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1 Introduction.

During the last four decades, a vigorous e¤ort has been devoted to the development of generalized Lorenz-Mie theories (GLMTs) describing the interaction between an arbitrary shaped (structured) beam and a set of particles when Maxwell's equations can be solved by using a method of separation of variables, e.g. [START_REF] Gouesbet | Generalized Lorenz-Mie theories[END_REF] for a textbook, [START_REF] Gouesbet | Generalized Lorenz-Mie theories and mechanical e¤ects of laser light, on the occasion of Arthur Ashkin's receipt ot the 2018 Nobel prize in physics for his pioneering work in optical levitation and manipulation: A review[END_REF], [START_REF] Gouesbet | T-matrix methods for electromagnetic structured beams: A commented reference database for the period 2014-2018[END_REF], [START_REF] Van De Hulst | Essay: A review on generalized Lorenz-Mie theories with wow stories and epistemological discussion[END_REF] for recent reviews, and references therein. Among the set of GLMTs, the GLMT stricto sensu deals with the case when the scatterer is a homogeneous spherical particle de…ned by its diameter and its complex refractive index, e.g. [START_REF] Gouesbet | Light scattering from a sphere arbitrarily located in a Gaussian beam, using a Bromwich formulation[END_REF], [START_REF] Gouesbet | chapter : Generalized Lorenz-Mie theory and applications to optical sizing[END_REF], and references therein, dating back to 1982 [START_REF] Gouesbet | Sur la généralisation de la théorie de Lorenz-Mie[END_REF].

A recent paper [START_REF] Kashter | E¢ cient computation of arbitrary beam scattering on a sphere[END_REF] dealt with the same problem as the one handled by the GLMT, but using a brute force computation relying on the angular spectrum decomposition (ASD). This ASD is indeed an e¢ cient way to deal with the evaluation of certain coe¢ cients, called beam shape coe¢ cients (BSCs), which are a speci…c feature of GLMT. However, using the ASD through what is here called a brute force approach has long been known to be less e¢ cient and accurate. Yet, the authors of [START_REF] Kashter | E¢ cient computation of arbitrary beam scattering on a sphere[END_REF] claim that their method "provides a signi…cant computational advantage to address any incident waveform in a fast and e¢ cient way". This statement is misleading insofar as it could encourage newcomers to pursue unfruitful directions. The present paper therefore provides comments to [START_REF] Kashter | E¢ cient computation of arbitrary beam scattering on a sphere[END_REF] and a rebuttal of some of its claims.

The paper is organized as follows. Section 2 provides a discussion of basic features related to the GLMT, speci…cally concerning the encoding role of the BSCs, and the di¤erent classical ways allowing one to evaluate them. Section 3 deals with the ASD, reviews the literature using the ASD in connection with the evaluation of the BSCs, and introduces the brute force approach discussed in Section 4. Section 5 discusses benchmark data challenging the use of brute force approaches. Section 6 is a conclusion.

2 Beam shape coe¢ cients.

In GLMT, the structure of the illuminating beam is encoded in a set of BSCs, traditionally denoted as g m n;T M and g m n;T E with n ranging from 1 to 1, n m +n, T M standing for "Transverse Magnetic" and T E standing for "Transverse Electric". There are several basic ways to evaluate the BSCs. The original "natural" method is by using double or triple quadratures, e.g. [START_REF] Gouesbet | Discussion of two quadrature methods of evaluating beam shape coe¢ cients in generalized Lorenz-Mie theory[END_REF], [START_REF] Gouesbet | On an in…nite number of quadratures to evaluate beam shape coe¢ cients in generalized Lorenz-Mie theory and extended boundary condition method for structured EM …elds[END_REF]. Because this method is computationally prohibitive when the quadratures have to be evaluated numerically, which is for instance the case for Gaussian beams, other computationally more e¢ cient methods have been developed, namely (i) the …nite series method [START_REF] Gouesbet | Computations of the g n coe¢cients in the generalized Lorenz-Mie theory using three di¤erent methods[END_REF], [START_REF] Gouesbet | Expressions to compute the coe¢ cients g m n in the generalized Lorenz-Mie theory, using …nite series[END_REF] which, after having been essentially given up for a long time, became timely again recently, e.g. [START_REF] Ambrosio | Modi…ed …nite series technique for the evaluation of beam shape coe¢ cients in the T-matrix methods for structured beams with application to Bessel beams[END_REF], [START_REF] Votto | Finite series algorithm design for lens-focused Laguerre-Gauss beams in the generalized Lorenz-Mie theory[END_REF], and references therein, and (ii) localized models. The history of localized models is reviewed in [START_REF] Gouesbet | Generalized Lorenz-Mie theories and description of electromagnetic arbitrary shaped beams: localized approximations and localized beam models, a review[END_REF], to be complemented with [START_REF] Gouesbet | Second modi…ed localized approximation for use in generalized Lorenz-Mie theories and other theories revisited[END_REF] and [START_REF] Gouesbet | Comments on localized and integral localized approximations in spherical coordinates[END_REF]. These models have been for a long time the most popular and e¢ cient methods but, recently, their limits in the case of nondi¤racting beams, e.g. [START_REF] Gouesbet | On the validity of localized approximations for Bessel beams: all N-Bessel beams are identically equal to zero[END_REF], [START_REF] Cha…q | On the validity of the integral localized approximation for on-axis zeroth-order Mathieu beams[END_REF] (among others) and of helical beams [START_REF] Gouesbet | On the validity of the use of a localized approximation for helical beams. I. Formal aspects[END_REF], [START_REF] Ambrosio | On the validity of the use of a localized approximation for helical beams. II. Numerical aspects[END_REF] (among others) have been pointed out, leading to the renewal of the …nite series techniques, e.g. [START_REF] Votto | Finite series algorithm design for lens-focused Laguerre-Gauss beams in the generalized Lorenz-Mie theory[END_REF] and references therein. In the case of the classical Lorenz-Mie theory, the BSCs become trivial. First, the double set of bi-index BSCs g m n;T M and g m n;T E reduces to a single set of uni-index BSCs g n which are all equal to a n independent phase factor which may be taken equal to 1, e.g. [START_REF] Gouesbet | Generalized Lorenz-Mie theories[END_REF], pages 152-155.

