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Reduced-order model for the non-linear dynamics of cables1

Charlelie Bertrand *, Alireza Ture Savadkoohi†, Vincent Acary‡, Claude-Henri Lamarque§
2

September 20213

Abstract4

Formulation of governing equations for an elastic cable have a long and dated history. A unified framework to5

detect the dynamics of such systems is detailed, justified and assessed numerically. Modal analyses are performed6

in the Frenet basis which parts the motion into the local frame and accounts accurately for the system’s physics. In7

this article, a methodology to produce arbitrary reduced-order models for cable nonlinear dynamics is provided.8

The results obtained from the latter via direct time integration are challenged numerically via a comparison with9

results of nonlinear finite element method.10

11

Keywords: Cable Mechanics, Modal analysis, Nonlinear Dynamics, Arc-length Continuation, Frequency Responses,12

Finite Element13

14

Introduction15

The statics of cable have been investigated thoroughly in the past [14, 18, 28, 29]. The exact nonlinear geometry taken16

by a cable subjected to its self-weight and pinned at both ends is called the catenary. The parabolic approximation17

have been used for a long time in engineering applications depending on the sag-to-span ratio [20, 24]:18

• The cable exhibits large deflection (i.e. span depth ratio > 1
8 ) or inclined supports: the exact solution must be19

used20
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• The cable exhibits small deflection (i.e. span depth ratio < 1
8 ) and aligned supports: the parabolic approxima-21

tion can be used22

Investigations about frequencies and modes for the cable with various assumptions and applications followed the23

question of the statics. For instance for an inelastic cable [44], for an inelastic cable with an heterogeneous mass24

distribution [45], for a suspended chain plus experimental check [36] or for a pure catenary [46]. However, a lot25

of earlier works were not valid for the taut string [21] until the works of Soler [50] and Simpson [47] where the26

oscillations are investigated as a dynamic perturbation of a steady-state regime. For bridges, various methods have27

been proposed for the evaluation of cable frequencies [16, 22, 37].28

One of the most notable contributions is the one of Irvine and Caughey [19, 20] who unified all known developments29

and clarified the transition from the sagged elastic cable frequencies towards the vibrating string frequencies30

accompanied with experimental validation. An elasto-geometric parameter given in [20] is now denoted as Irvine’s31

parameter:32

λ2
Irv =

(
µgd

H

)2 EA

H
∫ L

0 cos(θ(S))3dS
(1)

where µ is linear density of the cable, g is the gravity constant, d the horizontal span distance between two supports,33

H the horizontal constant component of the tension, EA is the rigidity of the cable, L the length of the cable and θ34

gives the angle between the horizontal and the cable axial direction.35

The cable exhibits families of modes and their symmetric or anti-symmetric nature have been investigated and36

shown to be a function of the Irvine’s parameter. More developments according to the inclination of the rest position37

have been done which extended the results of Irvine to more sophisticated situations via introducing new geometric38

parameters [52, 55].39

Until the early eighties, only the linear dynamics of cables were treated. At the author knowledge, the first work40

tracing a nonlinear response is from Hagedorn and Schäfer [17]. Their approach is a milestone for the nonlinear41

dynamics of cables as they introduced the combined use of Ritz-Galerkin and perturbation methods to treat the42

nonlinear terms in the original system equations. This approach results in condensing the dynamics on some selected43

modes. Global methodology consists in using a polynomial expansion of system variables, then a decomposition of44

the displacement along some modes is assumed. The resulting equation or their multiple dimension equivalents45

have been studied for the last forty years46

q̈ + µq̇ + q + c2q
2 + c3q

3 = f(t) (2)

where q is a modal coordinate and f is an arbitrary external force vector. The biggest advantage is to provide with47
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equations that can be investigated numerically, providing some design tools.48

The work of Luongo et al. [30] dealt with a two degree-of-freedom (dof) model for an elastic cable taking into49

account all geometrical nonlinearities. They describe the influence of the cubic and quadratic nonlinearities on the50

frequencies of the cable. Complementary studies about the effect of nonlinearities have been lead by Rega et al. [43]51

and investigated further two years later by Luongo et al. [31]. Benedettini et al. [6] showed that the cable exhibits52

strong coupled oscillations and that exchanges between the first and second mode are stronger when the cable sag53

increases. In addition to that, Benedettini and Rega [3] highlighted a notable difference between the cable and the54

string: a cable exhibits softening-hardening behavior contrary to a string and also that subharmonic resonances55

explains some rich dynamical responses [41].56

The nonlinear dynamics of cable entail a wide range of scenario including chaotic responses [53] or modes57

resonances [26, 35] depending on the solicitation or the geometry considered. Several works are focused on all the58

zoology of the cable nonlinear responses [4, 5, 27, 38, 40] with in-depth comparisons between models containing59

different number of dofs or different nature of modes.60

The review of Rega [39] is quite extensive about all the phenomenon possible in cable dynamics, both numerically61

and experimentally. Meanwhile, nonlinear dynamics of inclined cables continued to be investigated for example by62

Berlioz and Lamarque [7] who provided a two dof model for an inclined cable and its treatment via the method of63

multiple scales to obtain the cable response in resonant regimes with comparisons with experiments. A model for the64

nonlinear vibrations of an inclined cable treated by finite differences and supplemented by experiments was given in65

the joined work of Srinil and Rega[42]. Meanwhile, cable dynamics with point loads and point solicitations are66

treated in the works of Sofi and Muscolino [48, 49] where a model for an inclined cable carrying moving oscillators67

is proposed.68

A lot of modeling aspects for cable have been collected, investigated and precised by Lacarbonara and Pacitti69

