N

N
N

HAL

open science

Evolutionary Computing for the Satisfiability Problem

Jin-Kao Hao, Frédéric Lardeux, Frédéric Saubion

» To cite this version:

Jin-Kao Hao, Frédéric Lardeux, Frédéric Saubion. Evolutionary Computing for the Satisfiability Prob-
lem. Applications of Evolutionary Computing, 2003, Essex, United Kingdom. pp.258-267, 10.1007/3-

540-36605-9 24 . hal-03377796

HAL Id: hal-03377796
https://hal.science/hal-03377796
Submitted on 20 Oct 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-03377796
https://hal.archives-ouvertes.fr

Evolutionary Computing for the Satisfiability
Problem

Jin-Kao Hao, Frédéric Lardeux, and Frédéric Saubion

LERIA, Université d’Angers
2 Bd Lavoisier, F-49045 Angers Cedex 01
{Jin-Kao.Hao,Frederic.Lardeux,Frederic.Saubion}@univ-angers.fr

Abstract. This paper presents GASAT, a hybrid evolutionary algo-
rithm for the satisfiability problem (SAT). A specific crossover opera-
tor generates new solutions, that are improved by a tabu search proce-
dure. The performance of GASAT is assessed using a set of well-known
benchmarks. Comparisons with state-of-the-art SAT algorithms show
that GASAT gives very competitive results. These experiments also allow
us to introduce a new SAT benchmark from a coloring problem.

1 Introduction

The satisfiability problem (SAT) [] consists in finding a truth assignment that
satisfies a well-formed Boolean expression E. SAT is one of the six basic core NP-
complete problems and has many applications such as VLSI test and verification,
consistency maintenance, fault diagnosis, planning ... SAT is originally stated as
a decision problem but one may take an interest in other related SAT problems:

— model-finding: to find satisfying truth assignments

— MAX-SAT: to find an assignment which satisfies the maximum number of
clauses

— model-counting: to find the number of all the satisfying truth assignments.

During the last decade, several improved solution algorithms have been devel-
oped and important progress has been achieved. These algorithms have enlarged
considerably our capacity of solving large SAT instances. Recent international
challenges organized these years [T624] continue to boost the worldwide research
on SAT.

These algorithms can be divided into two main classes. A complete algorithm
is designed to solve the initial decision problem while an incomplete algorithm
aims at finding satisfying assignments (model-finding). The most powerful com-
plete algorithms are based on the Davis-Putnam-Loveland procedure [3]. They
differ essentially by the underlying heuristic used for the branching rule [BIT8/26].
Specific techniques such as symmetry-breaking, backbone detecting or equiva-
lence elimination are also used to reinforce these algorithms [IIT7]6].

Existing incomplete algorithms for SAT are mainly based on local search
[25/15]20] and evolutionary algorithms [4[T3|8[7IT1]. The very simple hill-climber

S. Cagnoni et al. (Eds.): EvoWorkshops 2003, LNCS 2611, pp. 258-267] 2003.
© Springer-Verlag Berlin Heidelberg 2003

Verwendete Distiller 5.0.x Joboptions
Dieser Report wurde automatisch mit Hilfe der Adobe Acrobat Distiller Erweiterung "Distiller Secrets v1.0.5" der IMPRESSED GmbH erstellt.
Sie koennen diese Startup-Datei für die Distiller Versionen 4.0.5 und 5.0.x kostenlos unter http://www.impressed.de herunterladen.

ALLGEMEIN --
Dateioptionen:
 Kompatibilität: PDF 1.3
 Für schnelle Web-Anzeige optimieren: Nein
 Piktogramme einbetten: Nein
 Seiten automatisch drehen: Nein
 Seiten von: 1
 Seiten bis: Alle Seiten
 Bund: Links
 Auflösung: [2400 2400] dpi
 Papierformat: [595.276 841.889] Punkt

