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Abstract: A set of well-defined amphiphilic, semi-fluorinated di and triblock copolymers were syn-
thesized via polymerization-induced self-assembly (PISA) under alcoholic dispersion polymerization
conditions. This study investigates the influence of the length, nature and position of the solvophobic
semi-fluorinated block. A poly(N,N-dimethylaminoethyl methacrylate) was used as the stabilizing
block to prepare the di and tri block copolymer nano-objects via reversible addition-fragmentation
chain transfer (RAFT) controlled dispersion polymerization at 70 ◦C in ethanol. Benzylmethacrylate
(BzMA) and semi-fluorinated methacrylates and acrylates with 7 (heptafluorobutyl methacrylate (HF-
BMA)), 13 (heneicosafluorododecyl methacrylate (HCFDDMA)) and 21 (tridecafluorooctyl acrylate
(TDFOA)) fluorine atoms were used as monomers for the core-forming blocks. The RAFT polymer-
ization of these semi-fluorinated monomers was monitored by SEC and 1H NMR. The evolution
of the self-assembled morphologies was investigated by transmission electron microscopy (TEM).
The results demonstrate that the order of the blocks and the number of fluorine atoms influence the
microphase segregation of the core-forming blocks and the final morphology of the nano-objects.

Keywords: semi-fluorinated; RAFT; PISA; dispersion polymerization; self-assembly

1. Introduction

Colloidaly stable nano-objects from self-assembly in solution of amphiphilic block
copolymers have been the subject of considerable research over the last 20 years. This is
mainly due to the advances in the field of controlled polymerization, the wide range of
possible functional monomers as well as the numerous potential fields of application for
such particles, from drug delivery to nanosensors or filtration membranes, for example.
The morphology and size of nano-objects prepared by self-assembly of block copolymers
depend on various factors of which the most important ones are the relative length of the
blocks, the interaction between the solvophilic block chains and the interfacial energy of the
solvophilic−solvophobic interface. To control the morphology of the nano-objects, parame-
ters such as block ratio, solvent nature and composition, block rigidity and concentration
have been studied [1–3]. Traditionally self-assembly of block copolymers are conducted
in dilute solution after polymerization and isolation of the pure block copolymers. The
main limitation of this approach is that it involves several labor-intensive steps, uses low
concentration and is difficult to repeat or reproduce [4,5]. The recent polymerization-
induced self-assembly (PISA) method is an attractive alternative for the production of block
copolymer nano-objects at high concentration [6–11]. In a RAFT-mediated PISA process,
a solvophilic macromolecular chain transfer agent (macroCTA) is chain extended with
solvophobic block. As the chain extension proceeds the second block become insoluble
in the media and triggers the formation of nanoparticles at a certain critical degree of
polymerization [12–15]. These nanoparticles are usually kinetically trapped due to low
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chain mobility of the core-forming (solvophobic) block [16,17]. So far the PISA approach
has proven to be a reliable method to synthesize a wide range of higher order morphologies
as pure phase and at high concentrations (up to 50% solids content) [3,10].

Semi-fluorinated (meth)acrylates are monomers that contain CF moieties as side
groups. The presence of fluorine atoms endows them with remarkable properties such
as high hydrophobicity and lipophobicity, crystallinity (if the side chain is perfluorinated
and sufficiently long) and low refractive index [18–21]. They can polymerize via controlled
radical polymerization techniques to afford well-defined copolymers [22–24]. These prop-
erties make them good candidates for many applications in self-assembly, MRI imaging,
coatings or membranes, to name a few [25–27].

