
HAL Id: hal-03377786
https://hal.science/hal-03377786v1

Submitted on 16 Oct 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

Efficient computation of arbitrary beam scattering on a
sphere: Comments and rebuttal, with a review on the

angular spectrum decomposition.
Gérard Gouesbet, James A. Lock, Jiajie Wang, Yi-Ping Han

To cite this version:
Gérard Gouesbet, James A. Lock, Jiajie Wang, Yi-Ping Han. Efficient computation of arbitrary beam
scattering on a sphere: Comments and rebuttal, with a review on the angular spectrum decomposition..
Journal of Quantitative Spectroscopy and Radiative Transfer, 2021, �10.1016/j.jqsrt.2021.107913�.
�hal-03377786�

https://hal.science/hal-03377786v1
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr


Effi cient computation of arbitrary beam
scattering on a sphere: comments and rebuttal,

with a review on the angular spectrum
decomposition.

Gérard Gouesbet1, James.A. Lock2,Yi-Ping Han3,
and Jiajie Wang3.

1. CORIA-UMR 6614- Normandie Université.
CNRS-Université et INSA de Rouen.
Campus Universitaire du Madrillet.

76800, Saint-Etienne-du Rouvray, France.
2. Department of Physics.
Cleveland State University.
Cleveland, Ohio, 44115, USA.

3. School of Physics and Optoelectronic Engineering.
Xidian University, Xian, 710071, China.
Corresponding author: gouesbet@coria.fr

August 28, 2021

Abstract

The present paper may be viewed as built from comments concerning
a recently published paper in Journal of Quantitative Spectroscopy and
Radiative Transfer, and actually constitutes as well a rebuttal of some of
the claims it contains. The issue considered concerns the computation of
scattering properties of the interaction between an arbitrary electromag-
netic shaped beam and a homogeneous sphere. Our discussion of the issue
may be easily extended as well to more general cases, beyond the simplest
case of a homogeneous spherical scatterer, up to the case of arbitrary
shaped particles in the framework of T-matrix formulation. Finally, we
take the opportunity of the present paper to review the use of the angular
spectrum decomposition in light scattering.

Keywords: Generalized Lorenz-Mie theories; beam shape coeffi cients;
angular spectrum decomposition; T-matrix formulation.
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1 Introduction.

During the last four decades, a vigorous effort has been devoted to the
development of generalized Lorenz-Mie theories (GLMTs) describing the inter-
action between an arbitrary shaped (structured) beam and a set of particles
when Maxwell’s equations can be solved by using a method of separation of
variables, e.g. [1] for a textbook, [2], [3], [4] for recent reviews, and references
therein. Among the set of GLMTs, the GLMT stricto sensu deals with the case
when the scatterer is a homogeneous spherical particle defined by its diameter
and its complex refractive index, e.g. [5], [6], and references therein, dating back
to 1982 [7].

A recent paper [8] dealt with the same problem as the one handled
by the GLMT, but using a brute force computation relying on the angular
spectrum decomposition (ASD). This ASD is indeed an effi cient way to deal
with the evaluation of certain coeffi cients, called beam shape coeffi cients (BSCs),
which are a specific feature of GLMT. However, using the ASD through what is
here called a brute force approach has long been known to be less effi cient and
accurate. Yet, the authors of [8] claim that their method "provides a significant
computational advantage to address any incident waveform in a fast and effi cient
way". This statement is misleading insofar as it could encourage newcomers to
pursue unfruitful directions. The present paper therefore provides comments to
[8] and a rebuttal of some of its claims.

The paper is organized as follows. Section 2 provides a discussion of
basic features related to the GLMT, specifically concerning the encoding role of
the BSCs, and the different classical ways allowing one to evaluate them. Section
3 deals with the ASD, reviews the literature using the ASD in connection with
the evaluation of the BSCs, and introduces the brute force approach discussed
in Section 4. Section 5 discusses benchmark data challenging the use of brute
force approaches. Section 6 is a conclusion.