KOMPRIMIERUNG --
Farbbilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 300 dpi
 Downsampling für Bilder über: 450 dpi
 Komprimieren: Ja
 Automatische Bestimmung der Komprimierungsart: Ja
 JPEG-Qualität: Maximal
 Bitanzahl pro Pixel: Wie Original Bit
Graustufenbilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 300 dpi
 Downsampling für Bilder über: 450 dpi
 Komprimieren: Ja
 Automatische Bestimmung der Komprimierungsart: Ja
 JPEG-Qualität: Maximal
 Bitanzahl pro Pixel: Wie Original Bit
Schwarzweiß-Bilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 2400 dpi
 Downsampling für Bilder über: 3600 dpi
 Komprimieren: Ja
 Komprimierungsart: CCITT
 CCITT-Gruppe: 4
 Graustufen glätten: Nein

 Text und Vektorgrafiken komprimieren: Ja

SCHRIFTEN --
 Alle Schriften einbetten: Ja
 Untergruppen aller eingebetteten Schriften: Nein
 Wenn Einbetten fehlschlägt: Warnen und weiter
Einbetten:
 Immer einbetten: [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol]
 Nie einbetten: []

FARBE(N) --
Farbmanagement:
 Farbumrechnungsmethode: Farbe nicht ändern
 Methode: Standard
Geräteabhängige Daten:
 Einstellungen für Überdrucken beibehalten: Ja
 Unterfarbreduktion und Schwarzaufbau beibehalten: Ja
 Transferfunktionen: Anwenden
 Rastereinstellungen beibehalten: Ja

ERWEITERT --
Optionen:
 Prolog/Epilog verwenden: Ja
 PostScript-Datei darf Einstellungen überschreiben: Ja
 Level 2 copypage-Semantik beibehalten: Ja
 Portable Job Ticket in PDF-Datei speichern: Nein
 Illustrator-Überdruckmodus: Ja
 Farbverläufe zu weichen Nuancen konvertieren: Ja
 ASCII-Format: Nein
Document Structuring Conventions (DSC):
 DSC-Kommentare verarbeiten: Ja
 DSC-Warnungen protokollieren: Nein
 Für EPS-Dateien Seitengröße ändern und Grafiken zentrieren: Ja
 EPS-Info von DSC beibehalten: Ja
 OPI-Kommentare beibehalten: Nein
 Dokumentinfo von DSC beibehalten: Ja

ANDERE --
 Distiller-Kern Version: 5000
 ZIP-Komprimierung verwenden: Ja
 Optimierungen deaktivieren: Nein
 Bildspeicher: 524288 Byte
 Farbbilder glätten: Nein
 Graustufenbilder glätten: Nein
 Bilder (< 257 Farben) in indizierten Farbraum konvertieren: Ja
 sRGB ICC-Profil: sRGB IEC61966-2.1

ENDE DES REPORTS --

IMPRESSED GmbH
Bahrenfelder Chaussee 49
22761 Hamburg, Germany
Tel. +49 40 897189-0
Fax +49 40 897189-71
Email: info@impressed.de
Web: www.impressed.de