In 2014, Armes and coworkers reported the first use of a semi-fluorinated monomer
in a PISA formulation [12]. They prepared ABC triblock copolymer vesicles via seeded
dispersion polymerization of trifluoroethyl methacrylate (TFEMA) in ethanol with PMAA-
b-PBzMA as the macro-CTA (MAA and BzMA stand for methacrylic acid and benzyl
methacrylate, respectively). This chain extension produced a range of remarkably com-
plex semi-fluorinated triblock copolymer morphologies, with internal phase separation
driven by the enthalpic incompatibility between the PBzMA and PTFEMA core-forming
blocks. However, PTFEMA does not contain enough fluorine atoms to completely phase
separate from PBzMA. Later Yuan and co-workers reported in several studies that if the
fluorine content of the core-forming block was increased, phase separation took place and
that non-classical morphologies could be obtained [28–31]. They demonstrated this with
semi-fluorinated methacrylates bearing 9, 13 and 17 fluorine atoms. They prepared ABC
triblock copolymer nanoobjects via RAFT dispersion polymerization in ethanol, using a
poly(N,N-dimethylaminoethyl methacrylate) (PDMA) macro-CTA, and PBzMA and poly(2-
perfluorohexylethyl methacrylate) (PFHEMA) as the core-forming blocks. Varying the
degrees of polymerization of the PBzMA and PFHEMA core-forming blocks resulted in
the formation of multicompartment micelles (MCMs) [30,31]. In another article [29], they
replaced PFHEMA with poly[2-(perfluorooctyl)ethyl methacrylate] (PFOEMA) and looked
into controlling the morphology via adjusting the hydrophilic-hydrophobic block ratios.
Their systematic study led to the formation of spheroids, cylinders and spherical MCMs
through the interplay of the inter-chain repulsion of PDMA, the LC anisotropic ordering,
and the microphase segregation between PBzMA and PFOEMA.

The present work presents the synthesis of AB and ABC block copolymers containing
one semi-fluorinated block via RAFT dispersion polymerization in ethanol. A poly(N,N-
dimethylaminoethyl methacrylate) (PDMA) was used as the stabilizing block while the core
forming blocks were poly(benzyl methacrylate) (PBzMA) along with a semi-fluorinated
block; poly(heptafluorobutyl methacrylate) (PHFBMA) or poly(heneicosafluorododecyl
methacrylate) (PHCFDDMA) or poly(tridecafluorooctyl acrylate) (PDFOA). The degrees of
polymerization of the core-forming blocks and their order in the block sequence along with
the number of fluorine atoms (7, 13 and 21) in the semi-fluorinated hydrophobic block was
varied and the effects of these parameters on the final morphologies and phase segregation
were studied.

2. Experimental
2.1. Materials

All reagents were purchased from Sigma-Aldrich France (Saint Quentin Fallavier) and
used as received unless otherwise noted. Recrystallized 2,2′-azobisisobutyronitrile (AIBN) was
used as the initiator. Benzyl methacrylate was passed through an inhibitor removal column
(also purchased from Sigma) prior to use. 4-Cyano-4-(2-phenylethanesulfanylthiocarbonyl)
sulfanylpentanoic acid (PETTC) was synthesized as reported previously [32]. CDCl3
and CD2Cl2 were purchased from Eurisotop, Saint Aubin, France. 3,3,4,4,5,5,6,6,7,7,8,8,8-
Tridecafluorooctyl acrylate (TDFOA) and 3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,12-henei
cosafluorododecyl methacrylate (HCFDDMA) was kindly donated by Atofina, France
(Colombes).
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2.1.1. Synthesis of Poly(2-(N,N,dimethylamino)ethyl Methacrylate) (PDMA) Macro-CTA

A round-bottomed flask was charged with 2-(N,N,dimethylamino) ethyl methacrylate
(DMA; 10.0 g, 63.6 mmol), PETTC (432.1 mg, 1.27 mmol; target DP = 50), ACVA (35.4 mg,
0.127 mmol; PETTC/ACVA = 10) and THF (10.0 g). The sealed reaction vessel was purged
by bubbling nitrogen into the reaction mixture and placed in a pre-heated oil bath at 70 ◦C
for 8 h. The resulting polymer (monomer conversion = 71%; Mn = 6100 g mol−1, Ð = 1.16)
was purified by precipitation into excess hexane. The mean degree of polymerisation (DP)
of this PDMA macro-CTA was calculated to be 39 using 1H NMR spectroscopy (in CDCl3
or CD2Cl2) by comparing the integrated signals corresponding to the aromatic protons at
7.2–7.4 ppm with those of the methacrylic polymer backbone at 0.4–2.5 ppm.

