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Accessibility and porosity of harmonic measure at bifurcation locus

We study accessibility of generic parameters with respect to the harmonic measure with the pole at ∞ on the boundary of the connectedness loci M d for unicritical polynomials f c (z) = z d + c. It is known that a generic parameter c ∈ ∂M d is not accessible within a John angle and ∂M d spirals round them infinitely many times in both directions. We prove that almost every point from ∂M d is asymptotically accessible by a flat angle with apperture decreasing slower than (log • • • • • log dist (c, ∂M d )) -1 for any iterate of log. This is a consequence of an iterated large deviation estimate for exponential distribution.

Additionally, for an arbitrary β > 0, the bifurcation locus is not β-porous on a set of scales of positive density along almost every hyperbolic geodesic with respect to the harmonic measure.

Introduction

Overview. We propose to study geometric properties of the distribution of harmonic measure on the bifurcation loci M d for unicritical polynomials z d + c, d ≥ 2, c ∈ C. The study is motivated by a quest to understand extremal features of the distribution of harmonic measure on irregular fractals as well as by some recent numerical and theoretical advances which suggest that the Mandelbrot set M 2 might be an extremal object for some classical problems in analysis, [START_REF] Carleson | On coefficient problems for univalent functions and conformal dimension[END_REF][START_REF] Binder | Harmonic measure and polynomial Julia sets[END_REF][START_REF] Beliaev | Harmonic measure on fractal sets[END_REF]. From the point of view of dynamical systems understanding of the structure of M d is of primary importance in the context of universal aspects of dynamics undergoing bifurcation and the hyperbolicity conjecture [START_REF] Carleson | Complex dynamics[END_REF][START_REF] Smale | Mathematical problems for the next century[END_REF].

In general, computation of geometric quantities related to the harmonic measure on irregular fractals is a difficult task. An advantage of the dynamical approach [START_REF] Manning | Logarithmic capacity and renormalizability for landing on the Mandelbrot set[END_REF][START_REF] Binder | Harmonic measure and polynomial Julia sets[END_REF][START_REF] Carleson | On coefficient problems for univalent functions and conformal dimension[END_REF] lies in the fact, discovered by H. Brolin [START_REF] Brolin | Invariant sets under iteration of rational functions[END_REF], that the harmonic measure ω with the pole at ∞ coincides with the unique invariant measure of the maximal entropy. Using symbolic dynamics and probability on Yoccoz partitions, we can select parameters in ∂M d with a well-understood stochastic dynamics and prove an almost conformal relation between the parameter and phase spaces [START_REF] Graczyk | Harmonic measure and expansion on the boundary of the connectedness locus[END_REF][START_REF] Graczyk | Fine structure of connectedness loci[END_REF].

A focus of the current paper is on accessibility of generic parameters c ∈ ∂M d with respect to the harmonic measure ω. The main accessibility results are based on refined estimates of the waiting time for subsequent passages to a large scale of [START_REF] Graczyk | Harmonic measure and expansion on the boundary of the connectedness locus[END_REF], see (iii) of Fact 1.3, and the property that they can be further improved by iterations. On the other hand, the sharp estimates of porosity come from the persistence of hedgehog layers of [START_REF] Graczyk | Analytic structures at bifurcation locus[END_REF][START_REF] Rivera-Letelier | The maximal entropy measure detects non-uniform hyperbolicity[END_REF] around the critical value c. This is a new ingredient that arises from non-linear effects of the recurrent dynamics and very fast decay of box geometry [START_REF] Graczyk | The real Fatou conjecture[END_REF] for generic c ∈ ∂M d [START_REF] Graczyk | Fine structure of connectedness loci[END_REF]. The correspondence between the phase and parametric spaces is given by a system of asymptotically conformal similarity functions (Υ c ) c∈M d for almost all c with respect to ω, Fact 1.1. In particular, the relation is C 1 along hyperbolic geodesics landing at c, see Fact 1.2.

Probabilistic models. N. Makarov's approch to the problem of the distribution of harmonic measure on a full compact K ⊂ C is based on the observation that if g : Ĉ \ D → Ĉ \ K is univalent then with respect to the probability measure dθ/2π, Z t (θ) = log g ((1 -e -t )(e iθ ), t ∈ [0, +∞[, defines a complex stochastic process with expectation log g (∞) and variance σ 2 (t) ≤ 6t. In this way, log g shares many properties with a gaussian random variable and Makarov formula (2) comes from the one-sided law of the iterated logarithm [START_REF] Makarov | Distortion of boundary sets under conformal mappings[END_REF][START_REF] Pommerenke | Boundary behavior of conformal maps[END_REF],

lim sup t→+∞ |Z t | √ t log log t ≤ 6 .
For the connectedness locus M d , we have additional probabilistic tools to study a radial behavior of g (re iθ ) for almost all θ with respect to 1-dimensional Lebesgue measure [START_REF] Graczyk | Harmonic measure and expansion on the boundary of the connectedness locus[END_REF]. We look at the set G(c) of integers n such that some regular neighborhood U n of c can be mapped univalently to a fixed large scale that is additionally locally constant. When c is chosen with respect to the harmonic measure ω, the set G ω := G(c ω ) becomes a random set and log diam U n ∼ n log d because of estimate [START_REF] Beliaev | Harmonic measure on fractal sets[END_REF] for large n. After conditioning that n and m are large we have the following density estimate, Lemma 3.4 of [START_REF] Graczyk | Harmonic measure and expansion on the boundary of the connectedness locus[END_REF],

G(ω) ∩ [n, n + m] m > 1 3
with probability 1 -exp(-P m) for some P > 0 locally constant. Therefore, the waiting time for the density of univalent passages to the large scale starting at any large time n to attain a significant level (> 1/3) is given by an exponential distribution.

Passages to the large scale are responsible for a self-similar structure of M d around a randomly chosen c ω ∈ ∂M d while a various new shapes are added in complementary scales. The normal distribution discribes an overall growth of complexity of ∂M d . The normal and exponential distributions coexist and lead to new geometric estimates for M d around a random c ω .

Outside geometry

Dynamical objects

The connectedness locus M d is the set of the parameters c ∈ C for which the corresponding Julia set J c of the unicritical polynomial f c (z) = z d + c is connected. Whenever c ∈ M d , the Julia set J c is totally disconnected and the boundary of M d is a bifurcation locus. It is known that both the connectedness locus and its complement are connected [START_REF] Douady | Étude Dynamique des polynômes quadratiques complexes[END_REF][START_REF] Sibony | Iterér de polynômes et fonction de Green[END_REF]. Therefore, there exists a Riemann map Ψ : Ĉ \ D → Ĉ \ M d tangent to the identity at ∞. For every c ∈ M d , the corresponding Julia set is a full compact, i.e. C \ J c is connected, and the corresponding Riemann map

Ψ c : Ĉ \ D → Ĉ \ J c fixes ∞ and Ψ c (∞) = 1.
By Fatou's theorem, the Riemann map Ψ from the complement of the unit disk D onto the complement of the connectedness locus Ĉ \ M d , tangent to the identity at ∞, extends radially almost everywhere on the unit circle with respect to the normalized 1-dimensional Lebesgue measure λ 1 . The harmonic measure ω on ∂M d can be defined as Ψ * (λ 1 ). Similarly, a one parameter family ω c∈∂M d of the harmonic measures supported on Julia sets J c is defined by ω c = (Ψ c ) * (λ 1 ) .

