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This paper pertains to a series of papers devoted to the study of the Rayleigh limit of generalized Lorenz-Mie theory (GLMT) and to its relationship with the dipole theory of forces, and more particularly to the case of on-axis beams when the details of the formulation are simpli…ed with respect to the more complicated case of o¤-axis beams. We furthermore more speci…cally consider the case of on-axis axisymmetric beams which allows one to deal with more simpli…cations. In a Part I-paper, we paid a particular attention to the case of non dark axisymmetric beams of the …rst kind, with the example of Gaussian beams. The present Part II-paper is devoted to another class of onaxis axisymmetric beams encompassing both non dark axisymmetric beams of the second kind and dark beams. This work is therefore to be viewed as being located at the con ‡uence of three rivers (i) generalized Lorenz-Mie theory, (ii) symmetries in the framework of generalized Lorenz-Mie theories, and (iii) optical forces. We now summarize a few features characterizing each of these rivers, for the sake of a better understanding of the sequel.

The generalized Lorenz-Mie theory describes the interaction between an illuminating arbitrarily shaped electromagnetic beam and a homogeneous sphere de…ned by its diameter and its complex refractive index, e.g. [START_REF] Gouesbet | Light scattering from a sphere arbitrarily located in a Gaussian beam, using a Bromwich formulation[END_REF], [START_REF] Gouesbet | Combustion measurements[END_REF], [START_REF] Gouesbet | Generalized Lorenz-Mie theories, second edition[END_REF] with [START_REF] Van De Hulst | Essay: A review on generalized Lorenz-Mie theories with wow stories and epistemological discussion[END_REF] for a recent review. In this framework, the illuminating beam is encoded in a set of beam shape coe¢ cients (BSCs) traditionally denoted as g m n;T M and g m n;T E , with T M and T E standing for "Transverse Magnetic" and "Transverse Electric" respectively, and n ranging from 1 to in…nity, with n m +n (more generally, there exists a class of GLMTs describing the interaction between arbitrarily shaped beams and scattering particles possessing enough degree of symmetry to allow one to use the method of separation of variables, e.g. [START_REF] Gouesbet | Latest achievements in generalized Lorenz-Mie theories: A commented reference database[END_REF]). BSCs are useful as well when using the extended boundary condition method (EBCM) which describes scattering phenomena in the case of arbitrary shaped particles [START_REF] Waterman | Symmetry, unitarity, and geometry in electromagnetic scattering[END_REF], [START_REF] Mishchenko | Scattering, absorption, and emission of light by small particles[END_REF], usually for plane wave illumination (in which case BSCs are trivial) or more generally for arbitrarily shaped illumination, e.g. subsection 8.1 in [START_REF] Gouesbet | T-matrix methods for electromagnetic structured beams: A commented reference database for the period 2014-2018[END_REF].

Concerning the study of symmetries in the framework of GLMT, a …rst attack has been published in the general framework of o¤-axis con…gurations [START_REF] Ren | Symmetry relations in generalized Lorenz-Mie theory[END_REF], with BSCs evaluated using a technique called a quadrature technique [START_REF] Gouesbet | Discussion of two quadrature methods of evaluating beam shape coe¢ cients in generalized Lorenz-Mie theory[END_REF], [START_REF] Gouesbet | On an in…nite number of quadratures to evaluate beam shape coe¢ cients in generalized Lorenz-Mie theory and extended boundary condition method for structured EM …elds[END_REF], leading to a series of symmetry relations making various quantities relevant to the scattering properties, such as cross-sections, invariant with respect to some coordinate changes, associated with similar invariant relations related to the BSCs. Such symmetry relations could be useful to simplify or check analytical works, or to speed up numerical evaluations by avoiding useless repetitive calculations.

These symmetries, however, were mainly related to the con…gurations describing the interaction between the beam and scattering particle, rather than to the beam itself. The search for symmetries of BSCs, speci…cally related to the beam itself, in connection with symmetry properties of the Poynting vector, started in 1996 [START_REF] Gouesbet | Partial wave expansions and properties of axisymmetric light beams[END_REF]. This paper introduced the concept of axisymmetric beams according to the following de…nition: an axisymmetric beam is a beam for which the component of the Poynting vector in the direction of propagation does not depend on the azimuthal angle in a suitably chosen coordinate system. In practice, the suitably chosen coordinate system is a coordinate system O xyz , with the z-axis being the direction of propagation of the beam. The component of the Poynting vector S in the direction of propagation is then the component S z which, by de…nition, does not depend on ', with (r; ; ') being the usual spherical coordinates attached to the Cartesian coordinates (x; y; z). The description of the beam in such a con…guration is called an on-axis con…guration.

We then exhibited a class of BSCs symmetries characterizing an on-axis axisymmetric beam in which all BSCs are zero but the ones for which m = 1, satisfying:

g m n;T M = g m n;T E = 0, m 6 = 1 (1) 
g n =2 = g 1 n;T M = g 1 n;T M =K = i"g 1 n;T E = i"g 1 n;T E =K (2) 
in which K describes the state of polarization of the beam (for instance, K = +1 for an on-axis Gaussian beam polarized in the x direction at its focal waist, e.g. [START_REF] Gouesbet | Scattering of a Gaussian beam by a Mie scatter center, using a Bromwich formalism[END_REF], [START_REF] Gouesbet | Sur la généralisation de la théorie de Lorenz-Mie[END_REF]) and " = 1 de…nes the beam-propagation direction. The existence of such axisymmetric beams has been revisited in 2017 [START_REF] Gouesbet | Poynting theorem in terms of beam shape coe¢ cients and applications to axisymmetric, dark and non-dark, vortex and nonvortex beams[END_REF] in an enlarged context, including a discussion of vortex and non-vortex beams, of dark and non-dark beams, and of BSC-symmetries in spheroidal and cylindrical coordinates.

Using a re…ned terminology, such beams have been called on-axisymmetric beams of the …rst kind. Furthermore, axisymmetry, just as de…ned above, could also be better called longitudinal axisymmetry to remind us that the de…nition relies on the property of the longitudinal component of the Poynting vector. This would also allow us to introduce a complementary de…nition, the one of transverse axisymmetry in which the transverse component (S 2

x + S 2 y ) 1=2 would not depend on the azimuthal angle '. A beam which is both longitudinally axisymmetric and transversely axisymmetric beam is a circularly symmetric beam. Examples will be provided in the sequel. The relationships, in terms of BSCs symmetries, between longitudinal axisymmetry, transverse axisymmetry and circularly symmetry have not yet been worked out.

Let us now introduce the concept of dark and non-dark beams as mentioned above. Dark beams (more speci…cally on-axis dark beams, i.e. dark beams in an on-axis con…guration which constitutes the framework of the present paper) are beams in which the longitudinal component S z of the Poynting vector is 0 on the axis (i.e. for = 0). According to a darkness theorem [START_REF] Gouesbet | A darkness theorem for the beam shape coe¢cients and its relationship to higher-order non vortex Bessel beams[END_REF], [START_REF] Gouesbet | Poynting theorem in terms of beam shape coe¢ cients and applications to axisymmetric, dark and non-dark, vortex and nonvortex beams[END_REF], these beams satisfy, whether they are axisymmetric or not:

g 1 n;T M = g 1 n;T E = 0 (3) 
Therefore, axisymmetric beams of the …rst kind are non-dark. However, axisymmetric beams of the …rst kind do not exhaust the list of non-dark axisymmetric beams, as shortly commented between Eqs.( 65) and ( 66) of [START_REF] Gouesbet | Poynting theorem in terms of beam shape coe¢ cients and applications to axisymmetric, dark and non-dark, vortex and nonvortex beams[END_REF]. Indeed, beside non-dark axisymmetric beams of the …rst kind when all BSCs of the form g 1 n;X are di¤erent from 0 as shown in Eq.2 and dark beams (not necessarily axisymmetric) when all of them are 0 as shown in Eq.3, there is some room for a possible case when some of them, but not all of them, are 0: Such beams, which are non-dark, are called axisymmetric beams of the second kind. The BSCs of axisymmetric beams of the second kind and of dark beams (now with the selection of axisymmetric dark beams) satisfy speci…c symmetry properties which will be recalled below, according to the results obtained in [START_REF] Gouesbet | Poynting vector and beam shape coe¢ cients: on new families of symmetries (non-dark axisymmetrix beams of the second kind and dark axisymmetric beams)[END_REF].

Concerning the con ‡uent third river, the one of optical forces, we recall that GLMT is a perfect and rigorous tool to evaluate optical forces (and torques) as reviewed in [START_REF] Gouesbet | Generalized Lorenz-Mie theories and mechanical e¤ects of laser light, on the occasion of Arthur Ashkin's receipt ot the 2018 Nobel prize in physics for his pioneering work in optical levitation and manipulation: A review[END_REF]. The speci…c case of Rayleigh particles is however particularly interesting because it leads to simple expressions which can be easily manipulated and interpreted. An extensive study of optical forces in the Rayleigh regime of GLMT has then been recently achieved, as reviewed in Section 10. For the time being, it is su¢ cient to know that optical forces on Rayleigh particles by (non-dark) axisymmetric beams of the …rst kind have been studied in a Part-I paper [START_REF] Gouesbet | Rayleigh limit of the generalized Lorenz-Mie theory for on-axis beams and its relationship with the dipole theory of forces. Part I. non dark axisymmetric beams of the …rst kind, with the example of Gaussian beams[END_REF]. The present Part II-paper deals with the cases of (non-dark) axisymmetric on-axis beams of the second kind and of axisymmetric on-axis dark beams which share the BSC-symmetries of Eqs.26 and 27 which will be presented below in their context.

The paper is organized as follows. For the sake of convenience of the reader, Section 2 recalls various basic expressions which have been published in di¤erent places of the literature and which are fundamental basic expressions for use in the sequel. Section 3 summarizes the framework in which the study of axisymmetric beams of the second kind and axisymmetric dark beams have been carried out in [START_REF] Gouesbet | Poynting vector and beam shape coe¢ cients: on new families of symmetries (non-dark axisymmetrix beams of the second kind and dark axisymmetric beams)[END_REF], and makes accordingly a list of di¤erent cases to be studied separately. Section 4 deals with the expression of transverse radiation cross-sections (which may be viewed as a way of expressing optical forces) for the di¤erent cases considered in Section 3 and introduces subcases. Similarly, section 5 deals with longitudinal pressure radiation cross-sections speci…ed for the di¤erent subcases. Section 6 then considers the case of Rayleigh particles, leading to simpli…cations in the expressions of the transverse and of the longitudinal cross-sections. Section 7 deals with the decomposition of optical forces catalogued as gradient, scattering and non-standard forces. Sections 8 deals with a trivial case. Section 9 provides examples while section 10 provides a mini-review of the whole work carried out to the study of optical forces in the framework of the Rayleigh regime of GLMT. Section 11 is a conclusion.

Preliminaries.