BSCs were introduced in spherical coordinates to deal with the GLMT stricto sensu. Variants are available in circular cylindrical coordinates, e.g. [START_REF] Gouesbet | Interaction between Gaussian beams and in…nite cylinders, by using the theory of distributions[END_REF], [START_REF] Ren | Scattering of a Gaussian beam by an in…nite cylinder in the framework of a GLMT, formulation and numerical results[END_REF], [START_REF] Méès | Scattering of a Gaussian beam by an in…nite cylinder with arbitrary location and arbitrary orientation: numerical results[END_REF], in elliptical cylindrical coordinates, e.g. [START_REF] Gouesbet | The structure of generalized Lorenz-Mie theory for elliptical in…nite cylinders[END_REF], and references therein, or in spheroidal coordinates, e.g. [START_REF] Gouesbet | Expanded description of electromagnetic arbitrary shaped beam in spheroidal coordinates for use in light scattering theories: A review[END_REF] for a review. In all these cases, BSCs are obtained from the expressions of the electric and magnetic …elds expressed in terms of coordinates. In particular, in the case of spherical coordinates, BSCs are more speci…cally obtained from the radial components of the electric …eld (for the T M coe¢ cients) and of the magnetic …eld (for the T E-coe¢ cients).

Another line of investigation relies on the fact that an arbitrary shaped beam may be viewed as a collection of plane waves traveling in di¤erent directions, leading to what is usually called the Angular Spectrum Decomposition (ASD) which is the result of using a Fourier transform, e.g. Sections 4 and 5 in [START_REF] Gouesbet | On the electromagnetic scattering of arbitrary shaped beams by arbitrary shaped particles: A review[END_REF], and also [START_REF] Gouesbet | On the description of electromagnetic arbitrary shaped beams: The relationship between beam shape coe¢ cients and plane wave spectra[END_REF] which extensively discussed the relationship between BSCs and plane wave spectra of ASD. The ASD may lead to deep insights concerning the structure of laser light and scattering properties. For instance, it allows one to gain a deep understanding of the failure of the optical theorem in the case of structured illumination, or the fact that laser light propagates slower than the speed of light, even in vacuum, as described in [START_REF] Gouesbet | Consequences of the angular spectrum decomposition of a focused beam including slower than c beam propagation[END_REF]. Also, it is worth here mentioning that the ASD of a simple approximation to a Gaussian beam (with an elliptical cross section) was derived by Carter [START_REF] Carter | Electromagnetic …eld of a Gaussian beam with an elliptical cross-section[END_REF]. But, more importantly, the ASD may also be useful as a complementary method allowing one to evaluate BSCs as we shall review in the next section, see as well subsection 2.6 in [START_REF] Van De Hulst | Essay: A review on generalized Lorenz-Mie theories with wow stories and epistemological discussion[END_REF].

There also exist a semi-analytical approach to light scattering, valid for arbitrary shaped particles, called Extended Boundary Condition Method (EBCM), e.g. [START_REF] Waterman | Symmetry, unitarity, and geometry in electromagnetic scattering[END_REF], [START_REF] Mishchenko | Scattering, absorption, and emission of light by small particles[END_REF]. Most of the applications of EBCM do not deal with arbitrary shaped beams, for instance when studying the scattering properties of airborne particles in atmospheres. Nevertheless, when EBCM is used under the case of structured beam illumination, BSCs may have to be used as well, e.g. subsection 8.1 in [START_REF] Gouesbet | T-matrix methods for electromagnetic structured beams: A commented reference database for the period 2014-2018[END_REF] quoting papers by Mackowsky and Mishchenko [START_REF] Mackowski | Direct simulation of multiple scattering by discrete random media illuminated by Gaussian beams[END_REF], Chen et al. [START_REF] Chen | Scattering of on-axis Gaussian beam by a uniaxial anisotropic object[END_REF], [START_REF] Chen | Gaussian beam scattering by a gyrotropic anisotropic object[END_REF], Wang et al. [START_REF] Wang | Light scattering from an optically anisotropic particle illuminated by an arbitrary shaped beam[END_REF], Zheng et al. [START_REF] Zheng | Scattering of onaxis Gaussian beam by an arbitrarily shaped chiral object[END_REF], [START_REF] Zheng | On-axis Gaussian beam scattering by an object with a chiral inclusion[END_REF], Briard et al. [START_REF] Briard | Shaped beam scattering by an aggregate of particles using generalized Lorenz-Mie theory[END_REF], Mishchenko and Dlugach [START_REF] Mishchenko | Scattering of Gaussian beams by disordered particulate media[END_REF], Phillips et al. [START_REF] Phillips | Shape-induced force …elds in optical trapping[END_REF], Brzobohaty et al. [START_REF] Brzobohaty | Complex rotational dynamics of multiple spheroidal particles in a circularly polarized, dual beam trap[END_REF], Simpson et al. [START_REF] Simpson | Synchronization of colloidal rotors through angular optical binding[END_REF], Li et al. [START_REF] Li | Theoretical research and comparison of forces in optical tweezers based on ray optics method and T-matrix method[END_REF], and Wu et al. [START_REF] Wu | Plasmon-induced strong interaction between chiral molecules and orbital angular momentum of light[END_REF], to be completed by a more recent paper, namely by Vennes et al. [START_REF] Vennes | Canity-enhanced Raman scattering from optically deformed droplets[END_REF] in which BSCs for Gaussian beams are evaluated by using a localized approximation.

