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a b s t r a c t

Thermoelectric performance largely depends on the reduction of lattice thermal conductivity (kL). The
study of the thermal conductivity (k) of a Sb2Te3/graphite nanocomposite system demonstrates ~40%
reduction in kL with graphite incorporation. A plausible explanation of intrinsic low kL observed in Sb2Te3
based system is presented by modeling experimental specific heat (Cp) data. Raman spectroscopy
measurement combined to X-Ray diffraction data confirms the presence of graphite as separate phase in
the composite sample. It is found that phonon scattering dominates heat transport mechanism in the
nanostructured Sb2Te3/graphite composite. Large reduction in kL is accomplished by intensifying scat-
tering rate of phonons via various sources. Graphite introduces effective scattering sources, i.e., defects of
different dimensionalities in synthesized nanocomposite sample. Furthermore, graphite mediates
phonon-phonon coupling and enhances lattice anharmonicity, which causes an intrinsic scattering of
phonons with all frequencies in the Sb2Te3/graphite nanocomposite sample. Dislocation density and
phonon anharmonicity of the synthesized samples are estimated from in depth analysis of temperature
dependent synchrotron powder diffraction and Raman spectroscopic data. kL value as low as
0.8 W m�1K�1 at 300 K, achieved with graphite dispersion in Sb2Te3 based composite system makes the
present comprehensive study an interesting concept to be developed in thermoelectric materials.

© 2020 The Chinese Ceramic Society. Production and hosting by Elsevier B.V. This is an open access
article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Thermoelectric (TE) materials have the potential to play a sig-
nificant role in converting a part of waste heat to useable electrical
energy. Materials with intrinsically low thermal conductivity (k)
are of practical interest [1]. In principle, charge carriers, phonons,
photons, excitons, magnons can all contribute to heat transport and
thus to k in a material. But in potential TE materials, k mostly
iversity of Calcutta, 92 A P C
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consists of electronic part (ke) and lattice/phonon part (kL) with ke<
kL [2,3]. Lattice thermal conductivity (kL) is the only independent

tunable parameter in TE Figure of merit ZT (¼S2
rkT) where S, r and T

are the Seebeck coefficient, electrical resistivity and absolute tem-
perature respectively [4e6]. Hence, reduction in kL has been a point
of great interest in order to improve the efficiency of TE materials,
ZT [3,7e11].

Intensifying phonon scattering, i.e., shortening phonon relaxa-
tion time (t) is a promising strategy for achieving low kL. Heat
carrying phonons have a broad spectrum of frequencies. Different
scattering sources have their own frequency (u) dependence. Grain
boundaries (2D defects) can effectively scatter low-frequency
phonons (tB f u0), high frequency phonons are mostly targeted
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by point defects (0D defects) with tPD f u� 4 [8,9]. Nano or meso
structuring would lead to grain boundary engineering, while
alloying has been demonstrated as an effective route for modu-
lating point defect [3,7,12]. On the other hand, dislocation strain
fields (tDS f u� 1) and dislocation cores (tDC f u� 3) are suitable
scattering centers for phonons of mid-frequency (1D defects). Kim
et al. demonstrated the role of dislocation arrays formed at grain
boundaries in lowering kL of Bi0.5Sb1.5Te3 [8]. kL as low as
0.4 W m�1K�1 is also reported to be achieved by engineering va-
cancy induced dislocations within grains of PbSe thermoelectrics
[9]. In addition, strong anharmonicity in lattice vibration increases
phonon-phonon scattering through Umklapp (tU) and normal (tN)
processes (tU,N f u� 2), which is helpful to scatter phonons of all
frequency [13e15]. All the scattering mechanisms contribute
collectively to shorten total phonon relaxation time (ttotal) and
hence decrease kL [8,9].

Many of the recent successes in lowering kL and hence
increasing TE performance have been achieved through composites
[16e19], consisting of TE matrix and nanoscale constituents. Low
energy charge carriers get filtered in the nanograin boundaries of
the composite leading to increase of S. Newly formed hetero-
interfaces of TE matrix and dispersoids scatter phonons more
effectively than charge carriers leading to decrease of k without
much compromise to r [12,20,21]. There have been reports of kL
reduction in some well-known TE materials like PbTe, SnTe, SnSe,
Bi2Te3 through composite route [21e29]. Due to its potential for
near room temperature application, Sb2Te3, possessing layered
crystal structure, is a popular TE material with intrinsically low kL
[14,30e32]. Very limited efforts have been made to further lower
its kL through composite approach [19,33,34]. Lee et al. have re-
ported a low kL value of 1.4Wm�1K�1 in Ag2Te incorporated Sb2Te3
composite [34]. However, despite such attempts, underlying
mechanism and effect of different type of material defects on
phonon scattering in composite systems is still elusive in nature. It
is also noteworthy to mention here that understanding of phonon
dynamics and its relation with the lowering of kL in composite TE
systems, which is absolutely critical for further enhancement of TE
performance, remains unexplored so far.