2 Beam shape coeffi cients.

In GLMT, the structure of the illuminating beam is encoded in a set of
BSCs, traditionally denoted as gmn,TM and gmn,TE with n ranging from 1 to ∞,
−n ≤ m ≤ +n, TM standing for "Transverse Magnetic" and TE standing for
"Transverse Electric". There are several basic ways to evaluate the BSCs. The
original "natural" method is by using double or triple quadratures, e.g. [9], [10].
Because this method is computationally prohibitive when the quadratures have
to be evaluated numerically, which is for instance the case for Gaussian beams,
other computationally more effi cient methods have been developed, namely (i)
the finite series method [11], [12] which, after having been essentially given up
for a long time, became timely again recently, e.g. [13], [14], and references
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therein, and (ii) localized models. The history of localized models is reviewed
in [15], to be complemented with [16] and [17]. These models have been for a
long time the most popular and effi cient methods but, recently, their limits in
the case of nondiffracting beams, e.g. [18], [19] (among others) and of helical
beams [20], [21] (among others) have been pointed out, leading to the renewal
of the finite series techniques, e.g. [14] and references therein. In the case of
the classical Lorenz-Mie theory, the BSCs become trivial. First, the double set
of bi-index BSCs gmn,TM and gmn,TE reduces to a single set of uni-index BSCs gn
which are all equal to a n−independent phase factor which may be taken equal
to 1, e.g. [1], pages 152-155.

BSCs were introduced in spherical coordinates to deal with the GLMT
stricto sensu. Variants are available in circular cylindrical coordinates, e.g. [22],
[23], [24], in elliptical cylindrical coordinates, e.g. [25], and references therein,
or in spheroidal coordinates, e.g. [26] for a review. In all these cases, BSCs are
obtained from the expressions of the electric and magnetic fields expressed in
terms of coordinates. In particular, in the case of spherical coordinates, BSCs
are more specifically obtained from the radial components of the electric field
(for the TM−coeffi cients) and of the magnetic field (for the TE-coeffi cients).

Another line of investigation relies on the fact that an arbitrary shaped
beam may be viewed as a collection of plane waves traveling in different direc-
tions, leading to what is usually called the Angular Spectrum Decomposition
(ASD) which is the result of using a Fourier transform, e.g. Sections 4 and 5
in [27], and also [28] which extensively discussed the relationship between BSCs
and plane wave spectra of ASD. The ASD may lead to deep insights concerning
the structure of laser light and scattering properties. For instance, it allows one
to gain a deep understanding of the failure of the optical theorem in the case of
structured illumination, or the fact that laser light propagates slower than the
speed of light, even in vacuum, as described in [29]. Also, it is worth here men-
tioning that the ASD of a simple approximation to a Gaussian beam (with an
elliptical cross section) was derived by Carter [30]. But, more importantly, the
ASD may also be useful as a complementary method allowing one to evaluate
BSCs as we shall review in the next section, see as well subsection 2.6 in [4].

There also exist a semi-analytical approach to light scattering, valid
for arbitrary shaped particles, called Extended Boundary Condition Method
(EBCM), e.g. [31], [32]. Most of the applications of EBCM do not deal with
arbitrary shaped beams, for instance when studying the scattering properties
of airborne particles in atmospheres. Nevertheless, when EBCM is used under
the case of structured beam illumination, BSCs may have to be used as well,
e.g. subsection 8.1 in [3] quoting papers by Mackowsky and Mishchenko [33],
Chen et al. [34], [35], Wang et al. [36], Zheng et al. [37], [38], Briard et al.
[39], Mishchenko and Dlugach [40], Phillips et al. [41], Brzobohaty et al. [42],
Simpson et al. [43], Li et al. [44], and Wu et al. [45], to be completed by a more
recent paper, namely by Vennes et al. [46] in which BSCs for Gaussian beams
are evaluated by using a localized approximation.