Traditionally, the EBCM has been named the T-matrix method. However, the very de…nition of what is a T-matrix method implies that the GLMT as well is a T-matrix method as discussed in [START_REF] Gouesbet | T-matrix formulation and generalized Lorenz-Mie theories in spherical coordinates[END_REF], leading possibly to confusions when people stating that they are using a T-matrix method actually used a GLMT. In particular, in [START_REF] Gouesbet | T-matrix formulation and generalized Lorenz-Mie theories in spherical coordinates[END_REF], it is recalled that, for scattering by a sphere, the T-matrix elements are the partial wave scattering amplitudes a n and b n , i.e. the usual Mie coe¢ cients of the classical Lorenz-Mie theory. This being said, a so-called T-matrix formulation for spherical particles has been published by Khaled et al. [START_REF] Khaled | Scattered and internal intensity of a sphere illuminated with a Gaussian beam[END_REF] in 1972. The signature of the fact that they used an EBCM is visible in a sentence saying that "the submatrix elements are integrated over the surface of the scatterer" ( [START_REF] Khaled | Scattered and internal intensity of a sphere illuminated with a Gaussian beam[END_REF], page 299). However, because these elements reduce to the Mie coe¢ cients (without needing the use of actual integrals, e.g. their Eq.( 31)), it is fair to say that they actually "implicitly" used a version of GLMT (restricted to Gaussian beams). For the use of the ASD in the context of EBCM and other related contexts, the reader may refer to subsection 6.1 in [START_REF] Gouesbet | On the electromagnetic scattering of arbitrary shaped beams by arbitrary shaped particles: A review[END_REF] with earlier papers by Barber and Yeh [START_REF] Barber | Scattering of electromagnetic waves by arbitrarily shaped dielectric bodies[END_REF], Colak et al. [START_REF] Colak | Scattering of focused beams by tenuous particles[END_REF] and Yeh et al. [START_REF] Yeh | Scattering of sharply focused beam by arbitrarily shaped dielectric particles : an exact solution[END_REF].

ASD, structured beams and BSCs.

A background concerning the ASD may be found in [START_REF] Clemmow | The plane wave spectrum representation of electromagnetic …elds[END_REF], [START_REF] Clemmow | The plane wave spectrum representation of electromagnetic …elds[END_REF] and in Goodman, Section 3.7 of [START_REF] Goodman | Introduction to Fourier optics[END_REF], and Section 3.10 of [START_REF] Goodman | Introduction to Fourier optics[END_REF]. Then, having discussed references related to the EBCM in the previous section, the …rst paper using "explicitly" the ASD for the evaluation of BSCs in the GLMT-framework is, as far as we are aware of, by Doicu and Wriedt in 1997 [START_REF] Doicu | Plane wave spectrum of electromagnetic beams[END_REF] who started from a vector potential in the framework of the Davis procedure to the formulation of linearly polarized Gaussian beam [START_REF] Davis | Theory of electromagnetic beams[END_REF]. The electric …eld is thereafter obtained as a double quadrature of plane wave components expressed in terms of the Fourier transform of the vector potential. This expression then allows one to return to the classical approach to the evaluation of BSCs (evaluating BSCs from …elds) and to express them in terms of single quadratures over a polar angle (which is faster to evaluate than usual double or triple quadratures of the original quadrature method). A fairly signi…cant number of papers were afterward devoted to the ASD in the context of light scattering, particularly concerning the use of the ASD to evaluate BSCs. The literature, likely to be fairly exhaustive, is reported below using a chronological order.

In 2010, Chen et al. [START_REF] Chen | Analytical partial wave expansion of vector Bessel beam and its application to optical binding[END_REF] used an ASD of Bessel beams to obtain analytical expressions of BSCs for Bessel beams of arbitrary order and polarization.

In 2011, Marston derived uni-index BSCs g n for quasi-Gaussian Bessel beam superposition described by an ASD and applied them to the scattering of focused beams by spheres [START_REF] Marston | Quasi-Gaussian beam analytical basis and comparison with an alternative approach[END_REF], [START_REF] Marston | Quasi-Gaussian Bessel-beam superposition : Application to the scattering of focused waves by spheres[END_REF], while Pawliuk and Yedlin used a 2D-ASD to study the scattering by a family of parallel circular cylinders [START_REF] Pawliuk | Scattering from cylinders using the twodimensional vector plane wave spectrum[END_REF].