We herein report ~40% decrease of kL in Sb2Te3/graphite nano-
composite system as compared to its pristine counterpart and have
attempted to investigate the role of phonon dynamics in details.
Carbon based materials are effective in phonon blocking [16]. The
thermal property of graphite, which possesses layered structured,
is highly anisotropic [35,36]. In addition graphite is a light eco-
friendly material with high electrical in-plane conductivity, high
carrier mobility and excellent mechanical properties [35]. These
properties encourage us to choose graphite as a possible disperoid
in the Sb2Te3 matrix. Interestingly, in this composite system when
the wt% of graphite is lower than 1%, its Seebeck coefficient is
keeping an unchanged value as compared to the graphite free
analogue [36] which allows to study k in samples having the same
charge carrier concentrations. In the following, we report on the
role of graphite addition on scattering phonons of entire frequency
spectrum by various scattering sources, viz., point defects (0D de-
fects), dislocation type defects (1D defects), grain boundary and
Sb2Te3/graphite heterointerfaces (2D defects). Both themicroscopic
characterization based on temperature-dependent synchrotron
radiation diffraction and Raman spectroscopic measurements and
macroscopic characterization by specific heat (Cp) measurement of
nanostructured Sb2Te3/graphite composite system have been per-
formed. Dislocation density in the samples has been calculated by
modified Williamson Hall method. Phonon anharmonicity is esti-
mated through temperature dependent synchrotron X-ray, Raman
spectroscopic and Cp data. This reveals that anharmonicity arising
due to lattice thermal expansion is higher in pristine Sb2Te3 sample.
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But high phonon-phonon coupling in Sb2Te3/graphite ensures an
overall increase of phonon anharmonicity in graphite incorporated
composite sample. Finally, the obtained clues to low kL related to
phonon scatteringmechanism and anharmonic lattice vibration are
discussed.

2. Experiments

To prepare the Sb2Te3 þ x wt% graphite (x ¼ 0, 0.5) nano-
composite samples, polycrystalline Sb2Te3 ingot was initially syn-
thesized by solid state reaction method [14]. To obtain
corresponding Sb2Te3/graphite nanocomposite samples, desired
weight percentage of graphite was added with synthesized Sb2Te3
ingots and ball milled, the details of which can be found in sup-
plementarymaterial. Hot pressed pellets of Sb2Te3þ xwt% graphite
samples were used for k measurement [37]. Low-temperature
(15e300 K) powder X-ray Diffraction (XRD) experiments were
carried out using the synchrotron radiation facility at Indian
beamline BL-18B, Photon Factory, KEK, Japan. X-ray beam of
wavelength l¼ 0.9782 Å was selected for illuminating the samples.
For detailed structural characterization, Rietveld refinement of the
synchrotron X-ray patterns was performed using MAUD software
[38,39]. The microstructural refinement according to the formalism
of Popa [40] is capable of modeling both isotropic and anisotropic
size and strain broadening. This has been used in the present
Rietveld analysis. It is noteworthy to mention that during refine-
ment of Sb2Te3 þ 0.5 wt% graphite sample, no extra texturing effect
was required to fit the experimental XRD pattern. The heat capacity
Cp measurement was carried out in the temperature range of
2e300 K on Physical Property Measurement System (PPMS)
(Model: 6000, Quantum Design, USA) with the heat capacity option
that employs relaxation calorimetry. Raman spectroscopy mea-
surements were carried out using a custom built micro-Raman
setup [41] employing 532 nm laser as excitation. Samples were
mounted in a liquid nitrogen flow cryostat (Linkam make) and the
spectra were recorded in the temperature range 80e300 K in
backscattering geometry. The details of Raman Spectroscopic
measurements can be obtained elsewhere [42].