All expressions in this section (and in all the paper) use the normalization condition E 0 H 0 =2 = 1. The validity of such a normalization is ensured by the fact that beams considered in GLMT propagate in vacuum (so that the electric E 0 and magnetic H 0 strengths are proportional with a coe¢ cient of proportionality pertaining to the set of real numbers). The transverse components of the Poynting vector then read as, e.g. [START_REF] Gouesbet | Partial wave expansions and properties of axisymmetric light beams[END_REF], [START_REF] Gouesbet | Poynting theorem in terms of beam shape coe¢ cients and applications to axisymmetric, dark and non-dark, vortex and nonvortex beams[END_REF]:

S x = Re 1 X n=1 +n X m= n 1 X p=1 +p X q= p c pw n c pw p e i(m q)' (4) 
[ k sin ' r ( 00 n + n )A nmpq + ik cos cos ' r ( 00 n + n )B nmpq + i sin cos ' r 2 C nmpq ] S y = Re 1 X n=1 +n X m= n 1 X p=1 +p X q= p c pw n c pw p e i(m q)' (5) 
[ k cos ' r ( 00 n + n )A nmpq + ik cos sin ' r ( 00 n + n )B nmpq + i sin sin ' r 2 C nmpq ]
in which :

A nmpq = [ nmpq 0 p jqj p + q nmpq p jqj p ]P jmj n (6) 
B nmpq = [ q nmpq 0 p jqj p nmpq p jqj p ]P jmj n (7) 
C nmpq = nmpq (m 0 n 0 p jmj n jqj p + q n p jmj n jqj p ) (8) 
+ nmpq (mq

0 n p jmj n jqj p n 0 p jmj n jqj p )
in which :

nmpq = g q p;T M g m n;T E g m n;T M g q p;T E (9) 
nmpq = g m n;T M g q p;T M + g q p;T E g m n;T E [START_REF] Gouesbet | Discussion of two quadrature methods of evaluating beam shape coe¢ cients in generalized Lorenz-Mie theory[END_REF] The longitudinal component reads as: In these equations, n denotes Riccati-Bessel functions with the argument kr (k the wavenumber) omitted for convenience, a prime denotes a derivative of a function with respect to its argument (and a double prime to a second derivative), the coe¢ cients c pw n ("pw" standing for "plane wave") are coe¢ cients which occur in a natural way in the Bromwich formulation of the usual Lorenz-Mie theory, and read as [START_REF] Gouesbet | Sur la généralisation de la théorie de Lorenz-Mie[END_REF] :

S z = 1 r 2 Re 1 X n=1 +n X m= n 1 X p=1 +p X q= p ic pw n c pw p e i(m q)' (11) 
c pw n = 1 ik ( i) n 2n + 1 n(n + 1) (14) 
Furthermore, m n and m n , with argument cos omitted for convenience, are generalized Legendre functions de…ned according to :

m n (cos ) = P m n (cos ) sin ( 15 
) m n (cos ) = dP m n (cos ) d (16) 
in which P m n (cos ) are the associated Legendre functions de…ned according to Hobson's convention :

P m n (cos ) = ( 1) m (sin ) m d m P n (cos ) (d cos ) m (17) 
in which P n (cos ) are the Legendre polynomials.

The transverse pressure radiation cross-sections, from Eqs.(3.181) and (3.185) of [START_REF] Gouesbet | Generalized Lorenz-Mie theories, second edition[END_REF], in which we conveniently change m to p, and p to k, read as:

C pr;x C pr;y = 2 2 1 X k=1 1 X n=k 1 X p=k 16 =0 (n + k)! (n k)! (18) 
[ Re Im (S k 1 pn + S k np 2U k 1 pn 2U k np )( p;n+1 p 2 n;p+1 n 2 ) + 2n + 1 n 2 (n + 1) 2 np Re Im (T k 1 pn T k np 2V k 1 pn + 2V k np )]
in which:

S m np = (a n + a p )g m n;T M g m+1 p;T M + (b n + b p )g m n;T E g m+1 p;T E (19) 
T m np = i(a n + b p )g m n;T M g m+1 p;T E + i(b n + a p )g m n;T E g m+1 p;T M (20) 
U m np = a n a p g m n;T M g m+1 p;T M + b n b p g m n;T E g m+1 p;T E (21) 
V m np = ib n a p g m n;T E g m+1 p;T M ia n b p g m n;T M g m+1 p;T E [START_REF] Van De Hulst | Light scattering by small particles[END_REF] in which a n and b n are Mie coe¢ cients (anticipating, the reader may refer to Eqs.110-111 below) and ij denotes the Kronecker symbol.

The longitudinal cross-section reads as, e.g. Eq.3.159 of [START_REF] Gouesbet | Generalized Lorenz-Mie theories, second edition[END_REF]:

C pr;z = 2 1 X n=1 n X m= n f 1 (n + 1) 2 (n + 1 + jmj)! (n jmj)! (23) Re[(a n + a n+1 2a n a n+1 )g m n;T M g m n+1;T M +(b n + b n+1 2b n b n+1 )g m n;T E g m n+1;T E ] +m 2n + 1 n 2 (n + 1) 2 (n + jmj)! (n jmj)! Re[i(2a n b n a n b n )g m n;T M g m n;T E ]g
which, for further use in the sequel, may conveniently be rewritten as:

C pr;z = 2 1 X n=1 n X m= n C m n ( 24 
)
3 Restricted framework of the study and cases to be considered separately.

The study of axisymmetric beams of the second kind and of axisymmetric dark beams in [START_REF] Gouesbet | Poynting vector and beam shape coe¢ cients: on new families of symmetries (non-dark axisymmetrix beams of the second kind and dark axisymmetric beams)[END_REF] has been carried out in a restricted framework in which it was assumed that all BSCs are zero excepted g M n;T M , g M n;T E , g Q n;T M and g Q n;T E , in which M and Q are speci…ed values of the azimuthal mode index m. Under such circumstances, it has been found from Eq.11 that the longitudinal component S z of the Poynting vector, in which these restrictions are implemented, denoted S M Q z , reads as:

S M Q z = 1 r 2 Re 1 X n=1 1 X p=1 ic pw n c pw p ( 25 
)
fe i(M Q)' (sin S M Q np + cos C M Q np ) + e i(Q M )' (sin S QM np + cos C QM np )g = 0
We now recall that we are interested in axisymmetric beams, i.e. beams for which the longitudinal component S z does not depend on '. It is seen from Eq.25 that, if M = Q, then the beam is trivially axisymmetric. Because this case is trivial, it is excluded for the time being and will be considered separately in section 8. This case being excluded, the conditions for axisymmetry have been found to read as:

g M n;T M g Q p;T M + g Q p;T E g M n;T E = 0 (26) g M n;T M g Q p;T E g Q p;T M g M n;T E = 0 (27) 
Before listing the di¤erent cases to be studied, let us point out that M and Q play equivalent roles. First, this is obvious from the fact that the list

g M n;T M , g M n;T E , g Q n;
T M and g Q n;T E of non-zero BSCs does not give any privilege to one or to the other of the superscripts M or Q. Second, formally, it can be readily deduced from Eqs.26 and 27. Then, the list of the cases to be studied is as follows:

(i) M = 1 and Q 6 = 1. The fact that Q 6 = 1 comes from the fact that M 6 = Q (otherwise, we would be facing the trivial case whose study has been postponed). Furthermore, assume Q = 1. Then the list of non-zero BSCs is g 1 n;T M , g 1 n;T E , g 1 n;T M and g 1 n;T E which is solved by the …rst kind of axisymmetry. The beams of the present case (i) are non-dark. This case is named the case SK1 (in which "SK" stands for "second kind").

(ii) M = 1 and Q 6 = 1 with comments similar to those of case (i). This case is named the case SK2.

(ii) M 6 = 1 and Q 6 = 1 with M 6 = Q. This is the case of dark beams. It is called case AD (in which "AD" stands for "Axisymmetric Dark").

We shall later see that these cases imply subcases, namely case SK1 will be separated in subcases SK1A, SK1B, SK1C and case SK2 will be separated in subcases SK2A, SK2B, SK2C.

4 Transverse pressure radiation cross-sections spec-i…ed for the di¤erent cases.

Case SK1.

Eqs. [START_REF] Gouesbet | Rayleigh limit of the generalized Lorenz-Mie theory for on-axis beams and its relationship with the dipole theory of forces. Part I. non dark axisymmetric beams of the …rst kind, with the example of Gaussian beams[END_REF][START_REF] Nieto-Vesperinas | Fundamentals of Mie scattering. Chapter 2 of "Dielectric Metamaterials, Fundamentals, Designs, and Applications[END_REF][START_REF] Lock | Calculation of the radiation trapping force for laser tweezers by use of generalized Lorenz-Mie theory. II. On-axis trapping force[END_REF][START_REF] Van De Hulst | Light scattering by small particles[END_REF] show that, if M = 1, i.e. if g 1 n;T M and g 1 n;T E are non-zero, then the transverse cross-sections are zero but for Q = 2 and 0. This is because the BSCs in Eqs.19-22 occur in the form of products reading as g m n g m+1 p . Furthermore, the case (m; m + 1) corresponding to M = 1; Q = 2 must be completed by the case (m 1; m) which is a variant of (m; m + 1) but which corresponds to Q = 0; M = 1. Therefore, we have:

C pr;x = C pr;y = 0 for M = 1; Q 6 = 0;2; 1 (28) 
This is the subcase SK1A. The case M = 1; Q = 2 is then a subcase, denoted as SK1B to be studied separately, while M = 1; Q = 0, to be studied separately as well is the case SK1C. For SK1B, we start from Eqs.18-22. Eq.18 involves a summation from k = 1 to 1. For k = 1, the coe¢ cients S, U , T and V (subscripts and superscripts omitted) and of Eqs.19-22 occur with the superscripts 0 and 1, therefore involving BSCs with superscripts 0 and 1 which are zero. Hence the term with k = 1 in Eq.18 is 0 as well. For k = 3, S, U , T and V occur with the superscripts 2 and 3. The superscript 2 implies the occurrence of BSCs g 2 n which are not zero since Q = 2 is allowed, but they occur in products of the form g 2 n g 3 n which are zero since the BSCs g 3 n are 0. The supercript 3 in S, U , T and V implies the occurrence of BSCs g 3 n which are zero. Therefore, the contribution of k = 3 to Eq.18 is zero. The same is true for k = 4, 5... because the coe¢ cients S, U , T and V occur with the superscripts 3 and 4, 4 and 5,... corresponding to BSCs which are zero. It is then found that the only non-zero contribution to Eq.18 is for k = 2.

For k = 2, some coe¢ cients S, U , T and V occur with a superscript 2 and are then zero, while the others occur with the superscript 1 and are di¤erent from 0; leading to:

C pr;x C pr;y = 2 2 1 X n=2 (n + 2)! (n 2)! [ Re Im ( S 1 
n+1;n 2U 1 n+1;n (n + 1) 2 S 1 n 1;n 2U 1 n 1;n n 2 ) + 2n + 1 n 2 (n + 1) 2 Re Im (T 1 nn 2V 1 nn )] (29) 
in which:

S 1 n+1;n = (a n+1 + a n )g 1 n+1;T M g 2 n;T M + (b n+1 + b n )g 1 n+1;T E g 2 n;T E (30) S 1 n 1;n = (a n 1 + a n )g 1 n 1;T M g 2 n;T M + (b n 1 + b n )g 1 n 1;T E g 2 n;T E (31) 
U 1 n+1;n = a n+1 a n g 1 n+1;T M g 2 n;T M + b n+1 b n g 1 n+1;T E g 2 n;T E (32) U 1 n 1;n = a n 1 a n g 1 n 1;T M g 2 n;T M + b n 1 b n g 1 n 1;T E g 2 n;T E (33) 
T 1 nn = i(a n + b n )g 1 n;T M g 2 n;T E + i(b n + a n )g 1 n;T E g 2 n;T M (34) V 1 nn = ib n a n g 1 n;T E g 2 n;T M ia n b n g 1 n;T M g 2 n;T E (35) 
Using Eqs.26-27, Eqs.30-35 simplify to:

S 1 n+1;n = (a n+1 + a n b n+1 b n )g 1 n+1;T M g 2 n;T M (36) S 1 n 1;n = (a n 1 + a n b n 1 b n )g 1 n 1;T M g 2 n;T M (37) 
U 1 n+1;n = (a n+1 a n b n+1 b n )g 1 n+1;T M g 2 n;T M (38) 
U 1 n 1;n = (a n 1 a n b n 1 b n )g 1 n 1;T M g 2 n;T M (39) 
T 1 nn = i(b n + a n a n b n )g 1 n;T M g 2 n;T E (40) V 1 nn = i(b n a n a n b n )g 1 n;T M g 2 n;T E (41) 
As a remark, the reader might …nd surprising that we have here a case of axisymmetric beams for which the transverse forces are not equal to zero (other cases will later occur as well). The explanation is that we are dealing with longitudinal axisymmetry beams, not with circularly symmetric beams which are both longitudinally symmetric and transversely symmetric. It is easy to conjecture that transversely symmetry would add supplementary conditions which would make these transverse forces becoming equal to zero.