In 2013, Lock [START_REF] Lock | Angular spectrum and localized model of Davis-type beam[END_REF] studied the ASD of a focused Gaussian beam expressed in the Davis …fth-order formulation [START_REF] Barton | Fifth-order corrected electromagnetic …eld components for fundamental Gaussian beams[END_REF], [START_REF] Gouesbet | Partial wave representations of laser beams for use in light scattering calculations[END_REF], and examined as well the cases of a transversely con…ned electromagnetic beam with arbitrary pro…le in the focal plane and of a general zero-order Bessel beam. He clari…ed the signi…cance of the ASD for the evaluation of BSCs, the BSCs of a beam being a superposition of the BSCs of the individual plane wave components in the spectrum. The same year, Hyde et al. [START_REF] Hyde | Scattering of a partiallycoherent wave from a material circular cylinder[END_REF] used an ASD to study the partially-coherent wave scattering from cylinders. The reader interested by partially-coherent wave scattering may refer to a complementary paper on the same issue published in 2015 [START_REF] Hyde | Physical optics solution for the scattering of a partially coherent wave from a circular cylinder[END_REF].

The same year (2015), Lock [START_REF] Lock | Scattering of the evanescent components in the angular spectrum of a tightly focused electromagnetic beam by a spherical particle[END_REF] pointed out that the ASD spectrum in general contains both oscillatory and evanescent components, and paid a particular attention to the scattering of the evanescent components of the ASD spectrum of a tightly focused EM beam by a spherical particle. BSCs of the entire beam are evaluated by summing the BSCs of individual plane wave components weighted by their respective amplitude and phase. The same year again, Mitri used an ASD to study the scattering of linear, circular, radial, azimuthal polarized Bessel beams and unpolarized beams by a sphere [START_REF] Mitri | Resonance scattering of a dielectric sphere illuminated by electromagnetic Bessel non-di¤racting (vortex) beams with arbitrary incidence and selective polarization[END_REF].

In 2016, the same author (Mitri) similarly used the ASD to study the optical pulling force on a magneto-dielectric Rayleigh sphere in zeroth and …rst-order Bessel tractor polarized beams [START_REF] Mitri | Optical pulling force on a magneto-dielectric Rayleigh sphere in Bessel tractor polarized beams[END_REF], and to deal with cylindrical particle manipulation using a nonparaxial Hermite-Gaussian light-sheet beam. Moore and Alonso [START_REF] Moore | Mie scattering of highly focused, scalar …elds; an analytical approach[END_REF] used an ASD to provide an analytical approach to describe the interaction of a sphere with of a monochromatic scalar continuous …eld, elaborating on a previous work presented in a conference [START_REF] Moore | Mie scattering of high numerical aperture …elds[END_REF].

In 2017, Mitri relied on the use of the ASD to study radiation pressure cross-sections exerted by optical tractor Bessel polarized beams [START_REF] Mitri | Optical tractor Bessel polarized beams[END_REF], to describe nonparaxial fractional Bessel and Bessel-Gauss auto-focusing light-sheet pincers [START_REF] Mitri | Nonparaxial fractional Bessel and Bessel-Gauss auto-focusing light-sheet pincers and their higher-order spatial derivatives[END_REF] and to study optical radiation forces and spin torques exerted by such beams on subwavelength prolate and oblate spheroids [START_REF] Mitri | Negative optical radiation force and spin torques on subwavelength prolate and oblate spheroids in fractional Bessel-Gauss pincers light-sheets[END_REF], to investigate nonparaxial scalar Airy light-sheets and their higher-order spatial derivatives with BSCs evaluated by a numerical integration procedure [START_REF] Mitri | Nonparaxial scalar Airy light-sheets and their higher-order spatial derivatives[END_REF] and to study pulling and spinning reversal forces exerted by such beams on a subwavelength absorptive sphere [START_REF] Mitri | Pulling and spinning reversal of a subwavelength absorptive sphere in adjustable vector Airy light-sheets[END_REF]. Also, radiation forces and torques exerted by various light-sheet beams on absorptive circular cylinders have been evaluated in a GLMT framework with BSCs being derived using the ASD [START_REF] Mitri | Radiation force and torque of light-sheets[END_REF], and a study has been devoted to the description of self-bending scalar and vector bottle sheets [START_REF] Mitri | Self-bending scalar and vector bottle sheets[END_REF]. These are to be completed with Li et al. [START_REF] Li | Re ‡ection and transmission of Laguerre-Gaussian beams in a dielectric slab[END_REF] who studied the re ‡ection and transmission of Laguerre-Gauss beams in a dielectric homogeneous slab, relying on the ASD to obtain analytical expressions of the total re ‡ected and transmitted …eld intensities, Qin et al. [START_REF] Qin | Debye series analysis of internal and near-surface …elds for a homogeneous sphere illuminated by an axicongenerated vector Bessel beam[END_REF] who carried out a Debye series analysis of internal and near-surface …elds for a homogeneous sphere illuminated by an axicon-generated vector Bessel beam in the GLMT framework, with an analytical expression of BSCs being derived using the ASD method, Li et al. [START_REF] Li | Optical spin torque induced by vector Bessel (vortex) beams with selective polarizations on a light-absorptive sphere of arbitrary size[END_REF] who used again a GLMT framework to study optical spin torques induced by vector Bessel beams on a light-absorptive sphere of arbitrary size, with BSCs calculated using the ASD method, and Lu et al. [START_REF] Lu | Rigorous full-wave calculation of optical forces on dielectrric and metallic microparticles immersed in a vector Airy beam[END_REF] dealing with the calculation of optical forces exerted on dielectric and metallic microparticles illuminated by a vector Airy beam, with BSCs evaluated by using an ASD.

