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Abstract 17 

1. Plant community composition influences soil microbial communities through plant trait 18 

variations that lead to changes in nutrient and organic carbon inputs into the soil by root 19 

exudates and plant litter. Although plant litter and living roots are known to influence 20 

microbial functioning independently, their relative effects are rarely measured 21 

simultaneously in naturally occurring plant communities.  22 



2. Here, we sought to evaluate how forest floor litter and absorptive roots affect broad 23 

functions of soil microbial communities, and how this may be influenced by tree species 24 

mixing. To do so, forest floor litter, absorptive roots, and soil were sampled from mono-25 

specific and 3-species mixed stands in four mature, natural forest ecosystems across 26 

Europe. The direct effects of tree species mixing, its indirect effects via litter and root 27 

traits, and the effects of soil parameters on microbial biomass, catabolic activity and 28 

diversity, and denitrification were analyzed.  29 

3. Results did not show direct tree mixture effects on the soil microbial parameters we 30 

measured but did suggest indirect influences via tree mixture effects on traits of 31 

aboveground litter and absorptive roots and soil parameters. Mixed forests composed of 32 

any three tree species modified soil microbial functioning by influencing nutrient 33 

availability in forest floor litter and root resource acquisition. Tree mixing also modified 34 

soil microbial functioning and catabolic diversity by influencing soil fertility and 35 

physicochemical properties.  36 

4. Our findings suggest an indirect but present influence of tree species mixing on the 37 

activity of heterotrophic soil microbial communities across four different forest 38 

ecosystems ranging from Mediterranean to boreal forests. Our study contributes to a 39 

better mechanistic understanding of mixed tree species effects on soil microbial 40 

functioning via the modification of forest floor litter properties and traits of absorptive 41 

roots represented by the tree community beyond simple species numbers consideration, 42 

and potentially via soil properties.   43 
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Introduction 48 

Soils harbor a highly diverse community of microorganisms that play a crucial role in many 49 

ecological processes and impact terrestrial ecosystem functioning and stability (Bardgett & van 50 

der Putten, 2014; Fierer, 2017). Microorganisms control the rate nutrients and carbon are 51 

released from dead organic matter and made available to organisms (Crowther et al., 2019) and 52 

concurrently release greenhouse gases, notably CO2 and N2O, into the atmosphere (Robertson 53 

& Groffman, 2007; Singh, Bardgett, Smith, & Reay, 2010). However, soil microbial activity 54 

and its subsequent influence on ecosystem functioning are dependent on many extrinsic factors 55 

such as soil properties, climatic conditions, and the plant community (Bardgett & Caruso, 56 

2020). 57 

Different plant species, and thus different plant community assemblages, can exert 58 

significant and contrasting effects on soil microbial communities and associated processes 59 

(Eisenhauer et al., 2010; Scheibe et al., 2015; Urbanová, Šnajdr, & Baldrian, 2015) through 60 

differences in litter quality and diversity (Thoms, Gattinger, Jacob, Thomas, & Gleixner, 2010), 61 

rhizodeposition (Steinauer, Chatzinotas, & Eisenhauer, 2016), root symbionts (Baldrian, 2017), 62 

above- and belowground litter production, and microclimatic conditions (e.g. temperature and 63 

soil humidity) (Prescott & Grayston, 2013). Plant diversity effects can be expressed for 64 

example, through disproportional effects (either positive or negative) of specific plant species 65 

on soil microorganisms, i.e. the sampling effect hypothesis (Aarssen, 2016; Huston, 1997; 66 

Tilman, Lehman, & Thomson, 1997). Species with complementary traits can also lead to non-67 

additive effects on soil microorganism activities, for example, through the combination of 68 

varying litter qualities (Barantal, Schimann, Fromin, & Hättenschwiler, 2014; Handa et al., 69 

2014) and/or increased root exudate diversity or rate of diffusion (Cesarz et al., 2013; Jones, 70 

Hodge, & Kuzyakov, 2004; Prescott & Grayston, 2013).  Consequently, higher plant exudate 71 

and litter diversity and/or quantity could potentially support a more diverse (Cesarz et al., 2013; 72 



Eisenhauer et al., 2017; Prescott & Grayston, 2013; Steinauer et al., 2016) and more 73 

abundant/active soil microbial community. 74 

Numerous studies have evaluated plant effects on soil microbial processes with a particular 75 

focus on effects through litter production and quality (Fanin, Hättenschwiler, & Fromin, 2014; 76 

Hättenschwiler, Tiunov, & Scheu, 2005; Hatton, Castanha, Torn, & Bird, 2015; Joly, Fromin, 77 

Kiikkilä, & Hättenschwiler, 2016; Pfeiffer et al., 2013; Thoms et al., 2010), root activity (Cesarz 78 

et al., 2013; Eisenhauer et al., 2017; Landi et al., 2006), or microclimatic conditions (Kara, 79 

Bolat, Çakiroǧlu, & Öztürk, 2008; Lange et al., 2014; Wu et al., 2012). Indeed, plant litter 80 

inputs and live root processes are the two primary pathways by which plants affect soil 81 

microbial communities (Baldrian, 2017; Lladó, López-Mondéjar, & Baldrian, 2017, 2018), yet 82 

their relative importance is poorly understood and most studies do not take these factors into 83 

account simultaneously.  84 

Plant litter is an important source of organic carbon (C), nitrogen (N), phosphorus (P), and 85 

micronutrients for soil microorganisms (Becher, Bernhardt, Fuchs, & Riedel, 2013; Thomas & 86 

Packham, 2007). Litter can also provide cations that reduce soil acidification, pH being a key 87 

driver in microbial community composition and low pH being linked to slow litter 88 

decomposition (Lladó et al., 2017; Pfeiffer et al., 2013). Since many leaf characteristics, e.g. 89 

lignin and polyphenol concentrations, persist after senescence, plant leaf economic strategies 90 

(LES, Wright et al., 2004) can dictate species litter effects on decomposition rates and release 91 

of resources into the soil (Coq, Souquet, Meudec, Cheynier, & Hättenschwiler, 2010; Cornwell 92 

et al., 2008; Prescott, 2005). For example, conservative leaf traits, associated with higher energy 93 

investment in resource conservation and resource immobilization in long-living plant tissues, 94 

could negatively affect microbial activity by producing defense compounds (lignin or 95 

polyphenols) that can inhibit microorganisms (Freschet, Aerts, & Cornelissen, 2012; Prescott, 96 

2005). Plants with acquisitive traits, associated with higher investment in growth and resource 97 



acquisition, tend to have higher quality litter (e.g. lower C:N ratio, higher P content, lower 98 

lignin and tannin/polyphenol contents) which is correlated to increased microbial activity and 99 

faster litter turnover and influences microbial community composition and biomass (Freschet 100 

et al., 2012; Lladó et al., 2017).  101 

Living roots influence soil microbial activity by altering soil physical structure, water flow, 102 

and exudation of ions and organic compounds (McCormack et al., 2015; Prescott & Grayston, 103 

2013). Similar to the leaf economics spectrum, accumulating evidence from root research 104 

suggests a universal root economics spectrum (RES) (Bergmann et al., 2020; Roumet et al., 105 

