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Abstract

The paper investigates the following kno-
wledge extraction method from a database. A
set of a small number of attributes of interest
are chosen. The idea is to figure out to what
extent one of the attributes (the “output at-
tribute” B) is influenced by the others (called
“input attributes” Ai). Each of the input attri-
bute domain are supposed to be equipped with
a fuzzy partition made of a relatively small
number (2 to 5) of fuzzy sets Ai

j or Bk respec-
tively. These fuzzy partitions are supposed t o
be meaningful for the user and/or to be in
agreement with the way the attribute values
are scattered. For a given tuple (A1

j,..., An
j,

Bk), we compute the fuzzy cardinality of the
set of items of the database which are A1

j and
... and An

j and Bk , and of the set of items
which are A1

j and ... and An
j. From which we

can easily obtain the fuzzy-valued confidence
and support of the association rule "if x is A1

j

and ... and An
j, then x is Bk". In order to ob-

tain more interesting association rules, the Bk

are not chosen beforehand, but on the basis of
a possibilistic case-based reasoning machinery
which provides the fuzzy set of possible out-
put values for a class of situations described in
terms of labels Ai

j of the fuzzy partitions of
the input attributes. Thus a set of fuzzy asso-
ciation rules summarizing a database can be
obtained.

Keywords:
Fuzzy query, fuzzy cardinality, fuzzy predic-
tion, fuzzy association rule.

1 Introduction
Querying a database in order to retrieve items
satisfying some requirements, and extracting
knowledge from a database are two types of
operations which are often complementary
for the users. Indeed in a querying session, a
user may be interested in knowing what are

the possible values of an attribute (e.g. the
price) for some class of items specified in
terms of other attributes (e.g. the size, the
location of houses to be rent), or in knowing
if there are many items available in the data-
base which satisfy the requirements he has in
mind). The two types of operations can be
related at the processing level also. This will
be illustrated in the following, where we are
more particularly interested in summarizing a
part of a database in terms of fuzzy associa-
tion rules, which will be built by using flexible
querying and fuzzy prediction techniques.

During the last years, the number and volume
of databases have tremendously increased and
the need for extracting some "condensed"
information has received attention. The rela-
ted research area, called knowledge discovery
in databases (KDD) or data mining, aims at
the discovery of useful information from large
collections of data. The discovered knowledge
can be rules describing properties of data, fre-
quently occurring patterns, clusterings of the
objects in the database, etc. Among the recent
works, a great deal of attention has been paid
to the discovery of a specific type of rules
called association rules [1]. Association rules
are of the type "when the properties A and B
are satisfied in the data, then property C is
also satisfied". Let us give a simple formaliza-
tion of the problem.

Given a schema R = {A1, ..., An} of attributes
with respective domains D1, ..., Dn, a relation
r can be represented by a Boolean matrix in
which a row corresponds to a tuple and a co-
lumn to an attribute value. An association rule
about r is an expression of the form: X ⇒  B,
where X ⊆  R and B ∈  R \ X. The intuitive
meaning of the rule is that if a row of the
matrix r has a 1 in each column of X, then the
row tends to have a 1 also in column B. This
semantics is captured by the measures of fre-
quency (or support) and confidence. Given W
⊆ R, we denote by sup(W, r) the frequency of



W in r: the fraction of rows that have a 1 in
each column of W. The frequency of the rule
X ⇒  B in r is defined to be sup(X ∪ {B}, r)
and the confidence of the rule is sup(X ∪ {B},
r)/sup(X, r).

In the discovery of association rules, the task
is to find all rules X ⇒  B such that the fre-
quency of the rule is at least equal to a given
threshold σ  and the confidence of the rule
reaches at least another threshold θ. In other
words, one wants to obtain rules that are suffi-
ciently frequent and valid.