Traditionally, the EBCM has been named the T-matrix method. How-
ever, the very definition of what is a T-matrix method implies that the GLMT
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as well is a T-matrix method as discussed in [47], leading possibly to confusions
when people stating that they are using a T-matrix method actually used a
GLMT. In particular, in [47], it is recalled that, for scattering by a sphere, the
T-matrix elements are the partial wave scattering amplitudes an and bn, i.e.
the usual Mie coeffi cients of the classical Lorenz-Mie theory. This being said,
a so-called T-matrix formulation for spherical particles has been published by
Khaled et al. [48] in 1972. The signature of the fact that they used an EBCM
is visible in a sentence saying that "the submatrix elements are integrated over
the surface of the scatterer" ([48], page 299). However, because these elements
reduce to the Mie coeffi cients (without needing the use of actual integrals, e.g.
their Eq.(31)), it is fair to say that they actually "implicitly" used a version of
GLMT (restricted to Gaussian beams). For the use of the ASD in the context
of EBCM and other related contexts, the reader may refer to subsection 6.1 in
[27] with earlier papers by Barber and Yeh [49], Colak et al. [50] and Yeh et al.
[51].

3 ASD, structured beams and BSCs.

A background concerning the ASD may be found in [52], [53] and in Good-
man, Section 3.7 of [54], and Section 3.10 of [55]. Then, having discussed ref-
erences related to the EBCM in the previous section, the first paper using "ex-
plicitly" the ASD for the evaluation of BSCs in the GLMT-framework is, as
far as we are aware of, by Doicu and Wriedt in 1997 [56] who started from a
vector potential in the framework of the Davis procedure to the formulation of
linearly polarized Gaussian beam [57]. The electric field is thereafter obtained
as a double quadrature of plane wave components expressed in terms of the
Fourier transform of the vector potential. This expression then allows one to
return to the classical approach to the evaluation of BSCs (evaluating BSCs
from fields) and to express them in terms of single quadratures over a polar
angle (which is faster to evaluate than usual double or triple quadratures of
the original quadrature method). A fairly significant number of papers were
afterward devoted to the ASD in the context of light scattering, particularly
concerning the use of the ASD to evaluate BSCs. The literature, likely to be
fairly exhaustive, is reported below using a chronological order.
In 2010, Chen et al. [58] used an ASD of Bessel beams to obtain analytical

expressions of BSCs for Bessel beams of arbitrary order and polarization.
In 2011, Marston derived uni-index BSCs gn for quasi-Gaussian Bessel beam

superposition described by an ASD and applied them to the scattering of focused
beams by spheres [59], [60], while Pawliuk and Yedlin used a 2D-ASD to study
the scattering by a family of parallel circular cylinders [61].
In 2013, Lock [62] studied the ASD of a focused Gaussian beam expressed

in the Davis fifth-order formulation [63], [64], and examined as well the cases of
a transversely confined electromagnetic beam with arbitrary profile in the focal

4



plane and of a general zero-order Bessel beam. He clarified the significance of the
ASD for the evaluation of BSCs, the BSCs of a beam being a superposition of the
BSCs of the individual plane wave components in the spectrum. The same year,
Hyde et al. [65] used an ASD to study the partially-coherent wave scattering
from cylinders. The reader interested by partially-coherent wave scattering may
refer to a complementary paper on the same issue published in 2015 [66].
The same year (2015), Lock [67] pointed out that the ASD spectrum in gen-

eral contains both oscillatory and evanescent components, and paid a particular
attention to the scattering of the evanescent components of the ASD spectrum of
a tightly focused EM beam by a spherical particle. BSCs of the entire beam are
evaluated by summing the BSCs of individual plane wave components weighted
by their respective amplitude and phase. The same year again, Mitri used an
ASD to study the scattering of linear, circular, radial, azimuthal polarized Bessel
beams and unpolarized beams by a sphere [68].
In 2016, the same author (Mitri) similarly used the ASD to study the optical