2016). Generally, it seems that higher specific root length (SRL) and nitrogen (N) concentration 106 

combined with lower root diameter and tissue density are associated with an acquisitive root 107 

resource strategy, while the inverse is associated with a conservative strategy (Kong et al., 2019; 108 

Weemstra et al., 2016). In herbaceous species, acquisitive plant species have been found to 109 

produce higher amounts of root exudates than conservative species (Guyonnet, Cantarel, 110 

Simon, & Haichar, 2018; Henneron, Cros, Picon-Cochard, Rahimian, & Fontaine, 2019), which 111 

can lead to higher soil microbial biomass and activity (Kaštovská, Edwards, Picek, & 112 

Šantrůčková, 2015). However, the distinction between acquisitive and conservative root 113 

strategies and associated traits is presently less clear for woody species (Weemstra et al., 2016), 114 

and their effects on the microbial community is not well understood. This is likely due to a 115 

combination of spatial and temporal variability in fine-root traits (e.g. season, age, and soil 116 

depth), as well as mycorrhizal colonization. The organic matter provided to the soil microbial 117 

community in the form of root litter may also stimulate soil microbial activity more efficiently 118 

than aboveground litter (Freschet et al., 2013; Hatton et al., 2015; Jackson, Mooney, & Schulze, 119 

1997) because of tight spatial proximity. 120 

In this study, we evaluate the influences of tree species mixing by comparing single tree 121 

species stands to stands with three tree species and their associated litter and root traits on soil 122 



microbial functioning (microbial respiration, denitrification potential, and catabolic diversity 123 

estimated from 15 carbon substrates) in four mature, natural forest ecosystems across Europe 124 

(including a total of 13 tree species, 34 different species combinations, and varying soil types). 125 

By incorporating a wide range of climate, soil, and forest types we were able to explore general 126 

trends of tree characteristics and species mixture influences on microbial functioning beyond 127 

site and forest community-specific variations. We hypothesize that, tree species mixtures 128 

promote higher soil microbial activity across forest ecosystems irrespective of the biotic and 129 

abiotic conditions. We further hypothesize that, while more diverse above-ground litter and 130 

below-ground root traits and associated resource inputs to the soil both contribute to these 131 

mixture effects, roots have a more dominant role because of their intimate contact with 132 

microbial communities in the three-dimensional topsoil space whereas aboveground litter 133 

remains largely on the soil surface. 134 

 135 

Materials and Methods 136 

Study sites and sampling protocol: The studied sites are part of a permanent network of 137 

mature forest plots established in 2011 and 2012 (detailed site descriptions can be found in 138 

Baeten et al., 2013) across Europe: Colline Metallifere (Italy), Râşca (Romania), Białowieża 139 

(Poland), and North Karelia (Finland). These forests represent four major European forest types 140 

including Mediterranean thermophilous, montane mixed beech, hemiboreal mixed 141 

broadleaved-coniferous, and boreal forests (see Table S1 and Figure S1 in Supporting 142 

Information). The forests are managed to variable degrees, but species composition is mostly 143 

influenced by selective logging, not planting, of naturally established trees. Within each site, 144 

30 m × 30 m forest plots were selected that had stands composed of either one dominant tree 145 

species (mono-specific plot) or three co-dominating tree species (mixed plot); species were 146 

defined as co-dominant when it composed >15% of the stand. Tree species identity and mixed 147 



plot tree species combinations varied among sites. Each tree species at each site had two 148 

replicate mono-specific plots (with the exception of Picea abies L. and Quercus robur L. plots 149 

with one replicate each and Betula pendula Roth with no mono-specific plot in Białowieża, 150 

Poland). Mixed plots had a minimum of three replicates per site, but the tree species 151 

compositions of these replicates included any three target species present at that site, i.e. mixed 152 

plot replicates were not necessarily composed of the same tree species. The final selection of 153 

64 plots included 13 tree species and 34 different species combinations, as well as a wide range 154 

of soil types (Table S1).  155 

Within each plot, five tree triplets were identified following the approach described by 156 

Vivanco & Austin (2008), a tree triplet being a triangle of three canopy tree individuals with 157 

less than 8 m distance from one another and with no other tree individuals within the triangle. 158 

In mono-specific plots, tree triplets were composed of the same tree species, and in mixed plots, 159 

each triplet was formed by one individual from each of the three co-dominant trees species of 160 

the plot. At the estimated center of each triplet, weighted by tree individual size (individual 161 

diameter at breast height), four 15 × 15 cm forest floor litter layer samples were collected and 162 

dried at 60°C. All litter material within the square, which was predominantly leaf litter but 163 

sometimes included other plant parts such as reproductive structures and small (< 25 mm 164 

diameter) branches, was collected down to the mineral soil, meaning that multiple years of litter 165 

accumulation were sampled. We considered the entire decomposing forest floor more 166 

representative of how aboveground litter accumulation may affect underlying soil microbial 167 

communities than only annual fresh litter fall. Such higher realism came at the cost of 168 

distinguishing litter material originating from different tree species within mixture plots, which 169 

impeded us from considering functional diversity of litter traits. One soil core (5.3 cm diameter) 170 

was sampled from the top 10 cm of soil within each of the four squares where the litter had 171 

been removed. This means that the soil cores included the mineral layers starting with the A-172 



horizon. The four soil cores sampled within each tree triplet were then combined and sieved 173 

through a 2 mm sieve and air-dried immediately after sampling for soil microbial analyses. One 174 

additional soil core was taken in the same location using the same methods  and kept intact for 175 

root measurements. There were thus five replicate samples for each of the 64 plots for a total 176 

of n= 320 samples (mono-specific plot samples n= 150, mixed plot samples n= 170) of forest 177 

floor, sieved soil, and soil for root measurements.  178 

Soil measurements: The soil bulk density, carbon (C) concentration, carbon:nitrogen 179 

(C:N) ratio, and pH were measured during the FunDivEUROPE project in 2012 (Baeten et al., 180 

2013; Dawud et al., 2016). For the FunDivEUROPE soil sampling methods see (Dawud et al., 181 

2016). Another set of unground soil subsamples (10 g per sample) were used to determine soil 182 

texture. The soil was pre-treated for organic and carbonate removal (ISRIC & FAO, 2002) if 183 

present, the texture was then measured by laser granulometry (Malvern Mastersizer S, Malvern 184 

Instruments Limited, Worcestershire, United Kingdom). Soil data are provided in Table S2.  185 

Forest floor litter characterization: Each subplot litter sample (five per plot) was dried at 186 

60°C, weighed, and the weight was divided by the surface area sampled to be expressed as kg 187 

dry weight litter per square meter of soil surface. After weighing, the entire litter sample was 188 

ground to approximately 2 mm (Retsch cutting mill SM1, Haan, Germany) for homogenization 189 

and then a subsample of litter was ground to 1 mm (Cyclotec 1093 cyclone grinder, Tecator, 190 

Höganas, Sweden) for chemical analyses.   191 

The total C and nitrogen (N) concentrations (%) of each individual litter sample were 192 

measured using the Pregl-Dumas method with a CHN Elemental Analyzser (Flash EA1112 193 