2.1.2. Synthesis of Poly(2-(N,N,dimethylamino)ethyl Methacrylate)-poly(benzyl
methacrylate) (PDMA-PBzMA) Diblock Copolymer Particles via RAFT Dispersion
Polymerisation in Ethanol

In a typical RAFT synthesis in dispersion conducted at 15% w/w total solids: BzMA
(0.2 g, 1.14 mmol; target DP = 70), AIBN (0.5 mg, 0.003 mmol; PETTC/AIBN = 5), PDMA39
macro-CTA (99.4 mg, 0.016 mmol) was dissolved in 1.7 g of ethanol. The reaction mixture
was placed in a round-bottomed flask sealed with a ruber septum, cooled down using an
ice bath, purged with nitrogen gas for 5 min and then placed in a pre-heated oil bath at
70 ◦C for 24 h. The final monomer conversion was determined by 1H NMR analysis in
CDCl3 or CD2Cl2 by integrating the PBzMA peak (CH2) at 4.9 ppm to the BzMA vinyl
peaks (CH2) at 5.2 and 5.4 ppm.

In other PDMA-PBzMA diblock copolymer syntheses, the mean DP of the PBzMA block
was varied by adjusting the amount of BzMA. PDMA-PHFBMA and PDMA-PHCFDDMA
diblock copolymers were synthesized following the same procedure by replacing BzMA
with HFBMA or PHCFDDMA.

2.1.3. Synthesis of Poly(2-(N,N,dimethylamino)ethyl Methacrylate)-poly(benzyl
methacrylate)-poly(heptafluorobutyl methacrylate) (PDMA-PBzMA-PHFBMA) Triblock
Copolymer Particles Was Performed via RAFT Dispersion Polymerisation in Ethanol

In a typical RAFT synthesis of a triblock, HFBMA (0.217 g, 0.81 mmol; target DP = 50)
and AIBN (0.5 mg, 0.003 mmol; PETTC/AIBN = 5) were purged with nitrogen in a vial.
This mixture was then injected to the reaction mixture containing the PDMA-PBzMA
(after 100% conversion of BzMA confirmed by NMR; See Section 2.1.2 for details). The
reaction mixture was left at 70 ◦C for an additional 24 h. The final monomer conversion
was determined by 1H NMR analysis in CDCl3 or CD2Cl2 by integrating the PHFBMA
peak (CH2) at 4.8 ppm to HFBMAvinyl peaks (CH2) at 5.7 and 6.2 ppm.

The same procedure was used for synthesis of PDMA-PHFBMA-PBzMA and PDMA-
PBzMA-PHCFDDMA block copolymers.

2.2. Analysis and Characterization of Block Copolymers

Copolymer molar mass distributions were determined using size exclusion chromatog-
raphy (SEC) performed with a double detector array from Viscotek (TDA 305, Malvern
instruments, Worcestershire, UK). The Viscotek SEC apparatus was equipped with two
mixed-columns (LT4000L, mixed low, Malvern Panalytical, Malvern, UK) with common
particle size of 5 µm using THF as an eluent (1.0 mL/min). The Viscotek system contains
a refractive index detector (RI, concentration detector), and a four-capillary differential
viscometer. OmniSEC software (version 10, Malvern Panalytical, Malvern, UK) was used
for data analysis and acquisition. The average molar mass (Mn) and dispersity index (Ð)
were calculated relative to polystyrene standards.

1H NMR spectra were acquired with a Bruker 300 MHz spectrometer (Bruker, Wis-
sembourg, France) using CDCl3 or CD2Cl2.

Dynamic light scattering (DLS) measurements were conducted using a Malvern In-
struments Zetasizer Nano series instrument (Malvern Panalytical, Malvern, UK) equipped
with a 4 mW He-Ne laser operating at 633 nm, an avalanche photodiode detector with
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high quantum efficiency, and an ALV/LSE-5003 multiple tau digital correlator electronics
system. Samples were prepared at 0.1% w/w by diluting the PISA suspension with ethanol
and the scattered light was detected at 173◦.