pulling force on a magneto-dielectric Rayleigh sphere in zeroth and first-order
Bessel tractor polarized beams [69], and to deal with cylindrical particle ma-
nipulation using a nonparaxial Hermite-Gaussian light-sheet beam. Moore and
Alonso [70] used an ASD to provide an analytical approach to describe the inter-
action of a sphere with of a monochromatic scalar continuous field, elaborating
on a previous work presented in a conference [71].
In 2017, Mitri relied on the use of the ASD to study radiation pressure

cross-sections exerted by optical tractor Bessel polarized beams [72], to describe
nonparaxial fractional Bessel and Bessel-Gauss auto-focusing light-sheet pincers
[73] and to study optical radiation forces and spin torques exerted by such beams
on subwavelength prolate and oblate spheroids [74], to investigate nonparaxial
scalar Airy light-sheets and their higher-order spatial derivatives with BSCs
evaluated by a numerical integration procedure [75] and to study pulling and
spinning reversal forces exerted by such beams on a subwavelength absorptive
sphere [76]. Also, radiation forces and torques exerted by various light-sheet
beams on absorptive circular cylinders have been evaluated in a GLMT frame-
work with BSCs being derived using the ASD [77], and a study has been devoted
to the description of self-bending scalar and vector bottle sheets [78]. These are
to be completed with Li et al. [79] who studied the reflection and transmission
of Laguerre-Gauss beams in a dielectric homogeneous slab, relying on the ASD
to obtain analytical expressions of the total reflected and transmitted field in-
tensities, Qin et al. [80] who carried out a Debye series analysis of internal and
near-surface fields for a homogeneous sphere illuminated by an axicon-generated
vector Bessel beam in the GLMT framework, with an analytical expression of
BSCs being derived using the ASD method, Li et al. [81] who used again a
GLMT framework to study optical spin torques induced by vector Bessel beams
on a light-absorptive sphere of arbitrary size, with BSCs calculated using the
ASD method, and Lu et al. [82] dealing with the calculation of optical forces
exerted on dielectric and metallic microparticles illuminated by a vector Airy
beam, with BSCs evaluated by using an ASD.
In 2018, Wen et al. [83] investigated the interaction of a vector Bessel-
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Gaussian beam (VBGB) with a dielectric sphere in the GLMT framework, de-
rived the electric field of the VBGB using an ASD and obtained analytical
expressions of the BSCs. Li et al. [84] used an ASD to study the characteristics
of reflected and transmitted fields of a vector Bessel beam through multilayered
isotropic media. Gong et al. [85] studied the scattering of a vector Bessel beam
by a charged sphere, with BSCs expressed by analytical expressions using the
ASD. Qiu and Shen [86] reviewed different methods to evaluate the BSCs of a
Gaussian beam and, in particular, demonstrated that BSCs expressions can be
simplified to 1D-quadratures using the ASD.
In 2019, Lu et al. [87] employed the ASD to derive the BSCs of circular Airy

beams with different polarizations, and to study the scattering of such beams
by a spherical particle in the GLMT framework, and Alinezhad and Reihani [88]
evaluated BSCs using the ASD to discuss optical forces and trapping effi ciency
in optical tweezers,
In 2020, Yang et al. [89] studied the interaction between an axicon-generated

vector Bessel beam and a charged sphere in the GLMT framework, using an-
alytical expressions for the BSCs derived from the ASD method, Wang et al.
[90] dealt with with the ASD applied to evanescent waves and to an exponential
behavior of BSCs with respect to the increase of the partial wave number, while
Song et al. [91] investigated the optical torque exerted on an absorptive dielec-
tric sphere of arbitrary size illuminated by a linearly-polarized Airy light-sheet,
relying on the GLMT associated with an ASD approach.
In 2021, Zhang et al. [92] studied the scattering of nonparaxial Bessel pincer