Series, ThermoFinnigan, Milan, Italy) on 3.7 ± 0.4 mg of litter. The C concentration was then 194 

divided by the N concentration to obtain the litter C:N ratio. 195 

For the other litter quality parameters based on methods that take much more time than C 196 

and N analyses, we used the near infrared spectrum (NIRS) approach for chemical 197 



characterization of each individual sample. We first determined the NIR spectrum of each of 198 

the 320 samples using Fourier-transformed infrared spectroscopy (FTIR) with a NIRFlex N-199 

500 spectrometer (BUCHI Corporation, New Castle, DE, United States). The litter samples 200 

were scanned in a cuvette (W × D × H : 12.5 × 12.5 × 45 mm) with a spectral range from 1000 201 

nm – 2500 nm and spectral resolution of 8 cm-1 for 16 scans. Each sample was scanned twice, 202 

and the two spectra were averaged. Based on the bulk of obtained spectra, a selection program 203 

(NIRWare Management Console, BUCHI Corporation) identified the required number and 204 

spread of a subset of samples on which a calibration data base was constructed using the 205 

NIRWare NIRCal software (BUCHI Corporation). A total of 87 spectra out of the 320 were 206 

selected to accurately represent the sample spectra distribution. The P, lignin, condensed 207 

tannins, and total phenolics concentrations were then measured for these 87 samples, which 208 

were subsequently used to predict the values for the remaining 233 samples based on their 209 

individual near infrared spectra (NIRWare NIRCal software). The program tested multiple 210 

methods as well as multiple transformations to obtain the best regression coefficient, using two-211 

thirds of the spectra for calibration and one-third for validation. The calibration methods, 212 

transformations, and calibration and validation results are detailed in Table S3; the r2 values for 213 

all litter quality parameters were all larger than 0.76.  214 

The P concentration was measured colorimetrically using the molybdate blue method 215 

(Grimshaw, Allen, & Parkinson, 1989). First, 84.0 ± 4.0 mg of litter was mineralized by adding 216 

8 ml of HNO3 (2.24 mol L-1) and, over 10 min, heated to 120°C, then over 20 minutes, heated 217 

to 175°C and kept at this temperature for 10 min in an ETHOS One microwave (Milestone, Via 218 

Fatebenefratelli 1/5-24010 Sorisol, Italy). Once the sample cooled, 100 µl was deposited in 219 

each well of a 96-DeepWell Microplate (Fisher Scientific E39199) and 100 µl NaOH (2 mol L-220 

1), 50 µl sodium molybdate (7 g L-1), and 50 µl ascorbic acid (10 g L-1) was added in that order. 221 



The plate was incubated at 40°C for 30 minutes then the optic density was read (wavelength 222 

720 nm) with a Victor 1420 Multilabel Counter (PerkinElmer, Massachusetts, USA).  223 

Cellulose, hemicellulose, and lignin fractions were measured with the FIBERSAC® method 224 

12 (Fibersac 24, Ankom, Macedon, NJ, USA; Ankom Technology, 2017) adapted from Van 225 

Soest (1963). Following this protocol, plant tissue constituents were extracted and measured 226 

gravimetrically by sequentially exposing 510.0 ± 10.0 mg dry weight of the litter sample to 227 

neutral detergent (NDS), acid detergent (ADS), and H2SO4 (72%). 228 

The concentration of condensed tannins was measured by spectrophotometry with the 229 

butanol-HCl method (Porter, Hrstich, & Chan, 1985; Waterman & Mole, 1994) as described in 230 

detail by Coq et al. (2010). Total phenolic concentration was measured colorimetrically, using 231 

the method described by Ribéreau-Graydon (1972) and using the Hach TanniVerTM reagent 232 

(Hach Company, Loveland, CO, USA), according to the detailed description in Coq et al. 233 

(2010). Extractions were diluted when necessary. Forest floor litter data are provided in Table 234 

S2. 235 

Absorptive root traits: Roots were sorted from the soil cores and all fine roots (< 2 mm in 236 

diameter) were subsequently classified as absorptive (the first three root orders) or transport 237 

roots (4th and 5th order roots) according to the functional classification approach by McCormack 238 

et al. (2015). On average, absorptive roots of the target species made up 53.5 ± 2.4% of all fine 239 

roots (absorptive and transport roots combined). For further details on the root sorting and 240 

measurement methods see (Wambsganss, Beyer, Freschet, Scherer‐Lorenzen, & Bauhus, 241 

2021). This order-based approach was used, as opposed to the still commonly applied 242 

traditional diameter classification, because studies have shown that the first three most distal 243 

root orders (i.e. the absorptive roots according to McCormack et al. (2015)) significantly differ 244 

in their functions from higher order roots. The absorptive roots are responsible for most of the 245 

resource uptake (absorption), and thus exudation, and are therefore more relevant in affecting 246 



microorganisms than higher order roots (Guo et al., 2008; McCormack et al., 2015). The 247 

morphological absorptive root traits reflect root growth, resource capture strategies, and 248 

associated functioning (Bardgett, Mommer, & De Vries, 2014; McCormack & Iversen, 2019; 249 

Weemstra et al., 2016). Absorptive root trait data are provided in Table S2. 250 

Soil microbial parameters: Soil microbial analyses were done on soils that were air-dried 251 

immediately after sampling, because it was not possible to work on fresh soils for logistical 252 

reasons (geographical spread of the sampling sites, time required for sampling all the plots, 253 

sample shipping constraints). Air-drying has been found to not significantly impact microbial 254 

community composition and structure (Wang et al., 2021), but even if shifts in microbial 255 

parameters occur, the relative differences in C and N transformations between samples are 256 

generally preserved (Makarov, Mulyukova, Malysheva, & Menyailo, 2013).  257 

Classical substrate induced respiration (SIR) method was used to measure the potentially 258 

active microbial biomass (Beare, Neely, Coleman, & Hargrove, 1990). This method allows to 259 

determine glucose-induced respiration activity as the amount of CO2 produced under optimal 260 

conditions over a short duration (4 hours), to measure the active enzyme pool respiration before 261 

new enzymes can be synthesized or new microbial growth (Fanin, Hättenschwiler, Barantal, 262 

Schimann, & Fromin, 2011 for methods). The active microbial biomass (µg Cmic g
-1 dry soil) 263 

was then estimated using the calculation proposed by Anderson and Domsch (1978): SIR rate 264 

(µl C-CO2 g
-1 dry soil h-1) * 40.04 + 0.37. 265 

The MicroRespTM method described by Shihan et al. (2017) was used to determine the 266 

catabolic diversity of soil microorganisms, based on the ability of the soil microbial community 267 

to respire on a range of various C substrates (µg C-CO2 g
-1 dry soil h-1). We used the same 15 268 

different C sources as described in detail by Shihan et al. (2017). Three technical replicates 269 

were run per substrate with approximately 0.39 g of soil dry weight per replicate. The substrate 270 

addition equated to 1.5 mg of C per g dry weight of soil. The SIR rates of all 15 substrates were 271 



summed to obtain a global catabolic respiration value (Sum15). The Shannon metabolic 272 

diversity index for each subplot was calculated using the formula: 𝐻′ = −∑ 𝑝𝑖15
𝑖=1 x ln(𝑝𝑖) 273 

where pi is the standardized respiration rate for the substrate ‘i’, i.e. the respiration rate of 274 

substrate ‘i’ divided by the Sum15 value.  For the respiration rate of each of the 15 C sources, 275 

a substrate was considered ‘used’ by the microbial community when the respiration rate was 276 