Similarly, for SK1C, but remarking that only the term k = 1 contributes in the summation, we obtain:

C pr;x C pr;y = 2 2 1 X n=1 Re Im [ (n + 1)! (n 1)! S 0 n+1;n 2U 0 n+1;n (n + 1) 2 (42) 
(n + 2)! n! S 0 n;n+1 2U 0 n;n+1 (n + 1) 2 + (n + 1)! (n 1)! 2n + 1 n 2 (n + 1) 2 (T 0 nn 2V 0 nn )]
in which:

S 0 n+1;n = (a n+1 + a n )g 0 n+1;T M g 1 n;T M + (b n+1 + b n )g 0 n+1;T E g 1 n;T E (43) S 0 n;n+1 = (a n + a n+1 )g 0 n;T M g 1 n+1;T M + (b n + b n+1 )g 0 n;T E g 1 n+1;T E (44) 
U 0 n+1;n = a n+1 a n g 0 n+1;T M g 1 n;T M + b n+1 b n g 0 n+1;T E g 1 n;T E (45) 
U 0 n;n+1 = a n a n+1 g 0 n;T M g 1 n+1;T M + b n b n+1 g 0 n;T E g 1 n+1;T E (46) 
T 0 nn = i(a n + b n )g 0 n;T M g 1 n;T E + i(b n + a n )g 0 n;T E g 1 n;T M (47) 
V 0 nn = ib n a n g 0 n;T E g 1 n;T M ia n b n g 0 n;T M g 1 n;T E (48) 
Using Eqs.26-27, Eqs.43-48 simplify to:

S 0 n+1;n = (a n+1 + a n b n+1 b n )g 0 n+1;T M g 1 n;T M (49) 
S 0 n;n+1 = (a n + a n+1 b n b n+1 )g 0 n;T M g 1 n+1;T M (50) 
U 0 n+1;n = (a n+1 a n b n+1 b n )g 0 n+1;T M g 1 n;T M (51) 
U 0 n;n+1 = (a n a n+1 b n b n+1 )g 0 n;T M g 1 n+1;T M (52) 
T 0 nn = i(b n + a n a n b n )g 0 n;T M g 1 n;T E (53) 
V 0 nn = i(b n a n a n b n )g 0 n;T M g 1 n;T E (54) 
4.2 Case SK2.

We proceed similarly as for the case SK1 but, as a variant convenient for the sequel, we shall isolate terms corresponding to n > 1 for the sake of conciseness, while they have been preserved in the case SK1 for the sake of pedagogic skills. We then readily …nd that:

C pr;x = C pr;y = 0 for M = 1; Q 6 = 0; 1; 2 (55) 
This is the case SK2A. The case SK2B is then for M = 1, Q = 0, and we also have to consider separately the case SK2C for which M = 1; Q = 2. For the case SK2B, we start from Eq.18, …nd that all terms with k = 2; :::; 1 are 0 because they involve coe¢ cients S, T , U and V which are zero, due to the SK2B conditions, i.e. M = 1, Q = 0: We then express the remaining term for k = 1 as a 3-term summation according to :

C pr;x C pr;y = C 1 + C 2 + C 3 (56) 
in which, cancelling some other coe¢ cients S, U , T and V which are again 0 still due to the SK2B conditions:

C 1 = 2 2 1 X n=1 1 X p=1 (n + 1)! (n 1)! Re Im (S 1 np 2U 1 np ) p;n+1 p 2 (57) 
C 2 = 2 2 1 X n=1 1 X p=1 (n + 1)! (n 1)! Re Im (S 1 np 2U 1 np ) n;p+1 n 2 (58) 2 1 X n=1 1 X p=1 (n + 1)! (n 1)! 2n + 1 n 2 (n + 1) 2 np Re Im (2V 1 np T 1 np ) (59) 
We then …nd:

C 1 = 2 4 Re Im (S 1 12 2U 1 12 ) + (C 1 ) n>1 (60) 
in which (C 1 ) n>1 only contains Mie coe¢ cients a n and b n with n > 1. Similarly:

C 2 = 3 2 4 Re Im (S 1 21 2U 1 21 ) + (C 2 ) n>1 (61) 
C 3 = 3 2 4 Re Im (2V 1 11 T 1 11 ) + (C 3 ) n>1 (62) 
so that we have:

C pr;x C pr;y = 2 4
Re Im (S 

in which the …rst collection of terms on the r.h.s. of Eq.63 are the the (n = 1)-terms while the last term corresponds to n > 1, and:

S 1 12 = (a 1 + a 2 )g 1 1;T M g 0 2;T M + (b 1 + b 2 )g 1 1;T E g 0 2;T E (64) 
S 1 21 = (a 2 + a 1 )g 1 2;T M g 0 1;T M + (b 2 + b 1 )g 1 2;T E g 0 1;T E (65) 
T 1 11 = i(a 1 + b 1 )g 1 1;T M g 0 1;T E + i(b 1 + a 1 )g 1 1;T E g 0 1;T M (66) 
U 1 12 = a 1 a 2 g 1 1;T M g 0 2;T M + b 1 b 2 g 1 1;T E g 0 2;T E (67) 
U 1 21 = a 2 a 1 g 1 2;T M g 0 1;T M + b 2 b 1 g 1 2;T E g 0 1;T E (68) V 1 11 = ib 1 a 1 g 1 1;T E g 0 1;T M ia 1 b 1 g 1 1;T M g 0 1;T E (69) 
Using Eqs.26-27, Eqs.64-69 simplify to:

S 1 12 = (a 1 + a 2 b 1 b 2 )g 1 1;T M g 0 2;T M (70) 
S 1 21 = (a 2 + a 1 b 2 b 1 )g 1 2;T M g 0 1;T M (71) 
T 1 11 = i(b 1 + a 1 a 1 b 1 )g 1 1;T M g 0 1;T E (72) U 1 12 = (a 1 a 2 b 1 b 2 )g 1 1;T M g 0 2;T M (73) 
U 1 21 = (a 2 a 1 b 2 b 1 )g 1 2;T M g 0 1;T M (74) V 1 11 = i(b 1 a 1 a 1 b 1 )g 1 1;T M g 0 1;T E (75) 
For case SK2C (M = 1; Q = 2), we proceed similarly and, noticing that all the coe¢ cients S, T , U , V are zero, but for k = 2, we obtain an expression which may be simpli…ed to:

C pr;x C pr;y = C 1 + C 2 + C 3 ( 76 
)
in which:

C 1 = 2 2 1 X n=2 1 X p=1 (n + 2)! (n 2)! Re Im (S 2 np 2U 2 np ) p;n+1 p 2 (77) 
C 2 = 2 2 1 X n=2 1 X p=1 (n + 2)! (n 2)! Re Im (S 2 np 2U 2 np ) n;p+1 n 2 (78) 1 X n=2 1 X p=1 (n + 2)! (n 2)! 2n + 1 n 2 (n + 1) 2 np Re Im (2V 2 np T 2 np ) (79) 
These quantities C i are afterward evaluated explicitly by isolating relevant terms in the summations leading to:

C i = (C i ) n>1 , i = 1; 3 (80) 
C 2 = 3 2 Re Im (S 2 21 
2U 2 21 ) + (C 2 ) n>1 (81) 
so that, as a whole, we obtain:

C pr;x C pr;y = 3 2 Re Im (S 2 21 2U 2 21 ) + C pr;x C pr;y SK2C n>1 (82) 
in which, from Eqs.19 and 21:

S 2 21 = (a 2 + a 1 )g 2 2;T M g 1 1;T M + (b 2 + b 1 )g 2 2;T E g 1 1;T E (83) U 2 21 = a 2 a 1 g 2 2;T M g 1 1;T M + b 2 b 1 g 2 2;T E g 1 1;T E (84) 
Using axisymmetry conditions of Eqs.26-27, these last expressions simplify to:

S 2 21 = (a 2 + a 1 b 2 b 1 )g 2 2;T M g 1 1;T M (85) 
U 2 21 = (a 2 a 1 b 2 b 1 )g 2 2;T M g 1 1;T M (86) 4.3 
Case AD.

For this case, we have M 6 = 1, Q 6 = 1 and M 6 = Q. Then, examining Eq.18, it is readily found that the coe¢ cients S, U , T and V are zero for k = 1 and 2. Therefore, we obtain:

C pr;x C pr;y = 2 2 1 X k=3 1 X n=k 1 X p=k 1 (n + k)! (n k)! (87) 
[ Re Im (S k 1 pn + S k np 2U k 1 pn 2U k np )( p;n+1 p 2 n;p+1 n 2 ) + 2n + 1 n 2 (n + 1) 2 np Re Im (T k 1 pn T k np 2V k 1 pn + 2V k np )]
As we shall see in the sequel, we do not need to elaborate more on this equation. We just need to remark that the coe¢ cients a n involved in this equation have n > 1.

Finally, for convenience in the sequel, we now summarize below the conditions de…ning the di¤erent cases: 5 Longitudinal pressure radiation cross-sections speci…ed for the di¤erent cases.

SK1A M = 1; Q 6 = 0; 2; 1 SK1B M = 1; Q = 2 SK1C M = 1; Q = 0 SK2A M = 1; Q 6 = 0; 1; 2 SK2B M = 1; Q = 0 SK2C M = 1; Q = 2 AD M 6 = 1; Q 6 = 1; M 6 = Q T rivial M = Q 3 
5.1 Case SK1A.

For this case, non-zero BSCs are those which are of the form g 1 n and g Q n with Q 6 = 0;2; 1. In particular, let us consider the summations of Eq.23, and rewrite it as follows:

C pr;z = 2 1 X m= 1 f 1 (n + 1) 2 (n + 1 + jmj)! (n jmj)! (88) Re[(a n + a n+1 2a n a n+1 )g m n;T M g m n+1;T M +(b n + b n+1 2b n b n+1 )g m n;T E g m n+1;T E ] +m 2n + 1 n 2 (n + 1) 2 (n + jmj)! (n jmj)! Re[i(2a n b n a n b n )g m n;T M g m n;T E ]g n=1 + 2 1 X n=2 n X m= n f 1 (n + 1) 2 (n + 1 + jmj)! (n jmj)! Re[(a n + a n+1 2a n a n+1 )g m n;T M g m n+1;T M +(b n + b n+1 2b n b n+1 )g m n;T E g m n+1;T E ] +m 2n + 1 n 2 (n + 1) 2 (n + jmj)! (n jmj)! Re[i(2a n b n a n b n )g m n;T M g m n;T E ]g
In Eq.88, the second term, i.e. the summation from n = 2 to 1 contains Mie coe¢ cients a n and b n with n > 1 and will be denoted (C pr;z ) SK1A n>1 . The …rst term is for n = 1 and contains a summation over m from 1 to +1. The BSCs occur in the form g m 1 g m 2 . In the case SK1A, when the non-zero BSCs are those which are of the form g 1 n and g Q n with Q 6 = 0;2; 1, we only retain m = 1 and Eq.88 is then found to become:

C pr;z = 3 2 2 fRe[(a 1 + a 2 2a 1 a 2 )g 1 1;T M g 1 2;T M (89) 
+(b 1 + b 2 2b 1 b 2 )g 1 1;T E g 1 2;T E )] + Re[i(2a 1 b 1 a 1 b 1 )g 1 1;T M g 1 1;T E ]g + (C pr;z ) SK1A n>1
Using the axisymmetry conditions of Eqs.26-27, this simpli…es to:

C pr;z = 3 2 2 fRe(a 1 + a 2 2a 1 a 2 b 1 b 2 + 2b 1 b 2 )g 1 1;T M g 1 2;T M (90) + Re[i(2a 1 b 1 a 1 b 1 )g 1 1;T M g 1 1;T E ]g + (C pr;z ) SK1A n>1 5.2
Case SK1B.