3. Results and discussion

Phase purity of the synthesized Sb2Te3þx wt% Graphite (x ¼ 0,
0.5) samples is confirmed through X-ray diffraction (XRD). The
synchrotron powder diffraction data reveal that both synthesized
samples are single phase in nature without presence of impurity
phases, at least within the detectable limit of XRD (See Fig. SM1 in
supplementary material). No additional peak due to graphite is
observed in the XRD data of nanostructured Sb2Te3/graphite com-
posite samples. Furthermore, the XRD data indicate a lack of peak
shift due to the addition of graphite, which confirms the solid state
insolubility of graphite phase in Sb2Te3 [21,36]. Thus it can be
assumed that graphite is present as separate phase in the present
Sb2Te3/graphite composite sample. In order to confirm the exis-
tence of graphite in x ¼ 0.5 sample, Raman spectroscopic study of
both samples (x ¼ 0, 0.5) are carried out (See Fig. SM2 in supple-
mentary material). It is revealed that Raman active vibrational
modes of Sb2Te3, i.e, A1

1g (~65 cm�1),E2g (~119 cm�1) and A2
1g

(~161 cm�1) are present in both samples, where Eg and A1g modes
represent in plane and out of plane vibration respectively (Fig. SM2)
[43,44]. The peak around 139 cm�1 obtained in both samples can be
attributed to the Infra-Red (IR) active mode of Sb2Te3. Presence of
similar IR active phonon mode in Raman spectra has also been
evidenced earlier [45]. In addition to the peaks associated with the
vibrational modes of Sb2Te3 obtained in both samples, the Raman
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spectra of x ¼ 0.5 sample exhibits several Raman-active vibrational
modes arising due to graphite. The Raman active modes around
1350, 1580 and 1620 cm�1

, as depicted in Fig. SM2 arise due to
graphite and can be indexed as D, G and D0 band of graphite,
respectively [46]. It is noteworthy to mention that G band, signa-
ture of sp2-hybridized carbon, is one of the most distinct features in
Raman spectra of graphitic materials. D, D0 band correspond to
defect and disorder induced or edge areas of graphite and is
generally absent in highly crystalline graphite. In addition, Raman
active peak associated with D þ G combination mode (2950 cm�1)
is also induced by disorder and is a signature of nanostructured
graphite. The peak observed at 2700 cm�1 arises due to the over-
tone of D band (2D) of graphite [47]. Thus Raman spectroscopic
measurement along with synchrotron XRD data confirm that
graphite is present as separate phases in x¼ 0.5 sample and has not
entered the unit cell of Sb2Te3.

In order to investigate the role of graphite addition on k in
Sb2Te3, k(T) measurement of the synthesized Sb2Te3/graphite
composites is performed and presented in Fig. 1(a). The measured k
value (~1.5 Wm�1K�1) of pristine Sb2Te3 at room temperature is in
excellent agreement with the earlier reported data [19]. Tempera-
ture dependence of kL, kL(T) of both samples are also provided in
Fig. 1(b). The details of kL(T) estimation is provided in the supple-
mentary material [Fig. SM3]. Estimation reveals that ke contributes
only around 10% of total k, whereas kL dominates k value,
contributing around 90% of total k for the synthesized samples.
Fig. 1(a) and (b) clearly depict that both k and kL values of pristine
Sb2Te3 decrease by around 40% with graphite addition over the
whole temperature range and a low kL value of 0.8 W m�1K�1 at
room temperature is obtained in Sb2Te3/graphite nanocomposite
sample. The theoretical minimum k, kmin for Sb2Te3 and related
nanocomposites can be estimated using the Cahill-Pohl model
[48e50]:
Fig. 1. (Color online) Thermal variation of (a) total thermal conductivity (k) and (b)
lattice thermal conductivity (kL) [Inset: electronic part of k (kel)] for Sb2Te3/graphite
composite samples.
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kmin ¼
1

2:48
n2=3kBðvL þ2vT Þ (1)

where n,vL, and vT represent the number density of the atoms,
longitudinal and transverse sound velocities, respectively [14,30].
The low kL value, experimentally obtained for x ¼ 0.5 sample,
suggests that graphite incorporation helps to approach estimated
kmin (~0.31 W m�1K�1) of Sb2Te3 based nanocomposites.