It was proven in [START_REF] Graczyk | Harmonic measure and expansion on the boundary of the connectedness locus[END_REF] that for a generic parameter c ∈ ∂M d with respect to ω,

log d = lim n→∞ log |(f n c ) (c)| n . (1) 
Flat angles and hyperbolic geodesics landing at M d . Let K be a dendrite, i.e. K = ∂K be a continuum. K is well-accessible at y ∈ K (or accessible within a twisted angle) if there exist a Jordan curve γ ⊂ C \ K terminating at y and C > 0 such that for every z ∈ γ,

dist (z, K) > C diam γ(z),
where γ(z) is the subarc of γ between z and y. If every point from K is accessible within a twisted angle of the same aperture, then C \ K is a John domain. If y is well-accessible then by the Lindelöf theorem, see [START_REF] Pommerenke | Boundary behavior of conformal maps[END_REF] Thm 2.16, it is also wellaccessible by the hyperbolic geodesic landing at y. Theorem 3 of [START_REF] Graczyk | Fine structure of connectedness loci[END_REF] states that for almost every c ∈ ∂M d with respect to the harmonic measure ω, the parameter c is a Lebesgue density point of C \ M d but it is not well-accessible.

We say that a point c * ∈ ∂M d is iterated log-accessible if a hyperbolic geodesic Γ lands at c * and for any m > 0,

lim Γ c→c * | log [m] diam Γ(c)| dist (c, M d ) diam Γ(c) = +∞,
where log [m] (x), x > 0 is the m-th iterate of the function max (1, log(x)).

Theorem 1 For almost every c * ∈ ∂M d with respect to the harmonic measure, c * is iterated log-accessible.

Makarov's formula and accessibilty. According to Makarov's law of iterated logarithm, [START_REF] Makarov | Distortion of boundary sets under conformal mappings[END_REF], if g maps the complement of the closed unit disk conformally into C then lim sup

r →1 | log g (re iθ )| log 1 r-1 log log log 1 r-1 ≤ 6 (2) 
for almost all real arguments θ. Aditionally, there exist domains Ω for which the inequality (2) transforms itself into equality for some positive constant C Ω instead of 6. To be more precise, if we put m(r) = C Ω log 1 r-1 log log log 1 r-1

then | log g (re iθ )| takes all the values from the interval ρ • (-m(r), m(r)) for any fixed ρ ∈ (0, 1) when r → 1. These domains are called Makarov domains [START_REF] Jones | Square functions, Cauchy integrals, analytic capacity, and harmonic measure[END_REF] and it is known that all basins of attractions of ∞, Ĉ\J c , c ∈ ∂M d \{-2} are Makarov domains, see [START_REF] Przytycki | Harmonic, Gibbs and Hausdorff measures on repellers for holomorphic maps[END_REF][START_REF] Zdunik | Harmonic measure versus Hausdorff measures on repellers for holomorphic maps[END_REF][START_REF] Jones | Square functions, Cauchy integrals, analytic capacity, and harmonic measure[END_REF]. If γ is a hyperbolic geodesic landing at a typical boundary point z 0 of a Makarov domain Ω then 1 4 -Koebe lemma implies for any z = g(e iθ ) ∈ γ and r close to 1, r) .

dist (z, ∂Ω) ∼ |g (exp(iθ))|(r -1) > (r -1)e -2m(
On the other hand a subarc γ(z) of γ between z and z 0 has the diameter bounded by if r is close to 1 because (t -1)|m (t)| → 0 when t goes to 1 and m(t) is decreasing. Consequently, for any c > 1 and r close to 1, dist (z, ∂Ω) > e -cm(r) diam γ(z) .

diam γ(z) ≤ r 1 |g (te iθ )|dt ≤
In general, Makarov domains have much better accessibility properties than that given by (3). Indeed, Misiurewicz unicritical Fatou sets (c is non-recurrent) are John domains and thus well-accessible at every point of J c . Another known example is the complement of the von Koch snowflake which is also the union of two John domains. We see that usually regular fractals are well-accessible and the formula (3) poorly reflects this situation. Hovever, well-accessibility at a given point z along a curve γ implies porosity of ∂Ω at the landing point z 0 ∈ ∂Ω of γ and the scale |z -z 0 | . This property is true at a positive density of scales at almost every point of ∂Ω with respect to the harmonic measure by Makarov formula (2), see also Proposition 2.2 [START_REF] Graczyk | Asymptotic porosity of plannar harmonic measure[END_REF]. To study further accessibility of typical z 0 ∈ ∂Ω at various scales, we will introduce a concept of porosity along curve.

Porosity along curves. The geometric estimate of Theorem 1 can be made stronger when it is combined with Fact 1.3 and Fact 1.1. Let Γ be a hyperbolic geodesic landing at c * ∈ ∂M d .

The concept of porosity has a long history, see [START_REF] Mattila | Geometry of sets and measures in Euclidean spaces[END_REF]. We will define porosity along a curve. Definition 1.1 Let γ be a curve landing at z * ∈ E and disjoint from a set E ⊂ C. We say that E is β-porous along γ at scale r if there is z ∈ γ such that |z * -z| ≤ r and D(z, βr) ∩ E = ∅.

Let c * ∈ ∂M d be a typical parameter with respect to the harmonic measure and Γ a unique hyperbolic geodesic landing at c * [START_REF] Zakeri | On biaccessible points of the Mandelbrot set[END_REF]. Denote by P c * (β) the set of all scales r > 0 at which M d is β-porous along Γ and by χ P c * (β) (r) its characteristic function. For every β ∈ (0, 1 2 ), P * c (β) has a positive density in R,

lim inf t→0 1 t χ P c * (β) (r) r dr -log t > 0. (4) 
Indeed, estimate (4) is true for an arbitrary full compact in the plane at points which are accessibible by Hölder curves, see Proposition 2.2 [START_REF] Graczyk | Asymptotic porosity of plannar harmonic measure[END_REF]. By the Makarov law of the iterated logarithm [START_REF] Makarov | Distortion of boundary sets under conformal mappings[END_REF], almost every point with respect to the harmonic measure is Hölder accessible. The limiting value of β = 1 2 from [START_REF] Graczyk | Asymptotic porosity of plannar harmonic measure[END_REF] falls short of the upper bound 1. It is not known what happens for β between 1/2 and 1.

We will show that the gaps of P c * are controlled by a power of the logarithmic function. Since P c * (β) is closed, the components of R \ P c * (gaps of P c * ) are open intervals.

Theorem 2 For almost every c * ∈ ∂M d with respect to the harmonic measure and every p > 0, there is β 0 (p, c * ) > 0 so that every gap (r, r * ) of P c * (β 0 (p, c * )) satisfies

r ≥ r * log [p] 1 r * (5) provided r * is close enough to 0.
Thereom 2 is based on the idea of passages to the large scale. In [START_REF] Graczyk | Harmonic measure and expansion on the boundary of the connectedness locus[END_REF] it was showed that for many values of n a neighborhood of the critical value, namely a Yoocoz piece which contains it, is sent by the s-iterate of the mapping univalently with bounded distortion on a Yoccoz piece of a fixed order, i.e. of fixed size. The Julia set seen in a fixed scale is of course porous, and once that picture is pull back by the dynamics one can conclude porosity in the scale corresponding to the size of the initial Yoccoz piece. According to [START_REF] Graczyk | Harmonic measure and expansion on the boundary of the connectedness locus[END_REF] the gaps between consecutive such values of s behave like s n+1 -

s n = O ( √ n))
. This can easily be improved to O(log n), see claim (iii) of Fact 1.3 proved in the Appendix. Further improvement can be obtained by observing the porosity can be pulled back from a large scale not only be an univalent map, but also one with bounded criticality p.