As stated by R. Yager [2], the use of fuzzy
logic seems particularly interesting in the
context of knowledge discovery inasmuch as it
allows to express properties about the current
content of a database as statements of the na-
tural language, thus providing knowledge that
can be easily understood by nonexperts. In
this paper, we propose an extension of the
notion of an association rule, based on the
aggregation of sufficiently close data into
fuzzy sets and on the use of fuzzy cardinali-
ties.

The paper is organized into five sections. Sec-
tion 2 presents the notion of a fuzzy associa-
tion rule based on fuzzy cardinalities. Section
3 describes an aggregation procedure which is
performed on a non fuzzy relational database.
It aims at replacing the initial database by a
fuzzy relational database which summarizes it.
This summarization is made in terms of labels
of fuzzy partitions of the attribute domains
which are supposed to be given and to be
meaningful for the user. This aggregation
procedure is augmented with the computation
of the fuzzy cardinalities of the sets of items to
which a given fuzzy label in a cell of the new
relation is applicable. Section 4 describes how
it should be possible to generate linguistic
summaries of interest (in the form of fuzzy
association rules) from the summarized fuzzy
relational database built in the previous section
and the associated fuzzy cardinalities. Section
5 shows how a possibilistic case-based predic-
tion method can help to choose and use a
meaningful partition for the output attribute
domain. Section 6 reports some experiment
results.

2 Fuzzy association rules based on
fuzzy cardinalities

The starting point is to aggregate sufficiently
close data into fuzzy sets, on the basis of fuz-
zy partitions which are meaningful for a user.
Another key idea is to view fuzzy sets as a
way for describing the different possible label-
lings that can be made by a user for borderline
data.

2.1 Notations
Let R be a (non fuzzy) relation involving at-
tributes A, B, C, ... In fact, we assume that the
user is interested in possible summaries (asso-
ciation rules) involving a given subset of attri-
butes. We only consider the projection of R
on this subset, and for notational simplicity,
we use a 3 element subset of attribute, say A, B
and C, in the following, which is sufficiently
general for discussing the main issues.

Let (ai, bj, ck) denote a tuple of R(A, B , C)
projected on attributes A, B and C. Let DA, DB,
DC be the attribute domains. We assume that
each domain is equipped with a fuzzy partition
(A1, A2, ..., Ana), (B1, B2, ..., Bn b), (C1, C2, ...,
Cnc) respectively. Each fuzzy set in a partition
is assumed to be normalized. Each partition is
ordered, and a fuzzy set, say Ai, can only
overlap with its predecessor Ai-1 or its succes-
sor Ai+1 (when they exist).

We further assume that a finite scale (with m
+ 1 levels) is used for assessing the members-
hip degrees, namely 1 = σ1 > ... > σm > 0. Each
level corresponds to a different possible un-
derstanding of Ar as the crisp level cut (Ar)σi

.
The use of a finite scale then greatly facilita-
tes the computation of fuzzy cardinalities, as
it is shown in the following, without being a
serious limitation in practice.

2.2 Principle
The approach corresponds to a straightfor-
ward extension of the usual definition of an
association rule. Its principle is the following:
the validity of the rule (A, Ar) ⇒  (B, Bs) de-
pends on the number of tuples which are  Ar

on the one hand and on the number of tuples
which are Ar and Bs on the other hand.



For instance, using scalar cardinalities, the
validity of the rule (A, Ar) ⇒  (B, Bs)  can be
defined as:

|Ar ∩ Bs| / |Ar| =
Σt ∈ R min(µAr(t), µBs(t))/Σ t ∈ R µAr(t)

which is nothing but a straightforward exten-
sion of the usual definition of the confidence.

Remark. It is worth noticing that the princi-
ple consisting in: i) rewriting the data by
means of a more general vocabulary, and ii)
trying to discover properties in the rewritten
database, has also been advocated in a "non-
fuzzy context". For instance, in [3], the au-
thors use a hierarchy of (Boolean) concepts in
order to "rewrite" a relation so as to discover
different types of rules. See also [4] where the
notion of a generalized association rule is in-
troduced. Nevertheless, the fact of using lin-
guistic labels (i.e., fuzzy sets) to rewrite the
data allows to discover more robust rules. The
key point, with a fuzzy partition, is that the
borderline data are taken into account in each
of the two classes, which decreases the sensiti-
vity to the boundaries.