Adobe Acrobat Distiller 5.0.x Joboption Datei
<<
 /ColorSettingsFile ()
 /AntiAliasMonoImages false
 /CannotEmbedFontPolicy /Warning
 /ParseDSCComments true
 /DoThumbnails false
 /CompressPages true
 /CalRGBProfile (sRGB IEC61966-2.1)
 /MaxSubsetPct 100
 /EncodeColorImages true
 /GrayImageFilter /DCTEncode
 /Optimize false
 /ParseDSCCommentsForDocInfo true
 /EmitDSCWarnings false
 /CalGrayProfile (Ø¯P)
 /NeverEmbed []
 /GrayImageDownsampleThreshold 1.5
 /UsePrologue true
 /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 /AutoFilterColorImages true
 /sRGBProfile (sRGB IEC61966-2.1)
 /ColorImageDepth -1
 /PreserveOverprintSettings true
 /AutoRotatePages /None
 /UCRandBGInfo /Preserve
 /EmbedAllFonts true
 /CompatibilityLevel 1.3
 /StartPage 1
 /AntiAliasColorImages false
 /CreateJobTicket false
 /ConvertImagesToIndexed true
 /ColorImageDownsampleType /Bicubic
 /ColorImageDownsampleThreshold 1.5
 /MonoImageDownsampleType /Bicubic
 /DetectBlends true
 /GrayImageDownsampleType /Bicubic
 /PreserveEPSInfo true
 /GrayACSImageDict << /VSamples [1 1 1 1] /QFactor 0.15 /Blend 1 /HSamples [1 1 1 1] /ColorTransform 1 >>
 /ColorACSImageDict << /VSamples [1 1 1 1] /QFactor 0.15 /Blend 1 /HSamples [1 1 1 1] /ColorTransform 1 >>
 /PreserveCopyPage true
 /EncodeMonoImages true
 /ColorConversionStrategy /LeaveColorUnchanged
 /PreserveOPIComments false
 /AntiAliasGrayImages false
 /GrayImageDepth -1
 /ColorImageResolution 300
 /EndPage -1
 /AutoPositionEPSFiles true
 /MonoImageDepth -1
 /TransferFunctionInfo /Apply
 /EncodeGrayImages true
 /DownsampleGrayImages true
 /DownsampleMonoImages true
 /DownsampleColorImages true
 /MonoImageDownsampleThreshold 1.5
 /MonoImageDict << /K -1 >>
 /Binding /Left
 /CalCMYKProfile (U.S. Web Coated (SWOP) v2)
 /MonoImageResolution 2400
 /AutoFilterGrayImages true
 /AlwaysEmbed [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol]
 /ImageMemory 524288
 /SubsetFonts false
 /DefaultRenderingIntent /Default
 /OPM 1
 /MonoImageFilter /CCITTFaxEncode
 /GrayImageResolution 300
 /ColorImageFilter /DCTEncode
 /PreserveHalftoneInfo true
 /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 /ASCII85EncodePages false
 /LockDistillerParams false
>> setdistillerparams
<<
 /PageSize [595.276 841.890]
 /HWResolution [2400 2400]
>> setpagedevice

Evolutionary Computing for the Satisfiability Problem 259

GSAT [23] and its powerful variant Walksat [22] are famous examples of incom-
plete algorithms. Though incomplete algorithms are little helpful for unsatisfiable
instances, they represent the unique approach for finding models of very large
instances. At this time, Unitwalk [14] appears as the best incomplete algorithm.
A current trend for designing more powerful algorithms consists in combining in
some way the best elements from different approaches, leading to hybrid algo-
rithms [21].

In this paper, we present GASAT, a new hybrid algorithm embedding a tabu
search procedure into the evolutionary framework. At a very high level, GASAT
shares some similarities with the hybrid algorithm proposed in [§]. GASAT dis-
tinguishes itself by the introduction of original and specialized crossover opera-
tors, a powerful Tabu Search (TS) algorithm and the interaction between these
operators.

In the following sections, we introduce the GASAT algorithm as well as its
main components. The performance of GASAT is then assessed on a large range
of well-known SAT instances and compared with some best known incomplete
algorithms. In this section, we also propose a new benchmark based on a col-
oration problem. We show thus GASAT competes very favorably with these
state-of-the-art algorithms. Future extensions and improvements are discussed
in the last section.

2 Basic Components

In this section, we define some basic notions and notations related to evolutionary
computation, local search and propositional logic.

2.1 The SAT Problem

An instance of the SAT problem is defined by a set of boolean variables (also
called atoms) X = {x1,...,2,} and a boolean formula ¢:{0,1}"* — {0,1}. A
literal is a variable (also called atom) or its negation. A clause is a disjunction of
literals. The formula ¢ is in conjunctive normal form (CNF) if it is a conjunction
of clauses. A (truth) assignment is a function v: X — {0,1}. The formula is
said to be satisfiable if there exists an assignment satisfying ¢ and unsatisfiable
otherwise. In this paper, ¢ is supposed to be in CNF.

2.2 Search Sapce, Fitness, and Selection

Our search method relies on the management of a population of configurations
representing potential solutions. Therefore, we present now the basic materials
for this population.

Representation. The most obvious way to represent an individual for a SAT
instance with n variables is a string of n bits where each variable is associated
to one bit. Other representation schemes are discussed in [II]. Therefore the

260 J.-K. Hao, F. Lardeux, and F. Saubion

search space is the set S = {0,1}" (i.e. all the possible strings of n bits) and
an individual X obviously corresponds to an assignment. X|i denotes the the
truth value of the 7** atom and X[i < «] denotes an individual X where the
ith atom has been set to the value o. Given an individual X and a clause ¢, we
use sat(X,c) to denote the fact that the assignment associated to X satisfies
the clause c.