[25] who model cable with flexural stiffness and a visco-elastic constitutive law. This work emphasized on the70

non-compression condition inherent to the cable equilibrium. The same modeling context was chosen by Arena71

who to study the nonlinear vibrations of a cable derived from Cosserat theory [2] which add the torsional stiffness in72

consideration. Other models have been proposed in the literature as for example the one of Pai and Nayfeh [33]73

where Poisson effect were considered.74

Investigation about transient regimes for a cable carrying moving masses have been done by Wang and Rega [23]75

and they discussed about adaption of the condensed model for non-shallow cables. Recently, Warminski et al. [54]76

revisited in details the four dof model of Benedettini [6] dating back to 1995 and made considerable efforts to derive77

a rich zoology of cable behaviors. They exhibits multiple resonances and primary resonance and improved the78

stability analysis done previously for this cable model.79
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Current considerations in nonlinear vibration of cables are the galloping phenomenon in shallow cables (e.g see80

work of Ferretti [12]) or also complex structures where a cable is bounded to two other structural elements for81

example the beam-cable-beam structure studied by Gatulli et al. [15]. Our motivation with this paper is to provide a82

uniform framework to derive the system governing equations and to depict every single assumptions that lead to83

characterize the frequencies and modes of the system. Eventually the nonlinear dynamics of a cable will be treated84

via formulating a reduced-order-model (ROM) via a Ritz-Galerkin procedure that trace longitudinal, normal and85

transversal motion accurately. The reliability will be investigated via comparisons with nonlinear finite element86

method (FEM) which has been poorly investigated until now.87

This work aims to highlight that the cable nonlinear dynamics for large displacements require careful numerical88

applications. The use of ROM should be justified to avoid wrong displacement estimation. The combined use of89

FEM and ROM is therefore suitable to assess for the validity of an approach. The main results presented here are90

the global methodology to derive an arbitrary ROM for cable dynamics. Its validity is challenged numerically via a91

comparison to computations made with FEM. It is shown that there is a qualitative agreement between the approach92

but quantitative agreement are hardly met for large displacements applications. Our work is organized as it follows:93

Section system of interest and the particular case of a cable subjected to its self-weight only. Section deals with the94

modal analysis of cables with an analytical point of view (assumptions are given explicitly) and also with a purely95

numerical point of view via finite difference method. Section 22 depicts a general methodology to build ROMs for96

cable systems and applications that derive from it. For this model, the longitudinal displacement is not discarded97

and kept to build a ROM. Section 22 sums up our contributions and opens the debate about the treatment of the98

nonlinear dynamics of a cable via the coupled used of reduced-order models and nonlinear finite element dynamics.99

A fair assessment of the reliability of the ROM is given according to a comparison with FEM.100

Equilibrium of a three-dimensional cable101

In this section, the assumptions for the system of interest are presented. The equations for the steady-state are102

presented and treated for the case of a vertical and uniform load. Finally, the perturbed dynamics of a cable subjected103

to a general load is presented.104

Curvilinear domains105

The cable model has its origin in the curvilinear domain mechanics [1, 32, 34]. The domain is described in its current106

configuration, sometimes denoted as "studied", "stretched" or "Eulerian" configuration. The particles composing the107
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domain will be part of the Cartesian space R3 with the basis (O,x,y, z) and we have108

R(S, t) = x(S, t) x + y(S, t) y + z(S, t) z (3)

The main property of a curvilinear domain is to be a parametrized curve, then an arc-length variable, S, will be used109

for the spatial dependency of all system variables. In another words, the function110

(S, t) −→ R(S, t) (4)

allows parameterize every particles of the domain and defines its orientation at a given time t. That is to say, the111

bigger S is, the further we are on the frame. This function is generally defined on an open segment i.e. S ⊂]0, L[.112

The curvilinear abscissa, S, defines an orientation in the sense that a tangent vector can be defined113

d1(S, t) =
R′(S, t)

‖R′(S, t)‖ (5)

where •′ denotes the differentiation with respect to S.114

The existence of d1(S, t) requires that we have115

‖R′(S, t)‖ 6= 0 ∀ 0 6 S 6 L , ∀t > 0 (6)

An orthogonal counterpart of d1(S, t) is given by d2(S, t) and coined as the normal vector. The latter belongs to116

the (x,y)-plane and is computed as117

d2(S, t) = z ∧ d1(S, t) (7)

where ∧ stands for the wedge product.118

The triplet (d1(S, t),d2(S, t), z) is coined as the Frenet basis. It corresponds to the unit-orthogonal right-handed119

local frame attached to every cable particle.120

System of interest121

We are interested into the equilibrium of a cable with unstretched length L which spans between R0 and RL. The122

cable is assumed to be uniform i.e. is linear density ρ and its rigidity EA are constant along all the span. An initial123

tension, T0 is enforced in R0 and the cable lies in the gravitational field given by g. Moreover we assume that there124

is no point load applied to the cable. Due to the geometry of the system and the gravitational field taken along y, we125

5



can assume that the steady-state lies into the plane given by z = 0. Moreover, with a suitable translation we can126

assume without loss of generality that127

R0 =


0

0

0

 ; RL =


d

h

0

 ; R(S, t) =


x(S, t)

y(S, t)

z(S, t)

 (8)

An arc-length coordinate, S, is used to locate cable particles’ positions, R(S, t), in the Cartesian space.