Transmission electron microscopy (TEM, JEOL Europe SAS, Croissy Sur Seine, France)
studies were conducted using a JEOL 1200 EXII instrument operating at 120 kV equipped
with a numerical camera. To prepare TEM samples, 5.0 µL of a dilute copolymer solution
(0.1% w/w) was placed onto a carbon-coated copper grid (60 s), stained using an aqueous
solution of ammonium molybdate 99.98% (20 s), and then dried under ambient conditions.
The copolymers containing fluorinated methacrylate were not stained. ImageJ software
was used for image analysis. The reported mean diameter measurements were performed
on 100 nanoparticles.

3. Results and Discussion
3.1. RAFT Dispersion Polymerization of HFBMA in Ethanol

An ethanol soluble macro-CTA (PDMA) was synthesized via RAFT solution polymer-
ization. The mean degree of polymerization (DP) of this macro-CTA was calculated to be
39 from the 1H NMR spectrum of a purified polymer sample (PDMA39, Mn = 5100 gmol−1,
Mw = 5900 gmol−1, Ð = 1.16). This macro-CTA was then chain extended with semi-
fluorinated monomers in ethanol at 70 ◦C via RAFT dispersion polymerization.

A kinetic study of this chain extension with poly(heptafluorobutyl methacrylate)
(PHFBMA) was conducted using a target DP of 200. Almost full conversion was obtained
after 24 h of polymerization as judged by 1H NMR analysis (Table 1). The semi-logarithmic
plot shows two distinct regimes: (1) An initial 4 h period where the rate of polymeriza-
tion is relatively slow, and the remaining 16 h showing an increase in the polymerization
rate (Figure 1). This rate enhancement as reported previously is attributed to the onset
of micellar nucleation with the nascent monomer-swollen micelles acting as a nanoreac-
tors [14]. Both rate regimes followed the first order kinetics law, as expected for a RAFT
polymerization. The evolution of the molar mass of the copolymer with conversion was
linear, confirming the control of the HFBMA polymerization (Figure 2). The good control of
the RAFT polymerization was further confirmed by the low dispersities of the copolymer,
which remained below 1.30 throughout the reaction (Figure 2).
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Figure 1. Kinetic data (Conversion %: Black squares, Semi-log: Red squares) obtained for the RAFT
dispersion polymerization of HFBMA at 10% w/w solids in ethanol at 70 ◦C using a PDMA39

macro-CTA at a macro-CTA/AIBN molar ratio of 5/1. The targeted diblock composition was
PDMA39–PHFBMA200.
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Figure 2. Evolution of number-average molar mass (Mn, black squares) and dispersity (Ð, red open
circles) with conversion for the RAFT dispersion polymerization of HFBMA at 10% w/w solids
in ethanol at 70 ◦C using a PDMA39 macro-CTA with macro-CTA/AIBN molar ratio of 5/1. The
targeted diblock composition was PDMA39–PHFBMA200.

Table 1. Summary of di- and triblock copolymers characterizations.

No. Target Composition Conversion% Calculated DP *
Mean Diamater

Morphology
DLS (nm) TEM (nm)