Fitness Function. Given a formula ¢ and an individual X, the fitness of X is
defined to be the number of clauses which are not satisfied by X:

eval: S — IN, eval(X) = card({c|-sat(X,c) A c € ¢})
where card denotes as usual the cardinality of a set. This fitness function will
be used in the selection process and induce an order >.,,; on the population.
The smallest value of this function equals 0 and an individual having this fitness
value corresponds to a solution.

Selection Process. The selection operator is a function which takes as input a
given population and extracts some individuals according to a selection criterion.
These selected individuals are the chosen parents for the evolution process and
will evolve by crossover operations. To insure an efficient search, it is necessary
to keep some diversity in the population. Actually, if the selected parents are too
similar, some region of the search space S will not be explored. The diversity
of the selected population is achieved by introducing the notion of hamming
distance ham [12] between strings of bits. This distance corresponds simply to
the number of different bits between two strings. Therefore we define the function
select: 2% x IN x IN — 29 such that select(P,n,d) is the set of the n best X in
P according to eval and VX, Y € select(P,n,d), ham(X,Y) > d. For the sake of
simplicity, the parameter d will be automatically adjusted and will not appear
in the selection function.

3 The Hybrid Genetic Algorithm: GASAT

3.1 The GASAT Algorithm

The final algorithm is obtained by combining a crossover stage with a local search
improvement. Given an initial population, the first step consists in selecting
its best elements (i.e. assignments) w.r.t. the function eval. Then, crossovers
are performed on this selected population. Each child is individually improved
using a tabu search. If the child is better than the assignments already in the
population then it is added to the current population and the whole process goes
on. The general algorithm is described in Fig. [

This algorithm can be adjusted by changing the selection function, the cross-
over operator or the local search method but also by modifying the insertion
condition. A variant of the condition used in this algorithm could be to insert
the child whatever its evaluation is w.r.t. the whole population. Such a condition
would bring more diversity but could also disturb the general convergence of the
search.

Evolutionary Computing for the Satisfiability Problem 261

Data: a set of CNF clauses F, Max flip,Maxtries
Result: a satisfying truth assignment if found

Begin
CreatePopulation(P)
tries < 0
While no X € P satisfies ¢ and tries < Maxtries
/* Selection */
P’ « Select(P,n)
Choose X,Y ¢ P’
/* Crossover */
Z + crossover(X,Y)
/* TS improvement */
Z + Tabu(Z, Max flip)
/* Insertion condition of the child */
IfVX € P, Z >cpai X then replace the oldest X in P by Z
tries < tries + 1
EndWhile
If there exists X € P satisfying ¢
then return the corresponding assignment
else return the best assignement found
End

Fig. 1. GASAT: general structure

3.2 Basic Stages

Crossover Operator. A crossover or recombination operator has to take into
account as much as possible the semantics of the individuals in order to control
the general search process and to obtain an efficient algorithm. In the SAT
problem, the variables are the atoms and a constraint structure is induced by
the clauses. Therefore, while the representation focuses on the atoms, an efficient
crossover should take into account the whole constraint structure.

We first define a function flip: {0,1} — {0, 1} such that flip(z) = 1—z. This
function induced a neighborhood relation in & which will be used in the tabu
search mechanism when the algorithm changes from a configuration to another
one by flipping one of its bits. Then, we define a function imp: S x IN — IN such
that imp(X|i) = card({c | sat(X[i + flip(X|i)],c) A =sat(X,c)}) — card({c |
asat(X[i +— flip(X|i)], c)Asat(X, c)}). This function computes the improvement
obtained by the flip of the i*" component of X and was previously introduced in
GSAT and Walksat [23]22]. It corresponds to the gain of the solution according
to the function ewval (i.e. the number of false clauses which become true by
flipping the atom ¢ minus the number of satisfied clauses which become false).
Remark that if this number is negative then the number of false clauses would
increase if the flip is performed. This function induces a natural order >;,, on
the atoms which is extended to the assignments (X >;,,, Y iff there exists a

262 J.-K. Hao, F. Lardeux, and F. Saubion

position ¢ such that Vj, X|i >, Y|7). This crossover operator produces a child
Z from two parents X and Y.