The gaps between passages to a large scale with bounded criticality p scale as ŝn+1 -ŝn = O(log [p] n). This is shown in Theorem 4 whose precise statement of is deferred to the next section since it expressed in the language of Yoccoz partitions. The use of Yoccoz partitions makes the proof almost combinatorial.

Failure of porosity. While Theorem 2 shows accessibility of a typical point from the boundary of M d seen in most scales, things still look very differently is some scales. Theorem 3 states that for a typical c * ∈ ∂M d with respect to the harmonic measure, accessibility within a John angle fails rather badly and an extremal "non-accesibility" in the sense of Makarov theory [START_REF] Makarov | Distortion of boundary sets under conformal mappings[END_REF] is observed instead.

Theorem 3 For almost every c * ∈ ∂M d with respect to the harmonic measure and every choice of β ∈ (0, 1), the complement of P c * (β) has a positive density in R or equivalently, lim sup

t→0 1 t χ P c * (β) (r) r dr -log t < 1 .
The harmonic measure is supported on a set of points of ∂M d that can only be accessed by passing through infinitely many increasingly narrow "tunnels" at scales of positive density. The prelevance of such extremal sets in complex dynamics was shown in [START_REF] Graczyk | Asymptotic porosity of plannar harmonic measure[END_REF]. The proof of Theorem 3 is based on the amplification technique of [START_REF] Graczyk | Fine structure of connectedness loci[END_REF].

Preliminaries.

We will follow closely the definitions and notations of [START_REF] Graczyk | Fine structure of connectedness loci[END_REF]. Here is a partial list.

• f c (z) = z d + c, where d > 1 is fixed, J c is its Julia set, K c the filled-in Julia set.
• M d is the locus of connectivity of the family {f c } c∈C .

• Ψ is the Riemann map from the complement of D(0, 1) onto the complement of M d tangent to the dentity at ∞; analogously, Ψ c is the Riemann map of the complement of K c if c ∈ M d , otherwise Ψ c can be defined as the Böttker coordinate on a neighborhood of ∞ and extended by the dynamics till the Green line G c (0),

G c (z) = lim n→∞ log f n c (z) d n .
There is an explicite formula,

Ψ -1 c (z) = exp(G c (z) + 2πiθ), G c (z) > G c (0)
, where θ ∈ [0, 1) is called external argument or external angle of z [START_REF] Carleson | Complex dynamics[END_REF][START_REF] Douady | Étude Dynamique des polynômes quadratiques complexes[END_REF]. An external ray γ c (θ) with an external argument θ is defined as the set of all z ∈ C with the external angle θ. The closure of some rays intersects K c at precisely one point. We say that these rays land (or converge) at that point. If c ∈ ∂M d then every external ray γ c (θ) labeled by an angle θ at which it enters ∞ is a hyperbolic geodesic of Ĉ \ K c .

• Any line in the parameter space of the form θ(c) = θ 0 will be named an external ray with angle θ 0 and denoted by Γ c (θ 0 ). The following relation holds,

c ∈ Γ(θ 0 ) ⇔ c ∈ γ c (θ 0 ) .

The external rays are hyperbolic geodesics in

Ĉ \ M d . The Green function for M d satisfies G M d (c) = G c (c) and for every c ∈ Γ(θ(c)), Ψ -1 (c) = exp(G c (c) + 2πiθ(c)) .
To simplify the notation, we will sometimes use γ θ and Γ θ to denote the external rays with the argument θ in the phase and parameter spaces, respectively.

Similarity between the phase and parameter planes. Theorem 3 of [START_REF] Graczyk | Fine structure of connectedness loci[END_REF] (see also Fact 1.1 in [START_REF] Graczyk | Analytic structures at bifurcation locus[END_REF]) describes the similarity between M d and J c 0 through one-parameter family of asymptotically conformal maps Υ c 0 : C → C, with c 0 typical with respect to the harmonic measure on ∂M d . We state it as Fact 1.1. An important feature of Fact 1.1 is the existence of a compact enlargement Z of J c 0 that compensates for the fact that M d has a non-empty and dense interior [START_REF] Mañé | On the dynamics of rational maps[END_REF] while the corresponding Julia set J c 0 is a dendride. The compact Z depends on a construction but outside Z, the similarity map Υ c 0 agrees with the

natural univalent map Ψ • Ψ -1 c 0 : Ĉ \ J c 0 → Ĉ \ M d . The enlargement Z of J c 0 near c 0 allows to extend Ψ • Ψ -1
c 0 accross Z to a global quasi-conformal mapping with the Beltrami coefficient tending to 0 on D(c 0 , r) as r → 0. Fact 1.1 for almost every c 0 ∈ ∂M d with respect to the harmonic measure there exist a full compact Z, c 0 ∈ ∂Z, a Jordan disk U c 0 , and a quasi-conformal map Υ c 0 of the plane, Υ c 0 (c 0 ) = c 0 , with the following properties:

(i) J c 0 ∩ Z is connected, J c 0 ∩ U = J c 0 ∩ Z, and every z ∈ ∂Z \ {c 0 } is non- recurrent, (ii) lim r→0 1 r d H (Z∩D(c 0 , r), J c 0 ∩D(c 0 , r)) = 0, where d H stands for the Hausdorff distance, (iii) lim r→0 1 r 2 area (Z ∩ D(c 0 , r)) = 0, (iv) Υ c 0 (Z ∩ U ) ⊃ M d ∩ Υ c 0 (U ), Z is disjoint with the hyperbolic geodesic γ ⊂ C \ J c 0 landing at c 0 , and lim γ ξ→c 0 d H (ξ, J c 0 )/dist (ξ, Z) = 1, (v) Υ c 0 on U \ Z is equal to Ψ • Ψ -1
c 0 where Ψ c 0 and Ψ are uniformizing maps from {|z| > 1} on Ĉ \ J c 0 and Ĉ \ M d , respectively, tangent to the identity at ∞, (vi) the maximal dilation of Υ c 0 restricted to D(c 0 , r) tends to 1 when r tends to 0.

(vii) Υ c 0 is conformal at c 0 .

Smooth continuity of similarity map along hyperbolic geodesics.

The similarity maps Υ c 0 are conformal outside M d . Fact 1.2 gives a uniform similarity along hyperbolic geodesics landing at typical parameters of M d with respect to the harmonic measure ω.

Fact 1.2 The derivative Υ c 0 (z) of the similarity map of Fact 1.1 is continuous along every geodesic Γ landing at a typical point at ∂M d with respect to the harmonic measure ω.

The proof of Fact 1.2 is Theorem 1 in [START_REF] Graczyk | Analytic structures at bifurcation locus[END_REF] and is based on combinatorics of Yoccoz pieces and TWB-theory, see also [START_REF] Graczyk | Fine structure of connectedness loci[END_REF].

1.3 Tools of the proof.

Yoccoz puzzle pieces. Again, we refer to the constructions in [START_REF] Graczyk | Harmonic measure and expansion on the boundary of the connectedness locus[END_REF][START_REF] Graczyk | Fine structure of connectedness loci[END_REF]. Recall the fixed point q c which is not the landing point of the fixed external ray. A finite number at least 2 of external rays converge at q c dividing the plane into the same number of unbounded sectors. By choosing an equipotential of a fixed level As c moves over an open set, the entire configuration consisting of q c , the rays and the equipotential moves holomorphically and up to that motion can be regarded as fixed. Except for the parabolic points of the main cardioid, ∂M d can be covered such sets.

