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Abstract

A recent work has been devoted to the study of the Rayleigh limit
of generalized Lorenz-Mie theory for on-axis beams in the case of non
dark axisymmetric beams of the first kind. The present work comple-
ments this previous work by studying the case of non-dark axisymmetric
beams of the second kind and of dark axisymmetric beams. This paper
being presumably the last one of a series devoted to the Rayleigh limit
of the generalized Lorenz-Mie theory in the case of lossless particles, it is
complemented by a mini-review allowing one to gain an overview of the
issue.

Keywords: Optical forces; Rayleigh limit; Generalized Lorenz-Mie theory;
Dipole theory of forces; Poynting vector and symmetries; Beam shape coeffi -
cients and symmetries.

1 Introduction.
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This paper pertains to a series of papers devoted to the study of the
Rayleigh limit of generalized Lorenz-Mie theory (GLMT) and to its relationship
with the dipole theory of forces, and more particularly to the case of on-axis
beams when the details of the formulation are simplified with respect to the
more complicated case of off-axis beams. We furthermore more specifically
consider the case of on-axis axisymmetric beams which allows one to deal with
more simplifications. In a Part I-paper, we paid a particular attention to the
case of non dark axisymmetric beams of the first kind, with the example of
Gaussian beams. The present Part II-paper is devoted to another class of on-
axis axisymmetric beams encompassing both non dark axisymmetric beams of
the second kind and dark beams. This work is therefore to be viewed as being
located at the confluence of three rivers (i) generalized Lorenz-Mie theory, (ii)
symmetries in the framework of generalized Lorenz-Mie theories, and (iii) optical
forces. We now summarize a few features characterizing each of these rivers, for
the sake of a better understanding of the sequel.

The generalized Lorenz-Mie theory describes the interaction between an
illuminating arbitrarily shaped electromagnetic beam and a homogeneous sphere
defined by its diameter and its complex refractive index, e.g. [1], [2], [3] with [4]
for a recent review. In this framework, the illuminating beam is encoded in a
set of beam shape coeffi cients (BSCs) traditionally denoted as gmn,TM and gmn,TE ,
with TM and TE standing for "Transverse Magnetic" and "Transverse Electric"
respectively, and n ranging from 1 to infinity, with −n ≤ m ≤ +n (more
generally, there exists a class of GLMTs describing the interaction between
arbitrarily shaped beams and scattering particles possessing enough degree of
symmetry to allow one to use the method of separation of variables, e.g. [5]).
BSCs are useful as well when using the extended boundary condition method
(EBCM) which describes scattering phenomena in the case of arbitrary shaped
particles [6], [7], usually for plane wave illumination (in which case BSCs are
trivial) or more generally for arbitrarily shaped illumination, e.g. subsection 8.1
in [8].

Concerning the study of symmetries in the framework of GLMT, a first
attack has been published in the general framework of off-axis configurations [9],
with BSCs evaluated using a technique called a quadrature technique [10], [11],
leading to a series of symmetry relations making various quantities relevant to
the scattering properties, such as cross-sections, invariant with respect to some
coordinate changes, associated with similar invariant relations related to the
BSCs. Such symmetry relations could be useful to simplify or check analyti-
cal works, or to speed up numerical evaluations by avoiding useless repetitive
calculations.

These symmetries, however, were mainly related to the configurations
describing the interaction between the beam and scattering particle, rather than
to the beam itself. The search for symmetries of BSCs, specifically related to
the beam itself, in connection with symmetry properties of the Poynting vector,
started in 1996 [12]. This paper introduced the concept of axisymmetric beams
according to the following definition: an axisymmetric beam is a beam for which
the component of the Poynting vector in the direction of propagation does not

2



depend on the azimuthal angle in a suitably chosen coordinate system. In prac-
tice, the suitably chosen coordinate system is a coordinate system Oxyz, with
the z-axis being the direction of propagation of the beam. The component of
the Poynting vector S in the direction of propagation is then the component Sz
which, by definition, does not depend on ϕ, with (r, θ, ϕ) being the usual spher-
ical coordinates attached to the Cartesian coordinates (x, y, z). The description
of the beam in such a configuration is called an on-axis configuration.

We then exhibited a class of BSCs symmetries characterizing an on-axis
axisymmetric beam in which all BSCs are zero but the ones for which m = ±1,
satisfying:

gmn,TM = gmn,TE = 0, m 6= ±1 (1)

gn/2 = g1n,TM = g−1n,TM/K = −iεg1n,TE = iεg−1n,TE/K (2)

in which K describes the state of polarization of the beam (for instance,
K = +1 for an on-axis Gaussian beam polarized in the x−direction at its
focal waist, e.g. [13], [14]) and ε = ±1 defines the beam-propagation direction.
The existence of such axisymmetric beams has been revisited in 2017 [15] in
an enlarged context, including a discussion of vortex and non-vortex beams, of
dark and non-dark beams, and of BSC-symmetries in spheroidal and cylindrical
coordinates.
Using a refined terminology, such beams have been called on-axisymmetric

beams of the first kind. Furthermore, axisymmetry, just as defined above, could
also be better called longitudinal axisymmetry to remind us that the definition
relies on the property of the longitudinal component of the Poynting vector.
This would also allow us to introduce a complementary definition, the one of
transverse axisymmetry in which the transverse component (S2x + S

2
y)
1/2 would

not depend on the azimuthal angle ϕ. A beam which is both longitudinally
axisymmetric and transversely axisymmetric beam is a circularly symmetric
beam. Examples will be provided in the sequel. The relationships, in terms of
BSCs symmetries, between longitudinal axisymmetry, transverse axisymmetry
and circularly symmetry have not yet been worked out.
Let us now introduce the concept of dark and non-dark beams as mentioned

above. Dark beams (more specifically on-axis dark beams, i.e. dark beams in
an on-axis configuration which constitutes the framework of the present paper)
are beams in which the longitudinal component Sz of the Poynting vector is 0
on the axis (i.e. for θ = 0). According to a darkness theorem [16], [15], these
beams satisfy, whether they are axisymmetric or not:

g±1n,TM = g±1n,TE = 0 (3)
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Therefore, axisymmetric beams of the first kind are non-dark. How-
ever, axisymmetric beams of the first kind do not exhaust the list of non-dark
axisymmetric beams, as shortly commented between Eqs.(65) and (66) of [15].
Indeed, beside non-dark axisymmetric beams of the first kind when all BSCs
of the form g±1n,X are different from 0 as shown in Eq.2 and dark beams (not
necessarily axisymmetric) when all of them are 0 as shown in Eq.3, there is
some room for a possible case when some of them, but not all of them, are 0.
Such beams, which are non-dark, are called axisymmetric beams of the second
kind. The BSCs of axisymmetric beams of the second kind and of dark beams
(now with the selection of axisymmetric dark beams) satisfy specific symmetry
properties which will be recalled below, according to the results obtained in [17].

Concerning the confluent third river, the one of optical forces, we re-
call that GLMT is a perfect and rigorous tool to evaluate optical forces (and
torques) as reviewed in [18]. The specific case of Rayleigh particles is how-
ever particularly interesting because it leads to simple expressions which can
be easily manipulated and interpreted. An extensive study of optical forces in
the Rayleigh regime of GLMT has then been recently achieved, as reviewed in
Section 10. For the time being, it is suffi cient to know that optical forces on
Rayleigh particles by (non-dark) axisymmetric beams of the first kind have been
studied in a Part-I paper [19]. The present Part II-paper deals with the cases of
(non-dark) axisymmetric on-axis beams of the second kind and of axisymmetric
on-axis dark beams which share the BSC-symmetries of Eqs.26 and 27 which
will be presented below in their context.

The paper is organized as follows. For the sake of convenience of the
reader, Section 2 recalls various basic expressions which have been published in
different places of the literature and which are fundamental basic expressions
for use in the sequel. Section 3 summarizes the framework in which the study
of axisymmetric beams of the second kind and axisymmetric dark beams have
been carried out in [17], and makes accordingly a list of different cases to be
studied separately. Section 4 deals with the expression of transverse radiation
cross-sections (which may be viewed as a way of expressing optical forces) for
the different cases considered in Section 3 and introduces subcases. Similarly,
section 5 deals with longitudinal pressure radiation cross-sections specified for
the different subcases. Section 6 then considers the case of Rayleigh particles,
leading to simplifications in the expressions of the transverse and of the longi-
tudinal cross-sections. Section 7 deals with the decomposition of optical forces
catalogued as gradient, scattering and non-standard forces. Sections 8 deals
with a trivial case. Section 9 provides examples while section 10 provides a
mini-review of the whole work carried out to the study of optical forces in the
framework of the Rayleigh regime of GLMT. Section 11 is a conclusion.
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2 Preliminaries.

All expressions in this section (and in all the paper) use the normalization
condition E0H∗0/2 = 1. The validity of such a normalization is ensured by the
fact that beams considered in GLMT propagate in vacuum (so that the electric
E0 and magnetic H0 strengths are proportional with a coeffi cient of proportion-
ality pertaining to the set of real numbers). The transverse components of the
Poynting vector then read as, e.g. [12], [15]:

Sx = Re

∞∑
n=1

+n∑
m=−n

∞∑
p=1

+p∑
q=−p

cpwn cpw∗p ei(m−q)ϕ (4)

[
k sinϕ

r
(ψ

′′

n + ψn)Anmpq +
ik cos θ cosϕ

r
(ψ

′′

n + ψn)Bnmpq +
i sin θ cosϕ

r2
Cnmpq]

Sy = Re

∞∑
n=1

+n∑
m=−n

∞∑
p=1

+p∑
q=−p

cpwn cpw∗p ei(m−q)ϕ (5)

[−k cosϕ
r

(ψ
′′

n + ψn)Anmpq +
ik cos θ sinϕ

r
(ψ

′′

n + ψn)Bnmpq +
i sin θ sinϕ

r2
Cnmpq]

in which :

Anmpq = [αnmpqψ
′

pτ
|q|
p + qβnmpqψpπ

|q|
p ]P

|m|
n (6)

Bnmpq = [−qαnmpqψ
′

pπ
|q|
p − βnmpqψpτ |q|p ]P |m|n (7)

Cnmpq = αnmpq(mψ
′

nψ
′

pπ
|m|
n τ |q|p + qψnψpτ

|m|
n π|q|p ) (8)

+βnmpq(mqψ
′

nψpπ
|m|
n π|q|p − ψnψ

′

pτ
|m|
n τ |q|p )

in which :

αnmpq = gq∗p,TMg
m
n,TE − gmn,TMg

q∗
p,TE (9)
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βnmpq = gmn,TMg
q∗
p,TM + gq∗p,TEg

m
n,TE (10)

The longitudinal component reads as:

Sz =
−1
r2
Re

∞∑
n=1

+n∑
m=−n

∞∑
p=1

+p∑
q=−p

icpwn cpw∗p ei(m−q)ϕ (11)

(sin θSmqnp + cos θC
mq
np )

in which:

Smqnp = kr[−gmn,TMg
q∗
p,TMψp(ψn + ψ

′′

n)P
|m|
n τ |q|p (12)

+gmn,TEg
q∗
p,TEψn(ψp + ψ

′′

p )P
|q|
p τ |m|n

+qgmn,TMg
q∗
p,TEψ

′

p(ψn + ψ
′′

n)P
|m|
n π|q|p

+mgmn,TMg
q∗
p,TEψ

′

n(ψp + ψ
′′

p )P
|q|
p π|m|n ]

Cmqnp = −gmn,TMg
q∗
p,TMψpψ

′

n(τ
|m|
n τ |q|p +mqπ|m|n π|q|p ) (13)

+gmn,TMg
q∗
p,TEψ

′

nψ
′

p(mπ
|m|
n τ |q|p + qπ|q|p τ

|m|
n )

−gmn,TEg
q∗
p,TMψpψn(mπ

|m|
n τ |q|p + qπ|q|p τ

|m|
n )

+gmn,TEg
q∗
p,TEψnψ

′

p(mqπ
|m|
n π|q|p + τ |m|n τ |q|p )

In these equations, ψn denotes Riccati-Bessel functions with the ar-
gument kr (k the wavenumber) omitted for convenience, a prime denotes a
derivative of a function with respect to its argument (and a double prime to
a second derivative), the coeffi cients cpwn ("pw" standing for "plane wave") are
coeffi cients which occur in a natural way in the Bromwich formulation of the
usual Lorenz-Mie theory, and read as [14] :

cpwn =
1

ik
(−i)n 2n+ 1

n(n+ 1)
(14)

Furthermore, τmn and π
m
n , with argument cos θ omitted for convenience,

are generalized Legendre functions defined according to :
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πmn (cos θ) =
Pmn (cos θ)

sin θ
(15)

τmn (cos θ) =
dPmn (cos θ)

dθ
(16)

in which Pmn (cos θ) are the associated Legendre functions defined according
to Hobson’s convention :

Pmn (cos θ) = (−1)m(sin θ)m
dmPn(cos θ)

(d cos θ)m
(17)

in which Pn(cos θ) are the Legendre polynomials.
The transverse pressure radiation cross-sections, from Eqs.(3.181) and

(3.185) of [3], in which we conveniently change m to p, and p to k, read as:

(
Cpr,x
Cpr,y

)
=

λ2

2π

∞∑
k=1

∞∑
n=k

∞∑
p=k−1 6=0

(n+ k)!