Definition 1. Crossover

For each clause ¢ such that —sat(X,c) A —sat(Y, c) and for all positions i such
that the variable x; appears in ¢, we compute o; = imp(X|i) + imp(Y|i) and we
set Z|k = flip(X|k)lwhere k is the position such that oy is mazimum. For all
the clauses ¢ such that sat(X,c) A sat(Y,c) and such that X|i =Y|i =1 (resp.
X|i =Y|i = 0) if the atom x; appears positively (resp. negatively) in ¢, we set
Zli =1 (resp. Z|i = 0). The positions in Z which have received no value by the
previous operations are randomly valued.

Example. The following simple example illustrates the crossover. The problem
has five variables, {x1,z2, 23,24, 25} and seven clauses.

(l‘l VsV 1‘5) AN (_\.TQ VsV _\1‘5) N (_\131 V -z V 1‘4) AN (Il V x5V x4) A (.272 V
X3V xg) A (mx3 Vg Vas)A(mzg Vas V)

T1|T2|X3|T4|Ts
Let X and Y be two individuals with two false clauses each: |X||1[1]0[0 |1
Y{(0[|1]|0]|0]|1

1) The second and the last clause are | 2) With the true clauses for X and Y,

false for X and Y. So we compute z9 and x5 can be valued.

o for all the z;.

For the second clause : o9 = 3, L1|X2|T3|T4|T5
_ _ Z 1111

03 = 47 05 = 2

For the last clause : 00 =3, 04 = 4 3) 21 is randomly valued.

T1|To|T3|Ts|Ts T1|T2|T3|T4|Ts
7 1|1 Zio|1]|1]1]1

The main idea of this operator is to keep the structure of the clauses satis-
faction induced by both parents by repairing false clauses and maintaining true
ones.

At this step, we have defined the evolutionary part of our algorithm which
insures the general search with enough diversity to reach some promising regions
of §. At this time, a tabu search process will intensify the search process to fully
exploit these regions by locally improving the configurations in order to get a
solution if possible. Moreover, TS can also explore the search space alone as a
diversification process thanks to the tabu list.

! One should remark that, if a clause is false for both parents, then all the variables
appearing in this clause have necessarily the same value in both parents. This comes
from the fact that a clause can be false only if all of its literals are false.

Evolutionary Computing for the Satisfiability Problem 263

Tabu Search Procedure. TS is an advanced local search method using a
memory to avoid local optima [10]. The principle is quite simple: it acts as a
descent (at each iteration, it makes the best move), but once visited, a config-
uration is made tabu, that is, the algorithm is not allowed to visit it again for
a given number of iterations. Since the memorization of the last configurations
could be costly, a common variation consists in making tabu only the moves.
Now, a move is done if it is the best one and if it is not tabu. Once executed,
the move is included in the tabu list, which acts as a fixed size FIFO queue,
and is removed from this list after A iterations. To consider improvement of the
best-to-date solution, the tabu constraint is disabled in the case of moves leading
to a better solution than the best-to-date. TS has already been experimented
for SAT problem [20]].

In our context, it is clear that the moves are possible flips of the value of
a given assignment and that the tabu list will be a list of flip index already
performed. Here the initial configuration will be given as entry to the TS and
not generated randomly.

In order to simplify the tuning of our general algorithm and to guarantee a
stable behavior, we propose an automatic adjustment of the tabu list length A
based on some experimental results. Therefore, in the remaining of the paper,
we will simplify our TS function as T'S(X, Max flip).

4 Experimental Results

In this section, we evaluate the performance of GASAT on several classes of
satisfiable and unsatisfiable benchmark instances and compare it with Walksat
[22], one of the well-known incomplete algorithms for SAT, and with UnitWalk
[14] (combination of local search and unit propagation), the best up-to-now
incomplete randomized solver presented to the SAT2002 competition [24].

4.1 Experimental Conditions

Due to the incomplete and non-deterministic nature of GASAT, Walksat and
UnitWalk, each algorithm runs 20 times on each benchmark. This number of
runs depends on the time spent by each algorithm.