G c (z) = G 0 > G c (c)
Yoccoz pieces of order n are defined as connected components of preimages of the pieces of order 0 by

f n c . When 0 ≤ k < n a Yoccoz piece Y n is mapped by f n-k c
onto a Yoccoz piece Y k of order k and that mapping can be complicated topologically, but is always proper of finite degree and holomorphic. It is univalent if and only if none of the intermediate pieces

f j c (Y n ) n-k j=1 contains c.
Since the mapping is entire, all Yoccoz pieces are open topological disks and in fact Jordan domains. The boundary of any Yoccoz piece is a finite union of arcs which belong to external rays or equipotentials.

We will write Y n for the Yoccoz piece of order n which contains c, provided that it exists.

Passages to a large scale. We give statements about univalent passages to a large scale. Claim (i) follows from Theorem 1 of [START_REF] Graczyk | Lyapunov exponent and harmonic measure on the boundary of the connectedness locus[END_REF]. The remaining claims except for (iii) are either reformulations or can be directly derived from Fact 5.2 in [START_REF] Graczyk | Fine structure of connectedness loci[END_REF]. The only new part in Fact 1.3 stated below is claim (iii). It is stronger than the estimate of Proposition 1 of [START_REF] Graczyk | Harmonic measure and expansion on the boundary of the connectedness locus[END_REF] because the square root function √ n was replaced by O(ln n) in Fact 1.3. A proof of (iii) is given in the Appendix. Fact 1.3 A set of full harmonic measure on the boundary of M d can be covered by countably many open sets (A i ) with the following properties. For every A i there exist positive constants D i , K i , L i , N i so that the following claims hold for almost all c ∈ A i ∩ ∂M d , in the sense of the harmonic measure. 

(iii) lim sup sn n < ∞ and ∃ n(c) < ∞ ∀ n ≥ n(c) : s n+1 -s n ≤ µ (Y(c), A) log n, ( 
iv) for every n there is a K i -quasidisk Y sn+N i containing c which is mapped univalently onto Y(c) by f sn c with distortion bounded by D i and,

(v) f sn c (c) ∈ Y , (vi) mod (Y sn+N i \ Y s n+1 +N i ) ≥ 10.
If in (ii') we do not condition in which Yoccoz piece Y (c) ⊂ Y(c) the iterate f sn c (c) lands, then by default Y (c) = Y(c) and A = A i . We put µ i := µ (Y, A i ).

Finally, we are ready state a theorem about passages to a large scale with bounded criticality.

Theorem 4 For every c from a set of full harmonic measure, there are constants N (c), m(c) > 0 and µ i > 0 and for every p ≥ 0 there is K(p, c) with the following dynamical property.

For every s there is ŝ :

s ≤ ŝ ≤ s + µ i log [p] (s) + K(p, c) such that Y ŝ is mapped to a piece Y of order at most N (c) by an iterate f n c . Moreover, there is a disk U ⊃ Y , mod (U \ Y ) ≥ m(c), such that f n
c extends to a neighborhod of Y ŝ as a proper mapping onto U with no more than (d -1)p critical points counted with multiplicities.

2 Amplification techniques.

Distortion near critical points. f c (z) = z d + c does not preserve the ratio of lengths near 0. The quantity which can be controlled is diameter. Let us write

Q(z) = z d .
Lemma 2.1 Let γ 1 and γ 2 be two bounded connected sets such that

γ 2 ⊂ D(w, diam γ 1 ), w ∈ C.
Then, there exists C(d) > 0 which depends solely on d > 1, so that

diam Q(γ 1 ) diam Q(γ 2 ) ≥ C(d) diam γ 1 diam γ 2 .
Proof. Let us start with a simpler statement: if γ is bounded and connected, then diam

Q(γ) ≥ C (d) diam γ d with C (d) > 0. Let {z : r ≤ |z| ≤ R} be the smallest annulus which contains γ. Suppose r ≤ R √ 2 . Then diam Q(γ) ≥ (R d -r d ) ≥ R d 1 -2 -d/2 ≥ diam γ d 2 -d 1 -2 -d/2
and the claim holds. So suppose that r ≥ R √ 2 and that γ contains points whose arguments differ by π 2d . Then the images of those points are in distance at least

√ 2r d ≥ diam γ d 2 1-3d
2 . If such two points cannot be found, then Q(γ) is contained in a right angle with its vertex at 0. If z 1 , z 2 ∈ Q(γ), then by considering the maximum of the derivative of Q -1 on the segment joining them,

|Q -1 (z 1 ) -Q -1 (z 2 )| ≤ 2 d-1 2 dr d-1 |z 1 -z 2 | ≤ 2 d-1 dR d-1 |z 1 -z 2 | ≤ 4 d-1 d • diam (γ) d-1 |z 1 -z 2 |.
By taking the supremum of the leftmost expression, we arrive at

diam γ d ≤ 4 d-1 d diam Q(γ)
which gives the claim in the remaining case.

Getting now to the claim of the lemma note that if |w| ≥ 2d • diam γ 1 , then Q is univalent on D(w, 2 • diam γ 1 ) and the estimate we want follows from bounded distortion. Otherwise,

diam Q(γ 2 ) ≤ d(2d + 2) d-1 (diam γ 1 ) d-1 diam γ 2 by considering the maximum of the derivative of Q, while diam Q(γ 1 ) ≥ C (d) diam γ 1 d from the initial claim. Combining, we get diam Q(γ 1 ) diam Q(γ 2 ) ≥ C (d) d (2d + 2) 1-d diam γ 1 diam γ 2 .
In-radii. Corollary 2.1 Let γ be a bounded connected set in C and w chosen so that ir (w, γ) > 0.

Then diam Q(γ) ir Q(w), Q(γ) ≥ C(d) 2 
diam γ ir (w, γ) .

Proof. Choose r > ir (w, γ). Then we are in the situation of Lemma 2.1 with γ 1 := γ, γ 2 = D(w, r) and the same w. Since Q D(w, r) contains both w and a point outside γ, then diam

Q D(w, r) ≥ ir (Q(w), Q(γ)). From Lemma 2.1 diam Q(γ) ir Q(w), Q(γ) ≥ C(d) diam γ 2r .
The corollary follows by taking the supremum on the right-hand side over all r > ir (w, γ). Proof of Theorem 1. Let c * ∈ ∂M d be a generic point with respect to the harmonic measure, which in particular is a Collet-Eckmann map. Let us fix p ≥ 0 in Theorem 4 and denote by s n consecutive passages to a large scale described there,

Length vs. diameter in

f sn c * (Y sn+N (n) ) = Y N (n) , N (n) ≤ N := N (c * ), with the property that there exists a disk U n ⊃ Y N (n) , κ := κ(c * ) = mod (U n \Y N (n) ), such that f sn c * extends to W n ⊃ Y sn+N (n)
as a proper mapping onto U n with 0 ≤ κ ≤ (d -1)p critical points counted with mutiplicities. Theorem 4 supplies also the constants µ = µ(c * ) and

K(p) = K(p, c * ) such that s n+1 -s n ≤ µ log [p] (s n ) + K(p) ≤ log [p] (n) + K (p) (6) 
because of (iii) of Fact 1.3. Denote by z n and z n+1 the unique intersection of the hyperbolic geodesic γ landing at c * with the boundaries of Y sn+N (n) and Y s n+1 +N (n+1) respectively. γ(z) stands for an arc of γ between z ∈ γ and its landing point c * and diam γ(z) is the diameter of γ(z).