(n− k)! (18)

×[
(
Re
Im

)
(Sk−1pn + S−knp − 2Uk−1pn − 2U−knp )(

δp,n+1
p2

− δn,p+1
n2

)

+
2n+ 1

n2(n+ 1)2
δnp

(
Re
Im

)
(T k−1pn − T−knp − 2V k−1pn + 2V −knp )]

in which:

Smnp = (an + a
∗
p)g

m
n,TMg

m+1∗
p,TM + (bn + b

∗
p)g

m
n,TEg

m+1∗
p,TE (19)

Tmnp = −i(an + b∗p)gmn,TMgm+1∗p,TE + i(bn + a
∗
p)g

m
n,TEg

m+1∗
p,TM (20)

Umnp = ana
∗
pg
m
n,TMg

m+1∗
p,TM + bnb

∗
pg
m
n,TEg

m+1∗
p,TE (21)

V mnp = ibna
∗
pg
m
n,TEg

m+1∗
p,TM − ianb

∗
pg
m
n,TMg

m+1∗
p,TE (22)
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in which an and bn are Mie coeffi cients (anticipating, the reader may
refer to Eqs.110-111 below) and δij denotes the Kronecker symbol.

The longitudinal cross-section reads as, e.g. Eq.3.159 of [3]:

Cpr,z =
λ2

π

∞∑
n=1

n∑
m=−n

{ 1

(n+ 1)2
(n+ 1 + |m|)!
(n− |m|)! (23)

×Re[(an + a∗n+1 − 2ana∗n+1)gmn,TMgm∗n+1,TM
+(bn + b

∗
n+1 − 2bnb∗n+1)gmn,TEgm∗n+1,TE ]

+m
2n+ 1

n2(n+ 1)2
(n+ |m|)!
(n− |m|)!

×Re[i(2anb∗n − an − b∗n)gmn,TMgm∗n,TE ]}

which, for further use in the sequel, may conveniently be rewritten as:

Cpr,z =
λ2

π

∞∑
n=1

n∑
m=−n

Cmn (24)

3 Restricted framework of the study and cases
to be considered separately.

The study of axisymmetric beams of the second kind and of axisymmetric
dark beams in [17] has been carried out in a restricted framework in which it
was assumed that all BSCs are zero excepted gMn,TM , g

M
n,TE , g

Q
n,TM and gQn,TE , in

whichM and Q are specified values of the azimuthal mode indexm. Under such
circumstances, it has been found from Eq.11 that the longitudinal component
Sz of the Poynting vector, in which these restrictions are implemented, denoted
SMQ
z , reads as:

SMQ
z =

−1
r2
Re

∞∑
n=1

∞∑
p=1

icpwn cpw∗p (25)

{ei(M−Q)ϕ(sin θSMQ
np + cos θCMQ

np ) + ei(Q−M)ϕ(sin θSQMnp + cos θCQMnp )}
= 0

We now recall that we are interested in axisymmetric beams, i.e. beams
for which the longitudinal component Sz does not depend on ϕ. It is seen from
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Eq.25 that, if M = Q, then the beam is trivially axisymmetric. Because this
case is trivial, it is excluded for the time being and will be considered separately
in section 8. This case being excluded, the conditions for axisymmetry have
been found to read as:

gMn,TMg
Q∗
p,TM + gQ∗p,TEg

M
n,TE = 0 (26)

gMn,TMg
Q∗
p,TE − g

Q∗
p,TMg

M
n,TE = 0 (27)

Before listing the different cases to be studied, let us point out that M
and Q play equivalent roles. First, this is obvious from the fact that the list
gMn,TM , g

M
n,TE , g

Q
n,TM and gQn,TE of non-zero BSCs does not give any privilege

to one or to the other of the superscripts M or Q. Second, formally, it can be
readily deduced from Eqs.26 and 27. Then, the list of the cases to be studied is
as follows:

(i) M = 1 and Q 6= ±1. The fact that Q 6= 1 comes from the fact that
M 6= Q (otherwise, we would be facing the trivial case whose study has been
postponed). Furthermore, assume Q = −1. Then the list of non-zero BSCs is
g1n,TM , g

1
n,TE , g

−1
n,TM and g−1n,TE which is solved by the first kind of axisymmetry.

The beams of the present case (i) are non-dark. This case is named the case
SK1 (in which "SK" stands for "second kind").

(ii) M = −1 and Q 6= ±1 with comments similar to those of case (i).
This case is named the case SK2.

(ii) M 6= ±1 and Q 6= ±1 with M 6= Q. This is the case of dark beams.
It is called case AD (in which "AD" stands for "Axisymmetric Dark").

We shall later see that these cases imply subcases, namely case SK1 will
be separated in subcases SK1A, SK1B, SK1C and case SK2 will be separated
in subcases SK2A, SK2B, SK2C.

4 Transverse pressure radiation cross-sections spec-
ified for the different cases.

4.1 Case SK1.

Eqs.19-22 show that, if M = 1, i.e. if g1n,TM and g1n,TE are non-zero, then
the transverse cross-sections are zero but for Q = 2 and 0. This is because the
BSCs in Eqs.19-22 occur in the form of products reading as gmn g

m+1∗
p . Further-

more, the case (m,m + 1) corresponding to M = 1, Q = 2 must be completed
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by the case (m− 1,m) which is a variant of (m,m+ 1) but which corresponds
to Q = 0, M = 1. Therefore, we have:

Cpr,x = Cpr,y = 0 for M = 1, Q 6= 0,2,±1 (28)

This is the subcase SK1A. The case M = 1, Q = 2 is then a subcase,
denoted as SK1B to be studied separately, while M = 1, Q = 0, to be studied
separately as well is the case SK1C. For SK1B, we start from Eqs.18-22. Eq.18
involves a summation from k = 1 to ∞. For k = 1, the coeffi cients S, U , T
and V (subscripts and superscripts omitted) and of Eqs.19-22 occur with the
superscripts 0 and −1, therefore involving BSCs with superscripts 0 and −1
which are zero. Hence the term with k = 1 in Eq.18 is 0 as well. For k = 3, S,
U , T and V occur with the superscripts 2 and −3. The superscript 2 implies
the occurrence of BSCs g2n which are not zero since Q = 2 is allowed, but they
occur in products of the form g2ng

3
n which are zero since the BSCs g

3
n are 0. The

supercript −3 in S, U , T and V implies the occurrence of BSCs g−3n which are
zero. Therefore, the contribution of k = 3 to Eq.18 is zero. The same is true for
k = 4, 5... because the coeffi cients S, U , T and V occur with the superscripts 3
and −4, 4 and −5,... corresponding to BSCs which are zero. It is then found
that the only non-zero contribution to Eq.18 is for k = 2.

For k = 2, some coeffi cients S, U , T and V occur with a superscript
−2 and are then zero, while the others occur with the superscript 1 and are
different from 0, leading to:

(
Cpr,x
Cpr,y

)
=

λ2

2π

∞∑
n=2

(n+ 2)!

(n− 2)! [
(
Re
Im

)
(
S1n+1,n − 2U1n+1,n

(n+ 1)2
−
S1n−1,n − 2U1n−1,n

n2
)

+
2n+ 1

n2(n+ 1)2

(
Re
Im

)
(T 1nn − 2V 1nn)] (29)

in which:

S1n+1,n = (an+1 + a
∗
n)g

1
n+1,TMg

2∗
n,TM + (bn+1 + b

∗
n)g

1
n+1,TEg

2∗
n,TE (30)

S1n−1,n = (an−1 + a
∗
n)g

1
n−1,TMg

2∗
n,TM + (bn−1 + b

∗
n)g

1
n−1,TEg

2∗
n,TE (31)

U1n+1,n = an+1a
∗
ng

1
n+1,TMg

2∗
n,TM + bn+1b

∗
ng

1
n+1,TEg

2∗
n,TE (32)
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U1n−1,n = an−1a
∗
ng

1
n−1,TMg

2∗
n,TM + bn−1b

∗
ng

1
n−1,TEg

2∗
n,TE (33)

T 1nn = −i(an + b∗n)g1n,TMg2∗n,TE + i(bn + a∗n)g1n,TEg2∗n,TM (34)

V 1nn = ibna
∗
ng

1
n,TEg

2∗
n,TM − ianb∗ng1n,TMg2∗n,TE (35)

Using Eqs.26-27, Eqs.30-35 simplify to:

S1n+1,n = (an+1 + a
∗
n − bn+1 − b∗n)g1n+1,TMg2∗n,TM (36)

S1n−1,n = (an−1 + a
∗
n − bn−1 − b∗n)g1n−1,TMg2∗n,TM (37)

U1n+1,n = (an+1a
∗
n − bn+1b∗n)g1n+1,TMg2∗n,TM (38)

U1n−1,n = (an−1a
∗
n − bn−1b∗n)g1n−1,TMg2∗n,TM (39)

T 1nn = i(bn + a
∗
n − an − b∗n)g1n,TMg2∗n,TE (40)

V 1nn = i(bna
∗
n − anb∗n)g1n,TMg2∗n,TE (41)

As a remark, the reader might find surprising that we have here a case
of axisymmetric beams for which the transverse forces are not equal to zero
(other cases will later occur as well). The explanation is that we are dealing
with longitudinal axisymmetry beams, not with circularly symmetric beams
which are both longitudinally symmetric and transversely symmetric. It is easy
to conjecture that transversely symmetry would add supplementary conditions
which would make these transverse forces becoming equal to zero.

Similarly, for SK1C, but remarking that only the term k = 1 contributes
in the summation, we obtain:
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(
Cpr,x
Cpr,y

)
=

λ2

2π

∞∑
n=1

(
Re
Im

)
[
(n+ 1)!

(n− 1)!
S0n+1,n − 2U0n+1,n

(n+ 1)2
(42)

− (n+ 2)!
n!

S0n,n+1 − 2U0n,n+1
(n+ 1)2

+
(n+ 1)!

(n− 1)!
2n+ 1

n2(n+ 1)2
(T 0nn − 2V 0nn)]

in which:

S0n+1,n = (an+1 + a
∗
n)g

0
n+1,TMg

1∗
n,TM + (bn+1 + b

∗
n)g

0
n+1,TEg

1∗
n,TE (43)

S0n,n+1 = (an + a
∗
n+1)g

0
n,TMg

1∗
n+1,TM + (bn + b

∗
n+1)g

0
n,TEg

1∗
n+1,TE (44)

U0n+1,n = an+1a
∗
ng

0
n+1,TMg

1∗
n,TM + bn+1b

∗
ng

0
n+1,TEg

1∗
n,TE (45)

U0n,n+1 = ana
∗
n+1g

0
n,TMg

1∗
n+1,TM + bnb

∗
n+1g

0
n,TEg

1∗
n+1,TE (46)

T 0nn = −i(an + b∗n)g0n,TMg1∗n,TE + i(bn + a∗n)g0n,TEg1∗n,TM (47)

V 0nn = ibna
∗
ng

0
n,TEg

1∗
n,TM − ianb∗ng0n,TMg1∗n,TE (48)

Using Eqs.26-27, Eqs.43-48 simplify to:

S0n+1,n = (an+1 + a
∗
n − bn+1 − b∗n)g0n+1,TMg1∗n,TM (49)

S0n,n+1 = (an + a
∗
n+1 − bn − b∗n+1)g0n,TMg1∗n+1,TM (50)

U0n+1,n = (an+1a
∗
n − bn+1b∗n)g0n+1,TMg1∗n,TM (51)
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U0n,n+1 = (ana
∗
n+1 − bnb∗n+1)g0n,TMg1∗n+1,TM (52)

T 0nn = i(bn + a
∗
n − an − b∗n)g0n,TMg1∗n,TE (53)

V 0nn = i(bna
∗
n − anb∗n)g0n,TMg1∗n,TE (54)

4.2 Case SK2.

We proceed similarly as for the case SK1 but, as a variant convenient
for the sequel, we shall isolate terms corresponding to n > 1 for the sake of
conciseness, while they have been preserved in the case SK1 for the sake of
pedagogic skills. We then readily find that:

Cpr,x = Cpr,y = 0 for M = −1, Q 6= 0,±1,−2 (55)

This is the case SK2A. The case SK2B is then for M = −1, Q = 0, and
we also have to consider separately the case SK2C for which M = −1, Q = −2.
For the case SK2B, we start from Eq.18, find that all terms with k = 2, ...,∞
are 0 because they involve coeffi cients S, T , U and V which are zero, due to the
SK2B conditions, i.e. M = −1, Q = 0. We then express the remaining term for
k = 1 as a 3-term summation according to :

(
Cpr,x
Cpr,y

)
= C1 + C2 + C3 (56)

in which, cancelling some other coeffi cients S, U , T and V which are again
0 still due to the SK2B conditions:

C1 =
λ2

2π

∞∑
n=1

∞∑
p=1

(n+ 1)!