The general principle described above has
been advocated by Yager [2], and more re-
cently by Kacprzyk [5]. These authors use
scalar relative cardinalities to compute the
degree of validity of a summary (i.e., of a
fuzzy association rule). Scalar fuzzy cardina-
lity, which amounts to the addition of mem-
bership degrees, considers a collection of seve-
ral elements with small membership grades
whose sum is 1, as equivalent to one element
with full membership for instance; this might
be debatable or even misleading from a user
point of view. In this paper, we present an
alternative fuzzy approach based on the use of
fuzzy cardinalities. This approach constitutes
an extension of those described in [6, 7].

3 Summarizing a relation
From the relation R (restricted to A, B and C),
we build a new relation Rsu (for "R summari-
zed") by a procedure involving two main steps
which are now described. The idea is to per-
form a kind of information compression.

3.1 The labelling step
For each tuple (ai bj ck), we replace it by one
or several tuples of fuzzy sets (Ar, Bs, Ct) sub-
ject to the constraint:

Ar(ai) > 0, Bs(bj) > 0, Ct(ck) > 0.

Thus (ai bj ck) may be replaced by one tuple
(Ar Bs Ct) if all the three degrees of members-
hip are equal to 1, or by several (up to 23 = 8)
in case one or several of the element(s) in the
tuple belong to two fuzzy sets. For instance, if
Ar(ai) = 1, Bs(bj) = 0.8, Bs+1(bj) = 0.2, Ct-1(ck) =
0.6, Ct(ck) = 0.4, we give birth to the tuples:

(Ar  0.8/Bs  0.6/Ct-1), (Ar  0.8/Bs  0.4/Ct),
(Ar  0.2/Bs+1  0.6/Ct-1), (Ar  0.2/Bs+1  0.4/Ct)

where we keep track of the membership de-
grees (Ar stands for 1/Ar). This corresponds t o
all the possible "readings" of the tuple (ai, bj,
ck) in terms of the vocabulary provided by the
fuzzy partitions. In a data mining context, it
is not necessary to store the summarized rela-
tion Rsu. The only additional data that have t o
be stored are the fuzzy cardinalities, whose
computation is described in the following sub-
section.

3.2 Fusion step and computation of fuz-
zy cardinalities

We want to know how many tuples from R
are Ar, are Bs, are Ct, are Ar and Bs, ..., are Ar

and Bs and Ct, and this, for all the fuzzy labels.
In order to have a more accurate representa-
tion of the relation, fuzzy cardinalities are
used instead of scalar ones. It is then necessary
to compute the different cardinalities related
to each linguistic label and to the diverse
conjunctive combinations of these labels.

All the tuples of the form (x/Ar y/Bs z/Ct)
which are identical with respect to the three
labels are fused into one tuple (Ar Bs Ct) of Rsu.
At the same time, we compute the cardinali-
ties FAr, FBs, FCt, FArBs, FArCt, FBsCt, FArBsCt where
FAr (resp. FBs, FCt, FArBs, FArCt, FBsCt, FArBsCt) is a
fuzzy set defined on the integers {0, 1, ...}
which represents the fuzzy number of tuples
which are somewhat Ar (resp. Bs, Ct, Ar and Bs,
Ar and Ct, Bs and Ct, Ar and Bs and Ct) and
which are fused into the considered tuple (for
all the combinations of labels appearing in at
least one tuple of Rsu).



Each cardinality is computed incrementally
in the following way. At the beginning FAr =
1/0. Let:

FAr = 1/0 + ... + 1/n-1 + 1/n +  λ1/(n+1) + ... +
λk/(n+k) + 0/(n+k+1) + ...

be the current value of the fuzzy cardinality
FAr with 1 > λ1 ≥ ... ≥ λk > λk+1 = 0 and n ≥ 0, k
≥ 0. Let us recall that this expression repre-
sents a cardinality that possibly equals at least
n to degree 1 and possibly equals at least
(n+k) to degree λk [8].