15% higher relative to the respiration without the addition of a C substrate (i.e. just water), all 277 

respiration rates below this threshold were considered not-used and were replaced by zeros for 278 

the ANOSIM and GLMM analyses (see below). 279 

Potential microbial denitrification enzyme activity (DEA, µg N-N2O g-1 dry soil h-1) was 280 

measured using the acetylene inhibition method described by Smith & Tiedje (1979) as 281 

described by Pinay et al. (2007). This is a measure of the potential denitrification activity since 282 

it is conducted under optimal conditions and the enzyme concentration is the only activity-283 

limiting factor. 284 

Statistical Analysis: The R software (R Development Core Team, 2008) (version 3.5.3) 285 

was used for all figures and statistical analyses, figures were made using the ‘pirateplot’ 286 

function from the YaRrr! Package (version 0.1.5, Phillips, 2018), the function ‘fviz_pca_biplot’ 287 

from the factoextra package (version 1.0.6, Kassambara & Mundt, 2019), and the function 288 

‘radarchart’ in the fmsb package (version 0.7.0, Nakazawa, 2019). The QGIS software (version 289 

3.12.3) was used to create the sampling locations map (Figure S1) with a basemap from 290 

www.naturalearthdata.com. 291 

To take into account the site-specificity of the soil parameters in subsequent analyses, the 292 

soil variables were incorporated into a principal component analyses (PCA) using the function 293 

‘prcomp’ from the factoextra package (version 1.0.6, Kassambara & Mundt, 2019) (Fig. 1a) 294 

and the PC scores of the first two axes were extracted. The extracted PCA scores were then 295 

http://www.naturalearthdata.com/


included in the general linear models and structural equation models as explanatory variables. 296 

This was also done for the chosen forest floor litter characteristics and the absorptive root traits. 297 

Generalized mixed-effects linear models were run, using the lme4 package (version 1.1-21; 298 

Bates et al., 2019), on each response variable (Cmic, Sum15, H’, and DEA) testing the effect of 299 

the explanatory variables (Litter PC1, Litter PC2, Root PC1, Root PC2, Sol PC1, Soil PC2, and 300 

tree mixture). Response variables were transformed (log2) when necessary, and extreme values 301 

(> ±3 times the interquartile range) were removed (the number of removed values never 302 

exceeded 10% of the total number of values). The site, which takes into account all associated 303 

site-specific differences such as climatic variables, and plot were included as random variables. 304 

The model structure was as follows: response variable ~ Litter PC1 + Litter PC2 + Root PC1 + 305 

Root PC2 + Soil PC1 + Soil PC2 + Tree species number + (1|Site/Plot). In order to identify the 306 

most parsimonious models and the most consistent predictors we used a model averaging 307 

approach via the ‘dredge’ and ‘model.avg’ functions in the MuMIn package (Bartoń, 2019) 308 

which uses the lowest Akaike Information Criteria (AIC) to rank all possible models with all 309 

possible combinations of the explanatory variables in the full model. A 95% confidence set was 310 

used to select a subset of the models to be averaged, i.e. average of the estimates, calculated 311 

using the zero method (Burnham & Anderson, 2002), with the standard error, importance value, 312 

z-value, and p-value. The importance value is calculated by summing the model weights of the 313 

models where the variable appears.  314 

Before testing the respiration rates of the substrates considered to be ‘used’ (see definition 315 

above) at a univariate level, we first tested them at the multivariate level. An analysis of 316 

similarities (ANOSIM) was performed on the ‘used’ substrate respiration rates using the 317 

function ‘anosim’ in the vegan package (version 2.5-6; Oksanen et al., 2019) to explore the 318 

influence of the explanatory variables listed above. Data were averaged at the plot level since 319 

‘anosim’ can only accept one random variable, i.e. pooling the five within-plot measurements 320 



to a single mean value with site as the only random variable. Since the ANOSIM results showed 321 

a marginally significant tree species mixing effect on the multi-substrate use (Table 2), we ran 322 

univariate GLMMs, using the same model structure and method as before, on each individual 323 

substrate. The data were analyzed at the sub-plot level for the GLMMs since this analysis can 324 

accept multiple random variables. 325 

Structural Equation Modelling (SEM; Grace et al., 2015) was used to test the support for a 326 

network of hypothesized causal relationships between tree species mixing, forest floor litter 327 

characteristics, absorptive root traits, and soil parameters on soil microbial functioning. The 328 

piecewiseSEM package (version 2.1.0; Lefcheck et al., 2019) was used to build SEMs for each 329 

microbial response variable (Cmic, Sum15, H’, DEA) excluding the individual 15 C substrate 330 

values, see Figure S2 for the model structure. Tree species mixture was included as an 331 

exogenous variable with influence on the microbial functional response variable directly and 332 

indirectly via Soil PC1, Litter PC1, and Root PC1. The response variables were transformed 333 

(log2) when necessary before running the SEM. Because there were insufficient data points to 334 

include all axes simultaneously, we constructed a second identically structured SEM with the 335 

second axes (i.e. Litter PC2, Root PC2, and Soil PC2). Additional SEMs were also created to 336 

explore whether litter and root parameters indirectly influenced the microbial variables via the 337 

soil parameters. Model goodness of fit was analyzed using the test of directed separation by 338 

combing all p-values across the basis set in the Fisher’s C test statistic and comparing it to a χ2-339 

distribution with 2k degrees of freedom. The model has a good fit when p of the χ2 test > 0.05. 340 

We tested all PC1 and PC2 combinations possible, and mixing PC1 and PC2 variables within 341 

a SEM did not change the results or, in the case of Soil PC1 or PC2 effects on opposite Litter 342 

or Root PC axes (e.g. Soil PC1 effect on Litter PC2), were not significant. We therefore present 343 

the SEM results as a SEM constructed with PC1 variables and a second SEM with the PC2 344 

variables. 345 



 346 

Results 347 

Soil parameters, forest floor litter traits, and traits of absorptive root varied widely among 348 

the four studied forests across Europe (Fig. 1). The first axis of the soil parameter PCA (Soil 349 

PC1) accounted for 52.5% of the variance and was mostly determined by soil physicochemical 350 

properties (Fig. 1a). High bulk density was associated with negative PC scores, and high pH, 351 

C, and clay concentrations were associated with positive scores. The second axis (Soil PC2) 352 

explained 24.9% of variance, with negative PC scores correlated with low C:N ratio. The first 353 

axis of the forest floor litter trait PCA (Litter PC1) accounted for 50.2% of the variance, with 354 

negative PC scores associated to high concentrations of phenolic compounds and positive 355 

scores to high concentrations of lignin (Fig. 1b). The second axis (Litter PC2) accounted for 356 

23.7% of the variance, with negative PC scores associated with high C:N ratio and low P and 357 

positive PC scores to low C:N ratio and high P. The first axis of the PCA on traits of absorptive 358 

roots (Root PC1) accounted for 42.2% of the variance, with negative scores associated with 359 

high SRL, RLD, and surface area and positive scores associated with high diameter and RTD 360 