1 PDMA50 71 39
2 PDMA39-PHFBMA50 99 50 27 (0.08) 16 Sphere
3 PDMA39-PHFBMA100 99 99 70 (0.04) 31 Sphere
4 PDMA39-PHFBMA150 99 149 89 (0.07) 53 Sphere
5 PDMA39-PHFBMA200 94 188 125 (0.08) 65 Sphere
6 PDMA39-PHFBMA300 99 299 184 (0.04) 99 Sphere
7 PDMA39-PHFBMA50-PBzMA70 99 69 60 (0.10) 28 Sphere
8 PDMA39-PHFBMA99-PBzMA70 99 69 70 (0.12) 48 Sphere
9 PDMA39-PHFBMA149-PBzMA70 99 69 80 (0.07) 224 Sphere
10 PDMA39-PHFBMA199-PBzMA70 94 66 375 (0.09) 213 Sphere
11 PDMA39-PHFBMA50-PBzMA200 99 198 400 (0.11) 30 Sphere
12 PDMA39-PHFBMA99-PBzMA200 99 198 1190 (0.13) 43 Sphere
13 PDMA39-PHFBMA149-PBzMA200 99 198 1247 (0.09) 68 Sphere
14 PDMA39-PHFBMA199-PBzMA200 99 198 1810 (0.10) 99 Sphere
15 PDMA39-PBzMA60 98 59 40 (0.05) 26 Sphere
16 PDMA39-PBzMA70 99 69 46 (0.02) 30 Sphere
17 PDMA39-PBzMA85 99 84 87 (0.07) 60 Sphere/Worm
18 PDMA39-PBzMA120 97 117 160 (0.07) 86 Worms/Vesicle
19 PDMA39-PBzMA200 99 198 325 (0.04) 204 Vesicle
20 PDMA39-PBzMA69-PHFBMA50 99 50 100 (0.12) 48 Sphere
21 PDMA39-PBzMA69-PHFBMA100 99 99 125 (0.08) 93 Sphere
22 PDMA39-PBzMA69-PHFBMA150 99 149 200 (0.011) 120 Sphere
23 PDMA39-PBzMA69-PHFBMA200 98 196 200 (0.14) 336 Sphere
24 PDMA39-PBzMA99-PHFBMA100 65 65 360 (0.07) 150 Vesicle
25 PDMA39-PBzMA149-PHFBMA150 94 141 860 (0.10) 230 Vesicle
26 PDMA39-PBzMA198-PHFBMA50 99 50 210 (0.06) 73 Sphere
27 PDMA39-PBzMA198-PHFBMA100 96 96 430 (0.14) 122 Fused Spheres
28 PDMA39-PBzMA198-PHFBMA150 96 144 600 (0.11) 145 Vesicle
29 PDMA39-PBzMA198-PHFBMA200 94 189 2200 (0.12) 304 Vesicle

* Calculated DP = Target DP × Conversion by 1H NMR.

A series of PDMA39-PHFBMAx diblock copolymers nano-objects were prepared at
10 w/w % with varying of the DP of the PHFBMA core-forming block between 50 and 300
(Entries 2–6, Table 1). In all cases near full HFBMA conversions were observed within 24 h.
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The DLS analysis of the resulting particles showed that the particle average hydrodynamic
diameters increased linearly with the increasing length of the PHFBMA core-forming block
(Table 1 and Figure 3f). TEM images of these particles showed that they were all spherical
regardless of the DP of the PHFBMA block. This suggests that the PHFBMA chains did not
have sufficient mobility to allow the re-organization into higher order morphologies.
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alcoholic dispersion polymerization of HFBMA with (a) x = 50, (b) x = 99, (c) x = 149, (d) x = 188, and
(e) x = 299. (f) Evolution of the average particles diameter measured by TEM (red dots) and DLS
(black squares) with the DP of the PHFBMA core-forming block.