Let us consider a new tuple whose A  -value
rewrites Ar. Let x' be the degree attached  t o
Ar in this tuple. FAr must then be modified. If
x' = 1, FAr becomes:

1/0 + ... + 1/n + 1/(n+1) + λ1/(n+2) + ... +
λk/(n+k+1) + 0/(n+k+2) + ... .

If x' < 1 , there are two cases. Either ∃ i, x' =
λi or not. If ∃ i, x' = λi > λi+1 then FAr is modi-
fied into:

1/0 + ... + 1/n-1 + 1/n +  λ1/(n+1) + ... +
λi/(n+i) + λi/(n+i+1) + ... + λk/(n+k+1) +
0/(n+k+2) + ... .

Otherwise, ∃ j, λj > x' > λj+1 (we assume that λ0

= 1) and FAr becomes:

1/0 + ... + 1/n-1 + 1/n +  λ1/(n+1) + ... +
λj/(n+j) + x'/(n+j+1) + λj+1/(n+j+2)  + ... +
λk/(n+k+1) + 0/(n+k+2) + ... .

Note that the fuzzy cardinalities computed
this way are such that ∀i, j, λi ≠ 0, λj ≠ 0, i > j
⇒ λi ≥ λj. If, for the computation of FAr (resp.
FBs et FCt), one takes into account the value x'
(resp. y' the degree related to Bs, and z' the
degree related to Ct), the computation of FArBs

(resp. FArCt, FBsCt and FArBsCt), takes into ac-
count the value min(x', y') (resp. min(x', z'),
min(y', z'), min(x', y', z')), thus reflecting the
fact that the tuple to fuse is both Ar and Bs

(resp. Ar and Ct, Bs and Ct, Ar and Bs and Ct).

Let us notice that the maximum number of
tuples that can be obtained in Rsu is na ∗  nb
∗ nc, i.e. the product of the numbers of labels
appearing in the considered partitions. Thus,
the "summarized" relation can be significantly
smaller than the original relation R for large
relations.

4 Computing the validity of a summa-
ry

Fuzzy cardinalities computed as explained in
Section 3 can be used to evaluate the validity
of fuzzy association rules. In this approach,
we assume that the user indicates the attributes
A , B  or C  that he/she is interested in. Two
general forms of rules can be thought of. The
first type of rule follows the pattern "the tu-
ples of R are Ar and Bs". This can be seen as a
kind of degenerated rule with no attribute in-
volved in the antecedent. The validity of such
a rule corresponds to the extent to which the
set of labels {Ar, Bs} is frequent. The second
type of rule corresponds to the pattern "the
tuples which are Ar in R are also Bs". The
computation of the validity of the rule (in
terms of a fuzzy cardinality) is discussed in the
following.

4.1 Computing fuzzy relative cardinali-
ties

The two types of rules presented above relate
to proportions. It will thus be necessary t o
compute fuzzy relative cardinalities. Let us
denote by FR

Ar (resp. FR
ArBs, FR

ArBsCt) the fuzzy
proportion of the tuples of R which are "Ar"
(resp. "Ar and Bs",  "Ar and Bs and Ct"). This
fuzzy number is obtained by dividing each
(more or less) possible cardinality appearing in
FAr (resp. FArBs, FArBsCt) by the number of tu-
ples in R.

For instance, the fuzzy relative cardinality
FR

ArBs representing the fuzzy proportion of
elements in R which are both Ar and Bs is ob-
tained by replacing FArBs  = 1/0 + ... + 1/n + ...
+ λi/(n+i) +... by FR

ArBs = 1/0 + ... + 1/(n/K)+
... +   λ i/((n+i)/K) +... where K denotes the
number of tuples in R. This means that the
proportion of elements which are Ar and Bs at
level λi is at least equal to (n+i)/K. Thus, the
support of the fuzzy set FR

ArBs is included in
the unit interval.