Let z ∈ γ lie between z n and z n+1 and choose s ∈ [s n , s n+1 ] to be an integer such that f s c * (z) is at a definite distance to J c * . We put γ t = f t c * (γ), t ∈ N, the meaning of γ t (•) and diam γ t (•) is self-explanatory.

If κ ≤ (d -1)p is the criticality of f sn c * on W n then define t 1 = s n if κ = 0 and

t 1 < t 2 < • • • < t p as consequitive moments t = 1, • • • , s n when 0 ∈ f t c * (W n ). By the Koebe one-quarter theorem, dist (z, J c * )|(f t 1 c * ) (z)| ∼ dist (f t 1 c * (z), J c * )
and the bounded distortion of

f t 1 c * on Y sn+N (n) z, diam γ(z) dist (z, J c * ) ≤ C 1 diam γ t 1 (f t 1 c * (z)) dist (f t 1 c * (z), J c * ) , (7) 
where C 1 depends solely on p. We conclude the first round of estimates by invoking Lemma

2.1, diam γ(z) dist (z, J c * ) ≤ C 2 diam γ t 1 +1 (f t 1 +1 c * (z)) dist (f t 1 +1 c * (z), J c * ) . (8) 
We repeat the above argument for the remaining times t 2 -t 1 , . . . , t p -t p-1 and finally

s n -t p if s n > t p + 1, diam γ(z) dist (z, J c * ) ≤ (C 2 ) p+1 diam γ sn (f sn c * (z)) dist (f sn c * (z), J c * ) . (9) 
By the Koebe distortion theorem and the definition of s n , and (i

) of Fact (1.3), diam γ(z) ≤ diam γ(z n ) ∼ |(f sn c * ) (c * )| d -C 3 n and s ∼ s n ∼ n | log diam γ(z)|. ( 10 
)
Since the Julia set J c * is Hölder [START_REF] Graczyk | [END_REF], a Hardy-Littlewood theorem [START_REF] Hardy | Some properties of fractalional integrals II[END_REF][START_REF] Duren | Theory of H p spaces[END_REF] implies a uniform bound on the length of γ s (w) for w on a fixed equipotential line. Therefore, for w = f s c * (z),

diam γ s (f s c * (z)) ∼ 1 ∼ dist (f s c * (z), J c * ) ≤ L s-sn dist (f sn c * (z), J c * ) ,
where L = sup |f c * | on J c * . After taking into account (6), estimate (9) becomes

diam γ(z) dist (z, J c * ) (C 2 ) p+1 L s-sn ≤ (C 4 ) µ log [p] n ≤ (C 4 ) µ log [p+1] (diam γ(z)) -1 ≤ (log [p] (diam γ(z)) -1 ) µ ≤ log [p-1] (diam γ(z)) -1 , (11) 
for some positive µ that depends on p but can be ignored if p > 1 and z is close enough to c * , the price to pay is one logarithm less in the composition. By 

The external ray Γ landing at

c * ∈ ∂M d is equal to Υ c * (γ). Let c = Υ(z). Fact 1.2 yields diam γ(z) ∼ diam Γ(c), (13) 
where diam Γ(c) is the diameter of a portion of the geodesic Γ between c and c * . Since Υ is quasiconformal on C, [START_REF] Graczyk | Asymptotic porosity of plannar harmonic measure[END_REF] 

implies that dist (c, M d ) ∼ dist (c, Υ(Z)) . ( 14 
)
By the Koebe one-quarter theorem, and ( 14),

diam γ(z) dist (z, J c * ) ∼ diam Γ(c) dist (c, M d ) , (15) 
Putting together [START_REF] Graczyk | Harmonic measure and expansion on the boundary of the connectedness locus[END_REF], [START_REF] Graczyk | Analytic structures at bifurcation locus[END_REF], and ( 13) finishes the proof of Theorem 1.

Proof of Theorem 3. Let us fix β > 0 and suppose that there is a set B ⊂ ∂M d of positive harmonic measure so that for any c * ∈ B lim sup

t→0 1 t χ P c * (β) (r) r dr -log t = 1 . ( 16 
)
We would like to derive a similar condition in the phase using the similarity map.

Before that, we make a couple of remarks concerning porosity along curves.

The first is that β-porosity at scale r implies β r r -porosity at any scale r ≥ r.

Porosity under quasi-regular mappings. Suppose now that F is a quasi-regular map which maps ẑ to z, Ê onto E ∩ D(z, 2r) and γ into γ. To establish the porosity of E along γ in scale r, consider the largest r such that F (D(ẑ, r)) ⊂ D(z, r). It is automatic that if Ê is β-porous along γ at scale r, then E is β-porous at scale r along γ where β ∈ (0, 1) and depends on β and F , or more precisely F up to composition with affine mappings.

In particular, since the similarity map Υ c * is asymptotically conformal, in view of these observations r ∈ P c * (β), 0 < r ≤ r 0 implies that J c * is β(r 0 )porous at scale Λk(r 0 ) along the geodesic γ landing on c * in the complement of

J c * , where Λ = |DΥ c * (c * )| -1 , 0 < β(r 0 ) ≤ β, 1 ≤ k(r 0 ) with lim r 0 →0 β(r 0 ) = β, lim r 0 →0 k(r 0 ) = 1.
Let P J c * (β(r 0 )) be the set of scales in which J c * is β(r 0 )-porous. Then

k(r 0 )Λr 0 t χ P J c * (β(r 0 )) (r) r dr = r 0 tΛ -1 k -1 (r 0 ) χ P c * (β) (r) r dr
and relation ( 16) remains valid after replacing χ P c * (β) with χ P J c * (β(r 0 )) . We will write β := β(r 0 ) to simplify notations. For > 0, choose t > 0 so that

1 t χ P J c * (β ) (r) r dr ≥ (1 -)| log t| . ( 17 
)
We will rewrite [START_REF] Jones | Square functions, Cauchy integrals, analytic capacity, and harmonic measure[END_REF] in the discrete form. Let γ be a unique hyperbolic geodesic landing at c * ∈ J c * , [START_REF] Zakeri | On biaccessible points of the Mandelbrot set[END_REF]. Fix λ ∈ (0, 1) and set I n = (λ n+1 , λ n ], n ≥ 0, and λ ∈ (0, 1). We define a set N J c * ⊂ N by the following condition:

n ∈ N J c * ⇔ I n ∩ P J c * (β ) = ∅ For t ∈ I N , #{N J c * ∩ [0, N ]}| log λ| ≥ N n=0 In χ P J c * (β ) (r) r dr ≥ 1 t χ P J c * (β ) (r)
r dr and, taking into account [START_REF] Jones | Square functions, Cauchy integrals, analytic capacity, and harmonic measure[END_REF] 

with t ≤ λ N , #{N J c * ∩ [0, N ]} N ≥ 1 -, (18) or 
#{N J c * ∩ [0, N ]} ≥ (1 -)N. ( 19 
)
Recall the Yoccoz piece Y c * from Fact 1. 