Non-zeros BSCs are of the form g 1 n and g 2 n . Let us express C pr;z using Eq.24: For the case SK1B, when m can take only the values 1 and 2, we obtain:

C pr;z = 2 (C 1 1 + 1 X n=2 C 2 n ) (91) 
The second term contains only Mie coe¢ cients with n > 1 and will be denoted (C pr;z ) SK1B n>1 so that, working out C 1 1 , we obtain:

C pr;z = 3 2 2 fRe[(a 1 + a 2 2a 1 a 2 )g 1 1;T M g 1 2;T M (92) +(b 1 + b 2 2b 1 b 2 )g 1 1;T E g 1 2;T E ] + Re[i(2a 1 b 1 a 1 b 1 )g 1 1;T M g 1 1;T E ]g + (C pr;z ) SK1B n>1
which, using Eqs.26-27 simpli…es to:

C pr;z = 3 2 2 fRe(a 1 + a 2 2a 1 a 2 b 1 b 2 + 2b 1 b 2 )g 1 1;T M g 1 2;T M (93) + Re[i(2a 1 b 1 a 1 b 1 )g 1 1;T M g 1 1;T E ]g + (C pr;z ) SK1B n>1
Let us note that the main terms of Eqs.92 and 93 are the same than in Eqs.89 and 90 respectively.

5.3

Case SK1C.

For this case in which M = 1; Q = 0, we obtain:

C pr;z = 2 (C 0 1 + C 1 1 ) + (C pr;z ) SK1C n>1 (94) 
becoming:

2 fRe[(a 1 + a 2 2a 1 a 2 )(g 0 1;T M g 0 2;T M + 3g 1 1;T M g 1 2;T M ) (95) +(b 1 + b 2 2b 1 b 2 )(g 0 1;T E g 0 2;T E + 3g 1 1;T E g 1 2;T E )] +3 Re[i(2a 1 b 1 a 1 b 1 )g 1 1;T M g 1 1;T E ]g + (C pr;z ) SK1C n>1
which, using the axisymmetry conditions of Eqs.26-27 becomes:

C pr;z = 2 2 fRe[(a 1 + a 2 2a 1 a 2 b 1 b 2 + 2b 1 b 2 ) (96) (g 0 1;T M g 0 2;T M + 3g 1 1;T M g 1 2;T M ) +3 Re[i(2a 1 b 1 a 1 b 1 )g 1 1;T M g 1 1;T E ]g + (C pr;z ) SK1C n>1 5.4 Case SK2A.
For this case in which M = 1, Q 6 = 0; 1; 2, Eq.24 becomes:

C pr;z = 2 [ +1 X m= 1 C m 1 + 1 X n=2 n X m= n C m n ] (97) 
The second term involves Mie coe¢ cients with n > 1 and is denoted (C pr;z ) SK2A n>1 . In the …rst term, in which m ranges from 1 to +1, the values 0 and +1 are excluded because Q 6 = 0; +1 and we are left with:

C pr;z = 2 C 1 1 + (C pr;z ) SK2A n>1 (98) 
becoming:

C pr;z = 3 2 2 fRe[(a 1 + a 2 2a 1 a 2 )g 1 1;T M g 1 2;T M (99) +(b 1 + b 2 2b 1 b 2 )g 1 1;T E g 1 2;T E ] Re[i(2a 1 b 1 a 1 b 1 )g 1 1;T M g 1 1;T E ]g + (C pr;z ) SK2A n>1 20
Using the axisymmetry conditions of Eqs.26-27, this simpli…es to:

C pr;z = 3 2 2 fRe[(a 1 + a 2 2a 1 a 2 b 1 b 2 + 2b 1 b 2 )g 1 1;T M g 1 2;T M (100) Re[i(2a 1 b 1 a 1 b 1 )g 1 1;T M g 1 1;T E ]g + (C pr;z ) SK2A n>1 5.5
Case SK2B.

In this case for which M = 1 and Q = 0, Eq.24 reduces to:

C pr;z = 2 (C 1 1 + C 0 1 ) + (C pr;z ) SK2B n>1 (101) becoming: 
C pr;z = 2 2 fRe[(a 1 + a 2 2a 1 a 2 )(3g 1 
1;T M g 1 2;T M + g 0 1;T M g 0 2;T M ) (102)

+(b 1 + b 2 2b 1 b 2 )(3g 1 1;T E g 1 2;T E + g 0 1;T E g 0 2;T E )] 3 Re[i(2a 1 b 1 a 1 b 1 )g 1 1;T M g 1 1;T E ]g + (C pr;z ) SK2B n>1
Using the axisymmetry conditions of Eqs.26-27, this simpli…es to:

C pr;z = 2 2 fRe[(a 1 + a 2 2a 1 a 2 b 1 b 2 + 2b 1 b 2 ) (103) (3g 1 1;T M g 1 2;T M + g 0 1;T M g 0 2;T M ) 3 Re[i(2a 1 b 1 a 1 b 1 )g 1 1;T M g 1 1;T E ]g + (C pr;z ) SK2B n>1 5.6
Case SK2C.

For this case, we readily have:

C pr;z = 2 C 1 1 + (C pr;z ) SK2C n>1 (104) 
becoming:

C pr;z = 3 2 2 fRe[(a 1 + a 2 2a 1 a 2 )g 1 1;T M g 1 2;T M (105) 
+(b 1 + b 2 2b 1 b 2 )g 1 1;T E g 1 2;T E Re[i(2a 1 b 1 a 1 b 1 )g 1 1;T M g 1 1;T E ]g + (C pr;z ) SK2C n>1
Using the axisymmetry conditions of Eqs.26-27, this simpli…es to:

C pr;z = 3 2 2 fRe[(a 1 + a 2 2a 1 a 2 b 1 b 2 + 2b 1 b 2 )g 1 1;T M g 1 2;T M (106) Re[i(2a 1 b 1 a 1 b 1 )g 1 1;T M g 1 1;T E ]g + (C pr;z ) SK2C n>1
Let us note that the main terms of Eqs.105 and 106 are the same than the main terms of Eqs.99 and 100 respectively.

5.7

Case AD.

We now have M 6 = 1, Q 6 = 1 and M 6 = Q so that Eq.24 becomes:

C pr;z = 2 C 0 1 + (C pr;z ) AD n>1 ( 107 
)
in which the second term involves Mie coe¢ cients with n > 1 and, working out the …rst term, we obtain:

C pr;z = 2 2
Re[(a 1 + a 2 2a 1 a 2 )g 0 1;T M g 0 2;T M (108)

+(b 1 + b 2 2b 1 b 2 )g 0 1;T E g 0 2;T E ] + (C pr;z ) AD n>1 2 Re(a 1 + a 2 2a 1 a 2 b 1 b 2 + 2b 1 b 2 )g 0 1;T M g 0 2;T M + (C pr;z ) AD n>1 (109)
6 Pressure radiation cross-sections for Rayleigh particles.

In the dipole theory of forces, we only retain the Mie coe¢ cients a 1 and b 1 [START_REF] Nieto-Vesperinas | Fundamentals of Mie scattering. Chapter 2 of "Dielectric Metamaterials, Fundamentals, Designs, and Applications[END_REF]. These coe¢ cients may be written as [START_REF] Lock | Calculation of the radiation trapping force for laser tweezers by use of generalized Lorenz-Mie theory. II. On-axis trapping force[END_REF], and [START_REF] Van De Hulst | Light scattering by small particles[END_REF], pp. 143-144:

a 1 = 2i 3 n p 2 1 n p 2 + 2 3 + O(i 5 ) + 4 9 ( n p 2 1 n p 2 + 2 ) 2 6 (110) b 1 = O(i 5 ) (111) 
in which n p is the refractive index with respect to the surrounding medium and is the size parameter d= . In the present paper dealing with lossless particles, the refractive index is taken to be real. The other coe¢ cients a i and b i (i > 1) involves still higher powers of : In the Rayleigh limit of small point-like particles, we may therefore only retain the Mie coe¢ cient a 1 with real parts proportional to 6 and imaginary parts proportional to 3 while higher powers are discarded, so that we may write:

Im(a 1 ) = 2 3 n p 2 1 n p 2 + 2 3 (112) Re(a 1 ) = 4 9 ( n p 2 1 n p 2 + 2 ) 2 6 ( 113 
)
Complementary discussions on this issue may be found in [START_REF] Draine | The discrete-dipole approximation and its application to interstellar graphite grains[END_REF], [START_REF] Chaumet | Time-averaged total force on a dipolar sphere in an electromagnetic …eld[END_REF] and [START_REF] Nieto-Vesperinas | Optical forces on small magnetodielectric particles[END_REF]. Instead of assuming that n p is real, we might have taken it as being a complex number. This would add more terms associated with optical absorption forces which are not considered in the present paper. In the sequel, Eqs.112 and 113 have to be kept in mind, even when they are not explicitly introduced in the equations. We now deal with the di¤erent cases already discussed previously but now made speci…c to the case of Rayleigh particles.

6.1

Transverse cross-sections.

In the case SK1A, we obtain:

C pr;x = C pr;y = 0 (114)
which is simply Eq.28 repeated. For the case SK1B, we use Eq.29. The summation from n = 3 to 1 is zero, and the only non zero terms come from the term n = 2, due to the existence of remaining a n 1 = a 1 -terms. We then readily obtain:

C pr;x C pr;y = 3 2 Re Im a 1 g 1 1;T M g 2 2;T M (115)
For the case SK1C, we start from Eq.42 and obtain:

C pr;x C pr;y = 2 4 Re Im [S 0 21 2U 0 21 3(S 0 12 2U 0 12 ) + 3(T 0 11 2V 0 11 )] (116)
in which, from Eqs.49-54:

S 0 21 = a 1 g 0 2;T M g 1 1;T M (117) S 0 12 = a 1 g 0 1;T M g 1 2;T M (118) 
U 0 21 = 0 (119)

U 0 12 = 0 (120) T 0 11 = i(a 1 a 1 )g 0 1;T M g 1 1;T E (121) 
V 0 11 = 0 (122) so that Eq.116 simpli…es to:

C pr;x C pr;y = 2 4 Re Im [a 1 g 0 2;T M g 1 1;T M 3a 1 g 0 1;T M g 1 2;T M +3i(a 1 a 1 )g 0 1;T M g 1 1;T E ] (123)
For the case SK2A, we obtain:

C pr;x = C pr;y = 0 (124)
which is simply Eq.55 repeated.

For the case SK2B, we use Eqs.63-69, …nd that the coe¢ cients U and V vanish, while the coe¢ cients S and T simplify, and obtain:

C pr;x C pr;y = 2 4 Re Im [a 1 (g 1 1;T M g 0 2;T M + 3ig 1 1;T M g 0 1;T E ) (125) 3a 1 (g 1 2;T M g 0 1;T M + ig 1 1;T E g 0 1;T M )]
For the case SK2C, we use Eqs.82, 85 and 86 to obtain:

C pr;x C pr;y = 3 2 Re Im a 1 g 2 2;T M g 1 1;T M (126) 
For case AD, we return to Eq.87 and recall that it involves Mie coe¢cients a n with n > 1 so that, for Rayleigh particles, we immediately obtain:

C pr;x = C pr;y = 0 (127) 6.2
Longitudinal cross-sections.

For case SK1A, we use Eq.89 and obtain:

C pr;z = 3 2 2 Re[a 1 (g 1 1;T M g 1 2;T M ig 1 1;T M g 1 1;T E )] (128) 
For the case SK1B, we use Eq.92 and obtain:

C pr;z = 3 2 2 Re[a 1 (g 1 1;T M g 1 2;T M ig 1 1;T M g 1 1;T E )] (129) 
For the case SK1C, we use Eq.96 and obtain:

C pr;z = 2 2 fRe[a 1 (g 0 1;T M g 0 2;T M + 3g 1 1;T M g 1 2;T M )] 3 Re[ia 1 g 1 1;T M g 1 1;T E ]g (130)
For the case SK2A, we use Eq.99 and obtain:

C pr;z = 3 2 2 Re[a 1 (g 1 1;T M g 1 2;T M + ig 1 1;T M g 1 1;T E )] (131) 
For the case SK2B, we use Eq.102 and obtain:

C pr;z = 2 2 Re[a 1 (3g 1 1;T M g 1 2;T M + g 0 1;T M g 0 2;T M + 3ig 1 1;T M g 1 1;T E )] (132) 
For the case SK2C, we use Eq.106 and obtain:

C pr;z = 3 2 2 fRe[a 1 g 1 1;T M g 1 2;T M ] + Re[ia 1 g 1 1;T M g 1 1;T E ]g (133) 
For the case AD, we use Eq.108 and obtain:

C pr;z = 2 2 Re(a 1 g 0 1;T M g 0 2;T M ) (134)
7 Decomposition of optical forces.