(n− 1)!

(
Re
Im

)
(S−1np − 2U−1np )

δp,n+1
p2

(57)

C2 =
−λ2

2π

∞∑
n=1

∞∑
p=1

(n+ 1)!

(n− 1)!

(
Re
Im

)
(S−1np − 2U−1np )

δn,p+1
n2

(58)
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C3 =
λ2

2π

∞∑
n=1

∞∑
p=1

(n+ 1)!

(n− 1)!
2n+ 1

n2(n+ 1)2
δnp

(
Re
Im

)
(2V −1np − T−1np ) (59)

We then find:

C1 =
λ2

4π

(
Re
Im

)
(S−112 − 2U−112 ) + (C1)n>1 (60)

in which (C1)n>1 only contains Mie coeffi cients an and bn with n > 1.
Similarly:

C2 =
−3λ2

4π

(
Re
Im

)
(S−121 − 2U−121 ) + (C2)n>1 (61)

C3 =
3λ2

4π

(
Re
Im

)
(2V −111 − T−111 ) + (C3)n>1 (62)

so that we have:

(
Cpr,x
Cpr,y

)
=
λ2

4π

(
Re
Im

)
(S−112 −2U−112 −3S−121 +6U−121 +6V −111 −3T−111 )+

(
Cpr,x
Cpr,y

)SK2B
n>1

(63)

in which the first collection of terms on the r.h.s. of Eq.63 are the the
(n = 1)-terms while the last term corresponds to n > 1, and:

S−112 = (a1 + a
∗
2)g
−1
1,TMg

0∗
2,TM + (b1 + b

∗
2)g
−1
1,TEg

0∗
2,TE (64)

S−121 = (a2 + a
∗
1)g
−1
2,TMg

0∗
1,TM + (b2 + b

∗
1)g
−1
2,TEg

0∗
1,TE (65)

T−111 = −i(a1 + b∗1)g−11,TMg
0∗
1,TE + i(b1 + a

∗
1)g
−1
1,TEg

0∗
1,TM (66)

U−112 = a1a
∗
2g
−1
1,TMg

0∗
2,TM + b1b

∗
2g
−1
1,TEg

0∗
2,TE (67)

14



U−121 = a2a
∗
1g
−1
2,TMg

0∗
1,TM + b2b

∗
1g
−1
2,TEg

0∗
1,TE (68)

V −111 = ib1a
∗
1g
−1
1,TEg

0∗
1,TM − ia1b∗1g−11,TMg

0∗
1,TE (69)

Using Eqs.26-27, Eqs.64-69 simplify to:

S−112 = (a1 + a
∗
2 − b1 − b∗2)g−11,TMg

0∗
2,TM (70)

S−121 = (a2 + a
∗
1 − b2 − b∗1)g−12,TMg

0∗
1,TM (71)

T−111 = i(b1 + a
∗
1 − a1 − b∗1)g−11,TMg

0∗
1,TE (72)

U−112 = (a1a
∗
2 − b1b∗2)g−11,TMg

0∗
2,TM (73)

U−121 = (a2a
∗
1 − b2b∗1)g−12,TMg

0∗
1,TM (74)

V −111 = i(b1a
∗
1 − a1b∗1)g−11,TMg

0∗
1,TE (75)

For case SK2C (M = −1, Q = −2), we proceed similarly and, noticing
that all the coeffi cients S, T , U , V are zero, but for k = 2, we obtain an
expression which may be simplified to:

(
Cpr,x
Cpr,y

)
= C1 + C2 + C3 (76)

in which:

C1 =
λ2

2π

∞∑
n=2

∞∑
p=1

(n+ 2)!

(n− 2)!

(
Re
Im

)
(S−2np − 2U−2np )

δp,n+1
p2

(77)

C2 =
−λ2

2π

∞∑
n=2

∞∑
p=1

(n+ 2)!

(n− 2)!

(
Re
Im

)
(S−2np − 2U−2np )

δn,p+1
n2

(78)
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C3 =
λ2

2π

∞∑
n=2

∞∑
p=1

(n+ 2)!

(n− 2)!
2n+ 1

n2(n+ 1)2
δnp

(
Re
Im

)
(2V −2np − T−2np ) (79)

These quantities Ci are afterward evaluated explicitly by isolating rele-
vant terms in the summations leading to:

Ci = (Ci)n>1, i = 1, 3 (80)

C2 =
−3λ2

π

(
Re
Im

)
(S−221 − 2U−221 ) + (C2)n>1 (81)

so that, as a whole, we obtain:(
Cpr,x
Cpr,y

)
=
−3λ2

π

(
Re
Im

)
(S−221 − 2U−221 ) +

(
Cpr,x
Cpr,y

)SK2C
n>1

(82)

in which, from Eqs.19 and 21:

S−221 = (a2 + a
∗
1)g
−2
2,TMg

−1∗
1,TM + (b2 + b

∗
1)g
−2
2,TEg

−1∗
1,TE (83)

U−221 = a2a
∗
1g
−2
2,TMg

−1∗
1,TM + b2b

∗
1g
−2
2,TEg

−1∗
1,TE (84)

Using axisymmetry conditions of Eqs.26-27, these last expressions sim-
plify to:

S−221 = (a2 + a
∗
1 − b2 − b∗1)g−22,TMg

−1∗
1,TM (85)

U−221 = (a2a
∗
1 − b2b∗1)g−22,TMg

−1∗
1,TM (86)
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4.3 Case AD.

For this case, we haveM 6= ±1, Q 6= ±1 andM 6= Q. Then, examining
Eq.18, it is readily found that the coeffi cients S, U , T and V are zero for k = 1
and 2. Therefore, we obtain:

(
Cpr,x
Cpr,y

)
=

λ2

2π

∞∑
k=3

∞∑
n=k

∞∑
p=k−1

(n+ k)!

(n− k)! (87)

×[
(
Re
Im

)
(Sk−1pn + S−knp − 2Uk−1pn − 2U−knp )(

δp,n+1
p2

− δn,p+1
n2

)

+
2n+ 1

n2(n+ 1)2
δnp

(
Re
Im

)
(T k−1pn − T−knp − 2V k−1pn + 2V −knp )]

As we shall see in the sequel, we do not need to elaborate more on
this equation. We just need to remark that the coeffi cients an involved in this
equation have n > 1.

Finally, for convenience in the sequel, we now summarize below the
conditions defining the different cases:



SK1A M = 1, Q 6= 0, 2,±1
SK1B M = 1, Q = 2
SK1C M = 1, Q = 0
SK2A M = −1, Q 6= 0,±1,−2
SK2B M = −1, Q = 0
SK2C M = −1, Q = −2
AD M 6= ±1, Q 6= ±1,M 6= Q

Trivial M = Q



5 Longitudinal pressure radiation cross-sections
specified for the different cases.

5.1 Case SK1A.

For this case, non-zero BSCs are those which are of the form g1n and g
Q
n

with Q 6= 0,2,±1. In particular, let us consider the summations of Eq.23, and
rewrite it as follows:
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Cpr,z =
λ2

π

1∑
m=−1

{ 1

(n+ 1)2
(n+ 1 + |m|)!
(n− |m|)! (88)

×Re[(an + a∗n+1 − 2ana∗n+1)gmn,TMgm∗n+1,TM
+(bn + b

∗
n+1 − 2bnb∗n+1)gmn,TEgm∗n+1,TE ]

+m
2n+ 1

n2(n+ 1)2
(n+ |m|)!
(n− |m|)!

×Re[i(2anb∗n − an − b∗n)gmn,TMgm∗n,TE ]}n=1

+
λ2

π

∞∑
n=2

n∑
m=−n

{ 1

(n+ 1)2
(n+ 1 + |m|)!
(n− |m|)!

×Re[(an + a∗n+1 − 2ana∗n+1)gmn,TMgm∗n+1,TM
+(bn + b

∗
n+1 − 2bnb∗n+1)gmn,TEgm∗n+1,TE ]

+m
2n+ 1

n2(n+ 1)2
(n+ |m|)!
(n− |m|)!

×Re[i(2anb∗n − an − b∗n)gmn,TMgm∗n,TE ]}

In Eq.88, the second term, i.e. the summation from n = 2 to∞ contains
Mie coeffi cients an and bn with n > 1 and will be denoted (Cpr,z)SK1An>1 . The
first term is for n = 1 and contains a summation over m from −1 to +1. The
BSCs occur in the form gm1 g

m∗
2 . In the case SK1A, when the non-zero BSCs are

those which are of the form g1n and g
Q
n with Q 6= 0,2,±1, we only retain m = 1

and Eq.88 is then found to become:

Cpr,z =
3λ2

2π
{Re[(a1 + a∗2 − 2a1a∗2)g11,TMg1∗2,TM (89)

+(b1 + b
∗
2 − 2b1b∗2)g11,TEg1∗2,TE)]

+Re[i(2a1b
∗
1 − a1 − b∗1)g11,TMg1∗1,TE ]}+ (Cpr,z)SK1An>1

Using the axisymmetry conditions of Eqs.26-27, this simplifies to:

Cpr,z =
3λ2

2π
{Re(a1 + a∗2 − 2a1a∗2 − b1 − b∗2 + 2b1b∗2)g11,TMg1∗2,TM (90)

+Re[i(2a1b
∗
1 − a1 − b∗1)g11,TMg1∗1,TE ]}+ (Cpr,z)SK1An>1
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5.2 Case SK1B.

Non-zeros BSCs are of the form g1n and g
2
n . Let us express Cpr,z using

Eq.24. For the case SK1B, when m can take only the values 1 and 2, we obtain:

Cpr,z =
λ2

π
(C11 +

∞∑
n=2

C2n) (91)

The second term contains only Mie coeffi cients with n > 1 and will be
denoted (Cpr,z)SK1Bn>1 so that, working out C11 , we obtain:

Cpr,z =
3λ2

2π
{Re[(a1 + a∗2 − 2a1a∗2)g11,TMg1∗2,TM (92)

+(b1 + b
∗
2 − 2b1b∗2)g11,TEg1∗2,TE ]

+Re[i(2a1b
∗
1 − a1 − b∗1)g11,TMg1∗1,TE ]}+ (Cpr,z)SK1Bn>1

which, using Eqs.26-27 simplifies to:

Cpr,z =
3λ2

2π
{Re(a1 + a∗2 − 2a1a∗2 − b1 − b∗2 + 2b1b∗2)g11,TMg1∗2,TM (93)

+Re[i(2a1b
∗
1 − a1 − b∗1)g11,TMg1∗1,TE ]}+ (Cpr,z)SK1Bn>1

Let us note that the main terms of Eqs.92 and 93 are the same than in
Eqs.89 and 90 respectively.