The cable is assumed to be perfectly flexible, therefore it cannot resist to any moment or torque. Only its internal

tensile force ensures the balance of forces. The latter is given by the product of a positive scalar quantity called

tension, T , and the axial vector. Moreover the cable is linear elastic and all geometrical nonlinearities are kept, then

T (S, t) = EA (‖R(S, t)‖ − 1) > 0 (9)

For the sake of conciseness, S and t dependencies will be removed from system equations. Considering that128

damping, referred as µ, might be added in the sequel, the full dynamics of such a system are given by129

ρR̈ + 2µṘ = EA

(
(‖R′‖ − 1)

R′

‖R′‖

)′
+ b (10)

where •̇ stands for the time differentiation. The system of interest is depicted in Figure 1.130

Equilibrium in the case of a vertical and uniform load131

In this section, we are interested in treating the static equilibrium of a hanging cable. Due to the case studied, the132

cable is contained into the (x,y)-plane. The positions and the axial vector associated to this equilibrium are denoted133

by r and e respectively. The distributed load b is considered to be only the self-weight. The equilibrium reads134

EA
[
(‖r′‖ − 1)e

]′ − gy = 0 (11)

In other words, the static elastic forces, fe(r) given by135

fe(r) = EA

[
(‖r′‖ − 1)

r′

‖r′‖

]
(12)
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g = −gy

Figure 1: Elastic cable hanging between two supports in the gravitational field g = −gy with initial tension T0 and
the Frenet basis (e(S),n(S), z)

are balancing the self-weight of the cable. A first integration between 0 and S, 0 6 S 6 L, yields136

EA
(
‖r′‖ − 1

)
e =

T0√
1 + η2

1

η

+

 0

ρgS

 (13)

where the initial unit axial vector, e(0), is parameterized with one parameter η as follows137

e(0) =
1√

1 + η2

1

η

 (14)

and the initial value of tension is given by T0. As a consequence, following equality is obtained due to the unit138

property of e139

T =
T0√

1 + η2

√√√√1 +

(
η +

ρg
√

1 + η2

T0

)2

(15)

and140

e =
1√

1 +

(
η +

ρg
√

1+η2

T0

)2

 1

η +
ρg
√

1+η2

T0

 (16)
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Combining (13-16) and using the fact that e is unit, we obtain that141

r′ = ‖r′‖e =

(
T

EA
− 1

)
e (17)

The latter can be integrated between S ∈ [0, 1] and 1, which yields

d− x =
T0(L− S)

EA
√

1 + η2
+ T0

sinh−1(η +
ρg
√

1+η2

T0
L)− sinh−1(η +

ρg
√

1+η2

T0
S)

ρg
√

1 + η2
(18)

h− y =
ηT0(L− S)

EA
√

1 + η2
+ ρg

L2 − S2

2EA

+ T0

√
1 +

(
η +

ρg
√

1+η2

T0
L

)2

−
√

1 +

(
η +

ρg
√

1+η2

T0
S

)2

ρg
√

1 + η2

(19)

These developments are valid under the assumption that the strain is positive which is ensured by the physics of the142

hauling rope. If the assumption is not satisfied, derivations have to be done differently.143

The profiles given by (18) and (19) can be evaluated into S = 0, which provide a set of two coupled nonlinear144

equations145 

d =
T0L

EA
√

1 + η2
+ T0

sinh−1(η +
ρg
√

1+η2

T0
L)− sinh−1(η)

ρg
√

1 + η2

h =
ηT0L

EA
√

1 + η2
+ ρg

L2

2EA
+ T0

√
1 +

(
η +

ρg
√

1+η2

T0
L

)2

−
√

1 + η2

ρg
√

1 + η2

(20)

The latter is often left ambiguous in the work related to cable since its resolution depends on the domain considered.146

Indeed we have to choose whether the unknown is the couple (T0, η) or the couple (L, η). Moreover, we can also147

choose to work with the horizontal component of the cable internal forces instead of the tension.148

Once (20) is solved, the modal content can be computed.149

Tracing modal content of the system150

The goal of this section is to present the equations that lead to frequency tracing. Modes are an essential tool to build151

reliable basis for Ritz-Galerkin procedures for instance. This subject is treated under various cases and assumptions152

in the literature. In order to give a different vision, we propose here a Frenet basis vision of the dynamics which153

sums up all contributions made in analytical developments in the domain of cable frequencies.154
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Equations for the small vibrations155

The governing equations given in (10) in the case of a vertical and uniform load is considered with a small vibration156

u around the static equilibrium given by r. Meaning that157

R = r + u (21)

It follows that

Ṙ = u̇ , R̈ = ü (22)

The actual tangent vector is obtained with a first order Taylor expansion

R′

‖R′‖ =
r′ + u′

‖r′ + u′‖ ≈
r′

‖r′‖ +
u′

‖r′‖ −
(r′ · u′)
‖r′‖3 r′ (23)

= e +
1

‖r′‖
(
u′ − (e · u′)e

)
(24)

where r is given by (11). The actual strain is obtained the same way as

‖R′‖ − 1 = ‖r′ + u′‖ − 1 ≈‖r′‖ − 1 + (e · u′) (25)

Once (24) and (25) are injected into (10), the linearized dynamics are obtained considering only the first order terms158

in u159

ρü = EA

[‖r′‖ − 1

‖r′‖ u′ +
e · u′
‖r′‖ e

]′
(26)

where non constant coefficients are obtained from the static equilibrium and statics given by (11) allows to simplify160

(10). These equations are more amenable when formulated into the local frame (Frenet basis). In another words, the161

vibrations is decomposed as follows162

u = p e + q n + b z (27)
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where the triads (e,n, z) is the unit-orthogonal local frame obtained from the steady-state configuration (visible in

Figure 1). The expressions of both axial and normal vectors are

e =
1√

1 +

(
η +

ρg
√

1+η2

T0

)2

 1

η +
ρg
√

1+η2

T0

 (28)

n = z ∧ e = − 1√
1 +

(
η +

ρg
√

1+η2

T0

)2

η +
ρg
√

1+η2

T0

−1

 (29)

The following properties arise from this local frame is obtained via differentiation163

e′ = Kn , n′ = −Ke , z′ = 0 (30)

where we used the following notation for the curvature of the cable164

K =

ρg
T0

√
1 + η2

1 +
(
η + ρg

T0

√
1 + η2S

)2 (31)