⇔ ∃ Y k ∈ Q c * (Y ) such that diam Y k ∈ I n and if m > 0 then ∀ i ∈ [1, m] : n + i ∈ N J c * . Fact 1.3 (iii) implies that lim inf N →∞ #{S(0)} N = η > 0 ( 20 
)
We will show that S(m) = ∅ for all positive integers m and all N large enough satisying [START_REF] Manning | Logarithmic capacity and renormalizability for landing on the Mandelbrot set[END_REF]. Indeed, if otherwise, we can associate to every n ∈ S(0) at least

1 integer k(n) ∈ N J c * and the function k(n) : S(0) → [0, N ] \ N J c * is at most m-to-1. Therefore, by (20), #{[0, N ] \ N J c * } ≥ ηN/2m.
This contradicts [START_REF] Manning | Logarithmic capacity and renormalizability for landing on the Mandelbrot set[END_REF] if is small enough.

Let n ∈ S(m). We can pass to the large scale using Fact 1.3. It means that

J c * is β 1 -porous along f sn c * (γ) in all scales I k , k ∈ [n 0 , m].
We can get it for all scales by the observation that β -porosity at scale r implies λβ -porosity at all scales in [r, λ -1 r]. The constant β 1 > 0 depends solely on β , λ and accounts for the distortion of f sn c * . n 0 belongs to a fixed range. Also, we may assume by Fact 1.3 (v) that f sn c * (c * ) ∈ Y , which is an arbitrary relatively open subset of J c * ∩ Y c * . Passing to the limit while increasing m to ∞, we will find a z Y in the closure of Y which is β 1 -porous in all scales I k , k ≥ n 0 . We can vary Y and construct a set {z Y } dense in Y c * ∩ J c * with the property that every z Y is the landing point of a geodesic along which J c * is β 1 -porous in all scales. Since those geodesics are dense in the complement of J c * , it also holds for any point in

J c * ∩ Y c * .
Under finitely many forward iterates of f c * , the images of Y c * ∩ J c * will cover all of J c * . By the observations made at the beginning of the proof, after one iteration J c * ∩ f c * (Y c * ) can be seen to be β d (β 1 )-porous at all sufficiently large scales where β d (β 1 ) is some positive function which only depends on the degree of the polynomial.

Hence, we obtain that J c * is uniformly porous. Theorem C' [START_REF] Rivera-Letelier | The maximal entropy measure detects non-uniform hyperbolicity[END_REF] together with [START_REF] Graczyk | [END_REF] assert that every Collet-Eckmann unicritical polynomial with a uniformly porous Julia set has a non-recurrent critical point. By [START_REF] Graczyk | Harmonic measure and expansion on the boundary of the connectedness locus[END_REF][START_REF] Smirnov | Symbolic dynamics and Collet-Eckmann conditions[END_REF], B is of the harmonic measure 0, a contradiction.

Pushing pieces with bounded criticality.

We will write Y s for a Yoccoz piece of order s which contains c. In what follows there will be two types of constants. Some will depend on a particular choice of c from a set of full harmonic measure and others will be constant on open subsets of M d which will be marked with a subscript i.

As a corollary we get

Corollary 2.2 If Y s is a Yoccoz piece, s ≥ K(c
), then Y s can be mapped univalently by a an iterate of f c to a piece of order not exceeding µ i log s + N i and compactly contained in Y c , where µ i is positive and µ i , N i are constant on open sets.

Proof. Fix a piece Y c which is compactly contained in Y c with ord (Y c ) = N i and select a sequence (s n ) from Fact 1.3 with Y := Y c in claim (v). Find the largest n : s n + N i ≤ s. Then s s n ≤ µ i log n + N i ≤ µ i log s n + N i and f sn c pushes Y s as claimed.
Definition 2.2 Two Yoccoz pieces are considered adjacent provided that:

• their orders are equal to s,

• their borders share a point which is mapped to q c by an iterate of f n c with n ≤ s.

The number s -n will be referred to as the depth of the adjacency.

Note that piece can have several fans of adjacent pieces, possibly of varying depths, attached at different preimages of q c . Proposition 1 For every c from a set of full harmonic measure there is N (c) and for every p ≥ 0 and µ i (p) > µ i from Corollary 2.2 there is K(p, c) with the following dynamical property.

For every s there is ŝ :

s ≤ ŝ ≤ s + µ i (p) log [p](s) + K(p, c
) such that Y ŝ is mapped to a piece of order at most N (c) by an iterate of f c with no more than (d -1)p critical points counted with multiplicities on Y ŝ and all pieces adjacent to it.

The proof proceeds by induction with respect to p. For p = 0 the claim of the proposition follows from Fact 1.3 in a similar way as Corollary 2.2. In particular, we make Y sn map onto Y c which will guarantee that the transformation is univalent on the adjacent pieces. Then ŝ can be taken as the smallest s n at least equal to s. In this case, K(0, c) = 0. Now we prove by induction a weaker version of the proposition.

Lemma 2.2 Let p ≥ 0. In addition to the constants of Proposition 1 there is N (p, c) so that the following holds.

For every s there is ŝ which satisfies the inequalities of Proposition 1. The choice of ŝ is such that either Y ŝ is mapped as in the the claim of the Proposition, or it is mapped to a piece of order not exceeding N (p, c) by an iterate of f c which is univalent on Y ŝ and all its adjacent pieces.

Proof. For p = 0 the lemma holds and now suppose p > 0 and the lemma holds for p -1 with some µ i (p -1) < µ i (p).

Construction. For any s we will construct two finite sequences of positive integers: (s k ) will be decreasing and (t k ) non-decreasing with the initial values t 0 = s and s 0 = s. For each k > 0 we also assume that Y t k is mapped by f t k -s k -1 c to a piece X k in such a way that the mapping is univalent on all pieces adjacent to Y t k , which by definition includes Y t k , while Y s k contains a piece adjacent to X k .

The construction will end once s k ≤ N (p, c) -1. Then ord (X k ) ≤ N (p, c) we will adopt ŝ := t k . It will remain to estimate t k -t 0 which will be done later.

Let us push Y s k by the highest iterate of f c which is less than s k and is univalent on Y s k and its adjacent pieces. Then push it by one more iterate to get to a neighborhood of c. The image of Y s k is then some piece X of order s and one its adjacent piece Y s contains c. On the other hand, X contains a piece adjacent to f s k -s c (X k ). If we set N (p, c) -1 ≥ K(c) from Corollary 2.2, then either the construction has ended already, or the resulting piece Y s is of order not exceeding

µ i log s k + N i -1. ( 21 
)
Let σ ≥ 0 be the smallest with the property that Y s +σ does not contain any piece adjacent to f t k -s -1 c (Y t k +σ ), or +∞ if no such σ exists. Take the smallest ŝ > s such Y ŝ can be pushed to the scale at most N (p-1, c) with the criticality as described in the claim of the Lemma.

There are two possibilities. The first one is that σ > ŝ -s . Then Y ŝ contains a piece adjacent to f t k -s -1 c (Y t k +ŝ -s ) and we set t k+1 = t k + ŝ -s . The image under f t k -s k -1 c of pieces adjacent to Y t k+1 is contained in pieces adjacent to X k and this mapping is univalent. The subsequent mapping f s k -s c on X k and its adjacent pieces has at most one critical value at c and sends the image of Y t k+1 to a piece of order t k + ŝ -s -(t k -s k -1) -(s k -s ) = ŝ + 1 such that one its adjacent pieces is contained Y ŝ . Therefore, this piece is itself contained in a piece adjacent to Y ŝ .