5.3 Case SK1C.

For this case in which M = 1, Q = 0, we obtain:

Cpr,z =
λ2

π
(C01 + C

1
1 ) + (Cpr,z)

SK1C
n>1 (94)

becoming:
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Cpr,z =
λ2

2π
{Re[(a1 + a∗2 − 2a1a∗2)(g01,TMg0∗2,TM + 3g11,TMg

1∗
2,TM ) (95)

+(b1 + b
∗
2 − 2b1b∗2)(g01,TEg0∗2,TE + 3g11,TEg1∗2,TE)]

+3Re[i(2a1b
∗
1 − a1 − b∗1)g11,TMg1∗1,TE ]}+ (Cpr,z)SK1Cn>1

which, using the axisymmetry conditions of Eqs.26-27 becomes:

Cpr,z =
λ2

2π
{Re[(a1 + a∗2 − 2a1a∗2 − b1 − b∗2 + 2b1b∗2) (96)

×(g01,TMg0∗2,TM + 3g11,TMg
1∗
2,TM )

+3Re[i(2a1b
∗
1 − a1 − b∗1)g11,TMg1∗1,TE ]}+ (Cpr,z)SK1Cn>1

5.4 Case SK2A.

For this case in which M = −1, Q 6= 0,±1,−2, Eq.24 becomes:

Cpr,z =
λ2

π
[

+1∑
m=−1

Cm1 +

∞∑
n=2

n∑
m=−n

Cmn ] (97)

The second term involves Mie coeffi cients with n > 1 and is denoted
(Cpr,z)

SK2A
n>1 . In the first term, in which m ranges from −1 to +1, the values 0

and +1 are excluded because Q 6= 0,+1 and we are left with:

Cpr,z =
λ2

π
C−11 + (Cpr,z)

SK2A
n>1 (98)

becoming:

Cpr,z =
3λ2

2π
{Re[(a1 + a∗2 − 2a1a∗2)g−11,TMg

−1∗
2,TM (99)

+(b1 + b
∗
2 − 2b1b∗2)g−11,TEg

−1∗
2,TE ]

−Re[i(2a1b∗1 − a1 − b∗1)g−11,TMg
−1∗
1,TE ]}+ (Cpr,z)

SK2A
n>1
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Using the axisymmetry conditions of Eqs.26-27, this simplifies to:

Cpr,z =
3λ2

2π
{Re[(a1 + a∗2 − 2a1a∗2 − b1 − b∗2 + 2b1b∗2)g−11,TMg

−1∗
2,TM (100)

−Re[i(2a1b∗1 − a1 − b∗1)g−11,TMg
−1∗
1,TE ]}+ (Cpr,z)

SK2A
n>1

5.5 Case SK2B.

In this case for which M = −1 and Q = 0, Eq.24 reduces to:

Cpr,z =
λ2

π
(C−11 + C01 ) + (Cpr,z)

SK2B
n>1 (101)

becoming:

Cpr,z =
λ2

2π
{Re[(a1 + a∗2 − 2a1a∗2)(3g−11,TMg

−1∗
2,TM + g01,TMg

0∗
2,TM ) (102)

+(b1 + b
∗
2 − 2b1b∗2)(3g−11,TEg

−1∗
2,TE + g

0
1,TEg

0∗
2,TE)]

−3Re[i(2a1b∗1 − a1 − b∗1)g−11,TMg
−1∗
1,TE ]}+ (Cpr,z)

SK2B
n>1

Using the axisymmetry conditions of Eqs.26-27, this simplifies to:

Cpr,z =
λ2

2π
{Re[(a1 + a∗2 − 2a1a∗2 − b1 − b∗2 + 2b1b∗2) (103)

×(3g−11,TMg
−1∗
2,TM + g01,TMg

0∗
2,TM )

−3Re[i(2a1b∗1 − a1 − b∗1)g−11,TMg
−1∗
1,TE ]}+ (Cpr,z)

SK2B
n>1
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5.6 Case SK2C.

For this case, we readily have:

Cpr,z =
λ2

π
C−11 + (Cpr,z)

SK2C
n>1 (104)

becoming:

Cpr,z =
3λ2

2π
{Re[(a1 + a∗2 − 2a1a∗2)g−11,TMg

−1∗
2,TM (105)

+(b1 + b
∗
2 − 2b1b∗2)g−11,TEg

−1∗
2,TE

−Re[i(2a1b∗1 − a1 − b∗1)g−11,TMg
−1∗
1,TE ]}+ (Cpr,z)

SK2C
n>1

Using the axisymmetry conditions of Eqs.26-27, this simplifies to:

Cpr,z =
3λ2

2π
{Re[(a1 + a∗2 − 2a1a∗2 − b1 − b∗2 + 2b1b∗2)g−11,TMg

−1∗
2,TM (106)

−Re[i(2a1b∗1 − a1 − b∗1)g−11,TMg
−1∗
1,TE ]}+ (Cpr,z)

SK2C
n>1

Let us note that the main terms of Eqs.105 and 106 are the same than
the main terms of Eqs.99 and 100 respectively.

5.7 Case AD.

We now have M 6= ±1, Q 6= ±1 and M 6= Q so that Eq.24 becomes:

Cpr,z =
λ2

π
C01 + (Cpr,z)

AD
n>1 (107)

in which the second term involves Mie coeffi cients with n > 1 and, working
out the first term, we obtain:

Cpr,z =
λ2

2π
Re[(a1 + a

∗
2 − 2a1a∗2)g01,TMg0∗2,TM (108)

+(b1 + b
∗
2 − 2b1b∗2)g01,TEg0∗2,TE ] + (Cpr,z)ADn>1
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Using the axisymmetry conditions of Eqs.26-27, this simplifies to:

Cpr,z =
λ2

2π
Re(a1+a

∗
2−2a1a∗2−b1−b∗2+2b1b∗2)g01,TMg0∗2,TM +(Cpr,z)ADn>1 (109)

6 Pressure radiation cross-sections for Rayleigh
particles.

In the dipole theory of forces, we only retain the Mie coeffi cients a1 and b1
[20]. These coeffi cients may be written as [21], and [22], pp. 143-144:

a1 =
2i

3

np
2 − 1

np2 + 2
α3 +O(iα5) +

4

9
(
np

2 − 1
np2 + 2

)2α6 (110)

b1 = O(iα5) (111)

in which np is the refractive index with respect to the surrounding medium
and α is the size parameter πd/λ. In the present paper dealing with lossless
particles, the refractive index is taken to be real. The other coeffi cients ai and bi
(i > 1) involves still higher powers of α. In the Rayleigh limit of small point-like
particles, we may therefore only retain the Mie coeffi cient a1 with real parts
proportional to α6 and imaginary parts proportional to α3 while higher powers
are discarded, so that we may write:

Im(a1) =
2

3

np
2 − 1

np2 + 2
α3 (112)

Re(a1) =
4

9
(
np

2 − 1
np2 + 2

)2α6 (113)

Complementary discussions on this issue may be found in [23], [24] and
[25]. Instead of assuming that np is real, we might have taken it as being a
complex number. This would add more terms associated with optical absorption
forces which are not considered in the present paper. In the sequel, Eqs.112 and
113 have to be kept in mind, even when they are not explicitly introduced in
the equations. We now deal with the different cases already discussed previously
but now made specific to the case of Rayleigh particles.
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6.1 Transverse cross-sections.

In the case SK1A, we obtain:

Cpr,x = Cpr,y = 0 (114)

which is simply Eq.28 repeated. For the case SK1B, we use Eq.29. The
summation from n = 3 to ∞ is zero, and the only non zero terms come from
the term n = 2, due to the existence of remaining an−1 = a1-terms. We then
readily obtain:

(
Cpr,x
Cpr,y

)
=
−3λ2

π

(
Re
Im

)
a1g

1
1,TMg

2∗
2,TM (115)

For the case SK1C, we start from Eq.42 and obtain:

(
Cpr,x
Cpr,y

)
=
λ2

4π

(
Re
Im

)
[S021 − 2U021 − 3(S012 − 2U012) + 3(T 011 − 2V 011)] (116)

in which, from Eqs.49-54:

S021 = a∗1g
0
2,TMg

1∗
1,TM (117)

S012 = a1g
0
1,TMg

1∗
2,TM (118)

U021 = 0 (119)

U012 = 0 (120)

T 011 = i(a∗1 − a1)g01,TMg1∗1,TE (121)

V 011 = 0 (122)
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so that Eq.116 simplifies to:

(
Cpr,x
Cpr,y

)
=
λ2

4π

(
Re
Im

)
[a∗1g

0
2,TMg

1∗
1,TM−3a1g01,TMg1∗2,TM+3i(a∗1−a1)g01,TMg1∗1,TE ]

(123)

For the case SK2A, we obtain:

Cpr,x = Cpr,y = 0 (124)

which is simply Eq.55 repeated.
For the case SK2B, we use Eqs.63-69, find that the coeffi cients U and

V vanish, while the coeffi cients S and T simplify, and obtain:

(
Cpr,x
Cpr,y

)
=

λ2

4π

(
Re
Im

)
[a1(g

−1
1,TMg

0∗
2,TM + 3ig−11,TMg

0∗
1,TE) (125)

−3a∗1(g−12,TMg
0∗
1,TM + ig−11,TEg

0∗
1,TM )]

For the case SK2C, we use Eqs.82, 85 and 86 to obtain:

(
Cpr,x
Cpr,y

)
=
−3λ2

π

(
Re
Im

)
a∗1g
−2
2,TMg

−1∗
1,TM (126)

For case AD, we return to Eq.87 and recall that it involves Mie coeffi -
cients an with n > 1 so that, for Rayleigh particles, we immediately obtain:

Cpr,x = Cpr,y = 0 (127)
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6.2 Longitudinal cross-sections.

For case SK1A, we use Eq.89 and obtain:

Cpr,z =
3λ2

2π
Re[a1(g

1
1,TMg

1∗
2,TM − ig11,TMg1∗1,TE)] (128)

For the case SK1B, we use Eq.92 and obtain:

Cpr,z =
3λ2

2π
Re[a1(g

1
1,TMg

1∗
2,TM − ig11,TMg1∗1,TE)] (129)

For the case SK1C, we use Eq.96 and obtain:

Cpr,z =
λ2

2π
{Re[a1(g01,TMg0∗2,TM + 3g11,TMg

1∗
2,TM )]− 3Re[ia1g11,TMg1∗1,TE ]} (130)

For the case SK2A, we use Eq.99 and obtain:

Cpr,z =
3λ2

2π
Re[a1(g

−1
1,TMg

−1∗
2,TM + ig−11,TMg

−1∗
1,TE)] (131)

For the case SK2B, we use Eq.102 and obtain:

Cpr,z =
λ2

2π
Re[a1(3g

−1
1,TMg

−1∗
2,TM + g01,TMg

0∗
2,TM + 3ig−11,TMg

−1∗
1,TE)] (132)

For the case SK2C, we use Eq.106 and obtain:

Cpr,z =
3λ2

2π
{Re[a1g−11,TMg

−1∗
2,TM ] + Re[ia1g

−1
1,TMg

−1∗
1,TE ]} (133)

For the case AD, we use Eq.108 and obtain:

Cpr,z =
λ2

2π
Re(a1g

0
1,TMg

0∗
2,TM ) (134)
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7 Decomposition of optical forces.

