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We give an algebraic description of the set of algebraic points of degree at most d over Q on hyperelliptic curves y 2 = x 5 + n 2 .

Introduction and result

Let Q be the eld of rational numbers and Q a algebraic closure of Q. Let C be an algebraic curve of genus g ≥ 2 dened over Q, and J C its jacobian variety. A celebrated theorem of Mordell-Weil states that the group J C (Q) of rational points of the jacobian J C is a abelian group of nite type, e.g., J C (Q) ∼ = Z r × J C (Q) tors , where the integer r is called the rank of the variety J C and J C (Q) tors the torsion subgroup. In this note, we study the algebraic points of degree at most d on hyperelliptic curves C k of genus 2 of ane equations C k : y 2 = x 5 + k for some integer k.

The degree of an algebraic point on C k is the degree of its eld of denition over Q. Note that the case k = 1 goes back to Schaefer ([8]), Fall ([3]) and Sall,et al. ([7]). The purpose of this note is to settle the case k = n 2 with n ∈ {4, 5, 8, 10, 12, 16, 20, 27, 36, 144, 162, 216, 400, 432, 625, 648, 1250, 1296, 5000}. Let η be a primitive 10 -th root of unity in Q and we put

A n k = ( 5 √ n 2 η 2k+1 , 0) with 0 ≤ k ≤ 4. Also let P n = (0, n), P n = (0, -n) and P ∞ the point at innity on C n 2 . The AbelJacobi map associated to P ∞ is the embedding j : C n 2 -→ J C n 2 , P -→ [P -P ∞ ]
where [P -P ∞ ] denotes the class of the divisor P -P ∞ . Various works study these curves (see [START_REF] Stoll | On the arithmetic of the curves y 2 = x l + A and their Jacobians[END_REF], [START_REF] Stoll | On the arithmetic of the curves y 2 = x l + A, II[END_REF], [START_REF] Stoll | On the L-functions of the curves y 2 = x l + A[END_REF]). Combining the results given by Mulholland ( [START_REF] Mulholland | Elliptic curves with rational 2-torsion and related ternary Diophantine equations[END_REF], p. 178) and Bruni ( [START_REF] Anthony | Twisted Extensions of Fermat's Last Theorem[END_REF], p. 142), we obtain the following theorem : Theorem 1. The Q-rational points on the curve C n 2 are given by

C (1) n 2 (Q) = {P n , P n , P ∞ }.
It is also known since Faltings ([2]), for a number eld K, the set C n 2 (K) of K-rational points on C n 2 is nite. We are interested mostly in this note in describing this set. More precisely, we give an algebraic description of the set of algebraic points of degree at most d over Q on the curve C n 2 . Our main result is the following theorem : Theorem 2. For all number eld K such that

[K : Q] ≤ d, we have C n 2 (K) ⊆ A n 0 ∪ A n 1 ∪ A n 2 with A n 0 =                      x, - i≤ d 2 a i x i j≤ d-5 2 b j x j     | a d 2 ̸ = 0 if d is even, b d-5 2 ̸ = 0 if d is odd and x root of B n 0 (x) = i≤ d 2 a i x i 2 - j≤ d-5 2 b j x j 2 (x 5 + n 2 )                  , A n 1 =                      x, - i≤ d+1 2 a i x i j≤ d-4 2 b j x j     | a 0 = ±nb 0 , a d+1 2 ̸ = 0 if d is odd, b d-4 2 ̸ = 0 if d is even and x root of B n 1 (x) = i≤ d+1 2 a i x i 2 - j≤ d-4 2 b j x j 2 (x 5 + n 2 )                  , A n 2 =                      x, - i≤ d+2 2 a i x i j≤ d-3 2 b j x j     | a 0 = ±nb 0 , a 1 = ±nb 1 , a d+2 2 ̸ = 0 if d is even, b d-3 2 ̸ = 0 if d is odd and x root of B n 2 (x) = i≤ d+2 2 a i x i 2 - j≤ d-3 2 b j x j 2 (x 5 + n 2 )                 
.

Particular case :

1. The algebraic points of degree 2 over Q on C n 2 are described by

C (2) n 2 (Q) = x, ± x 5 + n 2 | x ∈ Q * .
2. The algebraic points of degree 3 over Q on C n 2 are described by

C (3) n 2 (Q) = (x, ±n -λx 2 ) | λ ∈ Q * and x root of x 3 -λ 2 x 2 ± 2λn = 0 .
3. The algebraic points of degree 4 over Q on C n 2 are described by C (4)

n 2 (Q) = A n 0 ∪ A n 1 ∪ A n 2 with A n 0 = x, ± x 5 + n 2 | [Q(x) : Q] = 2 , A n 1 = x, ±n -λx -µx 2 | λ ∈ Q * , µ ∈ Q and x root of B n 1 (x) = x 4 -µ 2 x 3 -2λµx 2 + (-λ 2 ± 2µn)x ± 2λn , A n 2 = x, ±n -λx 2 -µx 3 | λ, µ ∈ Q * and x root of B n 2 (x) = µ 2 x 4 + (2λµ -1)x 3 + λ 2 x 2 ∓ 2µnx ∓ 2λn
.

