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EQUIVALENT NORMS WITH THE PROPERTY (β) OF ROLEWICZ

We extend to the non separable setting many characterizations of the Banach spaces admitting an equivalent norm with the property (β) of Rolewicz. These characterizations involve in particular the Szlenk index and asymptotically uniformly smooth or convex norms. This allows to extend easily to the non separable case some recent results from the non linear geometry of Banach spaces.

Introduction and notation

Banach spaces admitting an equivalent norm with the property (β) of Rolewicz recently played an important role in the non linear geometry of Banach spaces. In the separable case it has been proved in [START_REF] Baudier | A new metric invariant for Banach spaces[END_REF] that this class is stable under coarse Lipschitz embeddings and in [START_REF] Dilworth | The transfer of property (β) of Rolewicz by a uniform quotient map[END_REF] that it is stable under uniform quotients.

The aim of this paper is to give a complete characterization of the Banach spaces that admit an equivalent norm with the property (β) of Rolewicz in the non separable setting. This will in particular extend Theorem 6.3 in [START_REF] Dilworth | Asymptotic geometry of Banach spaces and uniform quotients maps[END_REF]. As an easy consequence we will deduce that the above mentioned non linear results are also valid in the non separable case.

Let us first define the properties of norms that will be considered in this paper. For a Banach space (X, ) we denote by B X the closed unit ball of X and by S X its unit sphere.

We start with a property introduced by S. Rolewicz in [START_REF] Rolewicz | On ∆ uniform convexity and drop property[END_REF] and now called property (β) of Rolewicz. For its definition, we shall use a characterization due to D. Kutzarova [START_REF] Kutzarova | k-β and k-nearly uniformly convex Banach spaces[END_REF]. An infinite-dimensional Banach space X is said to have property (β) if for any t ∈ (0, a], where the number 1 ≤ a ≤ 2 depends on the space X, there exists δ > 0 such that for any x in B X and any t-separated sequence ( there exists n ≥ 1 so that

x n ) ∞ n=1 in B X , 2010 
x -x n 2 ≤ 1 -δ.

For a given t ∈ (0, a], we denote β X (t) the supremum of all δ ≥ 0 so that the above property is satisfied. It is important to recall that a Banach space with property (β) is reflexive (see [START_REF] Rolewicz | On ∆ uniform convexity and drop property[END_REF]).

The next definitions are due to V. Milman [START_REF] Milman | Geometric theory of Banach spaces. II. Geometry of the unit ball (Russian)[END_REF] and we follow the notation from [START_REF] Johnson | Almost Fréchet differentiability of Lipschitz mappings between infinite-dimensional Banach spaces[END_REF]. For t > 0, x ∈ S X and Y a closed linear subspace of X, we define

ρ(t, x, Y ) = sup y∈S Y x + ty -1 and δ(t, x, Y ) = inf y∈S Y x + ty -1. Then ρ X (t) = sup x∈S X inf dim(X/Y )<∞ ρ(t, x, Y ) and δ X (t) = inf x∈S X sup dim(X/Y )<∞ δ(t, x, Y ).
The norm is said to be asymptotically uniformly smooth

(in short AUS) if lim t→0 ρ X (t) t = 0.
It is said to be asymptotically uniformly convex (in short AUC) if

∀t > 0 δ X (t) > 0.
Similarly, there is in X * a modulus of weak * asymptotic uniform convexity defined by

δ * X (t) = inf x * ∈S X * sup E inf y * ∈S E { x * + ty * -1},
where E runs through all weak * -closed subspaces of X * of finite codimension. The norm of X * is said to be weak * uniformly asymptotically convex

(in short w * - AUC) if ∀t > 0 δ * X (t) > 0.
The Szlenk index is a fundamental object which is, as we will recall, related to the existence of equivalent asymptotically uniformly smooth norms. Let us now define it. Consider a real Banach space X and K a weak * -compact subset of X * . For ε > 0 we let V be the set of all relatively weak * -open subsets V of K such that the norm diameter of V is less than ε and s ε K = K \∪{V : V ∈ V}. Then we define inductively s α ε K for any ordinal α by

s α+1 ε K = s ε (s α ε K) and s α ε K = ∩ β<α s β ε K if α is a limit ordinal.
We then define Sz(X, ε) to be the least ordinal α so that s α ε B X * = ∅, if such an ordinal exists. Otherwise we write Sz(X, ε) = ∞. The Szlenk index of X is finally defined by Sz(X) = sup ε>0 Sz(X, ε). In the sequel ω will denote the first infinite ordinal and ω 1 the first uncountable ordinal.