4.2 Frequent sets of linguistic labels
Let us first consider the case where the user
does not specify any fuzzy quantifier. From
the tuples in Rsu, it is possible to produce
summaries of the form (Ar, Bs, Ct, FR

ArBsCt) or
relative to projections of R such as (Ar, Bs,
FR

ArBs). As in the nonfuzzy case, one produces
the frequency, which is now a fuzzy number.



Of course, these summaries will be given t o
the user in a linguistic form expressing the
variability of the cardinality (the fuzzy cardi-
nality is then described by some proportions
obtained for different levels of possibility).
Let us recall that these levels of possibility
corresponds to the more or less "elastic" in-
terpretations that can be associated with the
linguistic labels involved in the summary.  

4.3 Fuzzy association rules
Let us now consider a fuzzy association rule of
the form: "the tuples in R which are Ar are
also Bs". We have available the fuzzy number
of tuples in R which are Ar and Bs on the one
hand, and the fuzzy number of tuples which
are Ar on the other hand. Several approaches
can be thought of, for instance:

- by analogy with the nonfuzzy case and with
the approach based on scalar cardinality of
fuzzy sets, it is possible to compute the
fuzzy quotient ρ = FArBs / FAr, enforcing the
constraint that the fuzzy number FArBs res-
tricts a value which is less than or equal t o
the value restricted by FAr (see [9]). Howe-
ver, this quotient of such two fuzzy num-
bers may lead to a too imprecise result.

- a more interesting approach consists in de-
termining how the proportion of tuples
which are (Ar)α and (Bs)α with respect t o
those which are (Ar)α changes when α  va-
ries, i.e., depends or not a lot on the inter-
pretation of the linguistic labels (according
to whether they are reduced to their cores
or extended to their supports). Then, the
computation involves three steps:

1) for each α appearing in FAr or FArBs

1.1) determine |(Ar)α| and |( ArBs)α|
(which can be directly read on the
fuzzy cardinalities computed as ex-
plained in section III.B);

1.2) compute
cα = |(ArBs)α| / |(Ar)α| 

corresponding to the confidence
value of the rule when the α-level
cut is used to interpret the labels;

2) compute ρ' as the convex hull of the
fuzzy number:  ... +  α/cα + ... + 1/c1.

Given a confidence threshold θ specified by
the user, it is then possible to determine
the highest degree α such that ρ'α ≥ θ. The

association rule can then be expressed in a
linguistic way, inasmuch as the α-cuts of Ar

and Bs can be expressed in a linguistic way
too. This approach in terms of α-level cuts
of the cardinalities is in the spirit of [10]
although these authors compute scalar car-
dinalities as weighted averages of cardinali-
ties of α-cuts.

5 Case-based prediction
An order to determine meaningful clusters of
values in the domain of the attribute involved
in the conclusion part of the rules, a possibilis-
tic case-based prediction method is used. Case-
based reasoning, in general, assumes the follo-
wing implicit principle: "similar situations
may give similar outcomes". Thus, a similari-
ty relation S between problem descriptions or
situations, and a similarity measure T between
outcomes are needed. This implicit CBR-
principle can be expressed in the framework
of fuzzy rules as, "the more similar are the
values of the situation attributes in the sense of
S, the more possible the similarity of the va-
lues of the outcome attributes in the sense of
T" [11]. Given a situation s0 associated to an
unknown outcome t0 and a current case (s, t),
this principle enables us to conclude on the
possibility of t0 being equal to a value similar
to t. This acknowledges the fact that, often in
practice, a database may contain cases which
are rather similar with respect to the problem
description attributes, but which may be dis-
tinct with respect to outcome attribute(s).
This emphasizes that case-based reasoning can
only lead to cautious conclusions.

