Y, Choday SH, Dimou G, Joshi P, Imam N, Jain

S, Liao Y, Lin CK, Lines A, Liu R, Mathaikutty D, McCoy S, Paul A, Tse], Venkataramanan G,

Weng YH, Wild A, Yang Y, Wang H. 2018 Loihi: A Neuromorphic Manycore Processor with

On-Chip Learning. IEEE Micro 38, 82-99. (Cited on pp. 7, 10.)

Hopkins M, Mikaitis M, Lester DR, Furber S. 2020 Stochastic rounding and reduced-precision

fixed-point arithmetic for solving neural ordinary differential equations. Philos. Trans. R. Soc.

A 378. (Cited onpp. 7,9, 18.)

Mikaitis M. 2020 Arithmetic Accelerators for a Digital Neuromorphic Processor. PhD thesis

University of Manchester. (Cited on pp. 7, 9, 10, 18.)

Meurant G. 2020 FLOATP_Toolbox. Matlab software, variable precision floating point

arithmetic. (Cited on pp. 7, 8.)

Fasi M, Mikaitis M. 2020 CPFloat: A C Library for Emulating Low-Precision Arithmetic. MIMS

EPrint 2020.22 Manchester Institute for Mathematical Sciences, The University of Manchester

UK. (Cited onpp. 7, 8.)

Croci M, Giles MB. 2020 Effects of round-to-nearest and stochastic rounding in the numerical

solution of the heat equation in low precision. arXiv:2010.16225 [math.NA]. (Cited on pp. 7,

19, 20, 22.)

Fasi M, Mikaitis M. 2021 Algorithms for Stochastically Rounded Elementary Arithmetic

Operations in IEEE 754 Floating-Point Arithmetic. IEEE Trans. Emerg. Topics Comput. 9,

1451aAS1466. (Cited on pp. 7,9, 18, 19.)

10000000 108 Uado 008 Y Bi0"BulysIgNdAIBI00S|eA0I SOS!

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.
41.

42.

43.

44.

45.

46.
47.

48.

49.

50.

51.

52.

53.
54.

55.

56.

Paxton EA, Chantry M, Kléwer M, Saffin L, Palmer T. 2021 Climate Modelling in Low-
Precision: Effects of both Deterministic & Stochastic Rounding. arXiv:2104.15076 [physics.ao-
phl. (Cited on pp. 7, 20.)

Krishnakumar R, Zeng W. 2021 Quantum Rounding. arXiv:2108.05949 [quant-ph]. (Cited on
pp-7,22.)

Xia L, Anthonissen M, Hochstenbach M, Koren B. 2020 Improved stochastic rounding.
arXiv:2006.00489 [math.NA]. (Cited on p. 7.)

Fousse L, Hanrot G, Lefevre V, Pélissier P, Zimmermann P. 2007 MPFR: A Multiple-precision
Binary Floating-Point Library with Correct Rounding. ACM Trans. Math. Software 33, 13:1-
13:15. (Cited on p. 8.)

Zhang T, Lin Z, Yang G, De Sa C. 2019 QPyTorch: A Low-Precision Arithmetic Simulation
Framework. arXiv:1910.04540 [cs.LG]. (Cited on p. 8.)

Denis C, De Oliveira Castro P, Petit E. 2016 Verificarlo: Checking Floating Point Accuracy
through Monte Carlo Arithmetic. Proceedings of the 23rd IEEE Symposium on Computer
Arithmetic pp. 55-62. (Cited on pp. 9, 17.)

Févotte F, Lathuiliere B. 2016 VERROU: Assessing Floating-Point Accuracy Without
Recompiling. . (Cited on pp. 9, 17.)

Févotte F, Lathuiliere B. 2019 Debugging and Optimization of HPC Programs with the Verrou
Tool. Proceedings of the 3rd IEEE/ACM International Workshop on Software Correctness for HPC
Applications. (Cited on pp. 9, 17.)

ISO/IEC. 2008 Programming languages — C — Extensions to support embedded processors, ISO/IEC
TR 18037:2008. ISO/IEC. Technical committee ISO/IEC JTC 1/SC 22. (Cited on p. 9.)
Graphcore Limited. 2021a IPU Programmer’s Guide. Version 2.0.0. (Cited on p. 9.)
Graphcore Limited. 2021b Targeting the IPU from TensorFlow 1. Version 2.0.0-dc2. (Cited on
p-9)

Graphcore Limited. 2021c Al-Float™- Mixed Precision Arithmetic for AI: A Hardware
Perspective. Version latest: Aug 25, 2021. (Cited on p. 9.)