7.1 General expressions.

The gradient transverse forces in the x-direction are given by, e.g.
Eqs.(42) and (38) of [26]:

CGpr,x =
−λ2

4π
Im(a1) Im(H) =

−λ2

6π

n2p − 1
n2p + 2

α3 Im(H) (135)

in which:

H = g0∗2,TM (g
1
1,TM + g−11,TM )− 3g

0
1,TM (g

1∗
2,TM + g−1∗2,TM ) (136)

−12(g11,TMg2∗2,TM + g−11,TMg
−2∗
2,TM )

+3i[g01,TM (g
−1∗
1,TE − g

1∗
1,TE) + g

0∗
1,TE(g

−1
1,TM − g

1
1,TM )]

The scattering transverse forces in the x-direction are given by, e.g.
Eqs.(77) and (78) of [26], and Eqs.(22) and (23) of [27]:

CSpr,x =
3λ2

4π
Re(a1)Re i[g

0
1,TM (g

−1∗
1,TE − g

1∗
1,TE) + g

0∗
1,TE(g

−1
1,TM − g

1
1,TM )](137)

=
λ2

3π
(
n2p − 1
n2p + 2

)2α6Re i[g01,TM (g
−1∗
1,TE − g

1∗
1,TE) + g

0∗
1,TE(g

−1
1,TM − g

1
1,TM )]

which, by using Re(iz) = −Re(iz∗) may be rewritten as:

CSpr,x =
3λ2

4π
Re(a1)Re i[g

0
1,TM (g

−1∗
1,TE − g

1∗
1,TE) + g

0
1,TE(g

1∗
1,TM − g−1∗1,TM )](138)

=
λ2

3π
(
n2p − 1
n2p + 2

)2α6Re i[g01,TM (g
−1∗
1,TE − g

1∗
1,TE) + g

0
1,TE(g

1∗
1,TM − g−1∗1,TM )]

The non-standard transverse forces in the x-direction are given by,
e.g. Eq.(76) of [26] and (21) of [27]:
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CNSpr,x =
λ2

4π
Re(a1) (139)

×Re[g0∗2,TM (g11,TM + g−11,TM )− 3g
0
1,TM (g

1∗
2,TM + g−1∗2,TM )

−12(g11,TMg2∗2,TM + g−11,TMg
−2∗
2,TM )]

=
λ2

9π
(
np

2 − 1
np2 + 2

)2α6

×Re[g0∗2,TM (g11,TM + g−11,TM )− 3g
0
1,TM (g

1∗
2,TM + g−1∗2,TM )

−12(g11,TMg2∗2,TM + g−11,TMg
−2∗
2,TM )]

The gradient transverse forces in the y-direction are given by, e.g.
Eq.(43) and (38) of [26], corrected by Eqs.(19) and (15) of [27]:

CGpr,y =
λ2

4π
Im(a1)Re(H

′) =
λ2

6π

n2p − 1
n2p + 2

α3Re(H ′) (140)

in which:

H ′ = g0∗2,TM (g
−1
1,TM − g

1
1,TM )− 3g01,TM (g1∗2,TM − g−1∗2,TM ) (141)

−12(g11,TMg2∗2,TM − g−11,TMg
−2∗
2,TM )

−3i[g01,TM (g−1∗1,TE + g
1∗
1,TE)− g0∗1,TE(g−11,TM + g11,TM )]

The scattering transverse forces in the y-direction are given by, e.g.
Eqs.(86)-(87) of [26], corrected by Eqs.(25) and (26) of [27]:

CSpr,y =
3λ2

4π
Re(a1) Im i[g

0∗
1,TE(g

−1
1,TM + g11,TM )− g01,TM (g−1∗1,TE + g

1∗
1,TE)](142)

=
λ2

3π
(
n2p − 1
n2p + 2

)2α6 Im i[g0∗1,TE(g
−1
1,TM + g11,TM )− g01,TM (g−1∗1,TE + g

1∗
1,TE)]

The non-standard transverse forces in the y-direction are given by, e.g.
Eq.(85) of [26]; corrected by Eq.(24) of [27]:
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CNSpr,y =
λ2

4π
Re(a1) (143)

× Im[g0∗2,TM (g−11,TM − g
1
1,TM )− 3g01,TM (g1∗2,TM − g−1∗2,TM )

−12(g11,TMg2∗2,TM − g−11,TMg
−2∗
2,TM )]

=
λ2

9π
(
np

2 − 1
np2 + 2

)2α6

× Im[g0∗2,TM (g−11,TM − g
1
1,TM )− 3g01,TM (g1∗2,TM − g−1∗2,TM )

−12(g11,TMg2∗2,TM − g−11,TMg
−2∗
2,TM )]

The longitudinal gradient force reads as, e.g. Eq.(27) of [28] and Eqs.(2)
and (64) of [29]:

CGpr,z =
−3λ2

2π
Im(a1) Im(G) =

−λ2

π

n2p − 1
n2p + 2

α3 Im(G) (144)

in which:

G = g−11,TM (g
−1∗
2,TM + ig−1∗1,TE) + g

1
1,TM (g

1∗
2,TM − ig1∗1,TE) +

1

3
g01,TMg

0∗
2,TM (145)

From Eq.(26) of [28], and Eqs.(2) and (97) of [29], we introduce forces
proportional to the sixth-power of α and to Re(G) according to:

Cspr,z =
3λ2

2π
Re(a1)Re(G) =

2λ2

3π
(
n2p − 1
n2p + 2

)2α6Re(G) (146)

Considering separately in G terms which do not contain any coupling
between (n = 1)- and (n = 2)-partial waves and those which do contain such
couplings, we may express Cspr;z as the sum of two terms, one corresponding
to standard scattering forces denoted as CSpr,z and the other corresponding to
non-standard forces denoted as CNSpr,z , according to:

Cspr,z = CSpr,z + C
NS
pr,z (147)

in which:
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CSpr,z =
3λ2

2π
Re(a1)Re[i(g

−1
1,TMg

−1∗
1,TE − g

1
1,TMg

1∗
1,TE)] (148)

=
2λ2

3π
(
n2p − 1
n2p + 2

)2α6Re[i(g−11,TMg
−1∗
1,TE − g

1
1,TMg

1∗
1,TE)]

CNSpr,z =
3λ2

2π
Re(a1)Re(g

−1
1,TMg

−1∗
2,TM + g11,TMg

1∗
2,TM +

1

3
g01,TMg

0∗
2,TM ) (149)

=
2λ2

3π
(
n2p − 1
n2p + 2

)2α6Re(g−11,TMg
−1∗
2,TM + g11,TMg

1∗
2,TM +

1

3
g01,TMg

0∗
2,TM )

7.2 Simplified expressions for SK- and AD-beams.

We are now rewriting the general expressions of the previous subsection
after implementation of Eqs.26-27. The gradient transverse forces in the x-
direction of Eq.135 can then be rewritten as:

CGpr,x =
−λ2

6π

n2p − 1
n2p + 2

α3 Im(H1 +H2) (150)

in which:

Im(H1) = Im[g0∗2,TM (g
1
1,TM + g−11,TM )− 3g

0
1,TM (g

1∗
2,TM + g−1∗2,TM ) (151)

−12(g11,TMg2∗2,TM + g−11,TMg
−2∗
2,TM )]

while Im(H2), using Eqs.26-27, can be simplified to:

Im(H2) = 6Re(g01,TMg
−1∗
1,TE − g

1∗
1,TMg

0
1,TE) (152)

= 6Re(g01,TEg
−1∗
1,TM − g

1∗
1,TEg

0
1,TM )

Concerning products of BSCs which are products of TE-coeffi cients,
they can be expressed in terms of products of TM -coeffi cients using Eq.26. We
choose this convention —expressing TE-coeffi cients in terms of TM -coeffi cients —
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instead of the reverse one. Therefore, Im(H1) is not affected by the axisymmetry
conditions.

The scattering transverse forces in the x-direction of Eq.138 similarly
simplifies to:

CSpr,x = 0 (153)

The non-standard transverse forces in the x-direction of Eq.139 only
contains products of TM -coeffi cients and is therefore not affected. So, we still
have:

CNSpr,x =
λ2

9π
(
np

2 − 1
np2 + 2

)2α6 (154)

Re[g0∗2,TM (g
1
1,TM + g−11,TM )− 3g

0
1,TM (g

1∗
2,TM + g−1∗2,TM )

−12(g11,TMg2∗2,TM + g−11,TMg
−2∗
2,TM )]

The gradient transverse forces in the y-direction of Eq.140 can be rewrit-
ten as:

CGpr,y =
λ2

6π

n2p − 1
n2p + 2

α3Re(H ′1 +H
′
2) (155)

in which:

Re(H ′1) = Re[(g0∗2,TM (g
−1
1,TM − g

1
1,TM )− 3g01,TM (g1∗2,TM − g−1∗2,TM ) (156)

−12(g11,TMg2∗2,TM − g−11,TMg
−2∗
2,TM )]

is not affected while Re(H ′2) can be rewritten as:

Re(H ′2) = 6 Im(g01,TMg
−1∗
1,TE + g

0
1,TEg

1∗
1,TM ) (157)

= 6 Im(g01,TMg
1∗
1,TE + g

0
1,TEg

−1∗
1,TM )

The scattering transverse forces in the y-direction of Eq.142 simplifies
to:
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CSpr,y = 0 (158)

The non-standard transverse forces in the y-direction of Eq.143 is not
affected:

CNSpr,y =
λ2

9π
(
np

2 − 1
np2 + 2

)2α6 (159)

Im[g0∗2,TM (g
−1
1,TM − g

1
1,TM )− 3g01,TM (g1∗2,TM − g−1∗2,TM )

−12(g11,TMg2∗2,TM − g−11,TMg
−2∗
2,TM )]

The longitudinal gradient force of Eq.144-145 is not affected. We still
have:

CGpr,z =
−λ2

π

n2p − 1
n2p + 2

α3 Im(G) (160)

in which:

G = g−11,TM (g
−1∗
2,TM + ig−1∗1,TE) + g

1
1,TM (g

1∗
2,TM − ig1∗1,TE) +

1

3
g01,TMg

0∗
2,TM (161)

Similarly, the longitudinal standard scattering forces and the non-standard
forces of Eqs.148-149 are not affected and are still given by:

CSpr,z =
2λ2

3π
(
n2p − 1
n2p + 2

)2α6Re[i(g−11,TMg
−1∗
1,TE − g

1
1,TMg

1∗
1,TE)] (162)

CNSpr,z =
2λ2

3π
(
n2p − 1
n2p + 2

)2α6Re(g−11,TMg
−1∗
2,TM + g

1
1,TMg

1∗
2,TM +

1

3
g01,TMg

0∗
2,TM ) (163)
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7.3 Simplified expressions for the special cases. Trans-
verse cross-sections.

For the case SK1A, we use Eqs.150-159 of subsection 7.2 and obtain:

CGpr,x = CGpr,y = CSpr,x = CSpr,y = CNSpr,x = CNSpr,y = 0 (164)

agreeing with Eq.114 of subsection 6.1 which tells us that Cpr,x = Cpr,y = 0,
and with Eqs.135-143 of subsection 7.1. Concerning the use of equations of
subsection 6.1, there is however a remark to be done, useful in the sequel.
Namely, in the equations to be examined, a separation has to be done between
terms proportional to α3 which are gradient terms and terms proportional to α6

which correspond to a summation of scattering and non-standard terms. The
same remark is valid for the use of the equations of subsection 6.2 to be used in
the next subsection devoted to longitudinal cross-sections.

Similarly for the case SK1B, using the results of subsection 7.2, we
obtain:

CGpr,x =
2λ2

π

n2p − 1
n2p + 1

α3 Im(g11,TMg
2∗
2,TM ) (165)

CNSpr,x =
−4λ2

3π
(
n2p − 1
n2p + 1

)2α6Re(g11,TMg
2∗
2,TM ) (166)

CGpr,y =
−2λ2

π

n2p − 1
n2p + 1

α3Re(g11,TMg
2∗
2,TM ) (167)

CNSpr,y =
−4λ2

3π
(
n2p − 1
n2p + 1

)2α6 Im(g11,TMg
2∗
2,TM ) (168)

CSpr,x = CSpr,y = 0 (169)

which agree with the results we would have obtained from subsection 7.1,
and from Eq.115 of subsection 6.1.