In 2018, Wen et al. [START_REF] Wen | Scattering of a vector Bessel-Gaussian beam by a sphere[END_REF] investigated the interaction of a vector Bessel-Gaussian beam (VBGB) with a dielectric sphere in the GLMT framework, derived the electric …eld of the VBGB using an ASD and obtained analytical expressions of the BSCs. Li et al. [START_REF] Li | Intensity, phase, and polarization of a vector Bessel vortex beam through multilayered isotropic media[END_REF] used an ASD to study the characteristics of re ‡ected and transmitted …elds of a vector Bessel beam through multilayered isotropic media. Gong et al. [START_REF] Gong | Scattering of a vector Bessel vortex beam by a charged sphere[END_REF] studied the scattering of a vector Bessel beam by a charged sphere, with BSCs expressed by analytical expressions using the ASD. Qiu and Shen [START_REF] Qiu | Beam shape coe¢ cient calculation for a beam: localized approximation, quadrature and angular spectrum decomposition methods[END_REF] reviewed di¤erent methods to evaluate the BSCs of a Gaussian beam and, in particular, demonstrated that BSCs expressions can be simpli…ed to 1D-quadratures using the ASD.

In 2019, Lu et al. [START_REF] Lu | Abruptly autofocusing property and optical manipulation of circular Airy beams[END_REF] employed the ASD to derive the BSCs of circular Airy beams with di¤erent polarizations, and to study the scattering of such beams by a spherical particle in the GLMT framework, and Alinezhad and Reihani [START_REF] Alinezhad | Optimal condition for optical trapping of large particles: tuning the laser power and numerical aperture of the objective[END_REF] evaluated BSCs using the ASD to discuss optical forces and trapping e¢ ciency in optical tweezers,

In 2020, Yang et al. [START_REF] Yang | Internal and near-surface …elds for a charged sphere irradiated by a vector Bessel beam[END_REF] studied the interaction between an axicon-generated vector Bessel beam and a charged sphere in the GLMT framework, using analytical expressions for the BSCs derived from the ASD method, Wang et al. [START_REF] Wang | Spherical harmonics expansion of the evanescent waves in angular spectrum decomposition of shaped beams[END_REF] dealt with with the ASD applied to evanescent waves and to an exponential behavior of BSCs with respect to the increase of the partial wave number, while Song et al. [START_REF] Song | Optical torque on an absorptive dielectric sphere of arbitrary size illuminated by a linearly-polarized Airy light-sheet[END_REF] investigated the optical torque exerted on an absorptive dielectric sphere of arbitrary size illuminated by a linearly-polarized Airy light-sheet, relying on the GLMT associated with an ASD approach.

In 2021, Zhang et al. [START_REF] Zhang | Scattering of a non-paraxial Bessel pincer light-sheet by a dielectric sphere of arbitrary size[END_REF] studied the scattering of nonparaxial Bessel pincer light-sheets in a GLMT framework, using the ASD to expand the electric …eld of the beam and expressing the BSCs in terms of 1D-integrals, Cui et al. [START_REF] Cui | Local dynamical characteristics of Bessel beams upon re ‡ection near the Brewster angle[END_REF] used the ASD to deal with the dynamical characteristics and scattering of Bessel beams upon re ‡ection near the Brewster angle, and Zhang and Shen [START_REF] Zhang | Comparison of a standard elliptical Bessel beam and a refracted circular Bessel beam at oblique incidence[END_REF] used the ASD to study circular Bessel beams (CBB) and elliptical Bessel beams (EBB), either standard or produced by the refraction of circular Bessel beams at oblique incidence on an interface. Depending on the case considered, BSCs are obtained as closed forms (CBB) or as 1D-integrals (EBBs).

This section has given evidence that a signi…cant number of papers have used the ASD in connection with the description of structured beams, and with the evaluation of BSCs. These papers used what we may call hybrid approaches. These approaches have to be opposed to other approaches that we shall now consider.

ASD brute force approach.

Because the ASD provides a decomposition of structured beams in terms of plane waves, there is an "obvious" and conceptually simple way to describe the scattering of structured beams, namely calculate the scattering of each plane wave in the spectrum and then add the contributions of all the plane waves to obtain the contribution of the structured beam. There are basically two ways to implement such an approach. To describe this dichotomy, let us distinguish between a local (in the Fourier space) Cartesian system Oxyz attached to a plane wave in the spectrum, with the plane wave propagating along the zdirection toward positive z's, and a global OXY Z Cartesian system attached to the beam as a whole, with the beam "as a whole" propagating along the Z-direction toward positive Z's.