This can be modelled in terms of the possibili-
ty rule [12] "the more similar s and s0, the
more possible t and t0 are similar". Then the
fuzzy set F of possible values t' for t0 with
respect to case (s, t) is given by

Ft0(t') = min(S(s, s0), T(t, t')).

However, here, we are interested in computing
the set values which are close or equal to the
value of attribute C for the tuples whose values
of attributes A  and B  obey to some flexible
requirements Ar and Bs. This means that
S(s, s0) is replaced by min(Ar(ai), Bs(bj)) and
T(t, t’) by T(ck, c’) where (ai, bj, ck) is a tuple
of the base.



As it can be seen, what is obtained is the fuzzy
set T(ck, .) of values c' which are T-similar t o
ck, whose possibility level is upper bounded by
the global degree min(A(ai), B(bj)). The max-
based aggregation of the various contributions,
obtained from the evaluation of each tuple in
the base, acknowledges the fact that each new
comparison may suggest new possible values
for C . Thus, we obtain the following fuzzy
prediction set P of possible values c' :

P(c') =
max(ai, bj, ck) ∈ R min(min(A(ai), B(bj)), T(ck, c'))

P is the fuzzy set of possible values of attri-
bute C for the items in the base for which the
attributes values of A and B are restricted by Ai

and Bj respectively. The similarity relation T
on the domain of attribute C is used here for
providing an understanding of the precise at-
tribute values ck in the tuples of the base as
interchangeable with any value close to them.
This contributes to make P smoother.

6 Experiment results
The experiment was carried out on the IRIT
Platform for Experimentation and Research
in the Treatment of Information (PRETI)
accessible at http://www.irit.fr/PRETI. PRETI
has a database containing the description of
more than 600 houses which can be rent for
vacations. They are described in terms of
about 20 attributes. The results of the experi-
ment are illustrated in two parts.

Figure 1.

Fuzzy ranges for
July Week Fare (FF)

taken from the distribution of Fig. 1

Cumulated number
of  houses

with matching degree

(600, 1000, 1200, 1500) 1/1., 4/0.4

(1400, 1600, 2000, 2300) 4/1., 13/0.4, 17/0.2, 18/0.

(2200, 2300, 3000, 3100) 9/1., 15/0.4, 16/0.2, 17/0.

(3000, 3100, 3700, 3800) 6/0.4, 8/0.2

(4800, 5100, 5300, 5400) 1/0.8, 2/0.4

(6300, 6400, 6600, 6700) 1/0.4

(7100, 7200, 7400, 7500) 1/0.4

Table 1.

First, we consider a query focusing on houses
whose comfort is about 2 stars ('about' means
that 2 stars has possibility 1, while 1 star and
3 stars have possibilty 1/2), and which are
close to the sea ('close' means less than 5km
with possibility 1, and a linearly decreasing
possibility between 5km and 10km, possibility
is 0 for distances greater or equal to 10km).
Figure 1 exhibits the result of the possibilistic
prediction for the July weekly fares (still in
French Francs!) of the houses corresponding
to this fuzzy query. The fuzzy similarity rela-
tion which is used for the fare has a peak cor-
responding to perfect identity and a support
between –200 and +200 FF. Table 1 provides
a complementary information by indicating
the fuzzy cardinality of the fuzzy sets of hou-
ses close to the sea, with about a 2-star com-
fort, and having a price around one of the
peaks of the distribution given in Figure 1.
Note that if a peak is too large it may lead t o
slice it into several ranges of prices. The fuzzy
cardinality is presented by giving the cardinali-
ty followed after the '/' by the level of the
corresponding level cut. When the cardinality
remains unchanged for several level cuts, only
the highest level cut appears. As expected the
extreme prices correspond to very small num-
bers of houses. It can be also noticed that the
cardinality number may have a substantial
increase below .6, this mainly corresponds t o
the impact of taking into consideration 1 star
or 3 stars houses also with only a .5 possibility
degree. Indeed, generally speaking, the interest
of using fuzzy cardinality is to show the varia-
tions induced by the relaxation of flexible
requirements.