Similarly, for the other cases, using the results of subsection 7.2 which
are found to be agreement with those of subsection 7.1, and with the corre-
sponding equations of subsection 6.1, we obtain, keeping in mind, from Eqs.153
and 158 that CSpr,x = CSpr,y = 0:
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CGpr,x =
λ2

6π

n2p − 1
n2p + 1

α3[Im(g02,TMg
1∗
1,TM+3g

0
1,TMg

1∗
2,TM )+6Re(g

0
1,TMg

1∗
1,TE)], SK1C

(170)

CS+NSpr,x =
λ2

9π
(
n2p − 1
n2p + 1

)2α6Re(g02,TMg
1∗
1,TM − 3g01,TMg1∗2,TM ), SK1C (171)

CGpr,y =
−λ2

6π

n2p − 1
n2p + 1

α3[Re(g02,TMg
1∗
1,TM+3g

0
1,TMg

1∗
2,TM )−6 Im(g01,TMg1∗1,TE)], SK1C

(172)

CS+NSpr,y =
λ2

9π
(
n2p − 1
n2p + 1

)2α6 Im(g02,TMg
1∗
1,TM − 3g01,TMg1∗2,TM ), SK1C (173)

CGpr,x = CSpr,x = CNSpr,x = CGpr,y = CSpr,y = CNSpr,y = 0, SK2A (174)

CGpr,x =
−λ2

6π

n2p − 1
n2p + 1

α3[Im(g−11,TMg
0∗
2,TM+3g

−1
2,TMg

0∗
1,TM )+6Re(g

−1
1,TMg

0∗
1,TE)], SK2B

(175)

CS+NSpr,x =
λ2

9π
(
n2p − 1
n2p + 1

)2α6Re(g−11,TMg
0∗
2,TM − 3g−12,TMg

0∗
1,TM ), SK2B (176)

CGpr,y =
λ2

6π

n2p − 1
n2p + 1

α3[Re(g−11,TMg
0∗
2,TM+3g

−1
2,TMg

0∗
1,TM )−6 Im(g−11,TMg

0∗
1,TE)], SK2B

(177)

CS+NSpr,y =
λ2

9π
(
n2p − 1
n2p + 1

)2α6 Im(g−11,TMg
0∗
2,TM − 3g−12,TMg

0∗
1,TM ), SK2B (178)
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CGpr,x =
−2λ2

π

n2p − 1
n2p + 1

α3 Im(g−22,TMg
−1∗
1,TM ), SK2C (179)

CS+NSpr,x =
−4λ2

3π
(
n2p − 1
n2p + 1

)2α6Re(g−22,TMg
−1∗
1,TM ), SK2C (180)

CGpr,y =
2λ2

π

n2p − 1
n2p + 1

α3Re(g−22,TMg
−1∗
1,TM ), SK2C (181)

CS+NSpr,y =
−4λ2

3π
(
n2p − 1
n2p + 1

)2α6 Im(g−22,TMg
−1∗
1,TM ), SK2C (182)

CGpr,x = CSpr,x = CNSpr,x = CGpr,y = CSpr,y = CNSpr,y = 0, AD (183)

Let us note that the agreement between the results of subsections 6.1,
7.1 and 7.2 provide a very satisfactory checking of the results displayed.

7.4 Simplified expressions for the special cases. Lon-
gitudinal cross-sections.

Similarly, we obtain the results for the longitudinal cross-sections from
subsection 7.2 in agreement with those of subsection 7.1 and of subsection 6.2
(instead of subsection 6.1). These results read as:

CGpr,z =
λ2

π

n2p − 1
n2p + 1

α3[Re(g11,TMg
1∗
1,TE)− Im(g11,TMg1∗2,TM )], SK1A and SK1B

(184)

CS+NSpr,z =
2λ2

3π
(
n2p − 1
n2p + 1

)2α6[Re(g11,TMg
1∗
2,TM )+Im(g

1
1,TMg

1∗
1,TE)], SK1A and SK1B

(185)

CSpr,z =
2λ2

3π
(
n2p − 1
n2p + 1

)2α6 Im(g11,TMg
1∗
1,TE), SK1A and SK1B (186)
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CNSpr,z =
2λ2

3π
(
n2p − 1
n2p + 1

)2α6Re(g11,TMg
1∗
2,TM ), SK1A and SK1B (187)

CGpr;z =
−λ2

3π

n2p − 1
n2p + 1

α3[Im(g01,TMg
0∗
2,TM+3g

1
1,TMg

1∗
2,TM )−3Re(g11,TMg1∗1,TE)], SK1C

(188)

CS+NSpr,z =
2λ2

9π
(
n2p − 1
n2p + 1

)2α6[Re(g01,TMg
0∗
2,TM+3g

1
1,TMg

1∗
2,TM )+3 Im(g

1
1,TMg

1∗
1,TE)], SK1C

(189)

CSpr,z =
2λ2

3π
(
n2p − 1
n2p + 1

)2α6 Im(g11,TMg
1∗
1,TE), SK1C

CNSpr,z =
2λ2

9π
(
n2p − 1
n2p + 1

)2α6[Re(g01,TMg
0∗
2,TM + 3g11,TMg

1∗
2,TM )], SK1C (190)

CGpr;z =
−λ2

π

n2p − 1
n2p + 1

α3[Re(g−11,TMg
−1∗
1,TE) + Im(g

−1
1,TMg

−1∗
2,TM )], SK2A (191)

CS+NSpr,z =
2λ2

3π
(
n2p − 1
n2p + 1

)2α6[Re(g−11,TMg
−1∗
2,TM )− Im(g

−1
1,TMg

−1∗
1,TE)], SK2A (192)

CSpr,z =
−2λ2

3π
(
n2p − 1
n2p + 1

)2α6 Im(g−11,TMg
−1∗
1,TE), SK2A (193)

CNSpr,z =
2λ2

3π
(
n2p − 1
n2p + 1

)2α6Re(g−11,TMg
−1∗
2,TM ), SK2A (194)

CGpr;z =
−λ2

3π

n2p − 1
n2p + 1

α3[Im(g01,TMg
0∗
2,TM+3g

−1
1,TMg

−1∗
2,TM )+3Re(g

−1
1,TMg

−1∗
1,TE)], SK2B

(195)
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CS+NSpr,z =
2λ2

9π
(
n2p − 1
n2p + 1

)2α6[Re(g01,TMg
0∗
2,TM+3g

−1
1,TMg

−1∗
2,TM )−3 Im(g

−1
1,TMg

−1∗
1,TE)], SK2B

(196)

CSpr,z =
−2λ2

3π
(
n2p − 1
n2p + 1

)2α6 Im(g−11,TMg
−1∗
1,TE), SK2B (197)

CNSpr,z =
2λ2

9π
(
n2p − 1
n2p + 1

)2α6Re(g01,TMg
0∗
2,TM + 3g−11,TMg

−1∗
2,TM ), SK2B (198)

CGpr;z =
−λ2

π

n2p − 1
n2p + 1

α3[Re(g−11,TMg
−1∗
1,TE) + Im(g

−1
1,TMg

−1∗
2,TM )], SK2C (199)

CS+NSpr,z =
2λ2

3π
(
n2p − 1
n2p + 1

)2α6[Re(g−11,TMg
−1∗
2,TM )− Im(g

−1
1,TMg

−1∗
1,TE)], SK2C (200)

CSpr,z =
−2λ2

3π
(
n2p − 1
n2p + 1

)2α6 Im(g−11,TMg
−1∗
1,TE), SK2C (201)

CNSpr,z =
2λ2

3π
(
n2p − 1
n2p + 1

)2α6Re(g−11,TMg
−1∗
2,TM ), SK2C (202)

CGpr;z =
−λ2

3π

n2p − 1
n2p + 1

α3 Im(g01,TMg
0∗
2,TM )], AD (203)

CS+NSpr,z =
2λ2

9π
(
n2p − 1
n2p + 1

)2α6Re(g01,TMg
0∗
2,TM ), AD (204)

CSpr,z = 0, AD (205)

CNSpr,z =
2λ2

3π
(
n2p − 1
n2p + 1

)2α6Re(g01,TMg
0∗
2,TM ), AD (206)
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8 The trivial case.

We now consider the trivial case in which M = Q. From Eqs.18-22,
due to the fact that BSCs occur in the form of gmn g

m+1∗
n , we immediately have

that, for the trivial case, whether we deal or not with Rayleigh particles, the
transverse forces read as:

Cpr,x = Cpr,y = 0 (207)

We then have to consider only the longitudinal case of Eq.23 which is
valid for the trivial case insofar as BSCs occur in the form of gmn g

m∗
n . In the case

of Rayleigh particles, however, only the (n = 1)-terms must be retained in the
summation. Therefore, from Eq.23, retaining only these terms, we obtain, after
rearranging and separating the α3-terms from the α6-terms:

CGpr,z =
λ2

6π

n2p − 1
n2p + 1

α3
+1∑

m=−1
[3m

(1 + |m|)!
(1− |m|)! Re(g

m
1,TMg

m∗
1,TE) (208)

− (2 + |m|)!
(1− |m|)! Im(g

m
1,TMg

m∗
2,TM )]

CS+NSpr,z =
λ2

9π
(
n2p − 1
n2p + 1

)2α6
+1∑

m=−1
[
(2 + |m|)!
(1− |m|)! Re(g

m
1,TMg

m∗
2,TM )] (209)

+3m
(1 + |m|)!
(1− |m|)! Im(g

m
1,TMg

m∗
1,TE)

The trivial case must then be separated into three subcases, namely T1
for M = Q = −1, T2 for M = Q = 0 and T3 for M = Q = 1.

For case T1, we use Eqs.208-209 and obtain:

CGpr,z =
−λ2

π

n2p − 1
n2p + 1

α3[Re(g−11,TMg
−1∗
1,TE) + Im(g

−1
1,TMg

−1∗
2,TM )] (210)

CS+NSpr,z =
2λ2

3π
(
n2p − 1
n2p + 1

)2α6[Re(g−11,TMg
−1∗
2,TM )− Im(g

−1
1,TMg

−1∗
1,TE)] (211)

38



From Eqs.160-161, we then recover Eq.210 while, from Eqs.162-163, we
respectively obtain:

CSpr,z =
−2λ2

3π
(
n2p − 1
n2p + 1

)2α6 Im(g−11,TMg
−1∗
1,TE) (212)

CNSpr,z =
2λ2

3π
(
n2p − 1
n2p + 1

)2α6Re(g−11,TMg
−1∗
2,TM ) (213)

which agree with Eq.211.
For the case T2, we use Eqs.208-209 and obtain:

CGpr,z =
−λ2

3π

n2p − 1
n2p + 1

α3 Im(g01,TMg
0∗
2,TM ) (214)

CS+NSpr,z =
2λ2

9π
(
n2p − 1
n2p + 1

)2α6Re(g01,TMg
0∗
2,TM ) (215)

From Eqs.160-161, we then recover Eq.214 while, from Eqs.162-163, we
respectively obtain:

CSpr,z = 0 (216)

CNSpr,z =
2λ2

9π
(
n2p − 1
n2p + 1

)2α6Re(g01,TMg
0∗
2,TM ) (217)

which agree with Eq.215.
For case T3, we use Eqs.208-209 and obtain:

CGpr,z =
λ2

π

n2p − 1
n2p + 1

α3[Re(g11,TMg
1∗
1,TE)− Im(g11,TMg1∗2,TM )] (218)

CS+NSpr,z =
2λ2

3π
(
n2p − 1
n2p + 1

)2α6[Re(g11,TMg
1∗
2,TM ) + Im(g

1
1,TMg

1∗
1,TE)] (219)
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From Eqs.160-161, we then recover Eq.218 while, from Eqs.162-163, we
respectively obtain:

CSpr,z =
2λ2

3π
(
n2p − 1
n2p + 1

)2α6 Im(g11,TMg
1∗
1,TE) (220)

CNSpr,z =
2λ2

3π
(
n2p − 1
n2p + 1

)2α6Re(g11,TMg
1∗
2,TM ) (221)

which agree with Eq.219.

9 Examples.

The examples considered in this section are examples which have been used
in [17] when dealing with axisymmetric beams of the first kind. They are now
considered again but for the cases of SK- and AD-beams.

9.1 (1,0) x-polarized circularly symmetric Bessel beams.

Bessel beams have been introduced by Durnin and co-workers [30], [31].
They possess an invariance property, namely the fact that the intensity of the
beam is constant along the direction of propagation meaning that they are non-
diffracting. They are self-healing as well, and they furthermore share a not
often mentioned property, namely that their speed of propagation may be much
smaller than the speed of light, being equal to c cosα0 [32], [33], in which c
is the speed of light and α0 an angle, named axicon angle, or half-cone an-
gle, which occurs in the propagation term reading exp(±ikz cosα0) instead
of being of the form exp(±ikz). There actually exists an infinity of kinds of
Bessel beams (i) with different polarizations and (ii) depending on the form
given to a certain function g(α0), see [32], [34], [35], [36]. In particular, when
g(α0) = (1+cosα0)/4, the beam reduces to a Davis circularly symmetric beam,
e.g. [32], [37] while, when g(α0) = 1/2 it reduces to another kind of beams
discussed in [38], [39], [40]. In this section, we consider more specifically (1,0)
x-polarized circularly symmetric Bessel beams (see next subsection for a more
general assessment of the (px, py) notation used here with px = 1 and py = 0)
. Using a quadrature technique and solving quadratures analytically, BSCs of
circularly symmetric beams have been obtained in closed forms in an off-axis
configuration in [36] and conveniently rewritten in [28]. In the case of on-axis
configurations, they simplify to [41]:
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gl+1n,TM = −g(α0) exp(ikzz0)Al+1n (222)

gl−1n,TM = −g(α0) exp(ikzz0)Bl−1n (223)

gl+1n,TE = ig(α0) exp(ikzz0)A
l+1
n (224)

gl−1n,TE = −ig(α0) exp(ikzz0)B
l−1
n (225)

in which l denotes the order of the beam, kz = k cosα0 is the longitudinal
wave number, and:

Al+1n = (−1)(l+1−|l+1|)/2 (n− l − 1)!
(n+ |l + 1|)! [τ

l+1
n (cosα0)+ (l+1)π

l+1
n (cosα0)] (226)

Bl−1n = (−1)(l−1−|l−1|)/2 (n− l + 1)!
(n+ |l − 1|)! [τ

l−1
n (cosα0)− (l−1)πl−1n (cosα0)] (227)

Being circularly symmetric beams, they are a fortiori axisymmetric beams.
For l = 0, they are of the first kind. For l = ±2, they are of the second kind.
Otherwise, they are dark. Examples will be given for l = 1 (dark beams) and
l = 2 (second kind).