Felix S, Gore M, Alexander AG. 2021 Converting floating point numbers to reduce the
precision. Patent Status: Active. (Cited on p. 9.)

Bradbury JD, Carlough SR, Prasky BR, Schwarz EM. 2019a Stochastic rounding floating-point
add instruction using entropy from a register. Patent Status: Active. (Cited on p. 10.)
Bradbury JD, Carlough SR, Prasky BR, Schwarz EM. 2019b Stochastic rounding floating-point
multiply instruction using entropy from a register. Patent Status: Active. (Cited on p. 10.)
Loh GH. 2019 Stochastic rounding logic. Patent Status: Active. (Cited on p. 10.)

Alben JM, Micikevicius P, Wu H, Siu MY. 2019 Stochastic rounding of numerical values. Patent
Status: Active. (Cited on p. 10.)

Hoppner S, Mayr C. 2018 SpiNNaker2—Towards Extremely Efficient Digital Neuromorphics
and Multi-scale Brain Emulation. In Neuro-inspired Computional Elements Workshop Portland,
OR, US. (Cited on pp. 10, 11.)

Knuth DE. 1997 The Art of Computer Programming vol. 2: Seminumerical Algorithms. Reading,
MA, USA: Addison-Wesley 3rd edition. (Cited on p. 11.)

Ercegovac MD, Lang T. 2004 Digital Arithmetic. San Francisco, CA, USA: Morgan Kauffmann.
(Cited on pp. 11, 12, 13.)

von Neumann J, Goldstine HH. 1947 Numerical Inverting of Matrices of High Order. Bull.
Amer. Math. Soc. 53, 1021-1099. (Cited on p. 13.)

Henrici P. 1962 Discrete Variable Methods in Ordinary Differential Equations. New York: Wiley.
(Cited on pp. 13,17, 18, 19.)

Henrici P. 1964 Elements of Numerical Analysis. New York: Wiley. (Cited on p. 13.)

Henrici P. 1966 Test of Probabilistic Models for the Propagation of Roundoff Errors. Comm.
ACM 9, 409-410. (Cited on p. 13.)

Wilkinson JH. 1961 Error Analysis of Direct Methods of Matrix Inversion. J. ACM 8, 281-330.
(Cited on p. 13.)

Higham NJ, Mary T. 2019 A New Approach to Probabilistic Rounding Error Analysis. SIAM
J. Sci. Comput. 41, A2815-A2835. (Cited on p. 13.)

10000000 108 Uado 008 Y Bi0"BulysIgNdAIBI00S|eA0I SOS!

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

77.

78.

Higham NJ, Mary T. 2020 Sharper Probabilistic Backward Error Analysis for Basic Linear
Algebra Kernels with Random Data. SIAM |. Sci. Comput. 42, A3427-A3446. (Cited on p. 14.)
Ipsen ICF, Zhou H. 2020 Probabilistic Error Analysis for Inner Products. SIAM . Matrix Anal.
Appl. 41,1726-1741. (Cited on p. 14.)

Hohfeld M, Fahlman SE. 1992 Probabilistic rounding in neural network learning with limited
precision. Neurocomputing 4, 291-299. (Cited on p. 16.)

Hohfeld M, Fahlman SE. 1992 Learning with Limited Numerical Precision Using the Cascade-
Correlation Algorithm. IEEE Trans. Neural Netw. 3, 602—-611. (Cited on p. 16.)

Su C, Zhou S, Feng L, Zhang W. 2020 Towards high performance low bitwidth training for
deep neural networks. J. Semicond. 41. (Cited on p. 16.)

Wang N, Choi], Brand D, Chen CY, Gopalakrishnan K. 2018 Training Deep Neural Networks
with 8-bit Floating Point Numbers. In Bengio S, Wallach H, Larochelle H, Grauman K, Cesa-
Bianchi N, Garnett R, editors, Advances in Neural Information Processing Systems 31 , pp. 7675—
7684. Montreal, Canada: Curran Associates. (Cited on p. 17.)