(Fig. 1c). The second axis (Root PC2) captured 26.9% of the variance and was mainly related 361 

to the root surface area (negative scores) and ECM colonization intensity (positive scores; Fig. 362 

1c). 363 

Overall, mixed forest plots had higher Litter PC2 scores (higher P concentration and lower 364 

C:N ratio), lower Root PC1 (high SRL, RLD, and surface area), and higher Root PC2 scores 365 

(higher ECM colonization intensity and lower root surface area) compared to mono-specific 366 

plots. Between sites, Litter PC1, Litter PC2, Root PC1, and Root PC2 were reasonably 367 

comparable, with slight deviation for the Finnish Litter PC1, and had generally consistent 368 

patterns between mono-specific and mixed plots (Figure S3). Slightly more deviation was found 369 



for soil PC scores, particularly for Soil PC1 where the sites in Italy and Romania were distinct 370 

from the sites in Finland and Poland.  371 

Across all 320 collected soil samples, we measured an average C microbial biomass (Cmic) 372 

of 166.0 ± 92.7 µg Cmic g
-1 dry soil, with a very large 20-fold range between 28.8 and 568.5 µg 373 

Cmic g
-1 dry soil (Fig. 2a). The average denitrification enzyme activity (DEA) was 0.01 ± 0.014 374 

µg N-N2O g-1 dry soil h-1, ranging between 0.00 and 0.06 µg N-N2O g-1 dry soil h-1 (Fig. 2b). 375 

The average sum of the microbial catabolic respiration rate induced by 15 different C-sources 376 

(Sum15) was 62.7 ± 34.5 µg C-CO2 g
-1 dry soil h-1 and ranged between 26.1 and 204.3 µg C-377 

CO2 g
-1 dry soil h-1 (Fig. 2c). We measured an average Shannon metabolic diversity index (H’) 378 

of 2.69 ± 0.014 (unitless), with a range between 2.64 and 2.71 (Fig. 2d). Across the 15 substrates 379 

included, the average ‘used’ C substrate respiration rate was 2.51 ± 3.51 C-CO2 g
-1 dry soil h-1 380 

and was lowest for vanillic acid (0.68 ± 2.0 µg C-CO2 g
-1 dry soil h-1) and highest for oxalic 381 

acid (5.47 ± 5.22 µg C-CO2 g
-1 dry soil h-1) (Fig. 3). The microbial variables (i.e. biomass, 382 

DEA, sum15, H’, and substrate use) were generally comparable between sites and had similar 383 

patterns between mono-specific and mixed plots, except for higher DEA rates in mixed 384 

compared to monospecific stands in Finland and Romania (Supplementary Figs 4). 385 

The GLMMs showed no direct tree species mixing effects, i.e. no difference between soils 386 

from mono-specific and mixed tree species stands, on any of the measured microbial activity 387 

parameters (Table 1, Fig. 2). The ANOSIM results showed a marginally significant difference 388 

between mono-specific and mixed stands for the respiration rates calculated from the ‘used’ C 389 

substrates only (Table 2, Fig. 3). However, none of the univariate GLMMs run for each 390 

substrate individually showed a tree species mixing effect (Table S5).  391 

Variations in forest floor litter and absorptive roots traits showed some effects on soil 392 

microbial variables but appeared response variable-dependent (Table 1). There was no 393 

significant Root PC1 effect, but both Cmic and Sum15 rates showed a coherent negative 394 



correlation with Root PC2, i.e. higher Cmic and Sum15 associated with higher root surface area 395 

and lower ECM colonization intensity (the two variables that best represent Root PC2; Fig. 1c). 396 

DEA was the only microbial parameter we assessed that was significantly affected by litter 397 

traits (Table 1). DEA was positively correlated with Litter PC2 scores, indicating that DEA was 398 

higher when the litter layer had high litter P concentrations and low C:N ratios (Fig. 1b). The 399 

multivariate analysis on the ‘used’ substrates (with respiration rates above the threshold of 15% 400 

higher than that of pure water addition; see Materials & Methods) showed that the ‘used’ 401 

substrate profiles were not affected by litter parameters nor Root PC1 but, as for microbial 402 

biomass and Sum15, were related to Root PC2 (Table 2). The univariate GLMM analyses run 403 

on the ‘used’ substrate respiration rates for each individual substrate showed no correlation 404 

between litter or root PC1 or PC2 scores and substrate use (Table S5). 405 

Soil parameters had the most consistent effects on soil microbial response variables. 406 

Microbial biomass, Sum15, H’, and DEA all varied significantly along the first soil PCA axis 407 

(Table 1) associated with variation in pH, clay and organic matter content (C), and bulk density 408 

(Fig. 1a). While microbial biomass, Sum15, and DEA increased with Soil PC1 scores 409 

corresponding to soils with finer texture and higher pH, we observed the opposite for H’ (Table 410 

1). None of the tested microbial variables varied significantly along the soil PC2 axis (Table 1). 411 

The use of the different C substrates was affected by both Soil PC1 and Soil PC2 scores (Table 412 

2). At univariate substrate level, higher Soil PC1 scores were correlated with higher respiration 413 

rates of one carbohydrate (D-glucose), three amino acids (L-asparagine, L-serine, and L-414 

glutamine), and two carboxylic acids (oxalic acid and malic acid), while lower Soil PC2 scores 415 

were related to higher oxalic acid use only (Table S5). 416 

With structural equation modeling (SEM), we found an indirect tree species mixing effect 417 

on the measured microbial response variables (Fig. 4). There were strong and consistent tree 418 

species mixture effects on soil parameters (Soil PC1 and PC2), forest floor litter nutrient 419 



characteristics (Litter PC2) and traits of absorptive roots (Root PC1 and PC2) (Fig. 4). Mixed 420 

tree species stands were related to lower Soil PC1, Soil PC2, and Root PC1 scores, and to higher 421 

Litter PC2 and Root PC2 scores, regardless of which of the four microbial response variables 422 

was fitted (see also Figure S3). These tree mixture effects on soil physicochemical parameters, 423 

forest floor litter characteristics, and absorptive root traits had some cascading effects on 424 

microbial activity. Tree species mixing indirectly, negatively influenced microbial biomass, 425 

DEA, and Sum15 through its negative affect on Soil PC1 (i.e. lower soil pH, clay and C content 426 

and higher soil density). Microbial H’ however, was positively, indirectly influenced by tree 427 

species mixing through its effects on Soil PC1, but negatively, indirectly influenced by its 428 

effects on Soil PC2, i.e. lower soil fertility in mixed stands leading to lower H’. Tree species 429 

mixing indirectly, positively influenced DEA through its positive effect on Litter PC2, that is 430 

to say mixed tree species stands had higher nutrient availability (lower C:N and higher P) 431 

leading to higher potential denitrification activity. In addition, tree species mixing indirectly, 432 

negatively influenced microbial biomass and Sum15 though its positive effect on Root PC2 433 

(Fig. 4a,c), meaning mixed tree species stands had lower root surface area and higher ECM 434 

colonization leading to lower microbial biomass and catabolic activity. Soil PC1 also had a 435 

consistent positive correlation with Litter PC1 (lower soil density and higher pH, clay and C 436 

contents leading to higher litter lignin and lower litter tannin/phenolics concentrations), while 437 