Thermal variation of specific heat, Cp(T) of Sb2Te3 þ x wt%
graphite (x ¼ 0, 0.5) samples are plotted in Fig. 2. In the tempera-
ture range between 200 and 300 K, linear deviation of measured
Cp(T) from the Dulong-Petit value,124.5 Jmol�1K�1 is observed. The
deviation between the measured Cp(T) and theoretical value of
specific heat at constant volume Cv (DCp ¼ Cp�Cv) increases with
graphite addition. DCp per unit K (DCp/K) changes from
0.015 ± 0.002 J mol�1K�2 for x ¼ 0 to 0.096 ± 0.010 J mol�1K�2 for
x ¼ 0.5 at 300 K. Estimated DCp/K value is of similar order reported
earlier for Sb2Te3 based system [30]. It is noteworthy to mention
that for pristine Sb2Te3, DCp/K value does not deviate significantly
from the Dulong-Petit value but increases substantially with
graphite (x ¼ 0.5) incorporation. Such deviation in Cp(T) data (DCp/
K) is a measure of phonon anharmonicity in the system [14,30]. It is
reported that phonon anharmonicity helps to scatter phonons and
further corroborates with our experimental observation of lower k
(and kL) in x ¼ 0.5 sample. A simple fitting of the observed Cp(T)
datawith Debye model, which accounts for the collective motion of
phonons, has also been attempted [14,51]:

Cp¼gT þ 9R
�
T
qD

�3 ð
0

qD
T

x4ex

ðex � 1Þ2
dx (2)

where gT represents electronic contribution, g is the Sommerfeld
coefficient, and x ¼ hn/kBT, qD ¼ hnD/kB, with qD is the Debye tem-
perature, nD is the Debye frequency, and R is the gas constant. The
best fit values of qD (~160 K), as obtained from the fitting (Solid
lines, Fig. 2), agree fairly well with those reported in literature for
Sb2Te3 based system [14,52]. However, the Debye model (Eq. (2)),
fails to adequately reproduce the experimental data in the low
temperature regime (2 K � T � 30 K). The Cp/T

3 vs. T plot (Inset in
Fig. 2) of the samples reveals clear deviation from the Debye model
below 30 K. The experimental Cp/T3 vs. T curve for both the samples
Fig. 2. (Color online) Specific heat at constant pressure (Cp) measured in the range
2e300 K and best fit (red line) to Debye model (Eq. (2)). Inset: Cp/T3 vs. T plot clearly
reveals deviation from the Debye model for T < 30 K.



Table 1
Best fit parameters of Cp/T 3 vs. T plot with Eq. (3): Sommerfeld coefficient g, pre-
factor for Debye lattice contribution to Cpb, Schottky temperature qs and Einstein
temperatures qE1 ,qE2 and qE3 .

x g(J mol�1K�2) b (J mol�1K�4) qs (K) qE1 (K) qE2 (K) qE3 (K)

0 29.3 � 10�4 6.7 � 10�4 28 80 47 15
0.5 4.7 � 10�4 8.5 � 10�4 27 65 38 11
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depicts a broad peak around 10 K, which Debye model fails to
reproduce [Fig. 3(c) and (d)]. Also Cp/T vs. T2 plot shows non-linear
nature for both the samples [Fig. 3(a) and (b)]. Attempts have been
made earlier to explain this deviation with the help of Schottky
model [14,30,53]. But close observation divulges that Schottky
model alone cannot explain the deviation observed in the low
temperature Cp(T) data (T � 30 K) and till date the issue has not
been resolved fully. To explain this anomaly, the low temperature
Cp(T) data (2 K � T � 30 K) has been interpreted using a two-level
Schottky model superimposed to Debye model with embedded
Einstein oscillators [54e56]:

Cp
T
¼gþ bT2 þCS

T

�qS
T

�2 exp
�
qS
T

�
h
1þ exp

�
qS
T

�i2

þ
X
n

0
@An

�
QEn

�2
:
�
T2

��3
2
:

expQEn
T�

expQEn
T � 1

�2
1
A (3)

with b ¼ C:12p
4NAkB
5q3D

and C ¼ 1� P
n

An
3NR

where NA, CS, qS, An, qEnand N are Avogadro number, Schottky
heat capacity prefactor, Schottky temperature, prefactor of nth

Einstein oscillator mode, characteristics temperature of nth Ein-
stein oscillator and number of atoms per formula unit, respectively.
Whilst the first term (g) and second term (bT2) accounts for the
electronic contribution and Debye lattice contribution to Cp, the
third term represents Schottky contribution and the fourth term
denotes the contribution from Einstein oscillator modes [30,55].
The best fit curves (solid lines) demonstrated in Fig. 3, depict the
nice fitting of the experimentally obtained Cp/T vs. T2 and Cp/T