Preliminary results

Our first statement contains all the information on the duality between asymptotic uniform smoothness and weak * -asymptotic uniform convexity and is an extension to the non separable setting of Proposition 2.6 in [START_REF] Godefroy | Szlenk indices and uniform homeomorphisms[END_REF].

Proposition 2.1. Let X be a Banach space and 0 < σ, τ < 1.

(a) If ρ X (σ) < στ , then δ * X (6τ ) ≥ στ . (b) If δ * X (τ ) > στ , then ρ X (σ) ≤ στ
Before to proceed with its proof we need an elementary lemma.

Lemma 2.2. Let X be a Banach space and ε > 0. If Y is a finite codimensional subspace of X, then there exists a weak * -closed finite codimensional subspace E of X * such that

∀z * ∈ E sup y∈B Y |z * (y)| ≥ 1 2 + ε z * . Proof. We can write Y = n i=1 Ker x * i , with x * i ∈ X * . Let F be the linear span of {x * 1 , .., x * n }. Note that Y ⊥ = F and Y * is canonically isometric to X * /F . In other words, for any x * ∈ X * , sup y∈B Y |x * (y)| = d(x * , F
). We now apply the standard Mazur technique as follows. Pick a η-net {u * 1 , .., u * k } of S F and u i ∈ S X so that u * i (u i ) ≥ 1-η. If η > 0 is chosen small enough then we can take E = k j=1 Ker u j . Proof of Proposition 2.1. (a) Assume that ρ X (σ) < στ and fix ε > 0. Let x * ∈ S X * and choose x ∈ S X such that x * (x) ≥ 1 -ε. Then there exists a finite codimensional subspace Y of X such that ∀y ∈ S Y x + σy < 1 + στ.

We may also assume that Y ⊂ Ker(x * ). Then, it follows from Lemma 2.2 that there exists a weak * -closed finite codimensional subspace E of X * such that

∀z * ∈ E sup y∈B Y |z * (y)| ≥ 1 2 + ε z * and z * (x) = 0. Therefore ∀y ∈ S Y ∀z * ∈ S E x * + 6τ z * ≥ 1 1 + στ x * + 6τ z * , x + σy .
Taking the supremum over y ∈ S Y , we get that

∀z * ∈ S E x * + 6τ z * ≥ 1 1 + στ 1 -ε + 6στ 2 + ε .
Finally, letting ε tend to 0, we conclude that

δ * X (6τ ) ≥ 1 + 3στ 1 + στ -1 ≥ στ.
(b) Assume that δ * X (τ ) > στ . We denote by E the set of all finite codimensional subspaces of X. For E, F ∈ E, we note E F if F ⊆ E. Then (E, ) is a directed set. We shall prove our result by contradiction and therefore assume also that for some x ∈ S X , ρ X (σ, x) > στ . So we can pick ρ such that στ < ρ < ρ X (σ, x) and δ * 

X (τ ) > ρ. Then ∀E ∈ E ∃x E ∈ S E x + σx E > 1 + ρ.
∃α 0 ∈ A ∀α ≥ α 0 x α , x * = 0, | x, x * α | < ε and x * α < c + ε. Then, for all α ≥ α 0 x + σx α , x * + x * α = x, x * + x, x * α + σ x α , x * α ≤ 1 + ε + σ(c + ε).
Since c < τ and στ < ρ, for ε initially chosen small enough this implies that

∀α ≥ α 0 x + σx α , x * + x * α = x + σx α , y * α < 1 + ρ, which is impossible.
(ii) Assume now that c ≥ τ and fix ε > 0. We will first show that x * ≤ 1 -σc, thus we may assume that x * = 0. Recall that δ * X (τ ) > ρ. So, there exists a weak *closed finite codimensional subspace F of X * such that

∀y * ∈ S F x * + τ x * y * ≥ (1 + ρ) x * .
Since (x * α ) α∈A is weak * -converging to 0 and ( x * α ) α∈A converges to c, we have that d(x * α , cS E ) tends to 0. Therefore, we deduce