Table 2 provides examples of fuzzy associa-
tions rules obtained by the method described in
this paper. Here, for simplicity, we use a crisp
2-part partition for comfort, namely { {1
star, 2 stars},{3 stars, 4 stars} }, and  a 3-part
fuzzy partition for the distance to the sea
(close, not too far, far). 'Close', 'not too far',
'far' are represented by the following trape-
zoids (0, 0, 5, 10), (5, 10, 30, 35), (30, 35,
100, 100) respectively. We have only kept
the rules corresponding to more than 10 hou-



ses in the database. The fuzzy sets used for the
July week fare are given under the form of
trapezoids and are taken from fuzzy predic-
tions like the one of Figure 1. These predic-
tions are not given due to the lack of space.
The cardinality of the data base which is used
for computing the support is 444, which is the
number of data for which we have a complete

and precise information about the three consi-
dered attributes in the base. The number be-
fore the '/' is the support, or the confidence,
and the corresponding level cutting is given
after. Again it enables us to show if some rules
are sensitive to changes of the scope of the
fuzzy sets used in the partitioning of the attri-
bute domains.



Comfort Dist. to sea July week fare Support Confidence

(1400, 1500, 1900, 2000) 0.44/1., 0.46/0.6, 0.45/0.4, 0.5/0.2, 0.51/0.001close

(2200, 2300, 2900, 3100)

0.05/1., 0.06/0.8,

0.07/0.4 0.44/1., 0.40/0.8, 0.39/0.6, 0.38/0.4,

0.34/0.2, 0.33/0.001

(1000, 1200, 1900, 1900) 0.47/1., 0.49/0.8, 0.5/0.4, 0.51/0.2

(1900, 1900, 2600, 2800) 0.36/1., 0.37/0.8, 0.38/0.6, 0.37/0.4

not too far

(3000, 3100, 3300, 3500)

0.14/1., 0.16/0.8,

0.17/0.6, 0.19/0.4,

0.21/0.2 0.16/1., 0.14/0.8, 0.12/0.4, 0.11/0.2

(1000, 1100, 2000, 2100) 0.66/1.

{1,2}

far

(2000, 2100, 2900, 3000)

0.39/1., 0.4/0.8,

0.41/0.6, 0.42/0.4,

0.43/0.2
0.30/1.

close

(1900, 2100, 2700, 2800) 0.32/1., 0.36/0.8, 0.35/0.6, 0.33/0.4, 0.34/0.2, 0.33/0.001

(2700, 2800, 3500, 3600) 0.20/1., 0.18/0.8, 0.24/0.6, 0.28/0.4, 0.27/0.2, 0.26/0.001

not too far

(3500, 3600, 4100, 4200)

0.07/1., 0.08/0.6,

0.09/0.4,

0.1/0.01 0.30/1., 0.27/0.8, 0.24/0.6, 0.25/0.4, 0.24/0.2

1500, 1700, 2600, 2700 0.39/1., 0.37/0.4, 0.38/0.2

{3,4}

far

2600, 2700, 3400, 3500

0.23/1., 0.24/0.4

0.40/1., 0.41/0.6, 0.42/0.4

Table 2.

7 Conclusion
This paper has outlined a new approach to the
linguistic summarization of data bases. The
basic ideas are i) to use fuzzy partitions of
attribute domains which are meaningful for
the user (since fuzzy partitions are more com-
patible with a linguistic labelling), ii) to per-
form a "soft compression" of the data base and
then to exploit it for evaluating potential
summaries, iii) this evaluation is made by
computing fuzzy cardinalities which account
for the possible variations of the interpretation
of the labels, and iv) to use a fuzzy prediction
tool for selecting fuzzy sets of interest in the
output domain. What is obtained are the (fuz-
zily known) proportions of elements satisfying
fuzzy specifications.
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