For l = 1 (m = 0 and 2), from Eq.127, the transverse forces are found
to read as:

Cpr,x = Cpr,y = 0 (228)

which was to be expected for a circularly symmetric beam.
For the longitudinal cross-sections, we use Eqs.203, 205-206 and, imple-

menting the expressions for the BSCs given above, we obtain :

CGpr,z = 0 (229)

which was to be expected for a Bessel beam, and:
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CSpr,z = 0 (230)

CNSpr,z =
2λ2

π
(
n2p − 1
n2p + 1

)2α6 |g(α0)|2 sin2 α0 cosα0 (231)

in which we have used τ01 = − sinα0 and τ02 = −3 cosα0 sinα0. We remark
that the only non zero forces are longitudinal non-standard forces.

For l = 2, we are facing a SK1A-case. The transverse cross-sections are
then given by Eq.164 and, therefore, are all zero.

For the longitudinal cross-sections, we use Eqs.184, 186-187 and, imple-
menting the values of BSCs given above, we obtain:

CGpr,z = 0 (232)

again to be expected for a Bessel beam, and:

CSpr,z =
−λ2

6π
(
n2p − 1
n2p + 1

)2α6 |g(α0)|2 (1− cosα0)2 (233)

CNSpr,z =
λ2

6π
(
n2p − 1
n2p + 1

)2α6 |g(α0)|2 (1− cosα0)(1 + cosα0 − 2 cos2 α0) (234)

in which we used τ11 = − cosα0, π11 = −1, τ12 = −3(2 cos2 α0 − 1) and
π12 = −3 cosα0. Note that all these forces are zero for α0 = 0, as expected since
we are then facing the case of a plane wave interacting with a dipole.

9.2 Bessel beams. Other polarizations.

Other polarizations, which are circularly symmetric as well [34], have been
discussed in [35]. BSCs for an off-axis configuration are given in [42]. For on-axis
configurations, they read as:
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gmn,TM = ig(α0)(−1)(m−|m|)/2
(n−m)!
(n+ |m|)! exp(ikzz0){ (235)

[ipxτ
m
n (cosα0) + pymπ

m
n (cosα0)]

×[il−m+1ei(l−m+1)φ0Jl−m+1(0) + il−m−1ei(l−m−1)φ0Jl−m−1(0)]
+[ipyτ

m
n (cosα0)− pxmπmn (cosα0)]

×i[−il−m+1ei(l−m+1)φ0Jl−m+1(0) + il−m−1ei(l−m−1)φ0Jl−m−1(0)]}

gmn,TE = g(α0)(−1)(m−|m|)/2
(n−m)!
(n+ |m|)! exp(ikzz0){ (236)

[ipxmπ
m
n (cosα0) + pyτ

m
n (cosα0)]

×[il−m+1ei(l−m+1)φ0Jl−m+1(0) + il−m−1ei(l−m−1)φ0Jl−m−1(0)]
+[−pxτmn (cosα0) + ipymπmn (cosα0)]
×i[−il−m+1ei(l−m+1)φ0Jl−m+1(0) + il−m−1ei(l−m−1)φ0Jl−m−1(0)]}

in which φ0 is an angle used to specify the rotational location of the off-axis
coordinate system (soon to to be cancelled in agreement with the fact that it
does not matter for on-axis configurations), Jk(.) are cylindrical Bessel function
of the first kind of order k, and px, py define the polarization of the beam in the
framework of an angular spectrum decomposition according to (px, py) = (1, 0)
for x-polarization, (0, 1) for y-polarization, (1, i) for left circular polarization,
(1,−i) for right circular polarization, (cosβ, sinβ) for radial polarization, and
(− sinβ, cosβ) for azimuthal polarization in which β is an azimuthal angle [40],
[43].
Because Jk(0) = δk0, Eqs.235-236 show that the only nonzero BSCs are

those for which m = l ± 1, according to:

gl+1n,TM = ig(α0)(−1)(l+1−|l+1|)/2
(n− l − 1)!
(n+ |l + 1|)! exp(ikzz0) (237)

×(ipx + py)[τ l+1n (cosα0) + (l + 1)π
l+1
n (cosα0)]

gl−1n,TM = ig(α0)(−1)(l−1−|l−1|)/2
(n− l + 1)!
(n+ |l − 1|)! exp(ikzz0) (238)

×(ipx − py)[τ l−1n (cosα0)− (l − 1)πl−1n (cosα0)]
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gl+1n,TE = g(α0)(−1)(l+1−|l+1|)/2
(n− l − 1)!
(n+ |l + 1|)! exp(ikzz0) (239)

×(ipx + py)[τ l+1n (cosα0) + (l + 1)π
l+1
n (cosα0)]

gl−1n,TE = −g(α0)(−1)(l−1−|l−1|)/2
(n− l + 1)!
(n+ |l − 1|)! exp(ikzz0) (240)

×(ipx − py)[τ l−1n (cosα0)− (l − 1)πl−1n (cosα0)]

which satisfies gl+1nTM = igl+1n,TE and gl−1nTM = −igl+1n,TE . We again restrict
ourselves to l = 1 (m = 0 and 2) which is the case of a dark beam and to l = 2
(m = 1 and 3) which is the case of a second kind beam.

For l = 1 (m = 0 and 2), we have from Eq.127:

Cpr,x = Cpr,y = 0 (241)

which was to be expected for a circularly symmetric beam.
For the longitudinal cross-sections, we use Eqs.203, 205-206 and, imple-

menting the expressions for the BSCs given above, we obtain :

CGpr,z = 0 (242)

which was to be expected for a Bessel beam, and:

CSpr;,z = 0 (243)

CNSpr,z =
2λ2

π
(
n2p − 1
n2p + 1

)2α6 |g(α0)|2 (p2x + p2y) sin2 α0 cosα0 (244)

in which we have used τ01 = − sinα0 and τ02 = −3 cosα0 sinα0. We remark
that the only non zero forces are longitudinal non standard forces.

For l = 2, we are facing a SK1A-case. The transverse cross-sections are
then given by Eq.164 and, therefore, are all zero.

For the longitudinal cross-sections, we use Eqs.184, 186-187 and, imple-
menting the values of BSCs given above, we obtain:
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CGpr,z = 0 (245)

again to be expected for a Bessel beam, and:

CSpr,z =
−λ2

6π
(
n2p − 1
n2p + 1

)2α6 |g(α0)|2 (p2x + p2y)(1− cosα0)2 (246)

CNSpr,z =
λ2

6π
(
n2p − 1
n2p + 1

)2α6 |g(α0)|2 (p2x + p2y)(1− cosα0)(1 + cosα0 − 2 cos2 α0)

(247)

in which we used τ11 = − cosα0, π11 = −1, τ12 = −3(2 cos2 α0 − 1) and
π12 = −3 cosα0. Note that all these forces are zero for α0 = 0, as expected since
we are then facing the case of a plane wave interacting with a dipole.

9.3 Lommel beams.

Lommel beams are constituted by a combination of Bessel beams of various
orders (i.e. topological charges) as exemplified by the expression of the basic
electric modes in cylindrical coordinates (r, ϕ, z) reading as, e.g. Eq.(1) in [44]:

El = exp(ikzz)

∞∑
p=0

(−1)pc2p exp[i(l + 2p)ϕ]Jν+2p(ktr) (248)

in which El is the x- or y-component of the electric field which is obtained
from a solution of the scalar wave equation (meaning that the beam is not
Maxwellian), kz = k cosα0 and kt = k sinα0 are the longitudinal and transverse
wavenumbers respectively. The beam being not Maxwellian, its expression in
terms of BSCs will therefore provide a remodelling of the beam, turning it from
a non-Maxwellian to a Maxwellian beam. In [44], these BSCs are evaluated
using the integral localized approximation [45] which is fairly satisfactory for
small enough axicon angles, e.g. [46], [47], [48], [49], although it is likely that
quadratures of the quadrature techniques could be performed analytically, lead-
ing to localized BSCs for localized Lommel beams. In [17] in which the case
of axisymmetric beams of the first kind has been discussed, the case l = 1 cor-
responding to a dark beam has not been worked out. The dark beam case for
l = 4 has instead been chosen because it was displayed in a figure by the au-
thors in their original paper. Therefore, we here consider this case again. It will
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furthermore provide an interesting example with specific particularities which
can be generalized. For this case in which m = 4± 1 = 5, 3, the BSCs are given
by [44], [17]:

g3n,TM

(
x
y

)
=

(
1
i

)
Z3n
2
J4(wn) exp(ikzz0) (249)

g5n,TM

(
x
y

)
=

(
1
−i

)
Z5n
2
J4(wn) exp(ikzz0) (250)

g3n,TE

(
x
y

)
=

(
i
−1

)
Z3n
2
J4(wn) exp(ikzz0) (251)

g5n,TE

(
x
y

)
=

(
−i
−1

)
Z5n
2
J4(wn) exp(ikzz0) (252)

in which x and y denote x- and y-polarizations respectively and:

wn = (n+
1

2
) sinα0 (253)

Zmn = (
−2i
2n+ 1

)|m|−1 for m 6= 0 (254)

From Eq.127, we still have, for the transverse cross-sections:

Cpr,x

(
x
y

)
= Cpr,y

(
x
y

)
= 0 (255)

For the longitudinal cross-sections, however, we have to rely on Eqs.203,
205-206. We then observe that the BSCs occurring in these equations are of the
form g0g0∗ with m = 0 so that we may conclude that all the cross-sections
(transverse and longitudinal) are actually equal to 0. It would be the same for
all values of l ≥ 3 (and of l ≤ −3) where the values of m would be different
from 0.

For l = 2 (m = 3, 1) we are facing again a SK1A-case. The BSCs read
as:

g1n,TM

(
x
y

)
=

(
1
i

)
Z1n
2
J2(wn) exp(ikzz0) (256)
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g3n,TM

(
x
y

)
=

(
1
−i

)
Z3n
2
J2(wn) exp(ikzz0) (257)

g1n,TE

(
x
y

)
=

(
i
−1

)
Z1n
2
J2(wn) exp(ikzz0) (258)

g3n,TE

(
x
y

)
=

(
−i
−1

)
Z3n
2
J2(wn) exp(ikzz0) (259)

The transverse cross-sections are then given by Eq.164 and, therefore,
are all zero.

For the longitudinal cross-sections, we use Eqs.184, 186-187, implement
the values of BSCs given above, use Eqs.253-254, leading to:

CGpr,z = 0 (260)

again to be expected due to the fact that Lommel beams are a combination
of Bessel beam, and:

CSpr,z =
−λ2

6π
(
n2p − 1
n2p + 1

)2α6[J2(
3

2
sinα0)]

2 (261)

CNSpr,z =
λ2

6π
(
n2p − 1
n2p + 1

)2α6J2(
3

2
sinα0)J2(

5

2
sinα0) (262)

Note that all these forces are zero for α0 = 0, as again expected.