General expressions.

The gradient transverse forces in the x-direction are given by, e.g. Eqs.( 42) and ( 38) of [START_REF] Gouesbet | Axicon optical forces and other kinds of transverse optical forces exerted by o¤-axis Bessel beams in the Rayleigh regime in the framework of generalized Lorenz-Mie theory[END_REF]:

C G pr;x = 2 4 Im(a 1 ) Im(H) = 2 6 n 2 p 1 n 2 p + 2 3 Im(H) (135) 
in which:

H = g 0 2;T M (g 1 1;T M + g 1 1;T M ) 3g 0 1;T M (g 1 2;T M + g 1 2;T M ) (136) 12(g 1 1;T M g 2 2;T M + g 1 1;T M g 2 2;T M ) +3i[g 0 1;T M (g 1 1;T E g 1 1;T E ) + g 0 1;T E (g 1 1;T M g 1 1;T M )]
The scattering transverse forces in the x-direction are given by, e.g. Eqs.( 77) and (78) of [START_REF] Gouesbet | Axicon optical forces and other kinds of transverse optical forces exerted by o¤-axis Bessel beams in the Rayleigh regime in the framework of generalized Lorenz-Mie theory[END_REF], and Eqs.( 22) and ( 23) of [START_REF] Ambrosio | On transverse radiation pressure crosssections in the generalized Lorenz-Mie theory and their numerical relationships with the dipole theory of forces[END_REF]:

C S pr;x = 3 2 4 Re(a 1 ) Re i[g 0 1;T M (g 1 1;T E g 1 1;T E ) + g 0 1;T E (g 1 1;T M g 1 1;T M )] (137) = 2 3 ( n 2 p 1 n 2 p + 2 ) 2 6 Re i[g 0 1;T M (g 1 1;T E g 1 1;T E ) + g 0 1;T E (g 1 1;T M g 1 1;T M )]
which, by using Re(iz) = Re(iz ) may be rewritten as:

C S pr;x = 3 2 4 Re(a 1 ) Re i[g 0 1;T M (g 1 1;T E g 1 1;T E ) + g 0 1;T E (g 1 1;T M g 1 1;T M )] (138) = 2 3 ( n 2 p 1 n 2 p + 2 ) 2 6 Re i[g 0 1;T M (g 1 1;T E g 1 1;T E ) + g 0 1;T E (g 1 1;T M g 1 1;T M )]
The non-standard transverse forces in the x-direction are given by, e.g. Eq.( 76) of [START_REF] Gouesbet | Axicon optical forces and other kinds of transverse optical forces exerted by o¤-axis Bessel beams in the Rayleigh regime in the framework of generalized Lorenz-Mie theory[END_REF] and ( 21) of [START_REF] Ambrosio | On transverse radiation pressure crosssections in the generalized Lorenz-Mie theory and their numerical relationships with the dipole theory of forces[END_REF]:

From Eqs.160-161, we then recover Eq.218 while, from Eqs.162-163, we respectively obtain:

C S pr;z = 2 2 3 ( n 2 p 1 n 2 p + 1 ) 2 6 Im(g 1 1;T M g 1 1;T E ) (220) 
C N S pr;z = 2 2 3 ( n 2 p 1 n 2 p + 1 ) 2 6 Re(g 1 1;T M g 1 2;T M ) (221) 
which agree with Eq.219.

Examples.

The examples considered in this section are examples which have been used in [START_REF] Gouesbet | Poynting vector and beam shape coe¢ cients: on new families of symmetries (non-dark axisymmetrix beams of the second kind and dark axisymmetric beams)[END_REF] when dealing with axisymmetric beams of the …rst kind. They are now considered again but for the cases of SK-and AD-beams. 9.1 (1,0) x-polarized circularly symmetric Bessel beams.

Bessel beams have been introduced by Durnin and co-workers [START_REF] Durnin | Di¤raction-free beams[END_REF], [START_REF] Durnin | Exact solutions for nondi¤racting beams. I. The scalar theory[END_REF]. They possess an invariance property, namely the fact that the intensity of the beam is constant along the direction of propagation meaning that they are non-di¤racting. They are self-healing as well, and they furthermore share a not often mentioned property, namely that their speed of propagation may be much smaller than the speed of light, being equal to c cos 0 [START_REF] Lock | Angular spectrum and localized model of Davis-type beam[END_REF], [START_REF] Gouesbet | Consequences of the angular spectrum decomposition of a focused beam including slower than c beam propagation[END_REF], in which c is the speed of light and 0 an angle, named axicon angle, or half-cone angle, which occurs in the propagation term reading exp( ikz cos 0 ) instead of being of the form exp( ikz). There actually exists an in…nity of kinds of Bessel beams (i) with di¤erent polarizations and (ii) depending on the form given to a certain function g( 0 ), see [START_REF] Lock | Angular spectrum and localized model of Davis-type beam[END_REF], [START_REF] Wang | General description of circularly symmetric Bessel beams of arbitrary order[END_REF], [START_REF] Wang | General description of transverse mode Bessel beams and construction of basis Bessel …elds[END_REF], [START_REF] Wang | Multipole expansion of circularly Bessel beams of arbitrary order for scattering calculations[END_REF]. In particular, when g( 0 ) = (1 + cos 0 )=4, the beam reduces to a Davis circularly symmetric beam, e.g. [START_REF] Lock | Angular spectrum and localized model of Davis-type beam[END_REF], [START_REF] Mishra | A vector wave analysis of a Bessel beam[END_REF] while, when g( 0 ) = 1=2 it reduces to another kind of beams discussed in [START_REF] Cizmar | Sub-micron particle organization by self-imaging of non-di¤racting beams[END_REF], [START_REF] Taylor | Multipole expansion of Bessel and Gaussian beams for Mie scattering calculations[END_REF], [START_REF] Chen | Analytical partial wave expansion of vector Bessel beam and its application to optical binding[END_REF]. In this section, we consider more speci…cally (1,0) x-polarized circularly symmetric Bessel beams (see next subsection for a more general assessment of the (p x ; py) notation used here with p x = 1 and p y = 0) . Using a quadrature technique and solving quadratures analytically, BSCs of circularly symmetric beams have been obtained in closed forms in an o¤-axis con…guration in [START_REF] Wang | Multipole expansion of circularly Bessel beams of arbitrary order for scattering calculations[END_REF] and conveniently rewritten in [START_REF] Gouesbet | Gradient, scattering and other kinds of longitudinal optical forces exerted by o¤-axis Bessel beams in the Rayleigh regime in the framework of generalized Lorenz-Mie theory[END_REF]. In the case of on-axis con…gurations, they simplify to [START_REF] Gouesbet | Optical forces exerted by on-axis Bessel beams on Rayleigh particles in the framework of the generalized Lorenz-Mie theory[END_REF]:

g l+1 n;T M = g( 0 ) exp(ik z z 0 )A l+1 n (222) g l 1 n;T M = g( 0 ) exp(ik z z 0 )B l 1 n (223) g l+1 n;T E = ig( 0 ) exp(ik z z 0 )A l+1 n (224) g l 1 n;T E = ig( 0 ) exp(ik z z 0 )B l 1 n ( 225 
)
in which l denotes the order of the beam, k z = k cos 0 is the longitudinal wave number, and:

A l+1 n = ( 1) (l+1 jl+1j)=2 (n l 1)! (n + jl + 1j)! [ l+1 n (cos 0 ) + (l + 1) l+1 n (cos 0 )] (226) 
B l 1 n = ( 1) (l 1 jl 1j)=2 (n l + 1)! (n + jl 1j)! [ l 1 n (cos 0 ) (l 1) l 1 n (cos 0 )] (227) 
Being circularly symmetric beams, they are a fortiori axisymmetric beams. For l = 0, they are of the …rst kind. For l = 2, they are of the second kind. Otherwise, they are dark. Examples will be given for l = 1 (dark beams) and l = 2 (second kind).

For l = 1 (m = 0 and 2), from Eq.127, the transverse forces are found to read as:

C pr;x = C pr;y = 0 (228) 
which was to be expected for a circularly symmetric beam. For the longitudinal cross-sections, we use Eqs.203, 205-206 and, implementing the expressions for the BSCs given above, we obtain :

C G pr;z = 0 (229) 
which was to be expected for a Bessel beam, and:

g m n;T M = ig( 0 )( 1) (m jmj)=2 (n m)! (n + jmj)! exp(ik z z 0 )f (235) [ip x m n (cos 0 ) + p y m m n (cos 0 )] [i l m+1 e i(l m+1) 0 J l m+1 (0) + i l m 1 e i(l m 1) 0 J l m 1 (0)] +[ip y m n (cos 0 ) p x m m n (cos 0 )] i[ i l m+1 e i(l m+1) 0 J l m+1 (0) + i l m 1 e i(l m 1) 0 J l m 1 (0)]g g m n;T E = g( 0 )( 1) (m jmj)=2 (n m)! (n + jmj)! exp(ik z z 0 )f (236) [ip x m m n (cos 0 ) + p y m n (cos 0 )] [i l m+1 e i(l m+1) 0 J l m+1 (0) + i l m 1 e i(l m 1) 0 J l m 1 (0)] +[ p x m n (cos 0 ) + ip y m m n (cos 0 )] i[ i l m+1 e i(l m+1) 0 J l m+1 (0) + i l m 1 e i(l m 1) 0 J l m 1 (0)]g
in which 0 is an angle used to specify the rotational location of the o¤-axis coordinate system (soon to to be cancelled in agreement with the fact that it does not matter for on-axis con…gurations), J k (:) are cylindrical Bessel function of the …rst kind of order k, and p x , p y de…ne the polarization of the beam in the framework of an angular spectrum decomposition according to (p x ; p y ) = (1; 0) for x-polarization, (0; 1) for y-polarization, (1; i) for left circular polarization, (1; i) for right circular polarization, (cos ; sin ) for radial polarization, and ( sin ; cos ) for azimuthal polarization in which is an azimuthal angle [START_REF] Chen | Analytical partial wave expansion of vector Bessel beam and its application to optical binding[END_REF], [START_REF] Chen | Analytical partial wave expansion of vector Bessel beam and its application to optical binding: erratum[END_REF].

Because J k (0) = k0 , Eqs.235-236 show that the only nonzero BSCs are those for which m = l 1, according to:

g l+1 n;T M = ig( 0 )( 1) (l+1 jl+1j)=2 (n l 1)! (n + jl + 1j)! exp(ik z z 0 ) (237) 
(ip x + p y )[ l+1 n (cos 0 ) + (l + 1) l+1 n (cos 0 )] g l 1 n;T M = ig( 0 )( 1) (l 1 jl 1j)=2 (n l + 1)! (n + jl 1j)! exp(ik z z 0 ) (238) (ip x p y )[ l 1 n (cos 0 ) (l 1) l 1 n (cos 0 )] g l+1 n;T E = g( 0 )( 1) (l+1 jl+1j)=2 (n l 1)! (n + jl + 1j)! exp(ik z z 0 ) (239) 
(ip x + p y )[ l+1 n (cos 0 ) + (l + 1) l+1 n (cos 0 )]

g l 1 n;T E = g( 0 )( 1) (l 1 jl 1j)=2 (n l + 1)! (n + jl 1j)! exp(ik z z 0 ) (240) 
(ip x p y )[ l 1 n (cos 0 ) (l 1) l 1 n (cos 0 )]
which satis…es g l+1 nT M = ig l+1 n;T E and g l 1 nT M = ig l+1 n;T E . We again restrict ourselves to l = 1 (m = 0 and 2) which is the case of a dark beam and to l = 2 (m = 1 and 3) which is the case of a second kind beam.