Then the derivatives of the vibration reads

u̇ = ṗ e + q̇ n + ḃ z (32)

ü = p̈ e + q̈ n + b̈ z (33)

u′ =
(
p′ −Kq

)
e +

(
q′ +Kp

)
n + b′ z (34)

u′′ =
[(
p′ −Kq

)′ −K (q′ +Kp)] e +
[(
q′ +Kp

)′
+K

(
p′ −Kq

)]
n + b′′ z (35)

The later derivations can be injected into (26) which provides in a compact manner

ρ p̈ = EA

[(
p′ −Kq

)′ − ‖r′‖ − 1

‖r′‖ K
(
q′ +Kp

)]
(36)

ρ q̈ = EA

[(‖r′‖ − 1

‖r′‖
(
q′ +Kp

))′
+K

(
p′ −Kq

)]
(37)

ρ b̈ = EA

[‖r′‖ − 1

‖r′‖ b′
]′

(38)

Equations (36)-(38) can be treated can be treated numerically or analytically which is the topic of the next section.165
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Approximate analytic treatment of the cable vibrations166

The theory of linear free vibrations of cable is quite extensive and has been extensively treated in the literature. Here167

we give the extensive set of assumptions that leads to equations for cable frequencies and modes.168

It is shown that those modes are not orthogonal in the general case which is obscured in the literature by the fact169

that longitudinal dynamics are discarded in linear and nonlinear analysis.170

Out of plane small vibrations171

We first focus on (38) that governs the transverse displacement. This kind of motion is a modified pendulum motion.172

The reader may imagine the bouncing of a hammock suspended between two trees as an illustration for these173

motions. Let us assume that the transverse displacement is given by174

b = B(S)eiωt ; i2 = −1 (39)

A substitution of (39) into (38) and yields175

ρω2B + EA

[‖r′‖ − 1

‖r′‖ B′
]′

= 0 (40)

It appears from the numerical computation that the following quantity ‖r
′‖−1
‖r′‖ is almost constant along the cable for176

high values of EA (which is often true in reality) such that its derivative might be neglected in first approach. It177

results in the following differential equation178

ρω2B + α2B′′ = 0 ; α2 = EA
‖r′‖ − 1

‖r′‖ (41)

The latter admits as solution179

B = b1 cos
(√

ρ
ω

α
S
)

+ b2 sin
(√

ρ
ω

α
S
)

(42)

With the boundary conditions, constants b1 and b2 are found and the frequencies are obtained as180

sin
(√

ρ
ω

α
L
)

= 0 ⇐⇒ ω = k
απ√
ρL

; k ∈ N∗ (43)

and the normalized solutions (L2-norm) are given by181

Bk =

√
2

L
sin

(
kπ

L
S

)
; k ∈ N∗ (44)
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In plane small vibrations182

Now let us focus on (36) and (37). Let us assume that the transverse displacement is given by

p = P (S)eiωt (45)

q = Q(S)eiωt (46)

which can be inserted into (36) and (37) and yields

ρω2P + EA
(
P ′ −KQ

)′ − EAK‖r′‖ − 1

‖r′‖ (Q′ +KP ) = 0 (47)

ρω2Q+ EA

[‖r′‖ − 1

‖r′‖ (Q′ +KP )

]′
+ EAK

(
P ′ −KQ

)
= 0 (48)

Two types of vibrations may be considered when it comes to planar vibrations. First the anti-symmetric ones that do183

produce no increment of tension at first order in ‖u′‖ and the symmetric ones that produce a uniform increment of184

tension τ along the cable at first order in ‖u′‖.185

Anti-symmetric modes Anti-symmetric modes have been historically obtained via assuming that the increment186

of tension due to vibration is negligible and that the vibration is preponderant in the normal direction. Let us make187

following assumptions:188

• ‖r
′‖−1
‖r′‖ can be considered constant with S.189

• The normal vibration given by Q are preponderant so that (48) is of primary interest and P can be considered190

second order.191

• The variation of the function K are neglected so we make a first order approximation of it.192

• The vibration does not produce any tension increment so that EA (P ′ −KQ), corresponding to the increment193

of tension, see( 34), is zero.194

Then, our assumptions allow one to simplify (48) as follows195

ρω2Q+ α2Q′′ = 0 ; α2 = EA
‖r′‖ − 1

‖r′‖ (49)

As done in previous paragraph, Q admits as solution196

Q = q1 cos
(√

ρ
ω

α
S
)

+ q2 sin
(√

ρ
ω

α
S
)

(50)
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From the homogeneous boundary conditions, the normal vibration is given by197

Qk = q2 sin

(
kπ

L
S

)
; k ∈ N∗ ; k ∈ N∗ (51)

The geometric compatibility condition is given by198

P ′ −KQ = 0 (52)

Then199

P = p1 − q1K
L

kπ
cos

(
kπ

L
S

)
(53)

Applying homogeneous boundary condition to P yields200

P (0) = 0↔ p1 = q1K
L

kπ
(54)

and then201

P (L) = 0↔ 0 = q1K
L

kπ

[
1− cos

(
kπ

L
S

)]
(55)

Then k must be even to satisfy P (L) = 0 creating a vibration which is anti-symmetric with respect to L
2 in the

normal direction. This is why those vibrations are often denoted as anti-symmetric modes.