9.4 Bessel-Gauss beams using finite series.

From Eqs.(20) and (31) in [50], required TM-BSCs can be written as:

(gl−1n,TM )n−m even = in+1Gevennl (α0, s) (263)

(gl−1n,TM )n−m odd = inGoddnl (α0, s) (264)
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in which Gevennl (α0, s) and Goddnl (α0, s) are real functions of the axicon angle
α0 and of the confinement factor s = 1/(kw0), depending as well on the sub-
scripts n and l. The TE-BSCs are furthermore related to the TM BSCs by the
following relation [50]:

gl±1n,TM = ±igl±1n,TE (265)

For l = 1 (m = 0 and 2, i.e. for an axisymmetric dark beam), we have from
Eq.127:

Cpr,x = Cpr,y = 0 (266)

For the longitudinal cross-sections, we use Eqs.203, 205-206 and, imple-
menting the expressions for the BSCs given above, we obtain :

CGpr,z = CSpr,z = 0 (267)

CNSpr,z =
−2λ2

3π
(
n2p − 1
n2p + 1

)2α6Godd11 (α0, s)G
even
21 (α0, s) (268)

For l = 2, we are facing a SK1A-case. The transverse cross-sections are
then given by Eq.164 and, therefore, are all zero.

For the longitudinal cross-sections, we use Eqs.184, 186-187 and, imple-
menting the values of BSCs given above, we obtain:

CGpr,z = 0 (269)

again to be expected for a Bessel beam, and:

CSpr,z =
−2λ2

3π
(
n2p − 1
n2p + 1

)2α6[Geven12 (α0, s)]
2 (270)

CNSpr,z =
2λ2

3π
(
n2p − 1
n2p + 1

)2α6Geven12 (α0, s)G
odd
22 (α0, s) (271)
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9.5 Laguerre-Gauss beams freely propagating.

For the BSCs, we refer to [51] and it is found to be suffi cient to evaluate
two BSCs, namely g01,TM and g11,TM using respectively Eqs.(102) and (69) in
[51], leading to:

g01,TM = g11,TM = 0 (272)

For l = 1 (m = 0 and 2, i.e. again for an axisymmetric dark beam), we have
from Eq.127:

Cpr,x = Cpr,y = 0 (273)

For the longitudinal cross-sections, we use Eqs.203, 205-206 and, imple-
menting the expressions for the BSCs given above, we obtain :

CGpr,z = CSpr,z = CNSpr,z = 0 (274)

For l = 2 (m = 3 and 1), we are facing a SK1A-case.
The transverse cross-sections are then given by Eq.164 and, therefore,

are all zero.
For the longitudinal cross-sections, we use Eqs.184, 186-187 and, imple-

menting the values of BSCs given above, we obtain:

CGpr,z = CSpr,z = CNSpr,z = 0 (275)

i.e. all kinds of optical forces are zero, both for l = 1 and l = 2.

10 Optical forces in the Rayleigh regime of GLMT
for lossless particles: a mini-review.

As already mentioned, GLMTs provide rigorous frameworks to study op-
tical forces and torques exerted on particles as reviewed in [18], not only for
homogeneous spherical particles (in the framework of GLMT stricto sensu) but
also for multilayered spherical particles [52], for assemblies of spheres and ag-
gregates [53], for spheres with an eccentrically located spherical inclusion [54],
and for spheroids [55], [56].
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Beside practical interest, for instance concerning the optical levitation
and optical manipulation of small particles, e.g. [57], the Rayleigh regime
presents the advantage of allowing one to deal with simple mathematical ex-
pressions which then has the advantage of leading to easy physical insights and
interpretations. A first mention of the use of the Rayleigh regime in the GLMT
framework is to be found in [21] for on-axis Gaussian beams in the weak con-
finement limit. In [21], optical forces were catalogued as gradient and scattering
forces (discussed below) but the fact that the weak confinement limit was used
prevented the observation of non standard forces (again, discussed below), see
[19] for a more extended discussion of this work.

A systematic study of the Rayleigh regime of GLMT began with [28]
who dealt with longitudinal forces exerted by off-axis Bessel beams. Although
there was a focus on Bessel beams, this paper however contains general expres-
sions for longitudinal forces, independent of the specific beams under studies.
These expressions are isolated and recalled in section 7 of the present paper.
The prefactor of Eq. (1) of [28] was however slightly incorrect. It should read
λ2/(2π) instead of λ2/(4π). This is simply equivalent to a change of the nor-
malization factor. Expressions given in section 7 of the present paper have
been accordingly corrected. The case of transverse optical forces, again in the
case of off-axis Bessel beams, has been considered in [26], with the expressions
for the y-component of the transverse cross-sections later slightly corrected by
Eqs.(19) and (15) of [27]. These expressions are recalled in section 7 which,
therefore, contains the expressions for longitudinal and transverse optical forces
in the Rayleigh regime of GLMT. Although derived in papers devoted to Bessel
beams, the expressions recalled in section 7 are valid for arbitrary shaped elec-
tromagnetic beams.

The optical forces in section 7 (and in the original papers) are cata-
logued as gradient forces proportional to the gradient of |E|2, scattering forces
proportional to the Poynting vector and non-standard forces which do not ex-
plicitly appear in the dipole theory of forces (actually in the Rayleigh regime
of the dipole theory of forces). In [28] and [26], they were given the name of
axicon forces because they become equal to 0 when the axicon angle is equal
to 0. It has later been recognized that these non-standard forces were not spe-
cific of Bessel beams, and have then been renamed non-standard forces. More
specifically gradient forces are proportional to α3 and involve BSCs of the form
gm1 and gm2 (therefore associated with partial waves of order n = 1 and n = 2),
while scattering forces and non-standard forces are proportional to α6. However,
while non-standard forces again involve BSCs of the form gm1 and gm2 , scatter-
ing forces only involve BSCs of the form gm1 , i.e. they depend only on partial
waves of order n = 1. A fairly interesting conclusion is that, for certain types
de beams, the only radiation force on the Rayleigh particle is non-standard.

The existence of these non-standard forces could have been a clue that
the Rayleigh regime of the GLMT might not identify with the Rayleigh limit of
the dipole theory of forces, an issue to be investigated with the complementary
issue, if the identification were indeed valid, to determine what would be the sta-
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tus of the non-standard forces. Furthermore, supposing that the identification
was indeed valid, another question would be to examine whether the Rayleigh
limit of the GLMT would not have specific properties with respect to the dipole
theory.

In the conclusion of [28], the "axicon" forces were pointed out as being
"new", making these questions more vivid (it will be revealed later that these
non-standard forces were indeed new insofar as they have not been previously
isolated in their own right, as far as we are aware of, or at least new in the
context of GLMT). In the end of subsection 5.1 of [26], due to the occurrence
of these "axicon" forces, it was furthermore stated that "the Rayleigh limit of
the GLMT does not exactly identify with the Rayleigh dipole theory of optical
forces". This remains true insofar as the word "exactly" has been used, pointing
out to the fact that these "axicon" forces had not yet been properly isolated
in the framework of the dipole theory. A similar comment has been reiterated
in section 6.1 of [58]. It also points out to the fact, discussed below, that the
GLMT approach may be viewed as a reduced approach to the dipole approach.

To advance toward the answers to the above questions, it has then
been numerically demonstrated, in the case of Bessel beams, that the Rayleigh
regime of GLMT for longitudinal optical forces agrees with the dipole theory
within1,000 decimal places [59], while an agreement up to 3,000 decimal places
was revealed in [27] for the transverse optical forces, leading to the conjecture
that indeed both approaches should eventually be found to be equivalent. Af-
ter fairly heavy algebraic manipulations, such an equivalence has indeed been
revealed both in the case of longitudinal forces [29] (the prefactor of the second
term in the r.h.s. of Eq.(40) in this paper has been misprinted to 2π instead
of 4π, as can be checked e.g. from Eq.(40) of [27] and also from Eq.(20) of
[59]), and of transverse forces [60]. As a by-product, it was confirmed that the
non-standard forces did not explicitly appear in the dipole theory but that they
constituted an ingredient of "spin-curl" forces in the terminology used by Al-
baladejo [61]. Such spin-curl forces are intrinsically dependent on the beam’s
polarization and are associated with the existence of a spin angular momentum
density for the incident light (see also [62] for a comment on the aforementioned
reference, with a reply in [63]). This interpretation of the non-standard optical
forces is discussed in [29] and refined in [60].

The identification between the Rayleigh regime of the GLMT and the
dipole theory of forces does not mean that both approaches are exactly iden-
tical in all aspects. There is already the fact that non-standard forces were
not explicitly isolated in the dipole theory. More important, the dipole theory
expresses the optical forces in terms of the total electric field of the illuminating
beam, e.g. [23], [24], [64]. For this reason, it has been stated that the dipole
approach is somehow "inconsistent" (although exact) insofar as it involves total
illuminating fields, i.e. it includes all partial waves from n = 1 to ∞, e.g. [27].

Conversely, the equations of section 7 show that the Rayleigh limit of
GLMT expresses the optical forces only in terms of the partial waves of order
1 and 2, that is to say using only BSCs of the form gm1 and gm2 , meaning that
the contributions of all other partial waves, from n = 3 to ∞ are exactly equal
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to 0, a fact that has not been explicitly stated in the framework of the dipole
theory. Therefore the GLMT approach may be viewed as a reduced version of
the dipole approach.

In general, if we retain only the partial waves of order n = 1 in the
gradient terms (which should involve both n = 1 and n = 2 partial waves), we
observe the occurrence of terms which have not been cancelled out in the process
and which have been called axicon terms in [58]. Such terms never appear if we
properly take account of both partial waves of order n = 1 and 2 as summarized
in [65]. It may however happen indeed that partial waves of order n = 1 are the
only ones required to exactly express the gradient optical forces in the Rayleigh
regime, for instance in the case of on-axis Bessel beams [41].

The fact that only partial waves of low-order are suffi cient to express
optical forces may be related to the van de Hulst principle of localization, a
fact which is particularly easy to explain in the case of on-axis configurations.
Indeed, according to this principle, originally stated for plane waves (p. 208
of [22]) and later on extended to arbitrary shaped beams in order to develop
localized beam models, e.g. [66], a beam may be thought of as being made up of
separate ways of light each independently pursuing its own path. Furthermore, a
partial wave of order n corresponds to a ray passing at a distance from the origin
equal to (n+1/2)λ/(2π). The partial waves of order n = 1 and 2 therefore pass
at distances roughly equal to λ/4 and λ/2 from the point-like particle. Loosely
speaking, we may then state that higher-order partial waves pass too far away
from the particle to interact with it. The issue of van de Hulst principle of
localization in the context of the present work has been discussed in subsection
6.2 of [58] and in the conclusion of [19].

On-axis beams present significant simplifications with respect to off-
axis beams. It has therefore been found interesting to examine specifically such
special cases. This has been first carried out in the case of Bessel beams which
has originally be examined in the case of an off-axis configuration [41]. More
generally, the case of non-dark axisymmetric beams of the first kind has been
discussed in a Part I-paper [19], with an extensive discussion of the case of
Gaussian beams, while the present paper deals with non-dark axisymmetric
beams of the second kind and axisymmetric dark beams, after a preliminary
investigation of such symmetries achieved in [17].
As a final remark, the previous discussions have been carried out in the

framework of the GLMT stricto sensu, i.e. for the case when the scatterer is a
homogeneous spherical particle defined by its diameter and its complex refrac-
tive index. They may however be readily extended to other kinds of spherical
particles namely multilayered spheres when the expressions of the BSCs are
unchanged and when we only need to modify the expressions for the Mie coef-
ficients, e.g. [67], [68], and to other kinds of particles which lead to expressions
which are formally identical to the ones of GLMT, namely assemblies of spheres
and aggregates [53], and spheres with an eccentrically located spherical inclusion
[54], [69], [70].
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11 Conclusion.

This paper is presumably the last one we publish concerning the Rayleigh
approach of GLMT to the computations of optical forces. It complements a
previous Part I-paper devoted to optical forces exerted on Rayleigh particles by
axisymmetric of the first kind, and deals with axisymmetric beams of the second
kind and with axisymmetric dark beams. Several examples are provided per-
tainsing to the cases of Bessel beams, Lommel beams, Bessel-Gauss beams and
Laguerre-Gauss beams. It confirms and exemplifies the interest of the GLMT
approach, namely that it produces a reduced theory of the dipole approach inso-
far as the expressions of optical forces are obtained specifically in terms of BSCs
associated with low-order partial waves, namely n = 1 partial waves for scatter-
ing forces, and n = 1 partial waves complemented with n = 2 partial waves for
gradient and non standard forces. In order to help the reader navigating on the
papers devoted to the issue, the present paper ends with a mini-review stressing
the main points which have been investigated and the main results which have
been obtained during the research devoted to the issue.
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