Zamirai P, Zhang J, Aberger CR, De Sa C. 2020 Revisiting BFloat16 Training. arXiv:2010.06192
[cs.LG]. Revised March 2021. (Cited on p. 17.)

Xia L, Anthonissen M, Hochstenbach M, Koren B. 2021 A Simple and Efficient Stochastic
Rounding Method for Training Neural Networks in Low Precision. arXiv:2103.13445 [cs.LG].
(Cited on p. 17.)

Wang E, Davis JJ, Zhao R, Ng HC, Niu X, Luk W, Cheung PYK, Constantinides GA. 2019
Deep Neural Network Approximation for Custom Hardware. ACM Comput. Suro. 52, 14AS39.
(Cited on p. 17.)

Miiller LK, Indiveri G. 2015 Rounding Methods for Neural Networks with Low Resolution
Synaptic Weights. arXiv:1504.05767 [cs.NE]. (Cited on p. 17.)

Essam M, Tang TB, Ho ETW, Chen H. 2017 Dynamic point stochastic rounding algorithm
for limited precision arithmetic in Deep Belief Network training. In 2017 8th International
IEEE/EMBS Conference on Neural Engineering (NER) pp. 629-632 Shanghai, China. (Cited on
p-17.)

Na T, Ko JH, Kung J, Mukhopadhyay S. 2017 On-chip training of recurrent neural networks
with limited numerical precision. In International Joint Conference on Neural Networks pp. 3716
3723 Anchorage, AK, USA. (Cited on p. 17.)

Mellempudi N, Srinivasan S, Das D, Kaul B. 2019 Mixed Precision Training With 8-bit Floating
Point. arXiv:1905.12334 [cs.LG]. (Cited on p. 17.)

Ortiz M, Cristal A, AyguadAl’ E, Casas M. 2018 Low-Precision Floating-Point Schemes for
Neural Network Training. arXiv:1905.12334 [cs.LG]. (Cited on p. 17.)

Joardar BK, Doppa JR, Pande PP, Li H, Chakrabarty K. 2020 AccuReD: High Accuracy Training
of CNNs on ReRAM/GPU Heterogeneous 3D Architecture. IEEE Trans. Comput.-Aided Design
Integr. Circuits Syst. Early Access Article. (Cited on p. 17.)

Vignes J. 1993 A stochastic arithmetic for reliable scientific computation. Math. Comput.
Simulation 35,2334AS261. (Cited on p. 17.)

Jézéquel F, Chesneaux JM. 2008 CADNA: A library for estimating round-off error
propagation. Comput. Phys. Comm. 178, 9334AS955. (Cited on p. 17.)

Parker DS, Pierce B, Eggert PR. 2000 Monte Carlo Arithmetic: How to Gamble with Floating
Point and Win. Computing in Science and Engineering 2, 58-68. (Cited on p. 17.)

Stott PD. 1997 Monte Carlo Arithmetic: Exploiting Randomness in Floating-Point Arithmetic.
Technical Report CSD-970002 Computer Science Department, University of California, Los
Angeles. (Cited on p. 17.)

Henrici P. 1963 Error Propagation for Difference Methods. New York: Wiley. (Cited on pp. 17, 18,
19.)

Araté M. 1983 Round-Off Error Propagation in the Integration of Ordinary Differential
Equations by One Step Methods. Acta Sci. Math. 45, 23-31. (Cited on p. 18.)

Jézéquel F. 1995 Round-Off Error Propagation in the Solution of the Heat Equation by Finite
Differences. J. Univers. Comput. Sci. 1, 469-483. (Cited on p. 19.)

10000000 “10s usdo 905 Y Bio"BuiysigNdAIsIo0s|eAos SOSI H

79.

80.

81.

82.

83.

84.

85.

86.

87.

88.

89.

90.

91.

92.

93.

94.

95.

Blanchard P, Higham NJ, Mary T. 2020 A Class of Fast and Accurate Summation Algorithms.
SIAM]. Sci. Comput. 42, A1541-A1557. (Cited on p. 20.)

Nightingale MP, Blote HW]J. 1986 Gap of the Linear Spin-1 Heisenberg Antiferromagnet: A
Monte Carlo Calculation. Phys. Rev. B 33, 659-661. (Cited on p. 21.)