Soil PC2 had a negative effect on Litter PC2 in the DEA model (lower soil C:N and C content 438 

and higher bulk density leading to higher litter P concentration and lower C:N). These may have 439 

also been pathways by which tree species mixing influenced H’ and DEA. 440 

 441 

Discussion 442 

With the measurements of soil microbial functioning in our study, we did not detect direct 443 

tree species mixture effects over four mature natural forests across Europe, encompassing a 444 



wide range of climate, soil, and forest types. However, despite the absence of direct tree species 445 

mixture effects, we found that tree mixing indirectly affected soil microbial parameters through 446 

changes in tree functional traits, which partly confirms our first hypothesis, and potentially 447 

through changes in soil parameters. 448 

These results from natural forest stands of varying site conditions differ from those obtained 449 

in synthetic single site experiments. For example,  the long-term Jena experiment, manipulating 450 

herbaceous species diversity, showed a positive correlation between species richness 451 

(Eisenhauer et al., 2010; Lange et al., 2015) or root exudate diversity (Steinauer et al., 2016) 452 

and soil microbial biomass and activity. Similarly, the findings from a young tree plantation 453 

experiment support enhanced soil microbial biomass and activity in soil from communities with 454 

higher tree species richness (Khlifa, Paquette, Messier, Reich, & Munson, 2017). Compared to 455 

these single site experiments, our four study sites from different climate zones and with mature 456 

trees and distinct soil properties introduced more variation in a range of factors, making the 457 

detection of species mixing effects more difficult. However, in a recent meta-analysis covering 458 

a wide range of species (herbaceous and woody), habitat types (natural, artificial/planted, in 459 

container, forest, grassland, and cropland), successional stages, and climate zones, Chen et al. 460 

(2019) reported an overall higher soil microbial biomass and activity with increasing plant 461 

species richness. The studies they considered in their meta-analysis covered a much wider 462 

diversity gradient (from one up to 60 species combinations) and increasing plant species 463 

richness was the main driver of the observed generally positive biodiversity effects on soil 464 

microbial parameters. It seems therefore likely that the comparatively small difference from 465 

one to three tree species in the forests we studied did not allow the detection of a more general 466 

species richness effect potentially expressed at wider species richness gradients. Species 467 

identity effects may further outweigh mixture effects on soil microbial community composition 468 

and/or functioning (L. Chen et al., 2019; Dijkstra, West, Hobbie, & Reich, 2009; Scheibe et al., 469 



2015), particularly in a design with a low diversity gradient such as ours. However, since we 470 

did not have the same species at the four sites, we could not introduce species identity as a co-471 

variable in our statistical models, which is an unavoidable trade-off when working on natural 472 

forests and may have contributed to obscuring direct diversity effects. 473 

Despite the wide range of tree species and forest ecosystems covered by our study, tree 474 

mixtures had some general influence on the traits of forest floor litter and absorptive roots and 475 

on soil parameters, which appear to consequently affect soil microbial activity indirectly. Mixed 476 

stands generally displayed higher Litter PC2 scores (Fig. 1b, Figure S3), related to higher litter 477 

P concentrations and lower C:N ratios, indicating higher nutrient availability and potentially 478 

faster litter decomposition (Prescott, 2005). Higher decomposition rates lead to faster cycling 479 

and lower immobilization of nutrients, which could lead to a more balanced soil nutrient 480 

stoichiometry beneficial to soil microorganisms (Cleveland & Liptzin, 2007; Thomas & 481 

Packham, 2007). Tree mixtures also increase the probability of including complementary traits 482 

or substrates with non-additive effects on the microbial functioning (Joly et al., 2016). Higher 483 

forest floor litter P concentrations and lower C:N ratios associated with mixed stands are 484 

potentially an indirect stimulus of the higher DEA rates, as seen in the hierarchical PC2 SEM 485 

(Fig. 4b). Higher nitrogen mineralization rates have been correlated with mixed tree species 486 

stands (Forrester, 2017) and could lead to higher soil N availability for DEA. In correlation, 487 

higher litter turnover could increase C and nitrate availability, which typically limits 488 

denitrification (Robertson & Groffman, 2007). This lends support to the hypothesis that tree 489 

mixtures indirectly influence DEA through influences on forest floor litter quality and 490 

decomposability. These findings are in line with those of Thoms et al. (2010), who showed that 491 

aboveground tree species diversity (up to three species) stimulated soil microbial diversity 492 

mostly through indirect interactions with specific plant traits rather than by the tree species 493 

diversity itself. 494 



Mixture effects on leaf defense-related compounds (Litter PC1) or forest floor nutrient 495 

availability (Litter PC2) did not translate into an effect on microbial biomass (Cmic), metabolic 496 

respiration (Sum15), metabolic diversity (H’), or the range of C substrates used by the soil 497 

microbial community. This could mean that soil microbial biomass and C-use are insensitive to 498 

the observed differences in forest floor chemistry between single and mixed species forests. 499 

The forest floor chemistry variability among the forests composed of different tree species was 500 

likely too large for such differences to be expressed, asindicated by the considerable overlap in 501 

forest floor characteristics between single species forests and tree mixtures (Fig. 1b). Litter trait 502 

diversity is what usually affects microbial biomass and activity in the litter layer, potentially 503 

leading to altered decomposition  (Handa et al., 2014; Kou et al., 2020) and higher microbial 504 

abundance and diversity (Santonja et al., 2017). However, the impact on soil microbial 505 

communities is less understood. Controlled laboratory (Fanin et al., 2014; Pfeiffer et al., 2013) 506 

and field (Thoms et al., 2010) studies showed that soil microbial communities responded 507 

differently to various leaf litters decomposing at the soil surface and that tree litter leachate 508 

mixtures had non-additive, short-term effects on soil microbial activity (Joly et al., 2016). Our 509 

results from a field setting suggest that such litter effects may not be easily distinguished from 510 

numerous other sources of variation playing out at broader spatial scales, such as changing tree 511 

species identity. 512 

Contrary to our second hypothesis, traits of absorptive roots did not show more pronounced 513 

mixture effects on the measured soil microbial responses than the forest floor litter traits. Higher 514 

Root PC2 scores in mixed stands (Fig. 4, Figure S3), meaning lower root surface area and higher 515 

ECM colonization intensity (Fig. 1c), lead to lower microbial biomass and respiration potential 516 

(Sum15). This may indicate that mixed stands are higher on the fungal collaboration gradient 517 

(i.e. higher reliance on mycorrhizal partners for soil space exploration/exploitation and 518 

therefore resource acquisition; Bergmann et al., 2020). However, this effect is subtle and on 519 



average microbial biomass and Sum15 rates were not significantly different between stand 520 

types (Fig. 2a,c). Furthermore, metabolic diversity (H’) was not affected by Root PC2 scores. 521 

Root PC2 effects on microbial respiration but not on catabolic diversity may indicate microbial 522 

communities with different activity levels but equally diverse metabolic capabilities. This 523 

would entail changes in substrate use, which was seen for overall ‘used’ substrate respiration 524 

rate (ANOSIM results) but not at the individual substrate level (GLMM results).  525 