To obtain other morphologies than spheres a second hydrophobic block of poly(benzyl
methacrylate) (PBzMA) was added (Scheme 1b). Benzyl methacrylate was polymerized
under seeded dispersion polymerization conditions at 10% w/w and 70 ◦C in the presence
of the previously prepared PDMA39–PHFBMAx diblock copolymer spheres (with x = 50,
99, 149 and 199). It should be pointed out that unlike our previously reported ABC block
copolymers prepared by PISA, for which the addition of the semi-fluorinated monomer
dissolved the PMAA-PBzMA diblock particles [12], here the addition of the BzMA did
not dissolve the PDMA-PHFBMA spherical particles. The polymerization of the BzMA
was carried out for 24 h resulting in quantitative monomer conversions (≥95%). In the
first set of reactions, a PBzMA of DP = 70 (Entries 7–10, Table 1) was targeted as the
third block. As shown in Figure 4a–d and Table 1 only spherical particles were obtained
regardless of the length of the two core-forming blocks. This could be explained by the
fact that the BzMA did not dissolve the PDMA-PHFBMA nanoparticles, leading to the
observed frozen spherical morphologies. Nevertheless, the average diameters of the
resulting ABC triblock copolymer spheres increased with the addition of the PBzMA70
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block. Both hydrodynamic and dry diameters of the particles measured by DLS and TEM
image analysis showed gradual increase from 60 to 375 nm (DLS) and from 28 to 225 nm
(TEM). Increasing the DP target of the PBzMA third block to 200 (Entries 11–14, Table 1) did
not promote the formation of higher order morphologies either (Figure 4e–h). However, a
closer examination of the TEM images suggest that the particles have internal structure.
PDMA39-PHFBMA149-PBzMA69 particles (Figure 4c), for example, seem framboidal and are
reminiscent of the PGMA-PHPMA-PBzMA particles reported by Armes and coworkers [33]
where the incompatibility between PHPMA and PBzMA resulted in the formation of
raspberry-shaped particles. Increasing the length of the PHFBMA chains resulted in
spherical particles with smoother surface (Figure 4e–h) although internal structure can still
be seen. This is most probably due to the incompatibility of the two core-forming blocks
(PBzMA and PHFBMA).
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Scheme 1. Sequential RAFT alcoholic dispersion polymerization at 70 ◦C in ethanol using a poly(2-(N,N,dimethylamino)
ethyl methacrylate) as chain transfer agent of: (a) heptafluorobutyl methacrylate (HFBMA), (b) Benzyl methacrylate (BzMA),
(c) heptafluorobutyl methacrylate (HFBMA), resulting in the formations of PDMA-PHFBA and PDMA-PHFBMA-PbzMA
diblock copolymers ((a,b) respectively), and PDMA-PBzMA-PHFBMA triblock copolymers (c).

In the next set of experiments the core-forming blocks were synthesized in the reverse
order (PBzMA first, as the B block; and PHFBMA second, as the C block) to see if other
morphologies than spheres could be obtained. PDMA39-PBzMA69 diblock copolymer
spherical particles were first synthesized (Entry 16, Table 1). This sample was then divided
in four portions that were used for the RAFT dispersion polymerization of HFBMA in
ethanol targeting PHFBMA DPs of 50, 100, 150 and 200 (Entries 20–23, Table 1). Here,
contrary to the previous set of ABC triblock copolymers where PHFBMA was the B
block, the addition of HFBMA to the PDMA-PBzMA nanoparticles suspension partially
dissolved the PBzMA block. In most cases, only spherical textured particles were formed
(Figure 5a–d). However, both PDMA39-PBzMA99-PHFBMA65 and PDMA39-PBzMA149-
PHFBMA141 triblock copolymers (Entries 24–25, Table 1) self-assembled into vesicles
featuring very clear inner dark ring (Figure 5e,f). TEM samples of fluorinated block
copolymer nano objects were prepared without staining; hence the dark ring indicates
the region/position with high concentration of fluorine atoms. PDMA-PBzMA diblock
copolymer vesicles with longer PBzMA were synthesized (PDMA39-PBzMA198). These
vesicular dispersions were then used in the RAFT polymerization of HFBMA to produce
triblock copolymer PDMA39-PBzMA198-PHFBMAx with x = 50, 96, 144 and 189 (Entry
26–29, Table 1). The PHFBMA50—containing triblock self-assembled into spherical particles
with a visible sheet-like structure partially covering the surface of the spherical particles
(Figure 5g). Increasing the DP of PHFBMA to 96 resulted in the formation of fused spherical
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particles (Figure 5h). Addition of more HFBMA repeat units pushed the morphology
towards vesicles possessing a distinctive dark ring within their membranes, indicating
the PHFBMA rich zone (Figure 5i,j). The comparison of the self-assembled objects formed
from ABC and ACB triblock copolymers of similar composition (Table 1, Entries 13–14)
illustrates the importance of particle swelling and chain mobility for the evolution of the
morphologies. Here, while BzMA could not dissolve the PHFBMA block, HFBMA did act
as solvent for PBzMA (evidenced by the turbid diblock copolymer solution turning less
turbid or even clear after addition of HFBMA).
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To see the effect of increasing the number of fluorinated units on the phase separation
of the two core forming blocks, HFBMA (containing 7 fluorine atoms) was replaced with
HCFDDMA (containing 21 fluorine atoms and Tm of ~130 ◦C). A longer PDMA (DP = 58,
Mn = 6200 g/mol, Mw = 7400 g/mol and Ð = 1.20) was used to increase the colloidal
stability of the resulting nanoparticles. The diblock copolymer PDMA58-PBzMA198 formed
spheres (Entry 1, Table S1). This diblock copolymer was used for the polymerization of
HCFDDMA, targeting a DP of 20 (Entry 2, Table S1) that reached 95% conversion in 24 h
(Mn = 21,000 g/mol, Mw = 53,000 g/mol and Ð = 1.29). The conversion for the DP = 50
polymerization could not be calculated as the sample was not soluble in any of the common
organic solvents (or their mixtures) tried (Entry 3, Table S1). TEM images revealed that the
PDMA58-PBzMA198-PHCFDDMA19 triblock copolymer formed spherical particles covered
with needle-shaped structures (Figure 6a). PDMA58-PBzMA198-PHCFDDMA50 formed a
mixture of spheres along with crystalline shards and rod like structures (Figure 6b). Such
phase separations and rigid crystalline structures have been previously observed in the
self-assembly of PVDF containing BCPs [34–37].
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3.2. PDMA-PBzMA-PTDFOA