Y ŝ is mapped to a piece of order at most K(p -1, c) with criticality not exceeding (p -1)(d -1) including its adjacent pieces. Hence, if only K(p -1, c) ≤ K(p, c), then ŝ := t k+1 can be set in the claim of Lemma 2.2 and one only needs to estimate the difference t k+1 -t 0 .

The second possibility of σ ≤ ŝ -s . In this case we set s k+1 = s + σ, t k+1 = t k + σ and X k+1 = f t k+1 -s -1 c (Y t k+1 ). We have ord (X k+1 ) = s + σ + 1 and no piece adjacent to X k+1 contains c. Hence f

t k+1 -s k+1 c = f t k -s -1 c
is univalent on Y t k+1 and its adjacent pieces.

In this case the construction will continue to the next value of k. It will end with either s k ≤ N (p, c) or the first case in the above alternative. Either way the claim of the Lemma will be satisfied with ŝ := t k , except for the estimate on t k -t 0 .

Estimates. We need to estimate t k -t 0 for every k. From the construction, we see that t k+1 -t k = ŝ -s -1 where ŝ -s ≤ µ i (p -1) log [p-1] (s ) + K(p -1, c) by the inductive hypothesis. On the other hand, we have s ≤ µ i log s k + N i -1 by estimate [START_REF] Mattila | Geometry of sets and measures in Euclidean spaces[END_REF]. Hence, we arrive at

t k+1 -t k ≤ µ i (p -1) log [p-1] (µ i log s k + N i -1) + K(p -1, c).
To simplify notations, we will write

ψ(s) = log [p-1] (µ i log s + N i -1) + K(p -1, c) and then t k+1 -t k ≤ ψ(s k ). Then s k+1 < ŝ ≤ µ i log s k + N i -1 + t k+1 -t k .
For every η > 0, if s k is sufficiently large this is bounded by 2µ i log s k . s k can be assumed large enough if N (p, c) is set to a sufficiently large value N (p, c, η) since s k < N (p, c, η) means that the construction ends at step k. Lemma 2.3 For every η > 0 there is a value N (p, c, η) such that if s ≥ N (p, c, η), then ψ(2µ i log s) ≤ ηψ(s).

Proof. We have

ψ(2µ i log s) ≤ log [p] s + log(2µ i ) + N i -1 ≤ log ψ(s) + log(2µ i ) + N i -1.
The estimate follows once ψ(s) is large enough depending on η, which translates to a lower bound for s.

Hence, if we adopt N (p, c) ≥ N (p, c, η) from Lemma 2.3, then t k+1 -t k ≤ η(t k -t k-1 ) for every k ≥ 1 for which t k+1 is defined and

t k -t 0 ≤ 1 1 -η (t 1 -t 0 ) ≤ 1 1 -η ψ(s k ).
Again, for any η > 0 if s is large enough, then ψ(s) ≤ (1 + η)µ i (p -1) log [p] s. By adjusting N (p, c) again, if needed, we get the estimate t k -t 0 ≤ 1+η 1-η µ i (p-1) log [p] s. Since the final t k allows pushing to the scale at least N (p, c) by construction, we get the weaker version of Proposition 1 with any µ i (p) > µ i (p -1) and K(p, c) = 0 at the cost of making N (p, c) sufficiently large.

Pushing from the scale N (p, c). In the proof of Proposition 1 we are left with the situation when Y ŝ can be pushed to a piece X by a mapping which is univalent on Y ŝ and its adjacent pieces. We have ord (X) = s + 1 ≤ N (p, c), while Y s intersects a piece adjacent to X.

In order to continue to a scale N (c) independent of p, we need to make a few assumptions about N (c). We need it at least as large as K(c) in Corollary 2.2. From the case of p = 0, there is a piece Y ŝ , s + µ i (0) log s + K(0, c) ≥ ŝ ≥ s such that Y ŝ and its adjacent pieces can be pushed univalently to the scale N (c).

As in the proof of Lemma 2.2, find the smallest σ ≥ 0 such that f ŝ-s-1 c (Y ŝ+σ ) and its adjacent pieces are disjoint from Y s+σ .

Then one possibility is that σ > ŝ -s. In this case Y ŝ+ŝ -s can be pushed to scale N (c) with criticality d -1, also on its adjacent pieces and we are done.

Otherwise, for t = ŝ + σ, f ŝ-s-1 c (Y t ) or its adjacent pieces do not contain c, while a piece of the order less by 1 contains c. This larger piece can be mapped univalently with the estimate of Corollary 2.2. Hence, t can be mapped univalently to a piece of order at most µ i log (s + µ i (0) log s + K(0, c)) + N i := ψc (s).

Observe that ψc (s) < s for all s ≥ N (c). Let us additionally assume that N (c) ≥ N (c). We now see that a piece Y t where t -ŝ is bounded above in terms of N (p, c) can be mapped univalently to a piece of order lower than s. After repeating this step no more that N (p, c) times we arrive at scale N (c), while increasing ŝ by K(p, c). The proof of Proposition 1 is complete.

Proof of Theorem 4. We will start with s := ŝ given by Proposition 1 and show that the claim of Theorem 4 can be satisfied by taking ŝ between s and s + K(c). Let f n c be the iterate which maps Y s to a piece of order not exceeding N (c) according to Proposition 1.

Then Y s +1 could be compactly contained in Y s . If that happens, f n c (c) is contained in a piece Y of order s -n + 1 which is compactly contained in f c n (Y s ). The claim of the Theorem is then satisfied with ŝ = s + 1 and U = f n c (Y s ). In particular, mod f n c (Y s ) \ Y is bounded away from 0 since there are only finitely many pieces of order less or euqal to N (c).

Otherwise, Y s +1 and Y s share a common point q ∈ J c on the boundary. That point will eventually by mapped to q c . Consequently, for pieces adjacent to Y s +1 at q the depth of the adjacency is at least 1, cf. Definition 2.2.

Thus we can continue for any number of steps until we get Y s +k compactly contained in Y s +k-1 or Y s +k has pieces adjacent at q with the depth k. Now let U k denote the union of pieces of order k which have q c on their boundary, together with shared components of the boundary. This is a topological disk, U k ⊂ U k-1 and for k large enough f c : U k → U k-1 is univalent and expanding.

By further increasing k, we obtain that for any piece of order no more than N (c) + k its union with pieces adjacent at some point with the depth k is mapped univalently onto U k .

For k -1 this large, let ψ be the univalent map from U k which sends q c to f n c (q). Then ψ(U k ) is a neighborhood of f n c (q) which contains the image by f n c of Y s +k and pieces adjacent to it at q for k ≥ k and is nested inside U := ψ -1 (U k -1 ) with a fixed modulus.

For k large enough U is inside the union of pieces adjacent to Y , together with common parts of the boundaries. Let V be the connected component of f -n c (U ) which contains q. V is inside the union of pieces adjacent to Y s together with common boundary arcs. The mapping f n c : V → U is proper and its criticality is bounded by (d -1)p by Proposition 1.

Proof of Theorem 2. Let Γ denote the hyperbolic geodesic converging to c * ∈ ∂M d . Since c * is typical with respect to the harmonic measure, the claims of Theorem 4 may be assumed to hold. Fix ŝ, n, Y accordingly.

At first, choose r > 0 and c such that |c * -c| = r, c ∈ Γ ∩ Υ c * ∂Y ŝ for some n. We also want r to be sufficiently small, i.e. r < r(c * ) as will be speficied in a sequel.