As a summary, a mode is given by

ωk =2k
απ√
ρL

; k ∈ N (56)

Qk =
1√

L
2 + 3K2L3

8k2π2

sin

(
2kπ

L
S

)
(57)

Pk =
KL

kπ
√

L
2 + 3K2L3

8k2π2

sin

(
kπ

L
S

)2

(58)

It is worth noting that those modes are not orthogonal in the sense of the following inner-product202

(Pi, Qi)× (Pj , Qj) −→
∫ L

0
PiPj +QiQjdS (59)

Symmetric modes Let us make following assumptions:203

• ‖r
′‖−1
‖r′‖ can be considered constant with S.204

• The normal vibration given by Q are preponderant so that (48) is of primary interest and P can be considered205
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second order.206

• The variation of the function K are neglected so we make a first order approximation of it.207

• The vibration produces a tension increment which is a function of time alone. Then the functionEA (P ′ −KQ),208

corresponding to the increment of tension, can be consider to be constant with space and its value is given by209

τ .210

These assumptions lead to a simplified version of (48) which is211

ρω2Q+ α2Q′′ = −Kτ ; α2 = EA
‖r′‖ − 1

‖r′‖ (60)

The latter implies that212

Q = q1 cos
(√

ρ
ω

α
S
)

+ q2 sin
(√

ρ
ω

α
S
)
− K
ρω2

τ (61)

From compatibility condition, we have that213

P = p1 + q1
Kα
ω
√
ρ

sin
(√

ρ
ω

α
S
)
− q2

Kα
ω
√
ρ

cos
(√

ρ
ω

α
S
)

+

(
1

EA
− K

2

ρω2

)
τS (62)

Homogeneous boundary conditions lead to the following determinental equation214



1 0 0 − K
ω2ρ

cos
(√
ρωαL

)
sin
(√
ρωαL

)
0 − K

ω2ρ

0 − αK
ω
√
ρ 1 0

αK
ω
√
ρ sin

(√
ρωαL

)
− αK
ω
√
ρ cos

(√
ρωαL

)
1 L

(
1
EA − K2

ρω2

)





q1

q2

p1

τ


=



0

0

0

0


(63)

which can be recast into the following transcendental equation in ω

F(ω) = tan

(
ω
√
ρL

2α

)
− ω
√
ρL

2α

(
K2EA− ω2ρ

)
= 0 (64)

⇐⇒ tan

(
ω
√
ρ

2α
L

)
=
K2EA

√
ρL

2α
ω −
√
ρ3L

2α
ω3 (65)

where the cases ω = 0 and ω = k απ√
ρL are discarded.215

From a practical point of view, only the very first solutions will be of interest since the cubic function rapidly216

intersects the infinite branch of the tan function (i.e. we reach the case ω = k απ√
ρL ).217

A remark on equation (65) Solving this equation reveals to be numerically challenging, especially with218

descent methods (e.g. Newton’s method). A way to tackle it, is to perform dichotomy on sub-intervals where tan219
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3π
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5π
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Figure 2: Transcendental equation (65) for various values of system parameters - tan plot (solid line ) - cubic plot
(solid line )

will change of sign. The graphs of the two functions are depicted into Figure 2. It can be seen that for X close220

to 2k+1
2 π, tanX is greater than the cubic function of X so that dichotomy can be applied in a vicinity of it. The221

algorithm applied to (65) is given in Algorithm 1.222

Nonlinear dynamics of a forced hanging cable223

In this section the equations for the nonlinear dynamics of a hanged cable are presented. It is often assumed that the224

main dynamic content of a cable is contained into its vibrations along the first modes. Our choice is to keep the225

influence of the longitudinal motions in the projection and to use numerical based methods that can be applied to226

general cases with an arbitrary number of dof.227

Ritz-Galerkin procedure228

From this statement, one can choose to project the nonlinear dynamics on a family of chosen modes computed229

in Section . The modes can also be extracted directly from (37 - 38) via finite differences methods [11]. The230

latter is more suitable to retain the influence of system curvature and tension on the modes and frequencies. The231

methodology has already been endowed by the authors in [9].232

Then the displacement is given by233

u(S, t) =

N∑
k=1

Φk(S)ϕk(t) (66)
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1 Needed: ;
2 Number of expected solutions: N ;
3 Coefficient: c ;
4 Initialize: ;
5 X ← (0, ..., 2N+3

2
π) (small mesh) ;

6 X+ ← X[2; ; end] ;
7 X− ← X[1; ; end− 1] ;
8 X∗ ← X+ ×X− ;
9 ω ← X+[k such that X∗k <= 0] ;

10 ω̄ ← X−[k such that X∗k <= 0] ;
11 Limit ω and ω̄ to their first N th components ;
12 for 1 ≤ i ≤ 50 do
13 f+ ← F(ω+ω̄

2
) (size N );

14 f− ← F(ω̄) (size N );
15 if f+

k × f−k <= 0 then
16 ωk ← ω+ω̄

2

17 end
18 if f+

k × f−k > 0 then
19 ω̄k ← ω+ω̄

2

20 end
21 end
22 Return ω

Algorithm 1: Dichotomy approach for numerical treatment of (65)

where Φk is a cable mode. Note that, projections can be performed on arbitrary modes.234

The actual tension is obtained as a Taylor expansion up to third order in ‖u′‖:235

EA
(
‖R′‖ − 1

) R′

‖R′‖ =EA(‖r′‖ − 1)e

+EA
‖r′‖ − 1

‖r′‖ u′ +
EA

‖r′‖(e · u′)e

+
EA

2‖r′‖2
([
u′ · u′ − 3(e · u′)2

]
e + 2

[
e · u′

]
u′
)

+
EA

2‖r′‖3


[
5(e · u′)3 − 3(e · u′)(u′ · u′)

]
e

+
[
u′ · u′ − 3(e · u′)2

]
u′


(67)

Equation (67) can be seen seen as the superposition of static elastic forces, fe(r), and incremental elastic forces due236

to the vibration, ∆fe(r,u), i.e.237

EA
(
‖R′‖ − 1

) R′

‖R′‖ = fe(r) + ∆fe(r,u) (68)
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The incremental elastic forces, ∆fe(r,u), are recasted in the Frenet basis as follows238