Allton CR, Yung CM, Hamer CJ. 1989 Stochastic truncation method for Hamiltonian lattice
field theory. Phys. Rev. D 39, 3772aAS3777. (Cited on p-22))

Hamer CJ, Aydin M, Oitmaa J, He HX. 1990 The 3-state Potts model in (2+1) dimensions. J.
Phys. A: Math. Gen. 23, 40252A54038. (Cited on p-22.)

Hamer CJ, Court J. 1990 Stochastic truncation approach to the Z gauge model in 3+1
dimensions. Phys. Rev. D 42, 2835aA52840. (Cited on p. 22.)

Price PF, Hamer CJ, O'Shaughnessy D. 1993 Stochastic truncation for the (2 + 1)D Ising model.
J. Phys. A: Math. Gen. 26, 2855-2871. (Cited on p. 22.)

Callahan AC. 1976 Random Rounding: Some Principles and Applications. In Proceedings of
the IEEE International Conference on Acoustics, Speech, and Signal Processing vol. 1 pp. 501-504.
(Cited on p. 23.)

Bargh MS, Latenko A, van den Braak S, Vink M, Meijer R. 2020 On Statistical Disclosure
Control Technologies for Protecting Personal Data in Tabular Data Sets. Technical report
Research and Documentation Centre (WODC), Dutch Ministry of Justice and Security. (Cited
onp.23.)

Tran C, Fioretto F, Van Hentenryck P, Yao Z. 2021 Decision Making with Differential Privacy
under a Fairness Lens. In Zhou ZH, editor, Proceedings of the 30th International Joint Conference
on Artificial Intelligence pp. 560-566. Main Track. (Cited on p. 23.)

Hundepool A, Domingo-Ferrer], Franconi L, Giessing S, Nordholt ES, Spicer K, De Wolf PP.
2012 Statistical disclosure control. New York: Wiley. (Cited on p. 23.)

Gosgens M, Hendriks T, Boon M, Keuning S, Steenbakkers W, Heesterbeek H, van der Hofstad
R, Litvak N. 2020 Containment strategies after the first wave of COVID-19 using mobility data.
arXiv:2010.14209 [physics.soc-ph]. (Cited on p. 23.)

Matter D, Potgieter L. 2021 Allocating epidemic response teams and vaccine deliveries by
drone in generic network structures, according to expected prevented exposures. PLOS ONE
16, 1-29. (Cited on p. 23.)

Horl S, Balac M. 2021 Synthetic population and travel demand for Paris and fle-de-France
based on open and publicly available data. Transp. Res. Part C Emerg. Technol. 130. (Cited on
p-23.)

Wu CW. 2021 Dither computing: a hybrid deterministic-stochastic computing framework.
arXiv:2102.10732 [cs.AR]. To appear in Proceedings of the 28th IEEE Symposium on Computer
Arithmetic. (Cited on p. 23.)

Vanderkooy J, Lipshitz SP. 1983 Resolution Below the Least Significant Bit in Digital Systems
and Dither. |. Audio Eng. Soc 32, 106-113. (Cited on p. 23.)

Vanderkooy J, Lipshitz SP. 1987 Dither in Digital Audio. J. Audio Eng. Soc 35, 966-975. (Cited
on p. 23.)

Lipshitz SP, Wannamaker RA, Vanderkooy Ja. 1992 Quantization and Dither: A Theoretical
Survey. J. Audio Eng. Soc 40, 355-375. (Cited on p. 23.)

10000000 108 Uado 008 Y Bi0"BulysIgNdAIBI00S|eA0I SOS!

	1 Introduction
	2 What is stochastic rounding?
	3 Early history of stochastic rounding
	4 Floating-point arithmetics
	(a) IEEE 754 standard floating-point arithmetics
	(b) Non-IEEE arithmetics

	5 Implementation
	(a) SR expressed in terms of other rounding modes
	(b) Proposed IEEE 754 style properties of SR
	(c) Simulation of SR in software
	(d) Hardware with SR
	i Overview of available devices and patents
	ii Modifying basic floating-point algorithms to include SR

	6 Rounding error analysis with SR
	(a) Probabilistic error analysis

	7 Applications
	(a) Numerical linear algebra
	(b) Machine learning
	(c) Numerical verification software
	(d) Ordinary differential equations
	(e) Partial differential equations
	(f) Quantum mechanics
	(g) Quantum computing
	(h) Other applications

	8 Conclusions