The …rst approach is as follows. Let us consider a plane wave component in the spectrum. We may describe the scattering of this plane wave in the global system, and directly obtain the scattered …elds generated by this plane wave component in this global system. However, because this plane wave is generically tilted with respect to the direction of propagation of the beam, the BSCs for this plane wave are not the trivial BSCs of the classical Lorenz-Mie theory. They have to be evaluated using transformations of BSCs through rotations of coordinate systems [START_REF] Gouesbet | Transformations of spherical beam shape coe¢ cients in generalized Lorenz-Mie theories through rotations of coordinate system. I. General formulation[END_REF], [START_REF] Wang | Transformations of spherical beam shape coe¢ cients in generalized Lorenz-Mie theories through rotations of coordinate system. II. Axisymmetric beams[END_REF], [START_REF] Gouesbet | Transformations of spherical beam shape coe¢ cients in generalized Lorenz-Mie theories through rotations of coordinate system. III. Special values of Euler angles[END_REF], [START_REF] Gouesbet | Transformations of spherical beam shape coe¢ cients in generalized Lorenz-Mie theories through rotations of coordinate system[END_REF], [START_REF] Gouesbet | Transformations of spherical beam shape coe¢ cients in generalized Lorenz-Mie theories through rotations of coordinate system. V. Localized beam models[END_REF]. The BSCs of the whole …eld are then obtained by the summation of the BSCs of the plane wave components in the spectrum, and the scattering problem may then be solved in a GLMT framework. In principle, this approach might be carried out relying on an analytical approach up to the moment when the summation of the individual BSCs has to be carried out numerically. Kashter et al. [START_REF] Kashter | E¢ cient computation of arbitrary beam scattering on a sphere[END_REF], quoting the above papers describing the BSCs transformations through rotations, criticized the use of such tilted plane waves with tilted BSCs, stating that "the mathematical expression for the transformation is complicated and requires additional calculations [...] which might cause the data processing to be less e¤ective, in terms of duration of processing, compared to the simple case of the Mie calculation". But it has never been claimed that the use of tilted waves in this …rst approach is recommended. In any case, it does not represent the most convenient way of using GLMT with global BSCs g m n;T M and g m n;T E , so that the aforementioned statement by Kashter et al. [START_REF] Kashter | E¢ cient computation of arbitrary beam scattering on a sphere[END_REF] is deeply misleading, and gives an implicit, and erroneous disquali…cation of GLMT. This misleading presentation of the GLMT is repeated in the conclusion in which it is stated that, in GLMT, "the scattering is calculated by the beam shape coe¢ cient for each phase pattern (including tilted plane wave)". This misses the point that the GLMT actually uses global BSCs allowing one to solve the scattering problem in a single shot, in particular when the two-dimensional integral of the BSCs of the individual plane waves multiplied by the beam weighting coe¢ cients can be evaluated analytically for the Davis model of a focused beam, and for Bessel beams [START_REF] Lock | Angular spectrum and localized model of Davis-type beam[END_REF], [START_REF] Wang | Multipole expansion of circularly Bessel beams of arbitrary order for scattering calculations[END_REF], [START_REF] Wang | General description of transverse mode Bessel beams and construction of basis Bessel …elds[END_REF], and, more generally, when the global BSCs are evaluated by using one of the techniques listed in Section 2 (quadratures in cases where they can be analytically carried out, …nite series, localized models).

The second approach is as follows. We may solve the scattering problem for each plane wave component in its local coordinate system, that is to say in a con…guration which is exactly the one of the classical Lorenz-Mie theory. The scattered …elds from each component are afterward obtained in the global system by a rotational transformation and, eventually, all the rotated …elds are summed up to obtain the …elds scattered by the structured beam as a whole.

As we are now going to discuss, it may be viewed as a brute force approach, and is used in the paper by Kashter et al. [START_REF] Kashter | E¢ cient computation of arbitrary beam scattering on a sphere[END_REF], which is the motivation of the present paper.

There are a priori two complications in the brute force approach. The …rst one is related to the fact that, in general, the spectrum contains an in-…nite number of plane wave components. Therefore, in numerical evaluation, we must be content with a limited number of computations, using a discrete …nite sample of components taken from the in…nite number actually present in the spectrum. We must therefore expect a problem of accuracy. Because the scattering patterns are more and more complicated when the parameter size of the scatterer increases (the number of lobes in the pattern is roughly equal to the size parameter of the scattering sphere), we must expect an increasing loss of accuracy when the size of the scatterer increases.

For the second complication, we have to remark that many scattering calculations have to be carried out, depending on the number of plane waves sampled from the spectrum. This is in contrast with the GLMT where, because the structure of the illuminating beam is encoded in the BSCs, the scattering problem can be solved in a single numerical shot. In other words, the brute force approach is a many-steps approach. A …rst step requires a sampling of plane waves. The second step requires many Mie computations. And a third step requires the combination of the results of the many Mie computations carried out in the previous step. Therefore, it is not di¢ cult to conjecture that the brute force approach will be computationally more intensive than the GLMTapproach where the BSCs of the shaped beam are analytically known or may be evaluated by using e¢ cient techniques, e.g. Section 2 again.

These two complications …nd their origin in the fact that there is no formal e¤ort to summarize and sum up the e¤ects of all the components in the plane wave spectrum into a simple and single formulation. This comment justi-…es the descriptive name of "brute force approach" to the numerical integration of the spectrum over plane wave components. We are now going to check a posteriori (after numerical experiments) the a priori statements concerning lacks of computational e¢ ciency and of accuracy.