∆fe(r,u) =EA


p′ −Kq

0

0

+ EA
‖r′‖ − 1

‖r′‖


0

q′ +Kp

b



+
EA

2‖r′‖2


(q′ +Kp)2 + b2

2 (p′ −Kq) (q′ +Kp)

2 (p′ −Kq) b



− EA

2‖r′‖3


2 (p′ −Kq)

[
(q′ +Kp)2 + b2

]
[
2 (p′ −Kq)2 − (q′ +Kp)2 − b2

]
(q′ +Kp)[

2 (p′ −Kq)2 − (q′ +Kp)2 − b2
]
b



(69)

The full nonlinear dynamics yields239

ρR̈ + 2µṘ = [fe(r) + ∆fe(r,u)]′ + b + f(S, t) (70)

Simplifying (70) thanks to (11) yields240

ρü + 2µu̇− [∆fe(r,u)]′ = f(S, t) (71)

A Ritz-Galerkin procedure is performed with respect to the inner-product given in (59). The case presented here is241

general and accounts for any external forcing considered. It should be noted that even the longitudinal component242

of the motion is kept in the following developments. N equations are obtained as follows243

∫ L

0
(ρü + 2µu̇) · ΦjdS +

∫ L

0
∆fe(r,u) · Φ′jdS =

∫ L

0
f(S, t) · ΦjdS , 1 6 j 6 N (72)

where the differentiation of vectors with regards to S is done via (30).244

In the case presented here, the mass matrix and stiffness matrix are non-diagonal which is the cost of the generality245

of the approach. The latter is due to the loss of symmetry in the Ritz-Galerkin procedure. The obtained system reads246

Mjkϕ̈k + Cjkϕ̇k + Kjkϕk +Qjklϕkϕl + Cjklmϕkϕlϕm = fj , 1 6 j 6 N (73)

where Einstein convention has been used. The formal expression of each tensor is given in appendix 22. To lighten247

numerical computations, we premultiplied by the mass matrix inverse and used a rescaled time allows to obtain the248
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following system249

ϕ̈j + ξjϕ̇j + Kjkϕk +Qjklϕkϕl + Cjklmϕkϕlϕm = fj , 1 6 j 6 N

t =
τ

ω0

(74)

for conciseness we did not change the notation for K, Q, C and f . The obtained ROM is general and accounts250

for longitudinal, normal and transversal displacements. The rich coupling between modes is given by both the251

non-diagonal mass matrix and the quadratic/cubic nonlinearities.252

Tracking frequency response with arc-length continuation technique253

The set of equations given by (74) can be numerically treated with the arc-length method [10, 51]. The key idea is254

to follow the response curve assuming that the latter is smooth and that the system response is periodic. The system255

is harmonically forced with an arbitrary frequency Ω, in another words we set256

f(S, t) = F (S) sin (Ωt) (75)

To obtain the system response, we track fixed points of the monodromy matrix [13] and the stability of the response257

is estimated via evaluating the eigenvalues of the same matrix at a converged state. Indeed, considering an initial258

condition ϕ∗ the problem reads259

M(ϕ∗,Ω) ϕ∗(0) = ϕ∗
(

2π

Ω

)
(76)

When a couple (ϕ∗,Ω) satisfies (76), the stability of this periodic orbit is determined as follows:260

• Stable if all eigenvalues is contained in the unit circle261

• Unstable if at least one eigenvalue is out of the unit circle262

An example have been done for the set of parameters given in Table 1 and the corresponding response curves are263

given in Figure 3. The plots are done with regard to the normalized frequency and for a 5 dofs projection. The odd264

dofs correspond here to the transverse modal coordinates whereas the even dofs correspond to the planar modal265

coordinates. The response is sophisticated and multi-valued, therefore the design of cable requires an in-depth266

analysis of their frequency responses. This simple example also depicts potential large displacements close to267

resonance. The components of the various tensors in (74) are given in appendix 22. However, we must recall that268

amplitudes caught in the ROM should be analyzed in the scope of the physical amplitude at stake via usage of (66).269

270

18



0 1/2 1 3/2 2
0

5

10

15

20

25

30

Ω
ω1

‖ϕ1‖∞

0 1/2 1 3/2 2
0

1

2

3

Ω
ω1

‖ϕ2‖∞

0 1/2 1 3/2
0

1

2

3

4

5

6

7

Ω
ω1

‖ϕ3‖∞

0 1/2 1 3/2 2 5/2 3 7/2 4
0

1

2

3

4

Ω
ω1

‖ϕ4‖∞

0 1/2 1 3/2 2 5/2 3 7/2 4
0

1

2

3

4

5

Ω
ω1

‖ϕ5‖∞

Figure 3: Frequency response curves obtained with arc-length continuation technique for a 5 dof system
(dotted line ) Stable solutions ; (dotted line ) Unstable solutions
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Table 1: Parameters used for the arc-length continuation example (Physical value of a chair-lift span)

Attributes Values

EA (N) 4× 108

T0 (N) 80000

ρ (kg.m−1) 6

d (m) 250

h (m) 10

µ 0.08

F (S) (N) 0.8 (e + n + z)

A comparison with Finite Element Method (FEM)271

The usage of ROM is mainly drove by its computational efficiency and the possibility of studying analytically272

small-dof systems. However, very few comparisons between results of finite element and those of ROM are273

available.274

FEM has been already developed to ensure tension-state during computations [8], the latter has been proven reliable275

and to converge towards what we can called a reference solution. This claim is briefly illustrated by Figure 4 where276

the trajectory at mid-span is obtained via FEM where the time-step is decreased progressively. Table 2 provides with277

the numerical error made by considering wider time-steps, taking a converged solution as a reference. This error is278

taken as the relative error made on displacements at multiple of the period of solicitation. In another words, the279

error on the coordinates of the midspan at all k × T with k = 1,...,7 is given. Those examples are meant to further280

illustrates the convergence properties of the FEM used in this paper and presented in [8]. FEM computations and281

the approach presented before have some intrinsic differences among which:282

• In FEM, the nonlinear dynamics are integrated with the self-weight effects retained and the assumption of a283

small displacement is not made284

• In the ROM, amplitudes correspond to modal coordinates so that the displacement profile needs to be built285

back286

• In the ROM, the vibration around the rest position is an elastic vibration, therefore inextensible/inelastic287

motions could be roughly approximated.288

The goal of this subsection is to compare the predictions made by both methods and have a claim on the validity of289

the reduce-order model. This comparison is based on the following steps:290

• With the same set of parameters, compute the dynamics of the cable via the ROM and the FEM291