3 vs. T
curve for both the samples. It is observed that 3 Einstein modes are
required to satisfactorily model the Cp(T) data. The characteristics
temperatures of the respective Einstein modes (qE1 ; qE2 ; qE3 ) and
Fig. 3. (Color online) (a), (b) Cp/T vs. T2 plot and (c), (d) Cp/T3 vs. T plot for x ¼ 0, 0.5 respecti
superimposed to a Debye model with embedded Einstein oscillators (Eq. (3)). It is revealed
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other fitting parameters including qSare listed in Table 1. The ob-
tained best fit value of qSis in excellent agreement with the litera-
ture data [30]. The qEvalues as obtained from the fitting also match
fairly well with those reported earlier for Sb2Te3 (59 K) [30], Bi2Te3
(50 K) [30] and TlInTe2 (25 K, 45 K and 80 K) [55], where the authors
interpreted the Cp(T) data by considering combined Debye-Einstein
model. However, the present formalism of Einstein oscillators
embedded in a Debye host superimposed with Schottky contribu-
tion has not been explicitly applied to model the Cp(T) data of
Sb2Te3 based system. The broad peak observed in the low tem-
perature regime (~10 K) of Cp(T) data for both the samples can be
ascribed to the excess phonon density of states (PDOS) resulting
from low-lying optical phonon modes [57]. Sb2Te3 exhibits layered
structure with each layer comprising of quintuple [Te(I)eSbeTe(II)
eSbeTe(I)] stacks (QLs), where each QL is connected by weak van
derWaals force [14]. The quasi-localized low energy optical phonon
modes, which arise from these weakly bound atoms are manifested
as Einstein oscillators and results in excess contribution to Cp in the
low temperature region [55,57]. These low energy optical phonons
play an effective role in scattering heat carrying acoustic modes and
hinder the thermal transport in the system. So the presence of
Einstein oscillator modes is favorable to achieve low kL in the
present Sb2Te3 system. Close observation further reveals that the
position of the broad peak (~10 K) in the low-T Cp(T) data does not
significantly alter with graphite addition. It can thus be commented
that graphite addition has very little influence on the modes of
vely for 2 K � T � 30 K. The red lines represent best fit using two-level Schottky model
that at least 3 Einstein oscillators are required to fit the data satisfactorily.



Fig. 5. (Color online) Temperature dependence of ratio of dislocation density (ND) for
the samples calculated using modified Williamson-Hall plot.

S. Das, P. Singha, V.A. Kulbachinskii et al. Journal of Materiomics 7 (2021) 545e555
Einstein oscillators as well as on dispersion of the low energy op-
tical phonon modes of Sb2Te3/graphite composite system. We
present a plausible explanation of intrinsic low kL observed in
Sb2Te3 system based on the indepth analysis and modeling Cp(T)
data, hitherto unavailable so far.

Attempt has been made to estimate the dislocation density (ND)
macroscopically for both the samples reported here using the
temperature dependent synchrotron XRD data. For estimating ND,
modified Williamson-Hall plot was employed, where the broad-
ening of the XRD peaks are strongly related to ND and crystallite
size via

DK ¼0:9
d

þ pA2B2D
2

N1=2
D K2C±O

�
K4C2

�
(4)

The parameter details are provided in the Supplementary ma-
terials. From synchrotron powder diffraction the parameters K [¼
2sinqB=l] and DK [¼ ðD2qBÞcosqB=l] are calculated, where qBis the
Bragg angle, D2qB is the Full Width at Half Maximum (FWHM) of
the corresponding diffraction peak at qB and l(¼ 0.09782 nm) is the
wavelength of synchrotron X-ray used. ND is then obtained from
the slope of DK vs K2C curve (C ¼ average dislocation contrast
factor). Corresponding plot of the samples for a typical temperature
T ¼ 300 K is shown in Fig. 4. From Fig. 5, it can be clearly observed
that ND is higher for x ¼ 0.5 in the whole temperature range of
measurement. Presence of graphite dispersoids as second phase at
the grain boundary caused lattice mismatch and generate strain
between graphite and the unit cell of Sb2Te3. This promotes
enhancement in ND for the Sb2Te3/graphite composite i.e., x ¼ 0.5
sample. Similar enhancement in ND has already been reported for
Bi2Te3-xSex and PbTeePbS TE systems [58,59]. The enhanced dis-
locations, which are 1D defects, scatter mid-frequency phonons
through the dislocation cores and strain [8,9,60] and effectively
reduce kL in x ¼ 0.5 sample. In addition, presence of graphite in the
grain boundary regime increases the number of Sb2Te3/graphite 2D
heterointerfaces, which helps to scatter low frequency phonons
[19,21]. In accordance to the recent report of Jin et al., it may be
emphasized that to engineer an effective heterointerface optimum
size of Sb2Te3 nanocrystals is ~10 nm thickness with uniform
hexagonal morphology [61]. Furthermore, graphite also acts as
point defects (0D) and significantly contributes in scattering high
frequency phonons in x ¼ 0.5 sample. Our comprehensive analysis
suggests that graphite addition plays a pivotal role in scattering
low, mid and high frequency phonons by developing effective 2D
(heterointerfaces), 1D (enhanced dislocations) and 0D (point de-
fects) scattering sources in Sb2Te3/graphite composite sample,
thereby lowering kL.