Fundamental lemmas

Let D be a divisor on C n 2 . The vector space L(D) is dened to be the set of rational functions

L(D) = {f ∈ Q(C n 2 ) * : div(f ) ≥ -D} ∪ {0}.
The dimension of L(D) as a Q-vector space is denoted by l(D). Let x and y denote the rational functions on C n 2 given by x(X, Y, Z) = X/Z and y(X, Y, Z) = Y /Z. The projective equation of the curve

C n 2 is C n 2 : Y 2 Z 3 = X 5 + n 2 Z 5 .
The following lemma gives the structure of the Mordell-Weil group J C n 2 (Q) and that the niteness of the latter group is essential for this work :

Lemma 1. J C n 2 (Q) ∼ = Z/5Z.
Proof : Using of MAGMA for 2-descent on jocabians of hyperelliptic curves we obtain the desired result (For more detaits, we refer to [START_REF] Stoll | Implementing 2-descent for Jacobians of hyperelliptic curves[END_REF], [START_REF] Mulholland | Elliptic curves with rational 2-torsion and related ternary Diophantine equations[END_REF], [START_REF] Anthony | Twisted Extensions of Fermat's Last Theorem[END_REF]).

□ Lemma 2. • div(y -n) = 5P n -5P ∞ ; div(y + n) = 5P n -5P ∞ • div(x) = P n + P n -2P ∞ ; div(y) = A n 0 + • • • + A n 4 -5P ∞ Proof : It suces to apply the following relation div(y -α) = (Y -αZ = 0).C n 2 -(Z = 0).C n 2 ,
with α ∈ Z and Γ.C n 2 is the intersection cycle of a algebraic curve Γ dened over Q and the curve C n 2 . □

From Lemma 2, we see that 5j(P n ) = 5j(P n ) = 0, and j(P n ) + j(P n ) = 0. Thus, j(P n ) and j(P n ) generate the same group

J C n 2 (Q) which is isomorphic to Z/5Z. Lemma 3. A Q-basis for L(dP ∞ ) is given by B d = x i | i ∈ N et i ≤ d 2 ∪ yx j | j ∈ N et j ≤ d -5 2 .
Proof :

▷ It is clear that l(P ∞ ) = 1. But L(P ∞ ) certainly contains the constant functions, thus L(P ∞ ) =< 1 >.

▷ Since the genus of C n 2 is equal to 2, then 2P ∞ is a canonical divisor on C n 2 , so l(2P ∞ ) = 2, thus {1, x} provides a basis for L(2P ∞ ).

▷ For d ≥ 3, we can see that the elements of B d are linearly independent and are in L(dP ∞ ). Thus, it stays to show that the cardinal of B d is equal to l(dP ∞ ). According to the Riemann-Roch theorem (see [START_REF] Hindry | Diophantie geometry, an introduction, springer verlage[END_REF], p. 71), we have l(dP ∞ ) = d -1. Two cases arise :

⋄ 1 er case : if d is even, then by setting d = 2h, we have i ≤ d 2 = h; j ≤ d -5 2 = 2h -5 2 ⇔ j ≤ h-3.
Therefore, we have B d = {1, x, . . . , x h } ∪ {y, yx, . . . , yx h-3 } and hence card(

B d ) = (h + 1) + (h -3 + 1) = 2h -1 = d -1. ⋄ 2 er case : if d is odd, then by putting d = 2h + 1, we have i ≤ d 2 = 2h + 1 2 ⇔ i ≤ h; j ≤ d -5 2 = 2h -4 2 = h -2. Thus, we have B d = {1, x, . . . , x h } ∪ {y, yx, . . . , yx h-2 } and therefore card(B d ) = (h + 1) + (h -2 + 1) = 2h = d -1. □ 3 Proof of Theorem 2
Let R be an algebraic point on C n 2 of degree d over Q; if d = 1 these points are given by theorem 1., so we can assume that d ≥ 2. Let R 1 , • • • , R d be the Galois conjugates of R. Then none of the points R i is equal to the algebraic points on