light-sheets in a GLMT framework, using the ASD to expand the electric field
of the beam and expressing the BSCs in terms of 1D-integrals, Cui et al. [93]
used the ASD to deal with the dynamical characteristics and scattering of Bessel
beams upon reflection near the Brewster angle, and Zhang and Shen [94] used
the ASD to study circular Bessel beams (CBB) and elliptical Bessel beams
(EBB), either standard or produced by the refraction of circular Bessel beams
at oblique incidence on an interface. Depending on the case considered, BSCs
are obtained as closed forms (CBB) or as 1D-integrals (EBBs).
This section has given evidence that a significant number of papers have used

the ASD in connection with the description of structured beams, and with the
evaluation of BSCs. These papers used what we may call hybrid approaches.
These approaches have to be opposed to other approaches that we shall now
consider.

4 ASD brute force approach.

Because the ASD provides a decomposition of structured beams in terms of
plane waves, there is an "obvious" and conceptually simple way to describe the
scattering of structured beams, namely calculate the scattering of each plane
wave in the spectrum and then add the contributions of all the plane waves to
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obtain the contribution of the structured beam. There are basically two ways
to implement such an approach. To describe this dichotomy, let us distinguish
between a local (in the Fourier space) Cartesian system Oxyz attached to a
plane wave in the spectrum, with the plane wave propagating along the z-
direction toward positive z’s, and a global OXY Z Cartesian system attached
to the beam as a whole, with the beam "as a whole" propagating along the
Z-direction toward positive Z’s.

The first approach is as follows. Let us consider a plane wave com-
ponent in the spectrum. We may describe the scattering of this plane wave
in the global system, and directly obtain the scattered fields generated by this
plane wave component in this global system. However, because this plane wave
is generically tilted with respect to the direction of propagation of the beam,
the BSCs for this plane wave are not the trivial BSCs of the classical Lorenz-
Mie theory. They have to be evaluated using transformations of BSCs through
rotations of coordinate systems [95], [96], [97], [98], [99]. The BSCs of the whole
field are then obtained by the summation of the BSCs of the plane wave com-
ponents in the spectrum, and the scattering problem may then be solved in a
GLMT framework. In principle, this approach might be carried out relying on
an analytical approach up to the moment when the summation of the individual
BSCs has to be carried out numerically. Kashter et al. [8], quoting the above
papers describing the BSCs transformations through rotations, criticized the
use of such tilted plane waves with tilted BSCs, stating that "the mathematical
expression for the transformation is complicated and requires additional calcu-
lations [...] which might cause the data processing to be less effective, in terms
of duration of processing, compared to the simple case of the Mie calculation".
But it has never been claimed that the use of tilted waves in this first approach
is recommended. In any case, it does not represent the most convenient way of
using GLMT with global BSCs gmn,TM and gmn,TE , so that the aforementioned
statement by Kashter et al. [8] is deeply misleading, and gives an implicit, and
erroneous disqualification of GLMT. This misleading presentation of the GLMT
is repeated in the conclusion in which it is stated that, in GLMT, "the scatter-
ing is calculated by the beam shape coeffi cient for each phase pattern (including
tilted plane wave)". This misses the point that the GLMT actually uses global
BSCs allowing one to solve the scattering problem in a single shot, in particular
when the two-dimensional integral of the BSCs of the individual plane waves
multiplied by the beam weighting coeffi cients can be evaluated analytically for
the Davis model of a focused beam, and for Bessel beams [62], [100], [101], and,
more generally, when the global BSCs are evaluated by using one of the tech-
niques listed in Section 2 (quadratures in cases where they can be analytically
carried out, finite series, localized models).