For the three solvers, we limit the execution time to two hours for each run.
We impose a maximum of 107 flips for Walksat and GASAT (Walksat with
maxtries=10, as suggested in the literature, and maxflip=10% and GASAT with
103 crossovers, 10* flips for each TS step and a tabu list fixed to be 40% of the
length of the individuals). UnitWalk runs with the default parameters. Therefore,
we can consider that we allow the same power to each of the algorithm in order
to get a fair evaluation.

264

J.-K. Hao, F. Lardeux, and F. Saubion

4.2 Benchmark Instances and Evaluation Criterions

Two classes of instances are used : Structured and Random instances.

— Structured instances: aim-100-1_6-yes1-4, aim-100-2_0-yes1-3 (random
instances with only one solution), mat25.shuffled, mat26.shuffled (mul-
tiplication of two n X m matrices using m products [19]), color-15-4,
color-22-5 (chessboard coloring instances) g125.18, g250.29 (graph col-
oring instances) and dp10u09.suffled, dplilul0O.suffled (instances gen-
erated from bounded model checking from the well known dining philoso-

phers example).

Random instances: glassy-v399-s1069116088, glassy-v450-s325799114
(random instances presented to SAT2002 Competition), £1000, £2000 (DI-

MACS random instances).

included in the board are not of the same color.

The chessboard coloring benchmark color is new. It corresponds to the SAT
encoding of a problem studied in [2] and that we have generalized. The purpose
is to color a chessboard with k colors such that the four corners of every rectangle

Two criterions are used to evaluate GASAT and compare it with Walksat
and UnitWalk. The first one is the success rate (%) which is the number of
successful runs divided by the total number of runs. This criterion is the most
important one since it corresponds to the search power of an algorithm. The
second criterion is the average running time in second (sec.) for successful runs

on a Sun Fire 880 (4 CPU UltraSPARC III 750 Mhz, 8 Go de RAM.

Table 1. Structured instances (if no assignment is found then the best number of false

clauses is written between parentheses)

2 The version of Walksat is v39 and UnitWalk’s is 0.98. GASAT is implemented in C

l Benchmarks “ GASAT “ Walksat H UnitWalk ‘
instances var | cls [sat]] % | sec. [%] sec. % | sec.
aim-100-1_-6-yes1-4| 100 | 160 |Y || 10| 84.53 || (I clause) ||100| 0.006
aim-100-2_0-yes1-3| 100 | 200 |Y [[100| 20.86 || (I clause) ||100| 0.019
mat25.shuffled 588 | 1968 | N || (3 clauses) || (3 clauses) || (8 clauses)
mat26.shuffled 744 | 2464 | N || (2 clauses) || (2 clauses) || (8 clauses)
color-15-4 900 [45675 | Y [[100[479.248]| (7 clauses) [|[(16 clauses)
color-22-5 2420(272129| ? || (5 clauses) |[(41 clauses)||(51 clauses)
g125.18 2250| 70163 | Y 100‘378.660 (2 clauses) ||(19 clauses)
2250.29 7250(454622| 7 || (8 clauses) |[(34 clauses)||(57 clauses)
dpl0u09.suffled |7611| 20770 | N ||(39 clauses)|| (2 clauses) |[(22 clauses)
dpllulO.suffled |9197| 25271 | N ||(56 clauses)|| (3 clauses) |[(20 clauses)

and uses some functions of Walksat.

Evolutionary Computing for the Satisfiability Problem 265

Table 2. Random instances (if no assignment is found then the best number of false
clauses is given between parentheses)

| Benchmarks | GASAT || Walksat [[UnitWalk |

instances var | cls [sat %‘ sec. %\ sec. %‘ sec.

glassy-v399-s069116088| 399 |1862| Y || (5 clauses) ||(5 clauses)||(17 clauses)
glassy-v450-s325799114| 450 [2100| Y || (8 clauses) ||(9 clauses)||(22 clauses)
Y
Y

1000 1000|4250 100\227.649 100{ 9.634 ||100| 1.091
£2000 2000{8500 (6 clauses) |100|21.853((100| 17.169

4.3 Comparative Results on Structured Instances

Tables 1 and 2 show respectively the results of GASAT, Walksat and UnitWalk
on the chosen structured and random instances.