Let z := Υ -1 c * (z) and w := f n c * (z). Point w is on a fixed equipotential depending on N (c) and hence a ball D w, 0 (c) is disjoint from J c * . Now take a disk Û so that Y ⊂ Û ⊂ Û ⊂ V with moduli of the differences both at least m(c) 2 . Then for some 0 < 1 (c) ≤ 0 (c),

D w, 1 (c) • diam Û ⊂ Û \ J c * .
We claim that this persists under pull-back through the inverse branch of f n with a constant Q(p, c) > 0, i.e.

D z, Q(p, c) 1 (c) • diam V ⊂ f -n c * D w, 1 (c) • diam Û ( 22 
)
where V is the connected component of f Since h p has bounded distortion in terms of m(c),

D h -1 p (w), Q (c) 1 (c) • diam h -1 p Û ⊂ h -1 p D w, 1 (c) • diam Û := V .
To estimate the impact of taking the preimage by Q, recall Corollary 2.1 which should be aplied with γ equal to the appropriate connected component of the preimage of V . This leads to

D Q -1 h -1 p (w), Q 1 (c) 1 (c) • diam γ ⊂ Q -1 h -1 p D w, 1 (c) • diam Û .
At the same time, the modulus of an annulus surrounding the preimage of Û inside the preimage of U shrinks by a factor of at most d -1 . Iterating this argument p times, we get the geometric estimate [START_REF] Pommerenke | Boundary behavior of conformal maps[END_REF].

By claim (ii) of Fact 1.1, if r(c * ) is small enough and r < r(c * ), then also

D( z, Q(p, c) 2 1 (c)|z -c * | ∩ Z = ∅.
Since by claim (vii) choosing r(c * ) suitably small also guarantees that Υ c * is almost linear on V ,

D( c, Q(p, c) 3 1 (c)|c -c * | ∩ M d = ∅.
So, porosity holds in scales that correspond to passages to the large scale with criticality p and without loss of generality we may assume that r and r * correspond to the consecutive such passages ŝn+1 and ŝn . By Theorem 4, 
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  and intersecting with the bounded connected component of the complement of that curve, those sectors become open topological disks called Yoccoz pieces of order 0. Precisely one of them contains c.

(i) lim n→∞ 1 n

 1 log |(f n c ) (c)| = log d, (ii) there is a Yoccoz piece Y := Y(c) of order N i which moves holomorphically with c ∈ A i and is geometrically a K i -quasi-disk of the diameter at least L i , (ii') for every Yoccoz piece Y := Y (c) ⊂ Y(c) which moves holomorphically on a subset A : c ∈ A ⊂ A i , one can find a constant µ (Y, A) and an increasing sequence of integers s n with the following properties:

Definition 2 . 1

 21 Let γ ⊂ C be a bounded set, w ∈ C. The in-radius at w is defined by ir (w, γ) := sup{r > 0 : D(w, r) ⊂ γ} ∪ {0}.

  Fact 1.1 (v), the similarity map Υ c * agrees with the univalent map Ψ • Ψ -1 c * inside D(c * , r) \ Z for small r > 0. By the construction, γ(z) ⊂ D(c * , r) \ Z. Additionally, by Fact 1.1 (iv), dist (z, J c * ) ∼ dist (z, Z) .

  3 and choose an open subset Y of Y c * . Denote the set of quasidisks Y n c * from Fact 1.3 by Q c * (Y ). For every integer m ≥ 0, we define a set S(m) of integers in [0, N ] by the condition that n ∈ S(m)

Û

  which contains Y ŝ similarly one chooses the connected component of the preimage of the ball.To see that, decomposef n c * = h p • Q • . . . • Q • h 0 on V . Here, h j are univalent, Q(z) = z d and V is the component of f -n c * (U ) which contains V .

s

  n+1 -s n ≤ µ i log [p] (s n ) + K(p, c) * )| |(f sn c * ) (c * )| ∼ |(f s n+1 -sn c * ) (f sn c * (c * ))| ≤ L s n+1 -sn ≤ L µ i log [p] (sn)+K(p,c) (log [p] (s n )) M , (23)where L is the maximum of |f c * | on J c * and M is positive. Also, p] (s n )) M d p ≤ log [p+1] only r * is close to 0 which ends the proof of Theorem 2.

  Lemma 2.1. A curve γ is Ahlfors regular if there is a constant M > 0 if for every z ∈ γ and every r < diam γ, |γ ∩ D(x, r)| ≤ M r. It is clear that Lemma 2.1 can be reformulated for Ahlfors regular curves so that the claim holds for the lengths |γ i | instead for diam γ i , i = 1, 2, provided that C depends on M . If γ i are not Ahlfors regular then Lemma 2.1 is generally not true if diametres are replaced by lengths. Indeed, let d = 2 and γ 1 be an interval [1/N, 1] together with any curve γ N ⊂ D(0, 1/N ) of length N . Then the image of γ 1 by z 2 is not longer than 2. As γ 2 we can take the unit interval [0, 1]. The ratio |(γ 1 ) 2 |/|γ 1 | 1/N while |(γ 2 ) 2 |/|γ 2 | = 1.

* Supported in part by Narodowe Centrum Nauki -grant UMO-2018/29/B/ST1/00013.

Appendix

3.1 Passages to the large scale.

Proof of claim (iii) from Fact 1.3. Let us briefly recall from [START_REF] Graczyk | Harmonic measure and expansion on the boundary of the connectedness locus[END_REF] that return times s k to the large scale for a mapping f c depend on the itinerary of the critical value through the Yoccoz partition. This itinerary is a sequence of symbols x j (c) where x j (ω) := x j (c ω ) are independent identically distributed random variables when c ω is a random variable distributed according to the harmonic measure on ∂M d .

The set of times of return to the large scale is G ω which is a random subset of N. Lemma 3.4 of [START_REF] Graczyk | Harmonic measure and expansion on the boundary of the connectedness locus[END_REF] can be stated as follows.

Fact There are a random variable n ω and random function m ω (n) both taking finite values almost surely with sup{m ω (n) : n ∈ G ω } also finite a.s, as well as a constant P i fixed on open subsets of ∂M d such that for all n, m

Let s k := s k (ω) be the elements of G ω enumerated in the increasing order. Properties (ii, iv-vi) of Fact 1.3 depend on the itinerary x j (ω) for s k < j ≤ s k +M i (Y ). Without loss of generality, by taking a subsequence of s k we can ensure s k+1 -s k > M i (Y ). Then for different k the finite sequences x j (ω)

are independent random events.

Then take the sequence s p := s kp by taking only those elements for which the additional claims (ii, iv -vi) are satisfied. k p+1 -k p are independent random variables with exponential distribution and hence lim sup p→∞ kp p < ∞. Since also lim sup k→∞ s k k < ∞ by Theorem 2.1 of [START_REF] Graczyk | Harmonic measure and expansion on the boundary of the connectedness locus[END_REF], this leads to the first part of claim (iii).

In Fact 3.1 specify n = s p and m, with p, m sufficiently large. From what was said it follows that among (n, n + m) there is an element of G ω which also satisfies conditions (ii, iv -vi) with probability at least 1 -exp(-p i (Y )m) with p i (Y ) > 0. For µ i (Y ) > 1 p i (Y ) the probability that s p+1 -s p > µ i (Y ) log p is thus at most p -µ i (Y )p i (Y ) and the Borel-Cantelli lemma shows that gaps in the sequence of s p satisfying all requirements of Fact 1.3 will eventually be smaller than µ i (Y ) log p, which is the remainder of claim (iii) of Fact 1.3.