In order to see if a more flexible backbone would affect the morphology of the particles
and their phase segregation, an acrylate monomer bearing 13 fluorine atoms (tridecafluo-
rooctyl acrylate, TDFOA) was polymerized as the second core-forming block (Scheme 2).
As summarized in Table S2, near complete conversions were obtained when the PDMA58-
PBzMA69 was used as macro-CTA. Increasing the DP of PBzMA to 194 resulted in a drop in
the conversion of TDFOA perhaps due to the unavailability of chain end-groups, since the
crystalline TDFOA might not be able to swell the particle core well enough. TEM analysis
(Figure 7) of the resulting ABC triblock copolymers revealed the formation of isolated and
fused/connected spherical particles. Almost all images showed darker zones, indicating
the fluorine rich blocks. Since these TEM samples were not stained the lighter halo is likely
formed by the PBzMA chains while the intense dark central core is solely formed by the
fluorinated PTDFOA chains.
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4. Conclusions

In summary, a series of di and triblock copolymers containing semi-fluorinated
monomers were synthesized via RAFT controlled PISA formulation in ethanol at 70 ◦C.
The monitoring of the RAFT polymerization of heptafluorobutyl methacrylate (HFBMA)
using a PDMA macro CTA showed that high conversions were achieved within 24 h and
SEC analyses indicated relatively well-controlled polymerizations. TEM studies revealed
well-defined spherical nanoparticles. To form higher order morphologies the synthesized
diblock copolymers were chain extended with BzMA. However, due to the rigidity of
the semi-fluorinated 2nd block the spherical particles grew in size but did not evolve to
higher morphologies. The triblock copolymer analog featuring PBzMA as the second block
however did result in the formation of spherical particles and vesicles showing micro-
phase separation of the core-forming blocks. The triblocks formed using a semi-crystalline
fluorinated monomer (heneicosafluorododecyl methacrylate (HCFDDMA)) led to forma-
tion of shard like structures often reported for the self-assembly of crystalline BCP. It was
also demonstrated that using an acrylate back bone (tridecafluorooctyl acrylate (TDFOA))
instead of the methacrylate the evolution of particle morphology was not improved as only
spheres or fused spheres where formed. The data presented here underline the importance
of polymer chain mobility, compatibility and block order in the self-assembly of block
copolymer under PISA process.
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Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/polym13152502/s1, Figure S1: 1H NMR spectra of unpurified (a) and purified (b) PDMA
macro-CTA. Table S1: Summary of assemblies focusing on HCFDDMA, Table S2: Summary of the
different copolymers synthesized and their dimensions, Table S3: Summary of selected copolymers
molecular weights and dipersities obtained from THF SEC calibrated with PS standards.
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