The second approach is as follows. We may solve the scattering problem
for each plane wave component in its local coordinate system, that is to say in
a configuration which is exactly the one of the classical Lorenz-Mie theory.
The scattered fields from each component are afterward obtained in the global
system by a rotational transformation and, eventually, all the rotated fields are
summed up to obtain the fields scattered by the structured beam as a whole.
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As we are now going to discuss, it may be viewed as a brute force approach,
and is used in the paper by Kashter et al. [8], which is the motivation of the
present paper.

There are a priori two complications in the brute force approach. The
first one is related to the fact that, in general, the spectrum contains an in-
finite number of plane wave components. Therefore, in numerical evaluation,
we must be content with a limited number of computations, using a discrete
finite sample of components taken from the infinite number actually present in
the spectrum. We must therefore expect a problem of accuracy. Because the
scattering patterns are more and more complicated when the parameter size of
the scatterer increases (the number of lobes in the pattern is roughly equal to
the size parameter of the scattering sphere), we must expect an increasing loss
of accuracy when the size of the scatterer increases.

For the second complication, we have to remark that many scattering
calculations have to be carried out, depending on the number of plane waves
sampled from the spectrum. This is in contrast with the GLMT where, because
the structure of the illuminating beam is encoded in the BSCs, the scattering
problem can be solved in a single numerical shot. In other words, the brute force
approach is a many-steps approach. A first step requires a sampling of plane
waves. The second step requires many Mie computations. And a third step
requires the combination of the results of the many Mie computations carried
out in the previous step. Therefore, it is not diffi cult to conjecture that the
brute force approach will be computationally more intensive than the GLMT-
approach where the BSCs of the shaped beam are analytically known or may
be evaluated by using effi cient techniques, e.g. Section 2 again.

These two complications find their origin in the fact that there is no
formal effort to summarize and sum up the effects of all the components in the
plane wave spectrum into a simple and single formulation. This comment justi-
fies the descriptive name of "brute force approach" to the numerical integration
of the spectrum over plane wave components. We are now going to check a pos-
teriori (after numerical experiments) the a priori statements concerning lacks
of computational effi ciency and of accuracy.

To illustrate the computational ineffi ciencies, we may return to compu-
tations carried out by one of us in 1995 [102] concerning comparisons between
different ways of achieving scattering calculations, using a Compaq 386-33 MHz
personal computer equipped with a Weitek numerical processor. For certain
typical parameters (in particular for a sphere diameter d = 100 µm, and an
incident wavelength λ = 0.6328 µm), and 361 values of the scattering angle
θ, GLMT-computations for off-axis Gaussian beams with the BSCs evaluated
analytically for a Davis model of a focused Gaussian beam required 195 s. A
corresponding classical Lorenz-Mie calculation required only 3 s, that is to say
the off-axis Gaussian beam program runs almost 70 times slower than Mie the-
ory (at least for the studied parameters). Note that these timing figures were
valid 26 years ago and that to-day they would be much smaller. Nevertheless,
from this, we might already infer that a brute force approach using a sample
of more than 70 plane waves will run slower than GLMT. We may refine this
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evaluation by recalling that the number of lobes in the scattering pattern is
roughly equal to the size parameter. For a diameter d = 100 µm, and an inci-
dent wavelength λ = 0.6328 µm, the size parameter is α = πd/λ ' 500. If, as
a rule of thumb (admittedly unsecure), we assume that we need 10 plane waves
to correctly sample one lobe, we would need 5000 Mie calculations, so that the
brute force approach would roughly run 5000/70 ' 70 time slower than the
GLMT. The computational intensiveness of the use of a brute force approach is
also mentioned by Moore and Alonso [103].

Concerning accuracy, we may consider the paper by Kashter et al. [8].
This paper reports on what could be seen as an improvement with respect to
computational times, namely the authors generated a database of Mie solutions
which are retrieved before summing up all the sampled solutions with a "careful
consideration of amplitude, phase, polarization, and propagation direction in
the initial plane wave decomposition", although no comparison of computational
times with respect to GLMT are provided. But the accuracy problem remains a
significant one. The authors indeed acknowledged that "the effect on the overall
numerical error due to a limited number of samples [...] has not been accurately
studied and will be shown to be important in nonparaxial cases". They also
commented that they "can estimate the impact of the sampling densities which
will be shown to play a significant role in the case of large tilting angles". More
specifically, errors may occur for at least two reasons.