Temperature dependent synchrotron powder XRD of both of the
Fig. 4. (Color online) Modified WilliamsoneHall plot from synchrotron XRD pattern analysis
compared to x ¼ 0.
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Sb2Te3 þ x wt% graphite (x ¼ 0, 0.5) was performed in the tem-
perature range 15 K� T� 300 K. The samples retain rhombohedral
crystal structure (space group R3m), with A7-type rhombohedral
phase until lowest temperature of measurement (T ¼ 15 K). The
diffraction patterns obtained after Rietveld refinement are pre-
sented in Supplemental Material. Thermal variation of structural
parameters, i.e., a and c of x ¼ 0 and 0.5 samples, extracted using
Rietveld refinement, is also provided in the supplementarymaterial
(Fig. SM4). The refined lattice parameters, i.e., a and c increase
monotonically with increasing temperature, indicating usual posi-
tive thermal expansion coefficients in both orientations for the
synthesized samples. Thermal expansion coefficient is an impor-
tant parameter, not only for device designing, but also the strain
induced due to change in temperature may affect its phonon dy-
namics [14,30,43,51,62]. So, attempt has been made to study the
thermal expansion coefficient in details and explore the corre-
sponding physics towards obtaining better insight about phonon
dynamics of the synthesized Sb2Te3/graphite composite samples.
The linear thermal expansion coefficientsaLare obtained from the

derivative, aL ¼ dðln LÞ
dT , of the lattice constants, where L denotes

lattice constants a and c. The extracted aLvalues are in excellent
agreement with the previously reported thermal expansivity data
[51,52]. These data appear to be more scattered beyond ~150 K, this
anomalous behavior being more pronounced for the x ¼ 0 sample.
The obtainedaLðTÞdata is fitted with the Debye model [14,43,51]:

aLðTÞ¼a0

�
T
qD

�3 ð
0

qD
T

x4ex

ðex � 1Þ2
dx (5)
at a typical temperature T ¼ 300 K for the samples indicating larger slope for x ¼ 0.5 as
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where a0 is a constant and qD is the Debye Temperature. qD¼ 160 K,
as obtained from the fitting of Cp(T) data with Debye model, is used
for fitting the aLðTÞdata. Solid lines in Fig. 6 represent the best fit
obtained using Debye model. Fig. 6 clearly depicts that below qD
both aa and acare well fitted by this model. In contrast, above qD
both the agreement is less obvious as the aa and acexperimental
values are more scattered. Such deviation of aLfrom the Debye
model, reported earlier for Sb2Te3 related systems, has generally
been ascribed to the presence of higher order anharmonic effect in
the system [63]. Anomalous behavior of van der Waals forces be-
tween Quintuple layers (QL) of Sb2Te3 at high temperature could
also be a reason for the observed deviation [52]. But departure of
both aaand acfromDebyemodel above qD consolidates the idea that
phonon anharmonicity prevails in the synthesized Sb2Te3 based
samples discussed here. It is noteworthy to mention that anhar-
monic lattice vibrations help to reduce kL by scattering phonons of
all frequency and explains the low kL values observed in Sb2Te3
based system. However, the role of graphite addition on lattice
anharmonicity has been investigated further in order to address the
observed 40% reduction of kL for x ¼ 0.5 sample.

To confirm phonon anharmonicity in Sb2Te3/graphite nano-
composite samples, in-depth temperature dependent Raman
spectroscopic study in the range from 300 K to 80 K is carried out.
No additional Raman mode other than those appeared at 300 K
(discussed above) is observed down to 80 K for both samples. The
Raman spectra of both the samples are fitted with Lorentzian
function and the extracted temperature dependence of phonon
frequency (peak positions, u) are used for analysis of lattice
anharmonicity. Temperature dependent phonon frequency of all
the characteristics phonon modes of Sb2Te3 i.e., A1