For l = 1 (m = 0 and 2), we have from Eq.127:

C pr;x = C pr;y = 0 (241) 
which was to be expected for a circularly symmetric beam. For the longitudinal cross-sections, we use Eqs.203, 205-206 and, implementing the expressions for the BSCs given above, we obtain :

C G pr;z = 0 (242) 
which was to be expected for a Bessel beam, and:

C S pr;;z = 0 (243) C N S pr;z = 2 2 ( n 2 p 1 n 2 p + 1 ) 2 6 jg( 0 )j 2 (p 2 x + p 2 y ) sin 2 0 cos 0 ( 244 
)
in which we have used 0 1 = sin 0 and 0 2 = 3 cos 0 sin 0 . We remark that the only non zero forces are longitudinal non standard forces.

For l = 2, we are facing a SK1A-case. The transverse cross-sections are then given by Eq.164 and, therefore, are all zero.

For the longitudinal cross-sections, we use Eqs.184, 186-187 and, implementing the values of BSCs given above, we obtain: furthermore provide an interesting example with speci…c particularities which can be generalized. For this case in which m = 4 1 = 5; 3, the BSCs are given by [START_REF] Cha…q | Scattering of Lommel beams by homogeneous spherical particle in generalized Lorenz-Mie theory[END_REF], [START_REF] Gouesbet | Poynting vector and beam shape coe¢ cients: on new families of symmetries (non-dark axisymmetrix beams of the second kind and dark axisymmetric beams)[END_REF]:

g 3 n;T M x y = 1 i Z 3 n 2 J 4 (w n ) exp(ik z z 0 ) (249) g 5 n;T M x y = 1 i Z 5 n 2 J 4 (w n ) exp(ik z z 0 ) (250) 
g 3 n;T E x y = i 1 Z 3 n 2 J 4 (w n ) exp(ik z z 0 ) (251) g 5 n;T E x y = i 1 Z 5 n 2 J 4 (w n ) exp(ik z z 0 ) (252) 
in which x and y denote x-and y-polarizations respectively and:

w n = (n + 1 2 ) sin 0 (253) 
Z m n = ( 2i 2n + 1
) jmj 1 for m 6 = 0 (254)

From Eq.127, we still have, for the transverse cross-sections:

C pr;x x y = C pr;y x y = 0 (255) 
For the longitudinal cross-sections, however, we have to rely on Eqs.203, 205-206. We then observe that the BSCs occurring in these equations are of the form g 0 g 0 with m = 0 so that we may conclude that all the cross-sections (transverse and longitudinal) are actually equal to 0: It would be the same for all values of l 3 (and of l 3) where the values of m would be di¤erent from 0:

For l = 2 (m = 3; 1) we are facing again a SK1A-case. The BSCs read as:

g 1 n;T M x y = 1 i Z 1 n 2 J 2 (w n ) exp(ik z z 0 ) (256) 
Beside practical interest, for instance concerning the optical levitation and optical manipulation of small particles, e.g. [START_REF] Ashkin | Optical trapping and manipulations of neutral particles using lasers: A reprint volume with commentaries[END_REF], the Rayleigh regime presents the advantage of allowing one to deal with simple mathematical expressions which then has the advantage of leading to easy physical insights and interpretations. A …rst mention of the use of the Rayleigh regime in the GLMT framework is to be found in [START_REF] Lock | Calculation of the radiation trapping force for laser tweezers by use of generalized Lorenz-Mie theory. II. On-axis trapping force[END_REF] for on-axis Gaussian beams in the weak con-…nement limit. In [START_REF] Lock | Calculation of the radiation trapping force for laser tweezers by use of generalized Lorenz-Mie theory. II. On-axis trapping force[END_REF], optical forces were catalogued as gradient and scattering forces (discussed below) but the fact that the weak con…nement limit was used prevented the observation of non standard forces (again, discussed below), see [START_REF] Gouesbet | Rayleigh limit of the generalized Lorenz-Mie theory for on-axis beams and its relationship with the dipole theory of forces. Part I. non dark axisymmetric beams of the …rst kind, with the example of Gaussian beams[END_REF] for a more extended discussion of this work.

A systematic study of the Rayleigh regime of GLMT began with [START_REF] Gouesbet | Gradient, scattering and other kinds of longitudinal optical forces exerted by o¤-axis Bessel beams in the Rayleigh regime in the framework of generalized Lorenz-Mie theory[END_REF] who dealt with longitudinal forces exerted by o¤-axis Bessel beams. Although there was a focus on Bessel beams, this paper however contains general expressions for longitudinal forces, independent of the speci…c beams under studies. These expressions are isolated and recalled in section 7 of the present paper. The prefactor of Eq. ( 1) of [START_REF] Gouesbet | Gradient, scattering and other kinds of longitudinal optical forces exerted by o¤-axis Bessel beams in the Rayleigh regime in the framework of generalized Lorenz-Mie theory[END_REF] was however slightly incorrect. It should read 2 =(2 ) instead of 2 =(4 ). This is simply equivalent to a change of the normalization factor. Expressions given in section 7 of the present paper have been accordingly corrected. The case of transverse optical forces, again in the case of o¤-axis Bessel beams, has been considered in [START_REF] Gouesbet | Axicon optical forces and other kinds of transverse optical forces exerted by o¤-axis Bessel beams in the Rayleigh regime in the framework of generalized Lorenz-Mie theory[END_REF], with the expressions for the y-component of the transverse cross-sections later slightly corrected by Eqs.( 19) and ( 15) of [START_REF] Ambrosio | On transverse radiation pressure crosssections in the generalized Lorenz-Mie theory and their numerical relationships with the dipole theory of forces[END_REF]. These expressions are recalled in section 7 which, therefore, contains the expressions for longitudinal and transverse optical forces in the Rayleigh regime of GLMT. Although derived in papers devoted to Bessel beams, the expressions recalled in section 7 are valid for arbitrary shaped electromagnetic beams.

The optical forces in section 7 (and in the original papers) are catalogued as gradient forces proportional to the gradient of jEj 2 , scattering forces proportional to the Poynting vector and non-standard forces which do not explicitly appear in the dipole theory of forces (actually in the Rayleigh regime of the dipole theory of forces). In [START_REF] Gouesbet | Gradient, scattering and other kinds of longitudinal optical forces exerted by o¤-axis Bessel beams in the Rayleigh regime in the framework of generalized Lorenz-Mie theory[END_REF] and [START_REF] Gouesbet | Axicon optical forces and other kinds of transverse optical forces exerted by o¤-axis Bessel beams in the Rayleigh regime in the framework of generalized Lorenz-Mie theory[END_REF], they were given the name of axicon forces because they become equal to 0 when the axicon angle is equal to 0. It has later been recognized that these non-standard forces were not spe-ci…c of Bessel beams, and have then been renamed non-standard forces. More speci…cally gradient forces are proportional to 3 and involve BSCs of the form g m 1 and g m 2 (therefore associated with partial waves of order n = 1 and n = 2), while scattering forces and non-standard forces are proportional to 6 . However, while non-standard forces again involve BSCs of the form g m 1 and g m 2 , scattering forces only involve BSCs of the form g m 1 , i.e. they depend only on partial waves of order n = 1. A fairly interesting conclusion is that, for certain types de beams, the only radiation force on the Rayleigh particle is non-standard.

The existence of these non-standard forces could have been a clue that the Rayleigh regime of the GLMT might not identify with the Rayleigh limit of the dipole theory of forces, an issue to be investigated with the complementary issue, if the identi…cation were indeed valid, to determine what would be the sta-tus of the non-standard forces. Furthermore, supposing that the identi…cation was indeed valid, another question would be to examine whether the Rayleigh limit of the GLMT would not have speci…c properties with respect to the dipole theory.

In the conclusion of [START_REF] Gouesbet | Gradient, scattering and other kinds of longitudinal optical forces exerted by o¤-axis Bessel beams in the Rayleigh regime in the framework of generalized Lorenz-Mie theory[END_REF], the "axicon" forces were pointed out as being "new", making these questions more vivid (it will be revealed later that these non-standard forces were indeed new insofar as they have not been previously isolated in their own right, as far as we are aware of, or at least new in the context of GLMT). In the end of subsection 5.1 of [START_REF] Gouesbet | Axicon optical forces and other kinds of transverse optical forces exerted by o¤-axis Bessel beams in the Rayleigh regime in the framework of generalized Lorenz-Mie theory[END_REF], due to the occurrence of these "axicon" forces, it was furthermore stated that "the Rayleigh limit of the GLMT does not exactly identify with the Rayleigh dipole theory of optical forces". This remains true insofar as the word "exactly" has been used, pointing out to the fact that these "axicon" forces had not yet been properly isolated in the framework of the dipole theory. A similar comment has been reiterated in section 6.1 of [START_REF] Gouesbet | Axicon terms associated with gradient optical forces in generalized Lorenz-Mie theory[END_REF]. It also points out to the fact, discussed below, that the GLMT approach may be viewed as a reduced approach to the dipole approach.

To advance toward the answers to the above questions, it has then been numerically demonstrated, in the case of Bessel beams, that the Rayleigh regime of GLMT for longitudinal optical forces agrees with the dipole theory within1,000 decimal places [START_REF] Ambrosio | On longitudinal radiation pressure crosssections in the generalized Lorenz-Mie theory and their numerical relationship with the dipole theory of forces[END_REF], while an agreement up to 3,000 decimal places was revealed in [START_REF] Ambrosio | On transverse radiation pressure crosssections in the generalized Lorenz-Mie theory and their numerical relationships with the dipole theory of forces[END_REF] for the transverse optical forces, leading to the conjecture that indeed both approaches should eventually be found to be equivalent. After fairly heavy algebraic manipulations, such an equivalence has indeed been revealed both in the case of longitudinal forces [START_REF] Ambrosio | On the Rayleigh limit of the generalized Lorenz-Mie theory and its formal indenti…cation with the dipole theory of forces. I. The longitudinal case[END_REF] (the prefactor of the second term in the r.h.s. of Eq. [START_REF] Chen | Analytical partial wave expansion of vector Bessel beam and its application to optical binding[END_REF] in this paper has been misprinted to 2 instead of 4 , as can be checked e.g. from Eq.( 40) of [START_REF] Ambrosio | On transverse radiation pressure crosssections in the generalized Lorenz-Mie theory and their numerical relationships with the dipole theory of forces[END_REF] and also from Eq.( 20) of [START_REF] Ambrosio | On longitudinal radiation pressure crosssections in the generalized Lorenz-Mie theory and their numerical relationship with the dipole theory of forces[END_REF]), and of transverse forces [START_REF] Ambrosio | On the Rayleigh limit of the generalized Lorenz-Mie theory and its formal identi…cation with the dipole theory of forces. II. The transverse case[END_REF]. As a by-product, it was con…rmed that the non-standard forces did not explicitly appear in the dipole theory but that they constituted an ingredient of "spin-curl" forces in the terminology used by Albaladejo [START_REF] Albaladejo | Scattering forces from the curl of the spin angular momentum of a light …eld[END_REF]. Such spin-curl forces are intrinsically dependent on the beam's polarization and are associated with the existence of a spin angular momentum density for the incident light (see also [START_REF] Ru¤ner | Comment on "scattering forces from the curl of the spin angular momentum of a light …eld[END_REF] for a comment on the aforementioned reference, with a reply in [START_REF] Marqés | Marqués and saenz reply[END_REF]). This interpretation of the non-standard optical forces is discussed in [START_REF] Ambrosio | On the Rayleigh limit of the generalized Lorenz-Mie theory and its formal indenti…cation with the dipole theory of forces. I. The longitudinal case[END_REF] and re…ned in [START_REF] Ambrosio | On the Rayleigh limit of the generalized Lorenz-Mie theory and its formal identi…cation with the dipole theory of forces. II. The transverse case[END_REF].