From these tables, one observes first no clear dominance of one algorithm
over the other ones. However, the results show that GASAT performs globally
better on the structured instances than random ones. This seems not surprising
given that its crossover operator relies on structural information. One observes
a particular good performance of GASAT for the four (large) coloring instances
compared with Walksat and UnitWalk. At the same time, one observes for ran-
dom instances that, although GASAT gives competitive results for the glassy
instances, it performs less well on the f1000 and 2000.

4.4 Discussions

Note that we report the best number of false clauses when no assignment is found.
We could have reported the average performance but the standard deviation is
very small for all the solvers.

When the benchmarks are successfully solved, we mention the execution time.
From a more abstract point of view, as already mentioned, we approximatively
provide the same computation resource in terms of basic operations (such as flips)
to each algorithm. Therefore the computation time allowed may be considered
to be quite fair.

We do not mention comparisons with complete solvers since, due to the size
of the benchmarks, we are more interested in the MAX-SAT problem which is
not usually addressed by complete solvers. Moreover, while these solvers can
be efficient on the smallest satisfiable structured instances, they do not provide
interesting results on larger structured or random instances, especially when
these instances are unsatisfiable.

We should mention that we have experimented separately the two main com-
ponents of our algorithm (crossover and tabu search). TS and crossover alone
are able to find solutions but their combination provide the best average results.

266 J.-K. Hao, F. Lardeux, and F. Saubion

5 Conclusion

We have presented the GASAT algorithm, a genetic hybrid algorithm for the
SAT problem (and MAX-SAT). This algorithm is built on a specific crossover
operator which relies on structural information among clauses and a simple tabu
search operator. By their global and local nature, the crossover and tabu search
operators act interactively to ensure a good compromise between exploration and
exploitation of the search space. Moreover, a selection mechanism based on the
Hamming distance is also employed to preserve the diversity of the population.

GASAT was evaluated on both structured and random benchmark instances.
Its performance was compared with two state-of-the-art algorithms (Walksat
and UnitWalk). The experimentations show that GASAT gives globally very
competitive results. In particular, it performs better than the two competing
algorithms on the graph coloring (structured) instances. Meanwhile, it seems
that GASAT performs less well on some random instances.

The algorithm reported in this paper is a preliminary version of GASAT.
Studies are on the way to have a better understanding of its behavior with
respect to different classes of problem instances. We are also working on other
issues to improve further upon its performance; in particular, a diversification
process for tabu search based on unit propagation and criterions for choosing
the variables to be flipped in the crossover.

Acknowledgments. The work presented in this paper is partially supported
by grants from the LIAMA laboratory and the PRA program. We would like to
thank the anonymous referees for their helpful comments and remarks.

References

1. Belaid Benhamou and Lakhdar Sais. Theoretical study of symmetries in proposi-
tional calculus and applications. In CADE’92, pages 281-294, 1992.

2. May Beresin, Eugene Levine, and John Winn. A chessboard coloring problem. The
College Mathematics Journal, 20(2):106-114, 1989.

3. Martin Davis, George Logemann, and Donald Loveland. A machine program for
theorem-proving. Communications of the ACM, 5(7):394-397, Jul 1962.

4. Kenneth A. De Jong and William M. Spears. Using genetic algorithm to solve
NP-complete problems. In Proc. of the Third Int. Conf. on Genetic Algorithms,
pages 124-132, San Mateo, CA, 1989.

5. Olivier Dubois, Pascal André, Yacine Boufkhad, and Jacques Carlier. SAT versus
UNSAT. In Second DIMACS implementation challenge : cliques, coloring and sat-
isfiability, volume 26 of DIMACS Series in Discrete Mathematics and Theoretical
Computer Science, pages 415-436, 1996.

6. Olivier Dubois and Gilles Dequen. A backbone-search heuristic for efficient solving
of hard 3-SAT formulae. In Bernhard Nebel, editor, Proc. of the [JCAI’01, pages
248-253, San Francisco, CA, 2001.