1g ,E2g and A2
1g , as

obtained for both synthesized samples, are plotted in Fig. 7. The
phonon frequencies for all the phonon modes soften and broaden
with increase of temperature. Such temperature induced hardening
and softening have been reported earlier for different materials
including Bi2Te3, Bi2Se3, Sb2Te3 [14,43,62] and indicate the anhar-
monic nature of the characteristic phonon modes. The observed
temperature dependence of phonon frequency and departure from
its bare harmonic value owe mostly to the phonon-phonon
coupling in the system. This phonon-phonon coupling renorm-
alizes the phonon energy and lifetime and we get non-zero higher
(>2nd) order anharmonic terms from the polynomial expansion of
the lattice potential in normal coordinates. To quantify the anhar-
monic part arising due to phonon-phonon coupling, the simplest
approximation is to use symmetrical three phonon coupling model,
Fig. 6. (Color online) Temperature dependent linear thermal expansion coeffecient aLi.e., aa
Red lines show attempted fitting with Debye model.
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also known as Klemens’s model [43,64,65]. This model works based
on the assumption that an optical phonon decays into two phonons
with equal energies and opposite momentum. The model does not
take into account the “coalescence” process where two phonons
fuse into a third phonon [66]. While this model is successful in
describing thermal variation of phonon in some materials [67],
more general approach is to use an approximation which also in-
cludes anharmonic contributions due to thermal expansion and
asymmetric decay into two or more different phonons [68e70].
According to the generalized Klemens’s model, the temperature
dependence of phonon frequency can be expressed as:

uðTÞ¼u0 þ Duð1ÞðTÞ þ Duð2ÞðTÞ (6)

where u0 is bare harmonic frequency; Duð1ÞðTÞis the anharmonic
correction arising due to the lattice thermal expansion originating
from the thermal expansion induced changes in the harmonic force
constant. The term Duð1ÞðTÞ is described as:

Duð1Þ�T�¼u0
�
exp

��gG

ðT

0

½acðT 0Þ þ2aaðT 0Þ�dT 0Þ �1� (7)

where gG is the Grüneisen parameter [14,51]. Duð2ÞðTÞ is anhar-
monic phonon-phonon coupling term and is represented by:

Duð2ÞðTÞ¼A1½1þnðu1Þþnðu2Þ� (8)

with u1 ¼ u2 ¼ u0=2 andnðuÞ ¼ ½expðhu=kBTÞ � 1��1; where ‘A1’ is
the fitting parameter.

The best theoretical fit to Klemens’s model (Eq. (6)) for the
Raman activeA1

1g ,E2g and A2
1gphonon modes of both x ¼ 0 and 0.5

samples is represented by individual solid lines in Fig. 7. The ob-
tained best fit values of bare harmonic frequency, u0, for all the
characteristics phonon modes are presented in Table 2. It is
observed that u0 for all the phonon modes increases with graphite
addition. At room temperature and 1 atm pressure, pressure co-
efficients for A1

1g ,E2g and A2
1gphonon modes are 4.30, 2.11,

2.57 cm�1 GPa�1, respectively [71]. From the observed shift of
u0(Table 2), it is further revealed that in x ¼ 0.5 sample, graphite
provides a large compressive strain to the Sb2Te3 matrix [72]. Such
strain on the matrix due to graphite incorporation creates dislo-
cation in Sb2Te3 [73,74] and corroborates with the XRD analysis
which confirms higher dislocation density (ND) in the x ¼ 0.5
and acfor x¼ 0 and x ¼ 0.5. The errors in aa and acare within the size of the data points.



Fig. 7. (Color online) Temperature dependence of the phonon frequency for Sb2Te3 þ x wt% graphite samples showing softening of all modes with increasing temperature. The data
has been fitted with Klemens’s model (Eq. (6)) to investigate phonon anharmonicity in the samples.

Table 2
Bare harmonic frequency, u0 of all the characteristics phononmodes A1

1g ,E
2
g and A2

1g for x¼ 0 and 0.5 extracted from fitting temperature dependence of phonon frequency with
Eq. (6) and additional pressure exerted on Sb2Te3 matrix due to addition of graphite in x ¼ 0.5 sample.

Raman Mode u0 for x ¼ 0 (cm�1) u0 for x ¼ 0.5 (cm�1) Net pressure due to graphite addition (GPa)

A1
1g

67.39 70.79 0.75

E2g 120.53 127.86 2.04

A2
1g

161.40 168.82 2.47
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sample. The interfaces between the graphite and main Sb2Te3
phase in Sb2Te3/graphite nanocomposite thus introduces lattice
strain in the system and plays a beneficial role to the suppression of
kL [72].

To gain further quantitative insights, we focus on the tempera-
ture dependence part of phonon frequency (Eq. (6)). As mentioned
above, the anharmonic contribution to phonon vibration comes
from two sources: DuðTÞ ¼ Duð1ÞðTÞþ Duð2ÞðTÞ. Temperature
dependence of Duð1ÞðTÞ and Duð2ÞðTÞ of all the three characteristics
phononmodes A1

1g ,E
2
g and A2

1g are calculated individually using Eqs.