The identi…cation between the Rayleigh regime of the GLMT and the dipole theory of forces does not mean that both approaches are exactly identical in all aspects. There is already the fact that non-standard forces were not explicitly isolated in the dipole theory. More important, the dipole theory expresses the optical forces in terms of the total electric …eld of the illuminating beam, e.g. [START_REF] Draine | The discrete-dipole approximation and its application to interstellar graphite grains[END_REF], [START_REF] Chaumet | Time-averaged total force on a dipolar sphere in an electromagnetic …eld[END_REF], [START_REF] Chaumet | Electromagnetic force and torque on magnetic and negative-index scatterers[END_REF]. For this reason, it has been stated that the dipole approach is somehow "inconsistent" (although exact) insofar as it involves total illuminating …elds, i.e. it includes all partial waves from n = 1 to 1, e.g. [START_REF] Ambrosio | On transverse radiation pressure crosssections in the generalized Lorenz-Mie theory and their numerical relationships with the dipole theory of forces[END_REF].

Conversely, the equations of section 7 show that the Rayleigh limit of GLMT expresses the optical forces only in terms of the partial waves of order 1 and 2, that is to say using only BSCs of the form g m 1 and g m 2 , meaning that the contributions of all other partial waves, from n = 3 to 1 are exactly equal to 0, a fact that has not been explicitly stated in the framework of the dipole theory. Therefore the GLMT approach may be viewed as a reduced version of the dipole approach.

In general, if we retain only the partial waves of order n = 1 in the gradient terms (which should involve both n = 1 and n = 2 partial waves), we observe the occurrence of terms which have not been cancelled out in the process and which have been called axicon terms in [START_REF] Gouesbet | Axicon terms associated with gradient optical forces in generalized Lorenz-Mie theory[END_REF]. Such terms never appear if we properly take account of both partial waves of order n = 1 and 2 as summarized in [START_REF] Gouesbet | Rayleigh limit of generalized Lorenz-Lie theory: axicon terms revisited[END_REF]. It may however happen indeed that partial waves of order n = 1 are the only ones required to exactly express the gradient optical forces in the Rayleigh regime, for instance in the case of on-axis Bessel beams [START_REF] Gouesbet | Optical forces exerted by on-axis Bessel beams on Rayleigh particles in the framework of the generalized Lorenz-Mie theory[END_REF].

The fact that only partial waves of low-order are su¢ cient to optical forces may be related to the van de Hulst principle of localization, a fact which is particularly easy to explain in the case of on-axis con…gurations. Indeed, according to this principle, originally stated for plane waves (p. 208 of [START_REF] Van De Hulst | Light scattering by small particles[END_REF]) and later on extended to arbitrary shaped beams in order to develop localized beam models, e.g. [START_REF] Gouesbet | Generalized Lorenz-Mie theories and description of electromagnetic arbitrary shaped beams: localized approximations and localized beam models, a review[END_REF], a beam may be thought of as being made up of separate ways of light each independently pursuing its own path. Furthermore, a partial wave of order n corresponds to a ray passing at a distance from the origin equal to (n + 1=2) =(2 ). The partial waves of order n = 1 and 2 therefore pass at distances roughly equal to =4 and =2 from the point-like particle. Loosely speaking, we may then state that higher-order partial waves pass too far away from the particle to interact with it. The issue of van de Hulst principle of localization in the context of the present work has been discussed in subsection 6.2 of [START_REF] Gouesbet | Axicon terms associated with gradient optical forces in generalized Lorenz-Mie theory[END_REF] and in the conclusion of [START_REF] Gouesbet | Rayleigh limit of the generalized Lorenz-Mie theory for on-axis beams and its relationship with the dipole theory of forces. Part I. non dark axisymmetric beams of the …rst kind, with the example of Gaussian beams[END_REF].

On-axis beams present signi…cant simpli…cations with respect to o¤axis beams. It has therefore been found interesting to examine speci…cally such special cases. This has been …rst carried out in the case of Bessel beams which has originally be examined in the case of an o¤-axis con…guration [START_REF] Gouesbet | Optical forces exerted by on-axis Bessel beams on Rayleigh particles in the framework of the generalized Lorenz-Mie theory[END_REF]. More generally, the case of non-dark axisymmetric beams of the …rst kind has been discussed in a Part I-paper [START_REF] Gouesbet | Rayleigh limit of the generalized Lorenz-Mie theory for on-axis beams and its relationship with the dipole theory of forces. Part I. non dark axisymmetric beams of the …rst kind, with the example of Gaussian beams[END_REF], with an extensive discussion of the case of Gaussian beams, while the present paper deals with non-dark axisymmetric beams of the second kind and axisymmetric dark beams, after a preliminary investigation of such symmetries achieved in [START_REF] Gouesbet | Poynting vector and beam shape coe¢ cients: on new families of symmetries (non-dark axisymmetrix beams of the second kind and dark axisymmetric beams)[END_REF].

As a …nal remark, the previous discussions have been carried out in the framework of the GLMT stricto sensu, i.e. for the case when the scatterer is a homogeneous spherical particle de…ned by its diameter and its complex refractive index. They may however be readily extended to other kinds of spherical particles namely multilayered spheres when the expressions of the BSCs are unchanged and when we only need to modify the expressions for the Mie coef-…cients, e.g. [START_REF] Onofri | Electromagnetic scattering from a multilayered sphere located in an arbitrary beam[END_REF], [START_REF] Wu | Improved algorithms for electromagnetic scattering of plane waves and shaped beams by multilayered spheres[END_REF], and to other kinds of particles which lead to expressions which are formally identical to the ones of GLMT, namely assemblies of spheres and aggregates [START_REF] Gouesbet | Generalized Lorenz-Mie theory for assemblies of spheres and aggregates[END_REF], and spheres with an eccentrically located spherical inclusion [START_REF] Gouesbet | Generalized Lorenz-Mie theory for a sphere with an eccentrically located spherical inclusion[END_REF], [START_REF] Wang | Study of scattering from a sphere with an eccentrically located spherical inclusion by generalized Lorenz-Mie theory: Internal and external …eld distributions[END_REF], [START_REF] Wang | Morphologydependent resonances in an eccentrically layered sphere illuminated by a tightly focused o¤-axis Gaussian beam[END_REF].

Conclusion.

This paper is presumably the last one we publish concerning the Rayleigh approach of GLMT to the computations of optical forces. It complements a previous Part I-paper devoted to optical forces exerted on Rayleigh particles by axisymmetric of the …rst kind, and deals with axisymmetric beams of the second kind and with axisymmetric dark beams. Several examples are provided pertainsing to the cases of Bessel beams, Lommel beams, beams and Laguerre-Gauss beams. It con…rms and exempli…es the interest of the GLMT approach, namely that it produces a reduced theory of the dipole approach insofar as the expressions of optical forces are obtained speci…cally in terms of BSCs associated with low-order partial waves, namely n = 1 partial waves for scattering forces, and n = 1 partial waves complemented with n = 2 partial waves for gradient and non standard forces. In order to help the reader navigating on the papers devoted to the issue, the present paper ends with a mini-review stressing the main points which have been investigated and the main results which have been obtained during the research devoted to the issue.
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Re(a 1 )

Re[g 0 2;T M (g 1 1;T M + g 1 1;T M ) 3g 0 1;T M (g 1 2;T M + g 1 2;T M ) 12(g 1 1;T M g 2 2;T M + g 1 1;T M g 2 2;T M )]

) 2 6 Re[g 0 2;T M (g 1 1;T M + g 1 1;T M ) 3g 0 1;T M (g 1 2;T M + g 1 2;T M ) 12(g 1 1;T M g 2 2;T M + g 1 1;T M g 2 2;T M )]

The gradient transverse forces in the y-direction are given by, e.g. Eq.( 43) and [START_REF] Cizmar | Sub-micron particle organization by self-imaging of non-di¤racting beams[END_REF] of [START_REF] Gouesbet | Axicon optical forces and other kinds of transverse optical forces exerted by o¤-axis Bessel beams in the Rayleigh regime in the framework of generalized Lorenz-Mie theory[END_REF], corrected by Eqs. [START_REF] Gouesbet | Rayleigh limit of the generalized Lorenz-Mie theory for on-axis beams and its relationship with the dipole theory of forces. Part I. non dark axisymmetric beams of the …rst kind, with the example of Gaussian beams[END_REF] and [START_REF] Gouesbet | Poynting theorem in terms of beam shape coe¢ cients and applications to axisymmetric, dark and non-dark, vortex and nonvortex beams[END_REF] of [START_REF] Ambrosio | On transverse radiation pressure crosssections in the generalized Lorenz-Mie theory and their numerical relationships with the dipole theory of forces[END_REF]:

in which:

H 0 = g 0 2;T M (g 1 1;T M g 1 1;T M ) 3g 0 1;T M (g 1 2;T M g 1 2;T M ) (141)

12(g 1 1;T M g 2 2;T M g 1 1;T M g 2 2;T M ) 3i[g 0 1;T M (g 1 1;T E + g 1 1;T E ) g 0 1;T E (g 1 1;T M + g 1 1;T M )]

The scattering transverse forces in the y-direction are given by, e.g. Eqs.(86)-(87) of [START_REF] Gouesbet | Axicon optical forces and other kinds of transverse optical forces exerted by o¤-axis Bessel beams in the Rayleigh regime in the framework of generalized Lorenz-Mie theory[END_REF], corrected by Eqs. [START_REF] Nieto-Vesperinas | Optical forces on small magnetodielectric particles[END_REF] and [START_REF] Gouesbet | Axicon optical forces and other kinds of transverse optical forces exerted by o¤-axis Bessel beams in the Rayleigh regime in the framework of generalized Lorenz-Mie theory[END_REF] of [START_REF] Ambrosio | On transverse radiation pressure crosssections in the generalized Lorenz-Mie theory and their numerical relationships with the dipole theory of forces[END_REF]:

) 2 6 Im i[g 0 1;T E (g 1 1;T M + g 1 1;T M ) g 0 1;T M (g

The non-standard transverse forces in the y-direction are given by, e.g. Eq.(85) of [START_REF] Gouesbet | Axicon optical forces and other kinds of transverse optical forces exerted by o¤-axis Bessel beams in the Rayleigh regime in the framework of generalized Lorenz-Mie theory[END_REF]; corrected by Eq.( 24) of [START_REF] Ambrosio | On transverse radiation pressure crosssections in the generalized Lorenz-Mie theory and their numerical relationships with the dipole theory of forces[END_REF]:

Re(a 1 )

Im[g 0 2;T M (g 1 1;T M g 1 1;T M ) 3g 0 1;T M (g 1 2;T M g 1 2;T M ) 12(g 1 1;T M g 2 2;T M g 1 1;T M g 2 2;T M )]

) 2 6 Im[g 0 2;T M (g 1 1;T M g 1 1;T M ) 3g 0 1;T M (g 1 2;T M g 1 2;T M ) 12(g 1 1;T M g 2 2;T M g 1 1;T M g 2 2;T M )]

The longitudinal gradient force reads as, e.g. Eq.( 27) of [START_REF] Gouesbet | Gradient, scattering and other kinds of longitudinal optical forces exerted by o¤-axis Bessel beams in the Rayleigh regime in the framework of generalized Lorenz-Mie theory[END_REF] and Eqs.( 2) and ( 64) of [START_REF] Ambrosio | On the Rayleigh limit of the generalized Lorenz-Mie theory and its formal indenti…cation with the dipole theory of forces. I. The longitudinal case[END_REF]:

in which:

From Eq.( 26) of [START_REF] Gouesbet | Gradient, scattering and other kinds of longitudinal optical forces exerted by o¤-axis Bessel beams in the Rayleigh regime in the framework of generalized Lorenz-Mie theory[END_REF], and Eqs.( 2) and (97) of [START_REF] Ambrosio | On the Rayleigh limit of the generalized Lorenz-Mie theory and its formal indenti…cation with the dipole theory of forces. I. The longitudinal case[END_REF], we introduce forces proportional to the sixth-power of and to Re(G) according to:

Considering separately in G terms which do not contain any coupling between (n = 1)-and (n = 2)-partial waves and those which do contain such couplings, we may express C s pr;z as the sum of two terms, one corresponding to standard scattering forces denoted as C S pr;z and the other corresponding to non-standard forces denoted as C N S pr;z , according to:

in which:

7.2

Simpli…ed expressions for SK-and AD-beams.