7. Agoston E. Eiben, Jan K. van der Hauw, and Jano I. van Hemert. Graph coloring
with adaptive evolutionary algorithms. Journal of Heuristics, 4(1):25-46, 1998.

10.
11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

Evolutionary Computing for the Satisfiability Problem 267

Charles Fleurent and Jacques A. Ferland. Genetic and hybrid algorithms for graph
coloring. Annals of Operations Research, 63:437-461, 1997.

Michael R. Garey and David S. Johnson. Computers and Intractability , A Guide
to the Theory of NP-Completeness. W.H. Freeman & Company, San Francisco,
1978.

Fred Glover and Manuel Laguna. Tabu Search. Kluwer Academic Publishers, 1998.
Jens Gottlieb, Elena Marchiori, and Claudio Rossi. Evolutionary algorithms for
the satisfiability problem. Evolutionary Computation, 10(1):35-50, 2002.

Richard W. Hamming. Error detecting and error correcting codes. The Bell System
Technical Journal, 29(2):147-160, April 1950.

Jin-Kao Hao and Raphael Dorne. A new population-based method for satisfiability
problems. In Proc. of the 11th European Conf. on Artificial Intelligence, pages 135—
139, Amsterdam, 1994.

Edward A. Hirsch and Arist Kojevnikov. UnitWalk: A new SAT solver that uses
local search guided by unit clause elimination. PDMI preprint 9/2001, Steklov
Institute of Mathematics at St.Petersburg, 2001.

Wengi Huang and Renchao Jin. Solar, a quasi physical algorithm for sat. Science
in China (Series E), 2(27):179-186, 1997.

Henry Kautz and Bart Selman. Workshop on theory and applications of satisfia-
bility testing (SAT2001). In Electronic Notes in Discrete Mathematics, volume 9,
June 2001.

Chu Min Li. Integrating equivalency reasoning into davis-putnam procedure. In
Proc. of the AAAI’00, pages 291-296, 2000.

Chu Min Li and Anbulagan. Heuristics based on unit propagation for satisfiability
problems. In Proc. of the IJCAI'97, pages 366-371, 1997.

Chu Min Li, Bernard Jurkowiak, and Paul W. Purdom. Integrating symmetry
breaking into a dll procedure. In Fifth International Symposium on the Theory
and Applications of Satisfiability Testing (SAT2002), pages 149-155, 2002.
Bertrand Mazure, Lakhdar Sais, and Eric Grégoire. Tabu search for SAT. In
Proc. of the 14th National Conference on Artificial Intelligence and 9th Innovative
Applications of Artificial Intelligence Conference (AAAI-97/IAAI-97), pages 281—
285, Providence, Rhode Island, 1997.

Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang, and Sharad
Malik. Chaff: Engineering an efficient SAT solver. In Proc. of the 38th Design
Automation Conference (DAC’01), Jun 2001.

Bart Selman, Henry A. Kautz, and Bram Cohen. Noise strategies for improving
local search. In Proc. of the AAAI, Vol. 1, pages 337-343, 1994.

Bart Selman, Hector J. Levesque, and David G. Mitchell. A new method for solving
hard satisfiability problems. In Proc. of the AAAI’92, pages 440-446, San Jose,
CA, 1992.

Laurent Simon, Daniel Le Berre, and Edward A. Hirsch. The sat2002 competition.
Technical report, Fifth International Symposium on the Theory and Applications
of Satisfiability Testing, May 2002.

William M. Spears. Simulated annealing for hard satisfiability problems. In Second
DIMACS implementation challenge : cliques, coloring and satisfiability, volume 26
of DIMACS Series in Discrete Mathematics and Theoretical Computer Science,
pages 533-558, 1996.

Hantao Zhang. SATO: An efficient propositional prover. In Proc. of the 1jth
International Conference on Automated deduction, volume 1249 of LNAI, pages
272-275, Berlin, 1997.

	Introduction
	Basic Components
	The SAT Problem
	Search Sapce, Fitness, and Selection

	The Hybrid Genetic Algorithm: GASAT
	The GASAT Algorithm
	Basic Stages

	Experimental Results
	Experimental Conditions
	Benchmark Instances and Evaluation Criterions
	Comparative Results on Structured Instances
	Discussions

	Conclusion