Despite the strong, negative tree mixture effect on Root PC1, appearing to represent a gradient in economic 526 

strategy (Fig. 1c), Root PC1 in turn only affected Sum15 but no other microbial variable (Fig. 4). The distinction between 527 

acquisitive and conservative root strategies is presently less clear for woody species than for 528 

herbaceous species, and mycorrhizal interactions were a proposed reason offsetting the 529 

presence of a RES (Bergmann et al., 2020; Kong et al., 2019; Ma et al., 2018; McCormack & 530 

Iversen, 2019). This is likely applicable to the findings here considering the robust Root PC2 531 

effect found, the Root PC2 axis being strongly associated to mycorrhizal colonization intensity. 532 

Indeed, the Root PC2 effect may lay along the “do it yourself” (i.e. roots that efficiently explore 533 

the soil space by themselves with a typically high SRL) vs. “outsourcing” (i.e. roots that rely 534 

more on mycorrhizal partners for soil resource acquisition correlated with a large root diameter) 535 

gradient correlated to microbial root associations (Bergmann et al., 2020). 536 

We acknowledge that the forest floor and tree root traits measured here are not exhaustive, 537 

and missing traits could have influenced findings. For example, the composition and quantity 538 

of root exudates could elucidate possible root effects on soil microbial functioning associated 539 

with tree species mixing (Steinauer et al., 2016). A more detailed analysis of carbon quality 540 

from forest floor and root exudates or decomposing roots may allow a better understanding of 541 

how tree mixtures affect soil microbial activity (Sun et al., 2018).  542 

Soil parameters had the strongest and most consistent effects on microbial responses, 543 

especially those defining the variance of Soil PC1 with increasing scores associated to higher 544 



pH, organic matter and clay concentrations and lower bulk density. Indeed, these soil 545 

parameters are principal factors determining soil microbial community composition and 546 

functioning (Fierer & Jackson, 2006; Paul, 2007; Thomas & Packham, 2007). In our study, 547 

higher Soil PC1 scores were correlated with higher potential respiration rates (Sum15 and DEA) 548 

and microbial biomass, while inversely correlated with catabolic diversity (H’). Clay content 549 

strongly affects microbial community structure due to its often higher nutrient stocks and 550 

desiccation protection for bacteria (Frey, 2015; Scheibe et al., 2015; Thoms et al., 2010). In 551 

addition, the use of the 15 C-substrates was overall influenced by these soil parameters but 552 

effects on individual substrates were not universal. SEM results also showed a possible indirect 553 

influence of tree species mixing on soil microbial functioning via its correlation with soil 554 

parameters, physicochemical parameters (Soil PC1) in particular. However, potential patterns 555 

seen in the SEMs were not always supported by GLMM results or in contradiction to one 556 

another. For example, the indirect, negative mixed tree species effect on DEA via it’s negative 557 

correlation with Soil PC1 is contradictory to the indirect, positive tree species mixing effect on 558 

DEA via Litter PC2. This complex dynamic is possibly the reason for the non-significant, direct 559 

tree species mixing effect on soil microbial functioning; a combination of positive and negative 560 

mixing effects may have cancelled each other. Indeed, the studied system is intricate, with 561 

multi-directional, hierarchal pathways by which trees species mixing can affect microbial 562 

functioning. This complexity is not even taking into consideration the reciprocal influences 563 

between the studied parameters. Notably, although tree species diversity influences soil 564 

properties (Reich et al., 2005), soil properties also determine plant species composition and 565 

diversity (Lafleur, Paré, Munson, & Bergeron, 2010; van Breemen, Finzi, & Canham, 1997). 566 

The predominant direction of this reciprocal influence is not clear in the forests studied here, 567 

because although they are mostly naturally established, i.e. soil properties influenced forest 568 



establishment, they are also mature stands, meaning the trees have had time to significantly 569 

alter soil parameters. 570 

 The soil C:N ratio (related to Soil PC2), a potential indicator of soil fertility or nutrient 571 

limitation (Cleveland & Liptzin, 2007), did not affect microbial biomass, activity (Sum15 or 572 

DEA), or metabolic diversity (H’). These variables are measured under non-limiting conditions 573 

(i.e. substrate additions) and would therefore obscure any C- and to a lesser degree N-limitation 574 

effects. The soil C:N ratio had a strong correlation with overall ‘used’ C substrate respiration 575 

dissimilarity (i.e. ANOSIM results). However, this correlation appears to be primarily driven 576 

by the negative relationship between soil C:N ratio and oxalic acid use, which may indicate that 577 

soils less limited in N permit a larger microbial response to the addition of oxalic acid. 578 

 579 

Conclusion 580 

The main interest of our study is that it covers a wide range of forests, tree species, and 581 

environmental conditions seeking to understand whether there are any general patterns of tree 582 

species mixing on broad functions of soil microbial communities. A strong result of our study 583 

was that, compared to single tree species forests, mixed forests composed of any three tree 584 

species modify soil microbial biomass and functioning indirectly through traits of the forest 585 

floor litter and of absorptive roots and potentially through soil parameters across forests as 586 

different as Mediterranean and boreal forests. This result helps for a better mechanistic 587 

understanding of mixed tree species effects on soil microbial functioning beyond simple species 588 

number considerations. The studied system is however, complex and disentangling the effects 589 

of individual parameters is difficult at the large spatial scale of our study. The consequences of 590 

changes in tree species composition in response to species loss, climate change, or management 591 

decisions for soil microbial functioning may thus be largely determined by the modification of 592 



soil properties, forest floor litter properties, and the traits of absorptive roots represented by the 593 

newly established tree communities. 594 
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Table 1. GLM model averaging results: R2 marginal (R2m), and R2 conditional (R2c), estimated 944 

slope (Est.), standard error (SE), importance (Imp.), z-value, and p-values for the response 945 

variables: microbial biomass (µg Cmicrobial g
-1 dry soil), potential denitrification enzyme activity 946 

(DEA; µg N-N2O g-1 dry soil h-1), sum of the microbial catabolic respiration induced by 15 947 

different C-sources (Sum15; µg C-CO2 g
-1 dry soil h-1), and Shannon metabolic diversity index 948 

(H’). Blue and red estimate values indicate positive and negative relationships, respectively. 949 

Explanatory variables are abbreviated as: 3-species tree mixture stands (Tree mix.), first and 950 

second forest floor litter PCA axis (Litter PC1 and Litter PC2), first and second absorptive root 951 

PCA axis (Root PC1 and Root PC2), and first and second soil parameters axis (Soil PC1 and 952 

Soil PC2). P-values are coded as such: p < 0.05*, p < 0.01**, p < 0.001***.  953 

  Microbial Biomass Denitrification 

  R2m =  0.35 R2c = 0.77 AIC= 566 R2m =  0.23 R2c = 0.79 AIC= 875.6 

  Est. SE Imp. z-value p-value   Est. SE Imp. z-value p-value   

Tree mix. 0.04 0.11 0.30 0.40 0.69   -0.10 0.21 0.33 0.46 0.65   

Litter PC1 0.04 0.04 0.68 1.08 0.28   0.05 0.06 0.53 0.76 0.45   

Litter PC2 0.05 0.05 0.65 1.01 0.31   0.22 0.07 1.00 3.00 0.003 ** 

Root PC1 -0.01 0.02 0.27 0.35 0.73   0.02 0.04 0.34 0.46 0.65   

Root PC2 -0.11 0.04 1.00 2.96 0.003 ** -0.02 0.05 0.35 0.47 0.64   

Soil PC1 0.37 0.07 1.00 5.04 5.00E-07 *** 0.60 0.14 1.00 4.24 0.00002 *** 

Soil PC2 0.00 0.04 0.20 0.05 0.96   -0.02 0.08 0.24 0.23 0.82   

  Sum15 H' 