• Build back the cable profile from the ROM according to (66)292
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Figure 4: Cable with parameters given in Table 3 integrated with varying time-steps, spanning from h = 0.0011s to
h = 0.06s (solid line ) and with h = 0.0003s (solid line )

• Compare the transient trajectories at given point of the span in the physical domain293

• Compare the evaluation of system amplitude at first (ufqs) and last quarter span (ulqs) and at mid-span (ums) in294

the physical domain with different forcing amplitude. The latter will be performed via continuation technique295

on the ROM while the NFEM dynamics will be integrated until a stationary point is reached.296

Comparisons of Transient Dynamics297

The transient dynamics are of deep interest for engineering applications due to potential high displacements. The298

ability of reduced-order-model to track such responses could avoid costful computations via refined mesh in NFEM.299

Different scenarios are investigated here. System amplitudes are checked close and far from resonances and with300

different configurations (highly and moderately tensed). The set of parameters depicted in Table 3 are used for the301

results depicted on Figures 5 - 8. The idea between those two different scenarios is that one case corresponds to a302
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Table 2: Numerical error obtained from integrating the cable dynamics given in Table 3 with the FEM with varying
time-steps

Time step (s) Error at : t = T t = 2T t = 3T t = 4T t = 5T t = 6T

0.01197 0.7860 0.9053 0.8269 0.8809 1.0012 0.7913

0.00399 0.0343 0.0825 0.332 0.228 0.167 0.3229

0.00249 0.0112 0.0263 0.1136 0.0799 0.0528 0.1219

0.00120 0.0067 0.0157 0.0686 0.0484 0.0313 0.0749

0.00030 0.0027 0.0064 0.0284 0.0202 0.0128 0.0315

linear regime in the sense that nonlinearities cannot have significant impact on the response whereas in the other303

case, the geometry and forcing amplitude lead to a response where the nonlinearities are essential to describe the304

system response.305

For the quasi-linear regime (taut cable with small forcing amplitude), we see a qualitatively good agreement between306

both approaches as illustrated by Figure 5. The overall motion of the cable is described similarly so that the307

maximum amplitudes of vibrations will be the same. However, the ROM is way faster due to its compactness. The308

envelop of the cable motion is also well approximated as shown in Figure 6. Indeed, both FEM and ROM provide309

with same displacement amplitude in this case although it is transient dynamics.310

When it comes to the nonlinear case, the qualitative agreement holds. However, discrepancies in the longitudinal311

direction arises. The small differences can be explained by the difference in the treatment of the geometrical312

nonlinearity since it is linearized up to third order in the ROM. Some specific scenarios, especially resonant cases,313

produce quantitative differences between the FEM prediction and the ROM prediction. This points to the fact that314

ROM may not always be the good tool to describe the cable dynamics.315

Computational speed is the key parameter to choose one of the approaches, although FEM may be more flexible316

when it comes to compute the response of more complicated systems (e.g. cable networks, hybrid boundary317

conditions, beam-cable structures, ...). The main advantage of the ROM is the possibility of pseudo-analytical318

solutions but it relies on very practical knowledge of cable nonlinear dynamics and behaviors [5, 54] which is not319

the topic of this work. Moreover, the more DOFs are of interest, the less intuitive are the analytical derivations. In320

this case, FEM are reliable tool to investigate nonlinear dynamics of a unknown cable system and determine the321

applicability of the ROM, see for example Figure 7.322

323

324

325
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Table 3: Parameters used for the comparisons between transient dynamics caught via FEM and ROM

Attributes Values (Linear case) Values (Nonlinear case)

EA (MN) 40 10

T0 (MN) 1.116 0.8

ρ (kg.m−1) 5.56 5.56

d (m) 300 300

h (m) 10 15

µ (SI) 0.08 0.08

F (S) (N) 0.0001


1

1

1


(x,y,z)

0.8


1

1

1


(x,y,z)

Ω (rad/s) 1.5 2.1
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Figure 5: Vertical displacement versus transverse displacement (mm) for S = L
4

, S = L
2

and S = 3L
4

obtained via
FEM (solid line ) and via ROM (dashed line ) for a transient dynamics in a quasi-linear regime - Parameters

are given in Table 3
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Figure 6: Displacement (mm) versus curvilinear abscissa (m) for the x direction, y direction and z direction obtained
via FEM (solid line ) and via ROM (dashed line ) for a transient dynamics in a quasi-linear regime at the same

time instants - Parameters are given in Table 3
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Figure 7: Vertical displacement versus transverse displacement (mm) for S = L
4

, S = L
2

and S = 3L
4

, span obtained
via FEM (solid line ) and via ROM (dashed line ) for a transient dynamics in a nonlinear regime - Parameters

are given in Table 3
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Figure 8: Displacement (mm) versus curvilinear abscissa (m) for the x direction, y direction and z direction obtained
via FEM (solid line ) and via ROM (dashed line ) for a transient dynamics in a nonlinear regime - Parameters

are given in Table 3
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Table 4: Parameters used for the comparisons between asymptotic dynamics caught via FEM and ROM

Attributes Values (Linear case) Values (Nonlinear case)