First, the Mie solutions for individual plane wave components of the
ASD are stored in the database by using a discrete representation, with a lim-
ited angular sampling density. Relative errors in total scattering for Mie com-
putations are then evaluated by comparing scattering cross-sections rigorously
evaluated in terms of a summation involving Mie coeffi cients (Eq.(4) in [8]) and
evaluated using the stored discrete representation (Eq.(7) in [8]). The sampling
density is characterized by the number L = 2L1 = L2 in which L1 and L2
are the number of discrete samples along spherical angular coordinates θ and
ϕ respectively. For a size parameter equal to 100 (size diameter of about 16
µm for a wavelength of 0.5 µm), i.e. for the largest size parameter considered
in the figures of [8] displaying the numerical error estimations, the errors are
found to reach up to 16% for L = 128 and require to use L = 512 to decrease to
1%. By comparison, standard Mie scattering codes are numerically accurate to
∼ 10−6%. We may anticipate that these errors would go on increasing signifi-
cantly for larger size parameters. Furthermore, the procedure used by Kashter
et al. [8] requires a rotational transformation from the local Mie coordinate
system associated with the direction of the plane wave component to a global
coordinate system associated with the direction of the incoming beam viewed
as a whole. The errors mentioned above evaluated in the Mie coordinate system
then propagate to the global system and are displayed in Fig.(6) of [8] where
they can become significant depending on the value of an Euler angle β associ-
ated with the rotation between the local and the global coordinate systems. For
instance, they can reach 50% for β = 45◦ and a size parameter equal to 10, cor-
responding to a particle diameter equal to about 1.6 µm and to the largest size
parameter considered in Fig.6) of [8]. Concerning the results for the scattering
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on an arbitrary incident waveform in their section 4, the authors mention that
the maximal error involved, corresponding to a maximal value of β = 4.05◦,
is approximately 1.4%. Again, this is far more important than the standard
accuracy of Mie codes.
Furthermore, it does incorporate the effect of using a limited number of

plane waves extracted from the sampling of the infinite number of plane wave
components present in the ASD, i.e. of the necessity of sampling the ASD. If one
does this in the context of Discrete Fourier Transforms instead of a Continuous
Fourier Transform, so as to make use of the speeding up of the process by the
Fast Fourier Transform algoritm, an additional source of error is due to the
discretization of the angular spectrum. This source of error is not convincingly
discussed in [8].
Actually, for a better evaluation of the quality of the results, we would need

systematic comparisons between GLMT-computations and Kashter’s method
computations, both from the point of view of computational times and from the
point of view of accuracy. Such comparisons are not available. It is furthermore
to be noted that, in the visible range, a size parameter equal to 10 (the largest
value considered in Fig.6b) corresponds to a particle diameter equal to 1.6 µm.
This may be viewed as a small particle, too small for many applications such
as for the measurements of spray droplets by phase-Doppler anemometry, e.g.
[104], [105], when particle diameters equal to 100 µm (size parameter equal to
about 600) or more may have to be considered for accurate measurements. In
the case of Gaussian beam illumination, the authors of [8] stated that the largest
waist radius considered in their Fig.8 (i.e. w0 = 10 µm) is 20 times larger than
the sphere radius, corresponding to a sphere diameter equal to 1 µm which is
indeed very small for many applications, although it may be suffi cient for some
other applications. Nevertheless, even for the small size parameters considered,
the error calculation of the author’s method appears to be quite crude, and is
significantly higher than that of standard GLMT computations.
Already, in 1988, fast and accurate GLMT-computations for particle diame-

ters up to 100 µm could be achieved on microcomputers when the BSCs of the
incident beam were able to be analytically evaluated. In view of these remarks,
the comments of Kashter et al. according to which they provided a method with
"a significant computational advantage to address any incident waveform in a
fast and effi cient way" is at least premature, to say the least. Another example of
a brute force approach is by Zakowicz [106] without any comparison with GLMT
in terms of computational times and accuracy being provided, but the author did
not make any unsubstantiatted claim concerning the effi ciency of his approach.