C n 2 of degree ≤ d -1 over Q. We have [R 1 + • • • + R d -dP ∞ ] ∈ J Cn (Q) and Lemma 1 gives [R 1 + • • • + R d -dP ∞ ] = mj(P n ) with 0 ≤ m ≤ 4. ( * ) Case m = 0 : The formula ( * ) becomes [R 1 + • • • + R d -dP ∞ ] = 0.
The Abel-Jacobi theorem (see [START_REF] Griths | Introduction to algebraic curves[END_REF], p. 155) implies the existence of a rational function

f dened over Q such that div(f ) = R 1 + • • • + R d -dP ∞ . Therefore f ∈ L(dP ∞ ), hence f = i≤ d 2 a i x i + y j≤ d-5 2 b j x j with a d 2 ̸ = 0 if d is even or b d-5 2 ̸ = 0 if d is odd. At points R i , we have i≤ d 2 a i x i + y j≤ d-5 2 b j x j = 0, hence y = - i≤ d 2 a i x i j≤ d-5 2 b j x j . Replacing the expression of y in y 2 -x 5 -n 2 = 0, we obtain i≤ d 2 a i x i 2 - j≤ d-5 2 b j x j 2 (x 5 + n 2 ) = 0.
Thus, we obtain a family of points

A n 0 = x, - i≤ d 2 a i x i j≤ d-5 2 b j x j | x root of B n 0 (x) = i≤ d 2 a i x i 2 - j≤ d-5 2 b j x j 2 (x 5 + n 2 ) .
Cases m = 1 and m = 4 :

-For m = 1 : the formula

( * ) becomes [R 1 + • • • + R d + P n -(d + 1)P ∞ ] = 0. There exists a function f such that div(f ) = R 1 + • • • + R d + P n -(d + 1)P ∞ . Therefore f ∈ L((d + 1)P ∞ ), hence f = i≤ d+1 2 a i x i + y j≤ d-4 2 b j x j with a d+1 2 ̸ = 0 if d is odd or b d-4 2 ̸ = 0 if d is even. The function f is of order 1 in P n , hence a 0 = nb 0 . At points R i , we have i≤ d+1 2 a i x i + y j≤ d-4 2 b j x j = 0, which implies that y = - i≤ d+1 2 a i x i j≤ d-4 2 b j x j . The substitution y in y 2 -x 5 -n 2 = 0 gives i≤ d+1 2 a i x i 2 - j≤ d-4 2 b j x j 2 (x 5 + n 2 ) = 0.
Thus, we obtain a family of points

A n 1,1 = x, - i≤ d+1 2 a i x i j≤ d-4 a i x i 2 - j≤ d-4 2 b j x j 2 (x 5 +n 2 )
-For m = 4 : by similar reasoning to the case m = 1, we obtain a family points

A n 1,4 = x, - i≤ d+1 2 a i x i j≤ d-4 2 b j x j | a 0 = -nb 0 and x root of B n 1,4 (x) = i≤ d+1 2 a i x i 2 - j≤ d-4 2 b j x j 2 (x 5 +n 2 ) Finally, we put A n 1 = A n 1,1 ∪ A n 1,4 and B n 1 = B n 1,1 ∪ B n 1,4 . Cases m = 2 et m = 3 : -For m = 2 : the formula ( * ) becomes [R 1 + • • • + R d + 2P n -(d + 2)P ∞ ] = 0.
According to the Abel-Jacobi theorem, there exists a function f such that

div(f ) = R 1 + • • • + R d + 2P n -(d + 2)P ∞ . Therfore f ∈ L((d + 2)P ∞ ), hence f = i≤ d+2 2 a i x i + y j≤ d-3 2 b j x j with a d+2 2 ̸ = 0 if d is even or b d-3 2 ̸ = 0 if d is odd. The function f is of order 2 in P n , so a 0 = nb 0 and a 1 = nb 1 . At points R i , we have i≤ d+2 2 a i x i + y j≤ d-3 2 b j x j = 0, which leads to y = - i≤ d+2 2 a i x i j≤ d-3 2 b j x j . The substitution of y in y 2 -x 5 -n 2 = 0 gives i≤ d+2 2 a i x i 2 - j≤ d-3 2 b j x j 2 (x 5 + n 2 ) = 0.
Thus, we nd a family of points -For m = 3 : by analogous reasoning to the case m = 2, we nd a family of points Remark : The result obtained remains true for any integer n for which J C n 2 (Q) ∼ = Z/5Z and that the set of Q-rational points on C n 2 is given by {P n , P n , P ∞ }.

A n 2,2 = x, -
A n 2,3 = x, -

i≤ d+2 2 a i x i j≤ d- 3 2b 2 a i x i 2 - j≤ d- 4 2b j x j 2 (x 5 +

 2322425 j x j | a 0 = nb 0 , a 1 = nb 1 and x root of B n 2,2 (x) with B n 2,2 (x) = i≤ d+1 n 2 ).

i≤ d+2 2 a i x i j≤ d-3 2 b 2 a i x i 2 - j≤ d- 4 2b j x j 2 (x 5 +

 2222425 j x j | a 0 = -nb 0 , a 1 = -nb 1 and x root of B n 2,3 (x) n 2 ).

Finally, we put A n 2

 2