We are now rewriting the general expressions of the previous subsection after implementation of Eqs.26-27. The gradient transverse forces in the xdirection of Eq.135 can then be rewritten as:

in which:

while Im(H 2 ), using Eqs.26-27, can be simpli…ed to:

Concerning products of BSCs which are products of T E-coe¢ cients, they can be expressed in terms of products of T M -coe¢ cients using Eq.26. We choose this convention -expressing T E-coe¢ cients in terms of T M -coe¢ cients -instead of the reverse one. Therefore, Im(H 1 ) is not a¤ected by the axisymmetry conditions.

The scattering transverse forces in the x-direction of Eq.138 similarly simpli…es to:

The non-standard transverse forces in the x-direction of Eq.139 only contains products of T M -coe¢ cients and is therefore not a¤ected. So, we still have:

Re[g 0 2;T M (g

The gradient transverse forces in the y-direction of Eq.140 can be rewritten as:

in which:

is not a¤ected while Re(H 0 2 ) can be rewritten as:

The scattering transverse forces in the y-direction of Eq.142 simpli…es to:

The non-standard transverse forces in the y-direction of Eq.143 is not a¤ected:

(159)

The longitudinal gradient force of Eq.144-145 is not a¤ected. We still have:

in which:

Similarly, the longitudinal standard scattering forces and the non-standard forces of Eqs.148-149 are not a¤ected and are still given by:

7.3

Simpli…ed expressions for the special cases. Transverse cross-sections.

For the case SK1A, we use Eqs.150-159 of subsection 7.2 and obtain:

agreeing with Eq.114 of subsection 6.1 which tells us that C pr;x = C pr;y = 0, and with Eqs.135-143 of subsection 7.1. Concerning the use of equations of subsection 6.1, there is however a remark to be done, useful in the sequel. Namely, in the equations to be examined, a separation has to be done between terms proportional to 3 which are gradient terms and terms proportional to 6 which correspond to a summation of scattering and non-standard terms. The same remark is valid for the use of the equations of subsection 6.2 to be used in the next subsection devoted to longitudinal cross-sections.

Similarly for the case SK1B, using the results of subsection 7.2, we obtain:

which agree with the results we would have obtained from subsection 7.1, and from Eq.115 of subsection 6.1.

Similarly, for the other cases, using the results of subsection 7.2 which are found to be agreement with those of subsection 7.1, and with the corresponding equations of subsection 6.1, we obtain, keeping in mind, from Eqs.153 and 158 that C S pr;x = C S pr;y = 0:

) 2 6 Re(g 0 2;T M g 1

Let us note that the agreement between the results of subsections 6.1, 7.1 and 7.2 provide a very satisfactory checking of the results displayed.

7.4

Simpli…ed expressions for the special cases. Longitudinal cross-sections.

Similarly, we obtain the results for the longitudinal cross-sections from subsection 7.2 in agreement with those of subsection 7.1 and of subsection 6.2 (instead of subsection 6.1). These results read as:

SK1A and SK1B (185)

) 2 6 Im(g 1 1;T M g 1 1;T E ), SK1A and SK1B (186)

) 2 6 Re(g 1 1;T M g 1 2;T M ), SK1A and SK1B (187)

) 2 6 [Re(g 0 1;T M g 0 2;T M +3g 1 1;T M g 1 2;T M ) 3 Im(g

) 2 6 Re(g 0 1;T M g 0 2;T M + 3g 1 1;T M g 1 2;T M ), SK2B

) 2 6 Re(g 0 1;T M g 0 2;T M ), AD

C S pr;z = 0, AD (205)

) 2 6 Re(g 0 1;T M g 0 2;T M ), AD

8 The trivial case.

We now consider the trivial case in which M = Q. From Eqs.18-22, due to the fact that BSCs occur in the form of g m n g m+1 n , we immediately have that, for the trivial case, whether we deal or not with Rayleigh particles, the transverse forces read as:

We then have to consider only the longitudinal case of Eq.23 which is valid for the trivial case insofar as BSCs occur in the form of g m n g m n . In the case of Rayleigh particles, however, only the (n = 1)-terms must be retained in the summation. Therefore, from Eq.23, retaining only these terms, we obtain, after rearranging and separating the 3 -terms from the 6 -terms:

The trivial case must then be separated into three subcases, namely T1 for

For case T1, we use Eqs.208-209 and obtain:

From Eqs.160-161, we then recover Eq.210 while, from Eqs.162-163, we respectively obtain:

which agree with Eq.211.

For the case T2, we use Eqs.208-209 and obtain:

) 2 6 Re(g 0 1;T M g 0

From Eqs.160-161, we then recover Eq.214 while, from Eqs.162-163, we respectively obtain:

) 2 6 Re(g 0 1;T M g 0 2;T M )

which agree with Eq.215.

For case T3, we use Eqs.208-209 and obtain:

C S pr;z = 0 (230)

in which we have used 0 1 = sin 0 and 0 2 = 3 cos 0 sin 0 . We remark that the only non zero forces are longitudinal non-standard forces.

For l = 2, we are facing a SK1A-case. The transverse cross-sections are then given by Eq.164 and, therefore, are all zero.

For the longitudinal cross-sections, we use Eqs.184, 186-187 and, implementing the values of BSCs given above, we obtain:

again to be expected for a Bessel beam, and:

in which we used 1 1 = cos 0 , 1 1 = 1, 1 2 = 3(2 cos 2 0 1) and 1 2 = 3 cos 0 . Note that all these forces are zero for 0 = 0, as expected since we are then facing the case of a plane wave interacting with a dipole.

Bessel beams. Other polarizations.

Other polarizations, which are circularly symmetric as well [START_REF] Wang | General description of circularly symmetric Bessel beams of arbitrary order[END_REF], have been discussed in [START_REF] Wang | General description of transverse mode Bessel beams and construction of basis Bessel …elds[END_REF]. BSCs for an o¤-axis con…guration are given in [START_REF] Wang | Characteristics of photonic jets generated by a spherical particle excited by a Bessel beam[END_REF]. For on-axis con…gurations, they read as:

again to be expected for a Bessel beam, and:

in which we used 1 1 = cos 0 , 1 1 = 1, 1 2 = 3(2 cos 2 0 1) and 1 2 = 3 cos 0 . Note that all these forces are zero for 0 = 0, as expected since we are then facing the case of a plane wave interacting with a dipole.

Lommel beams.

Lommel beams are constituted by a combination of Bessel beams of various orders (i.e. topological charges) as exempli…ed by the expression of the basic electric modes in cylindrical coordinates (r; '; z) reading as, e.g. Eq.( 1) in [START_REF] Cha…q | Scattering of Lommel beams by homogeneous spherical particle in generalized Lorenz-Mie theory[END_REF]:

in which E l is the x-or y-component of the electric …eld which is obtained from a solution of the scalar wave equation (meaning that the beam is not Maxwellian), k z = k cos 0 and k t = k sin 0 are the longitudinal and transverse wavenumbers respectively. The beam being not Maxwellian, its expression in terms of BSCs will therefore provide a remodelling of the beam, turning it from a non-Maxwellian to a Maxwellian beam. In [START_REF] Cha…q | Scattering of Lommel beams by homogeneous spherical particle in generalized Lorenz-Mie theory[END_REF], these BSCs are evaluated using the integral localized approximation [START_REF] Ren | Integral localized approximation in generalized Lorenz-Mie theory[END_REF] which is fairly satisfactory for small enough axicon angles, e.g. [START_REF] Gouesbet | On the validity of localized approximations for Bessel beams: all N-Bessel beams are identically equal to zero[END_REF], [START_REF] Gouesbet | On the validity of localized approximation for an on-axis zeroth-order Bessel beam[END_REF], [START_REF] Ambrosio | On the validity of the integral localized approximation for Bessel beams and associated radiation pressure forces[END_REF], [START_REF] Cha…q | On the validity of the integral localized approximation for on-axis zeroth-order Mathieu beams[END_REF], although it is likely that quadratures of the quadrature techniques could be performed analytically, leading to localized BSCs for localized Lommel beams. In [START_REF] Gouesbet | Poynting vector and beam shape coe¢ cients: on new families of symmetries (non-dark axisymmetrix beams of the second kind and dark axisymmetric beams)[END_REF] in which the case of axisymmetric beams of the …rst kind has been discussed, the case l = 1 corresponding to a dark beam has not been worked out. The dark beam case for l = 4 has instead been chosen because it was displayed in a …gure by the authors in their original paper. Therefore, we here consider this case again. It will

The transverse cross-sections are then given by Eq.164 and, therefore, are all zero.

For the longitudinal cross-sections, we use Eqs.184, 186-187, implement the values of BSCs given above, use Eqs.253-254, leading to:

again to be expected due to the fact that Lommel beams are a combination of Bessel beam, and:

Note that all these forces are zero for 0 = 0, as again expected.

9.4 Bessel-Gauss beams using …nite series.

From Eqs.( 20) and ( 31) in [START_REF] Valdivia | Bessel-Gauss beams in the generalized Lorenz-Mie theory using three remodeling techniques[END_REF], required TM-BSCs can be written as:

in which G even nl ( 0 ; s) and G odd nl ( 0 ; s) are real functions of the axicon angle 0 and of the con…nement factor s = 1=(kw 0 ), depending as well on the subscripts n and l. The TE-BSCs are furthermore related to the TM BSCs by the following relation [START_REF] Valdivia | Bessel-Gauss beams in the generalized Lorenz-Mie theory using three remodeling techniques[END_REF]:

For l = 1 (m = 0 and 2, i.e. for an axisymmetric dark beam), we have from Eq.127:

For the longitudinal cross-sections, we use Eqs.203, 205-206 and, implementing the expressions for the BSCs given above, we obtain :

For l = 2, we are facing a SK1A-case. The transverse cross-sections are then given by Eq.164 and, therefore, are all zero.

For the longitudinal cross-sections, we use Eqs.184, 186-187 and, implementing the values of BSCs given above, we obtain:

again to be expected for a Bessel beam, and: 9.5 Laguerre-Gauss beams freely propagating.

For the BSCs, we refer to [START_REF] Gouesbet | Finite series expressions to evaluate the beam shape coe¢ cients of a Laguerre-Gauss beam freely propagating[END_REF] and it is found to be su¢ cient to evaluate two BSCs, namely g 0 1;T M and g 1 1;T M using respectively Eqs.( 102) and ( 69) in [START_REF] Gouesbet | Finite series expressions to evaluate the beam shape coe¢ cients of a Laguerre-Gauss beam freely propagating[END_REF], leading to:

For l = 1 (m = 0 and 2, i.e. again for an axisymmetric dark beam), we have from Eq.127: 10 Optical forces in the Rayleigh regime of GLMT for lossless particles: a mini-review.

As already mentioned, GLMTs provide rigorous frameworks to study optical forces and torques exerted on particles as reviewed in [START_REF] Gouesbet | Generalized Lorenz-Mie theories and mechanical e¤ects of laser light, on the occasion of Arthur Ashkin's receipt ot the 2018 Nobel prize in physics for his pioneering work in optical levitation and manipulation: A review[END_REF], not only for homogeneous spherical particles (in the framework of GLMT stricto sensu) but also for multilayered spherical particles [START_REF] Polaert | Forces and torques exerted on a multilayered spherical particle by a focused Gaussian beam[END_REF], for assemblies of spheres and aggregates [START_REF] Gouesbet | Generalized Lorenz-Mie theory for assemblies of spheres and aggregates[END_REF], for spheres with an eccentrically located spherical inclusion [START_REF] Gouesbet | Generalized Lorenz-Mie theory for a sphere with an eccentrically located spherical inclusion[END_REF], and for spheroids [START_REF] Xu | Theoretical prediction of radiation pressure force exerted on a spheroid by an arbitrarily shaped beam[END_REF], [START_REF] Xu | Radiation torque exerted on a spheroid: solution[END_REF].