5 Benchmark data.

Any proposal for a brute force approach should be compared with GLMT-
results which would provide benchmark data, in terms of computational times
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and of accuracy, before being acceptable, and/or considered as an approach su-
perior to the GLMT-approach or even as an alternative. Such benchmark data
may be obtained from GLMT-computer programs which are available as an addi-
tional material to [1] and which can be downloaded from http://extras.springer.com.
Capabilities of GLMT are illustrated below using figures which have been pro-
duced with an independent GLMT-code written with Matlab from Xidian Uni-
versity, and exhibiting scattering diagrams (more specifically displaying |E|2)
in arbitrary units for particles illuminated on-axis by Gaussian beams. We
strongly believe that such results could hardly be obtained in a competitive way
by using a brute force approach. In particular all these figures are for a particle
diameter d equal to 2 mm, for an incident wave-length λ equal to 0.6328 µm,
corresponding to a size parameter πd/λ about equal to 10 000. Furthermore,
the beam waist radii are w0 = 5 mm and 0.75 mm, the first one corresponding
to a slightly converging beam with a ratio (2w0)/d = 5 larger than 1, and a
small beam confinement factor equal to s = 1/(kw0) ≈ 2.10−5 close to the one
of a plane wave, while the second one corresponds to a more tightly converging
beam with a ratio (2w0)/d = 0.75 smaller than 1, and a larger beam confine-
ment factor equal to s = 1/(kw0) ≈ 10−4. Figs 1 and 2 are for a homogeneous
sphere, with a refractive index of 1.33, for w0 = 5 mm and 0.75 mm respectively.
Since GLMT-approaches and brute force approaches are not limited to homo-
geneous particles, these figures are complemented with Figs 3 and 4 which are
for a multilayered sphere with 500 layers, a refractive index decreasing linearly
from 1.36 at the surface down to 1.33 at the core, again for w0 = 5 mm and
0.75 mm respectively.
We believe that carrying out effi ciently similar computations with a brute

force approach would represent a challenge. Another issue is that GLMT-
computations do not only deal with the computation of scattering fields, but
also with the computations of internal fields (including resonances), of scat-
tering, absorption, and extinction cross-sections, and of radiation forces and
torques. The effi ciency of brute force approaches for the evaluation of such
quantities should be examined as well.

6 Conclusion.

The recent paper by Kaster et al. [8] provides an opportunity to discuss
two different approaches to the scattering of structured beams by regular par-
ticles, either (i) by using BSCs which summarize all the information contained
in the infinite number of plane waves present in the ASD or (ii) dealing indi-
vidually with a number of individual scattering computations for a sample of
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Figure 1: Homogeneous sphere. Beam waist radius: 5 mm

Figure 2: Homogeneous sphere. Beam waist radius: 0.75 mm
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Figure 3: Multilayered sphere. Beam waist radius: 5mm

Figure 4: Multilayered sphere. Beam waist radius: 0.75 mm
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plane wave components before summing up the results of these individual com-
putations. Contrarily to what is strongly suggested in [8], there is no evidence
that the brute force approach is definitely superior, or even is simply a com-
petitive alternative to the use of a GLMT. As far as the contrary is not clearly
demonstrated, we believe that a brute force approach is not incorrect, but is a
relatively computationally ineffi cient and inaccutate approach. Finally, we have
taken the opportunity of the present paper to review the use of the ASD in light
scattering.
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