To illustrate the computational ine¢ ciencies, we may return to computations carried out by one of us in 1995 [START_REF] Lock | Improved Gaussian beam-scattering algorithm[END_REF] concerning comparisons between di¤erent ways of achieving scattering calculations, using a Compaq 386-33 MHz personal computer equipped with a Weitek numerical processor. For certain typical parameters (in particular for a sphere diameter d = 100 m, and an incident wavelength = 0:6328 m), and 361 values of the scattering angle , GLMT-computations for o¤-axis Gaussian beams with the BSCs evaluated analytically for a Davis model of a focused Gaussian beam required 195 s. A corresponding classical Lorenz-Mie calculation required only 3 s, that is to say the o¤-axis Gaussian beam program runs almost 70 times slower than Mie theory (at least for the studied parameters). Note that these timing …gures were valid 26 years ago and that to-day they would be much smaller. Nevertheless, from this, we might already infer that a brute force approach using a sample of more than 70 plane waves will run slower than GLMT. We may re…ne this evaluation by recalling that the number of lobes in the scattering pattern is roughly equal to the size parameter. For a diameter d = 100 m, and an incident wavelength = 0:6328 m, the size parameter is = d= ' 500. If, as a rule of thumb (admittedly unsecure), we assume that we need 10 plane waves to correctly sample one lobe, we would need 5000 Mie calculations, so that the brute force approach would roughly run 5000=70 ' 70 time slower than the GLMT. The computational intensiveness of the use of a brute force approach is also mentioned by Moore and Alonso [START_REF] Moore | Closed form formula for Mie scattering of nonparaxial analogues of Gaussian beams[END_REF].

Concerning accuracy, we may consider the paper by Kashter et al. [START_REF] Kashter | E¢ cient computation of arbitrary beam scattering on a sphere[END_REF]. This paper reports on what could be seen as an improvement with respect to computational times, namely the authors generated a database of Mie solutions which are retrieved before summing up all the sampled solutions with a "careful consideration of amplitude, phase, polarization, and propagation direction in the initial plane wave decomposition", although no comparison of computational times with respect to GLMT are provided. But the accuracy problem remains a signi…cant one. The authors indeed acknowledged that "the e¤ect on the overall numerical error due to a limited number of samples [...] has not been accurately studied and will be shown to be important in nonparaxial cases". They also commented that they "can estimate the impact of the sampling densities which will be shown to play a signi…cant role in the case of large tilting angles". More speci…cally, errors may occur for at least two reasons.

First, the Mie solutions for individual plane wave components of the ASD are stored in the database by using a discrete representation, with a limited angular sampling density. Relative errors in total scattering for Mie computations are then evaluated by comparing scattering cross-sections rigorously evaluated in terms of a summation involving Mie coe¢ cients (Eq.( 4) in [START_REF] Kashter | E¢ cient computation of arbitrary beam scattering on a sphere[END_REF]) and evaluated using the stored discrete representation (Eq.( 7) in [START_REF] Kashter | E¢ cient computation of arbitrary beam scattering on a sphere[END_REF]). The sampling density is characterized by the number L = 2L 1 = L 2 in which L 1 and L 2 are the number of discrete samples along spherical angular coordinates and ' respectively. For a size parameter equal to 100 (size diameter of about 16 m for a wavelength of 0:5 m), i.e. for the largest size parameter considered in the …gures of [START_REF] Kashter | E¢ cient computation of arbitrary beam scattering on a sphere[END_REF] displaying the numerical error estimations, the errors are found to reach up to 16% for L = 128 and require to use L = 512 to decrease to 1%. By comparison, standard Mie scattering codes are numerically accurate to 10 6 %. We may anticipate that these errors would go on increasing signi…cantly for larger size parameters. Furthermore, the procedure used by Kashter et al. [START_REF] Kashter | E¢ cient computation of arbitrary beam scattering on a sphere[END_REF] requires a rotational transformation from the local Mie coordinate system associated with the direction of the plane wave component to a global coordinate system associated with the direction of the incoming beam viewed as a whole. The errors mentioned above evaluated in the Mie coordinate system then propagate to the global system and are displayed in Fig. [START_REF] Gouesbet | chapter : Generalized Lorenz-Mie theory and applications to optical sizing[END_REF] of [START_REF] Kashter | E¢ cient computation of arbitrary beam scattering on a sphere[END_REF] where they can become signi…cant depending on the value of an Euler angle associated with the rotation between the local and the global coordinate systems. For instance, they can reach 50% for = 45 and a size parameter equal to 10, corresponding to a particle diameter equal to about 1:6 m and to the largest size parameter considered in Fig. 6) of [START_REF] Kashter | E¢ cient computation of arbitrary beam scattering on a sphere[END_REF]. Concerning the results for the scattering on an arbitrary incident waveform in their section 4, the authors mention that the maximal error involved, corresponding to a maximal value of = 4:05 , is approximately 1:4%. Again, this is far more important than the standard accuracy of Mie codes.

Furthermore, it does incorporate the e¤ect of using a limited number of plane waves extracted from the sampling of the in…nite number of plane wave components present in the ASD, i.e. of the necessity of sampling the ASD. If one does this in the context of Discrete Fourier Transforms instead of a Continuous Fourier Transform, so as to make use of the speeding up of the process by the Fast Fourier Transform algoritm, an additional source of error is due to the discretization of the angular spectrum. This source of error is not convincingly discussed in [START_REF] Kashter | E¢ cient computation of arbitrary beam scattering on a sphere[END_REF].