  R2m =  0.30 R2c = 0.67 AIC= 396.4 R2m =  0.14 R2c = 0.35 AIC= -1905.7 

  Est. SE Imp. z-value p-value   Est. SE Imp. z-value p-value   

Tree mix. 0.04 0.08 0.37 0.51 0.61   -0.0004 0.001 0.61 0.37 0.71   

Litter PC1 0.00 0.01 0.26 0.27 0.79   -0.0003 0.0004 0.30 0.70 0.48   

Litter PC2 0.01 0.02 0.38 0.54 0.59   0.00004 0.0003 0.48 0.15 0.88   

Root PC1 -0.02 0.03 0.60 0.91 0.36   0.0005 0.0005 0.22 0.96 0.34   

Root PC2 -0.08 0.03 0.97 2.42 0.0154 * -0.001 0.001 0.62 1.56 0.12   

Soil PC1 0.23 0.04 1.00 5.22 2.00E-07 *** -0.002 0.001 0.84 3.78 0.0002 *** 

Soil PC2 0.00 0.02 0.22 0.07 0.94   0.001 0.001 1.00 0.92 0.36   

  954 



Table 2. ANOSIM results for the respiration rates of the ‘used’ C sources (defined as at least 955 

15% higher than the respiration rates measured with pure water addition). Explanatory variables 956 

are abbreviated as: 3-species tree mixture stands (Tree mixture), first and second forest floor 957 

litter PCA axes (Litter PC1 and Litter PC2), first and second absorptive root PCA axes (Litter 958 

PC1 and Litter PC2), and first and second soil parameters axes (Soil PC1 and Soil PC2). P-959 

values are coded as such: p < 0.05*, p < 0.01**, p < 0.001***.  960 

  Df Sums of sqs Mean sqs F model R2 Pr(>F)   

Tree mixture 1 0.25 0.25 2.28 0.03 0.098 . 

Litter PC1 1 0.03 0.03 0.26 3.49E-03 0.96  
Litter PC2 1 0.17 0.17 1.50 0.02 0.67  
Root PC1 1 0.15 0.15 1.35 0.02 0.69  
Root PC2 1 0.39 0.39 3.54 0.05 0.04 * 

Soil PC1 1 0.61 0.61 5.51 0.07 0.01 * 

Soil PC2 1 0.64 0.64 5.80 0.08 1.60E-03 ** 

Residuals 55 6.07 0.11  0.73   
Total 62 8.30   1.00   

  961 



Figures: 962 

 963 

Figure 1. Principal component analyses (PCA) ordination of a. soil parameters, b. forest floor 964 

characteristics, and c. absorptive root traits. Soil parameters (for the first 10 cm of the A 965 

horizon): BD= bulk density (g cm-3), C= carbon content (mg g-1 soil), Clay= clay content (%), 966 

C:N= carbon to nitrogen ratio, pH= soil pH. Forest floor characteristics: C:N ratio = carbon to 967 

nitrogen ratio, Lignin = lignin concentration (g kg-1 dry litter), Mass = litter mass (kg m-2), 968 

Phosphorous = phosphorous concentration (%), Total phenolics = total phenolic concentration 969 

(mg g-1 dry litter), Condensed tannins = condensed tannin concentration (%). Absorptive root 970 

traits: Diameter = root diameter (mm), Ectomycorrhizal colonization = ectomycorrhizal 971 

colonization intensity (number cm-1), RLD = root length density (cm cm-3), RTD = root tissue 972 

density (g cm-3), SRL = specific root length (m g-1), Surface area = root surface area (cm2). 973 

Triangles and circles indicate tree triplets. PCA loadings can be found in Table S4. 974 



 975 

Figure 2. Variations between soil from mono-specific tree stands (gray) or mixed tree stands 976 

(green) for microbial biomass (µg Cmic g
-1 dry soil), denitrification potential (DEA; µg N-N2O 977 

g-1 dry soil h-1), sum of the microbial catabolic respiration induced by 15 different C-substrates 978 

(Sum15; µg C-CO2 g
-1 dry soil h-1), and Shannon metabolic diversity index (H’). Marginal R2 979 

(R2m) and conditional (R2c) values are from GLM results. There were no statistically significant 980 

differences between mono-specific and mixed stand plots (indicated by the same letter “a”). 981 

Data presented by site and by forest stand type can be found in Figure S4. 982 



 983 

Figure 3. Average ‘used’ C substrate respiration rates (µg C-CO2 g
-1 dry soil h-1; defined as at 984 

least 15% higher than the respiration rates measured with pure water addition) of the fifteen 985 

substrates belonging to five substrate groups for soil from mono-specific tree stands (black) or 986 

mixed tree stands (green). Abbreviations: D-glucose (GLU), xylan (XYL), cellulose (CELL), 987 

L-asparagine (ASP), L-serine (SER), L-lysine (LYS), L-glycine (GLY), L-glutamine (GLUT), 988 

N-acetylglucosamine (N-AC), oxalic acid (OX), uric acid (UR), malic acid (MAL), caffeic acid 989 

(CAF), syringic acid (SYR), and vanillic acid (VAN). ANOSIM results showed a marginally 990 

significant difference in substrate utilization pattern between mono-specific and mixed stands 991 

(Table 2). Data presented by site and by forest stand type can be found in Figure S5. 992 



 993 

Figure 4. Structural equation models (SEM) quantifying the relative importance of the 994 

directional causal relationships between 3-species tree mixtures (Tree mixture), forest floor 995 

litter characteristics (Litter PC1 and PC2), absorptive root traits (Root PC1 and PC2), and soil 996 

parameters (Soil PC1 and PC2) on soil microbial functioning: a. microbial biomass (Cmicrobial; 997 

µg Cmicrobial g
-1 dry soil) and b. potential denitrification enzyme activity (DEA; µg N-N2O g-1 998 

dry soil h-1). Positive relationships are indicated by blue arrows, negative relationships by red 999 

arrows, and non-significant relationships by black arrows. Estimate values are positioned on 1000 

the corresponding arrow, and p-values are coded as such: p < 0.05*, p < 0.01**, p < 0.001***.    1001 



1002 

Figure 4 Continued. Structural equation models (SEM) quantifying the relative importance of 1003 

the directional causal relationships between 3-species tree mixtures (Tree mixture), forest floor 1004 

litter characteristics (Litter PC1 and PC2), absorptive root traits (Root PC1 and PC2), and soil 1005 

parameters (Soil PC1 and PC2) on soil microbial functioning: c. sum of the microbial catabolic 1006 

respiration induced by 15 different C-sources (Sum15, µg C-CO2 g-1 dry soil h-1) and d. 1007 

Shannon metabolic diversity index (H’).  1008 
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