EA (MN) 40 10

T0 (MN) 1.116 0.8

ρ (kg.m−1) 5.56 5.56

d (m) 300 300

h (m) 15 15

µ (SI) 0.2 0.2

F (S) (N) 0.0001 (x + y + z) 0.8 (x + y + z)

Ω (rad/s) 1.5 2.1

326

Comparisons of Asymptotic Dynamics327

Dynamic simulations are costful especially with NFEM. The ROM is therefore a valuable tool to describe rich328

dynamic behavior since of the light computational effort needed. Due to the system dimension, continuation329

techniques are not a good fit for tracing the NFEM asymptotic dynamic responses. This is why ROM are better330

suited for arc-length continuation. A comparison between asymptotic responses of the NFEM dynamics and the331

ROM response computed via continuation method is proposed here. The goal of this comparison is to assess for the332

reliability of designs relying of ROM and also for the NFEM ability to trace nonlinear behaviors.333

The parameters, used for the computations are given in Table 4. Every computations have been performed with a334

time step such that the smallest period at stake is divided into 2000 intervals.335

From Figures 9 - 10, we can see that the linear regimes are well reconstituted by both approaches. The amplitudes336

at first-quarter span, mid-span and last-quarter span are given respectively by ufqs , ums and ulqs. In this case, the337

assumptions made for obtaining the ROM (see Section ) do not have any impact on the obtained amplitudes. However338

the highly-nonlinear regime responses obtained from FEM and the ROM are different. For low frequencies, the two339

predictions of amplitude are still qualitatively in agreement, but with higher frequencies come more discrepancies.340

It appears that coupling between modes are not always traced by the ROM and that the latter tends to overestimate341

the amplitude of displacement. Additional modes may be added in the continuation to catch further details about the342

nonlinear dynamics however some discrepancy subsist between both approaches in the nonlinear case. Even though343

the modes obtained via FEM and ROM are the same, it is difficult to keep a good match between dynamic responses344

when the cable is slacker, inclined and subjected to moderate loads. To accommodate this issue, the usage of ROM345
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Figure 9: Displacement (mm) versus frequency of forcing (rad/s) for the y direction and z direction obtained via FEM
(dots ) and (dots ) and via arc-length continuation endowed in the ROM (solid line ) and (solid line ) in a

linear regime - From left to right first quarter span , midspan and last quarter span - Undamped frequencies are plotted
vertically - Parameters are given in Table 4

should be always supported by another tool, especially in the latter case.346

347

348
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Figure 10: Displacement (m) versus frequency of forcing (rad/s) for the y direction and z direction obtained via FEM
(dots ) and (dots ) and via arc-length continuation endowed in the ROM (solid line ) and (solid line ) in a
nonlinear regime - From left to right first quarter span , midspan and last quarter span - Undamped frequencies are

plotted vertically - Parameters are given in Table 4
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Conclusion349

The current work entails the governing equations for an elastic cable. The case of the statics is studied analytically.350

From the static configuration, essential feature of the theory of cable vibration are derived in the Frenet basis which351

allows to capture the frequencies and modes.352

A Ritz-Galerkin projection technique is used to obtain a reduced-order-model which can trace the nonlinear dy-353

namics of a cable subjected to an arbitrary load. The longitudinal, normal and transversal motions are faithfully354

described by the approach. An example of frequency curve is provided which is obtained via arc-length continuation355

technique.356

The presented methodology is general and applicable for an arbitrary number of degrees of freedom systems without357

neglecting the longitudinal displacement.358

The reliability of the reduced-order-model for transient dynamics and for asymptotic responses have been assessed359

and discussed via comparisons with nonlinear finite element models. It appears that both approaches are com-360

plementary. Indeed, the relevance of reduced-order-model in the case of large amplitudes should be checked via361

suitable numerical approaches to ensure that predictions of the system responses and its design takes into account362

the physics at stake.363
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Formal values for the tensors369

Let us consider here that Φ refers to a mode and its subscript refers to its index. The latter can be decomposed in the370

Frenet basis as follows371

Φj =


Pj

Qj

Bj

 (77)
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Mjk = ρ

∫ L

0
Φj · ΦkdS (78)

Cjk = 2µ

∫ L

0
Φj · ΦkdS (79)

As we work in the Frenet basis, the derivative of a given mode reads372

Φ′j =


P ′j −KQj
Q′j +KPj

B′j

 (80)

The latter allows to take into account the curvature into the first, second and third order expansion of the

elastic forces in the nonlinear equations of the motion (73) .

Kjk = EA

∫ L

0



P ′
k −KQk

0

0

+
‖r′‖ − 1

‖r′‖


0

Q′
k +KPk

Bk


 ·


P ′
j −KQj

Q′
j +KPj

B′
j

 dS (81)

Qjkl = EA

∫ L

0

 EA

‖r′‖2


(
Q′

k +KPk

) (
Q′

l +KPl

)
+B′

kB
′
l

2
(
P ′
k −KQk

) (
Q′

l +KPl

)
2
(
P ′
k −KQk

)
B′

l


 ·


P ′
j −KQj

Q′
j +KPj

B′
j

 dS (82)

Cjklm = −
EA

2

∫ L

0


2
(
P ′
k −KQk

) [(
Q′

l +KPl

)
(Q′

m +KPm) +B′
lB

′
m

]
(
Q′

k +KPk

) [
2
(
P ′
l −KQl

)
(P ′

m −KQm)−
(
Q′

l +KPl

)
(Q′

m +KPm)−B′
lB

′
m

]
B′

k

[
2
(
P ′
l −KQl

)
(P ′

m −KQm)−
(
Q′

l +KPl

)
(Q′

m +KPm)−B′
lB

′
m

]


·

 1

‖r′‖3


P ′
j −KQj

Q′
j +KPj

B′
j


 dS

(83)
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