Actually, for a better evaluation of the quality of the results, we would need systematic comparisons between GLMT-computations and Kashter's method computations, both from the point of view of computational times and from the point of view of accuracy. Such comparisons are not available. It is furthermore to be noted that, in the visible range, a size parameter equal to 10 (the largest value considered in Fig. 6b) corresponds to a particle diameter equal to 1:6 m. This may be viewed as a small particle, too small for many applications such as for the measurements of spray droplets by phase-Doppler anemometry, e.g. [START_REF] Gréhan | Particle trajectory e¤ects in phase-Doppler systems: computations and experiments[END_REF], [START_REF] Gréhan | Trajectory ambiguities in phase-Doppler systems: study of a near-forward and a near-backward geometry[END_REF], when particle diameters equal to 100 m (size parameter equal to about 600) or more may have to be considered for accurate measurements. In the case of Gaussian beam illumination, the authors of [START_REF] Kashter | E¢ cient computation of arbitrary beam scattering on a sphere[END_REF] stated that the largest waist radius considered in their Fig. 8 (i.e. w 0 = 10 m) is 20 times larger than the sphere radius, corresponding to a sphere diameter equal to 1 m which is indeed very small for many applications, although it may be su¢ cient for some other applications. Nevertheless, even for the small size parameters considered, the error calculation of the author's method appears to be quite crude, and is signi…cantly higher than that of standard GLMT computations.

Already, in 1988, fast and accurate GLMT-computations for particle diameters up to 100 m could be achieved on microcomputers when the BSCs of the incident beam were able to be analytically evaluated. In view of these remarks, the comments of Kashter et al. according to which they provided a method with "a signi…cant computational advantage to address any incident waveform in a fast and e¢ cient way" is at least premature, to say the least. Another example of a brute force approach is by Zakowicz [START_REF] Zakowicz | Scattering of narrow stationary beams and short pulses on spheres[END_REF] without any comparison with GLMT in terms of computational times and accuracy being provided, but the author did not make any unsubstantiatted claim concerning the e¢ ciency of his approach.

Benchmark data.

Any proposal for a brute force approach should be compared with GLMTresults which would provide benchmark data, in terms of computational times and of accuracy, before being acceptable, and/or considered as an approach superior to the GLMT-approach or even as an alternative. Such benchmark data may be obtained from GLMT-computer programs which are available as an additional material to [START_REF] Gouesbet | Generalized Lorenz-Mie theories[END_REF] and which can be downloaded from http://extras.springer.com. Capabilities of GLMT are illustrated below using …gures which have been produced with an independent GLMT-code written with Matlab from Xidian University, and exhibiting scattering diagrams (more speci…cally displaying jEj

2 ) in arbitrary units for particles illuminated on-axis by Gaussian beams. We strongly believe that such results could hardly be obtained in a competitive way by using a brute force In particular all these …gures are for a particle diameter d equal to 2 mm, for an incident wave-length equal to 0.6328 m, corresponding to a size parameter d= about equal to 10 000. Furthermore, the beam waist radii are w 0 = 5 mm and 0:75 mm, the …rst one corresponding to a slightly converging beam with a ratio (2w 0 )=d = 5 larger than 1, and a small beam con…nement factor equal to s = 1=(kw 0 ) 2:10 5 close to the one of a plane wave, while the second one corresponds to a more tightly converging beam with a ratio (2w 0 )=d = 0:75 smaller than 1, and a larger beam con…nement factor equal to s = 1=(kw 0 ) 10 4 . Figs 1 and 2 are for a homogeneous sphere, with a refractive index of 1.33, for w 0 = 5 mm and 0:75 mm respectively. Since GLMT-approaches and brute force approaches are not limited to homogeneous particles, these …gures are complemented with Figs 3 and4 which are for a multilayered sphere with 500 layers, a refractive index decreasing linearly from 1.36 at the surface down to 1.33 at the core, again for w 0 = 5 mm and 0:75 mm respectively.

We believe that carrying out e¢ ciently similar computations with a brute force approach would represent a challenge. Another issue is that GLMTcomputations do not only deal with the computation of scattering …elds, but also with the computations of internal …elds (including resonances), of scattering, absorption, and extinction cross-sections, and of radiation forces and torques. The e¢ ciency of brute force approaches for the evaluation of such quantities should be examined as well.

Conclusion.

The recent paper by Kaster et al. [START_REF] Kashter | E¢ cient computation of arbitrary beam scattering on a sphere[END_REF] provides an opportunity to discuss two di¤erent approaches to the scattering of structured beams by regular particles, either (i) by using BSCs which summarize all the information contained in the in…nite number of plane waves present in the ASD or (ii) dealing individually with a number of individual scattering computations for a sample of Contrarily to what is strongly suggested in [START_REF] Kashter | E¢ cient computation of arbitrary beam scattering on a sphere[END_REF], there is no evidence that the brute force approach is de…nitely superior, or even is simply a competitive alternative to the use of a GLMT. As far as the contrary is not clearly demonstrated, we believe that a brute force approach is not incorrect, but is a relatively computationally ine¢ cient and inaccutate approach. Finally, we have taken the opportunity of the present paper to review the use of the ASD in light scattering.

Figure 1 :

 1 Figure 1: Homogeneous sphere. Beam waist radius: 5 mm
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 23 Figure 2: Homogeneous sphere. Beam waist radius: 0.75 mm
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 4 Figure 4: Multilayered sphere. Beam waist radius: 0.75 mm