(7) and (8) for both samples and plotted in Fig. 8. Fig. 8(a) reveals
that

		Duð1ÞðTÞ		 is higher in x ¼ 0 sample, i.e., anharmonic contri-
bution from lattice thermal expansion is larger in the pristine
sample. The estimated large compressive strain in Sb2Te3 matrix
affects its harmonic force constant and is reflected in the observed
lower anharmonicity of lattice thermal expansion of Sb2Te3/
graphite composite (x ¼ 0.5) sample. The temperature dependent
variation of

		Duð1ÞðTÞþDuð2ÞðTÞ		 for all the characteristics phonon
modes of Sb2Te3 are plotted in Fig. 9. It is clearly revealed that the
phonon-phonon coupling term

		Duð2ÞðTÞ		is much higher in x ¼ 0.5
sample (Fig. 8(b)). Furthermore, changes in		Duð2ÞðTÞ		overwhelms

		Duð1ÞðTÞ		, such that the overall anharmonic

contribution to phonon vibration, i.e.,
		Duð1ÞðTÞ þ

Duð2ÞðTÞ		becomes larger in x ¼ 0.5 sample (Fig. 9). This high		Duð2ÞðTÞ		 in Sb2Te3/graphite nanocomposite indicates that
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graphite acts as a mediator for phonon-phonon coupling and plays
a significant role in enhancing the anharmonic contribution to
phonon vibration. This higher phonon anharmonicity in graphite
contained composite sample helps in suppressing kL by scattering
phonons of all frequency.

Strong phonon scattering effect is reported to be also effective in
Bi2Te3/CNT composite system [16,18,61], where heterointerfaces,
nanopores and other defects efficiently suppress thermal transport.
Bi2Te3/SWCNT (Single wall carbon nanotube) based hybrid sample
has recently been reported as an excellent route for the design and
fabrication of high-performance flexible TE materials [61]. Our re-
sults clearly indicate that nanocompositing with graphite, which is
also a carbon-based material, is a favorable route for reducing kL
keeping Seebeck coefficient unchanged. However, it may be
acknowledged that such low 0.5 wt % of graphite giving a small
molar ratio (Sb2Te3:C ¼ 3.835:1) is already too high to avoid an
increase of the grain boundary resistance and as mentioned in our
previous report on Sb2Te3/graphite nanocomposites, as far as ZT
value is concerned the positive effect in kL is subdued by decrease in
electrical conductivity with graphite addition [36]. It is noteworthy
to mention that in Sb2Te3/Ag2Te composite, Lee et al. achieved
similar kL reduction of 50%, but with 35 wt% of Ag2Te [34]. In the
other report of Sb2Te3 based composite with PEDOT [33], the
thermoelectric properties of the pristine Sb2Te3 (ZT~0.15 at 300 K)
are much lower than those reported by us [36]. In that respect, the
present study showing the graphite potentialities should be
completed in the future with lower graphite concentration to avoid
such drastic electrical conductivity degradation. The approach of



Fig. 8. (Color online) Thermal variation of Duð1ÞðTÞ and Duð2ÞðTÞrevealing that anharmonic correction arising due to the lattice thermal expansion is greater for pristine sample
while phonon-phonon coupling is higher in Sb2Te3/graphite nanocomposite.

Fig. 9. (Color online) Total anharmonicity present in the samples for the whole tem-
perature range under investigation.
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nanocompositing with graphitic materials can be applicable to a
series of similar layered TE materials, including Bi2Te3, Bi2Se3 and
Sb2Te3, and both n- and p-type TE materials can be fabricated using
this method [61].
4. Conclusion

Advances in TE materials are intimately related to the reduction
of kL, the only independent parameter in ZT. In this work, the ef-
ficiency of graphite on suppressing kL in Sb2Te3/graphite nano-
composite system is demonstrated. Graphite effectively contributes
in scattering phonons of different length scale and intensifies
phonons scattering rate. Dispersion of graphite in Sb2Te3 also
modulates phonon anharmonicity and enhances scattering of
phonons over the entire spectrum. The synergistic role of graphite
in ~40% reduction of kL value observed in nanostructured Sb2Te3/
graphite composite system makes the present strategy a possible
route to improve TE materials. Thus, nanocompositing with
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graphite is worth trying for lower graphite concentration in Sb2Te3
and applying to other TE materials.
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