∃α 1 ∈ A ∀α ≥ α 1 x * + τ c -1 x * x * α ≥ (1 + ρ) x * -ε.
Note that λ = τ c -1 x * ∈ [0, 1] and that we can write

x * + λx * α = λ(x * + x * α ) + (1 -λ)x * .
Using the convexity of the norm we deduce that

x * + λx * α ≤ λ x * + x * α + (1 -λ) x * = λ + (1 -λ) x * . Therefore (1 + ρ) x * -ε ≤ τ c -1 x * + (1 -τ c -1 x * ) x * .
Letting ρ tend to στ and ε tend to 0, we get that

(1 + στ ) x * ≤ τ c -1 x * + (1 -τ c -1 x * ) x * .
Dividing by x * , we obtain

στ ≤ τ c -1 (1 -x * ) and x * ≤ 1 -σc. Pick now α 2 ∈ A so that for all α ∈ A, α ≥ α 2 , we have x α , x * = 0, | x, x * α | < ε and x * α ≤ c + ε. Then ∀α ≥ α 2 x + σx α , x * + x * α ≤ 1 -σc + ε + σ(c + ε) < 1 + ρ, for ε small enough, which is again a contradiction.
Proposition 2.1 can be rephrased in terms of the Young's duality between ρ X and δ * X . Recall that for f continuous monotone increasing on [0, 1] with f (0) = 0, its dual Young function is defined by

∀t ∈ [0, 1] f * (t) = sup{st -f (s) : 0 ≤ s ≤ 1}.
Let C ≥ 1 and f, g be continuous monotone increasing functions on [0, 1] satisfying f (0) = g(0) = 0. We will say that f, g are C-equivalent if f (t) ≥ g(t/C) and g(t) ≥ f (t/C) for all t ∈ [0, 1]. Then we can state.

Corollary 2.3. For any Banach space X we have that (ρ X ) * and δ * X are 6-equivalent.

Proof. Note first that the functions ρ X and δ * X are 1-Lipschitz. Let us first show that for all t ∈ (0, 1], (ρ

X ) * (t) ≥ δ * X ( t 2 ). So let t ∈ (0, 1] and u = δ * X ( t 2 ). We may assume that u > 0. Since δ * X ( t 2 ) ≤ t 2 , there exists s ∈ (0, 1] such that u = s t 2 .
Applying the statement (b) in Proposition 2.1 and using the continuity of ρ X we get that ρ X (s) ≤ s t 2 . This implies that (ρ

X ) * (t) ≥ st-ρ X (s) ≥ s t 2 = δ * X ( t 2 
). We now wish to show that for all t ∈ (0, 1], δ *

X (t) ≥ (ρ X ) * ( t 6 
). Thus, we need to prove that for all s ∈ (0, 1], δ *

X (t) ≥ s t 6 -ρ X (s). This is clearly true if δ * X (t) ≥ s t 6 . If δ * X (t) < s t 6 , then statement (a) in Proposition 2.1 insures that ρ X (s) ≥ s t 6
, which clearly implies the desired estimate.

The following result is now an immediate consequence. Its proof in the separable case can be found for instance in [START_REF] Dutrieux | Géométrie non linéaire des espaces de Banach[END_REF].

Corollary 2.4. Let X be a Banach space. Then X is AUS if and only if X * is weak * -AUC. In particular, if X is reflexive, then X is AUS if and only if X * is AUC.
We now turn to the links between the Szlenk index and the existence of equivalent AUS renormings. The fundamental result on AUS renormings is due to Knaust, Odell and Schlumprecht in the separable case [START_REF] Knaust | On asymptotic structure, the Szlenk index and UKK properties in Banach spaces[END_REF] (see also [START_REF] Odell | Embedding into Banach spaces with finite dimensional decompositions[END_REF]) and to Raja in the general case [START_REF] Raja | On weak * uniformly Kadec-Klee renormings[END_REF]. It is the following. Theorem 2.5. Let X be a Banach space. Then X is AUS renormable if and only if Sz(X) ≤ ω. In that case there exists a, b > 0, p ∈ (1, ∞) and and equivalent norm | | on X such that ρ | | (t) ≤ at p and δ * | | (t) ≥ bt q , where q is the conjugate exponent of p.

The original result in [START_REF] Knaust | On asymptotic structure, the Szlenk index and UKK properties in Banach spaces[END_REF] or [START_REF] Raja | On weak * uniformly Kadec-Klee renormings[END_REF] are about ρ | | . The estimate on δ * X can be deduced from Corollary 2.3.

As an immediate consequence of the two previous statements we have. (c) There exists b > 0, q ∈ (1, ∞) and and equivalent norm | | on X such that δ | | (t) ≥ bt q (we say that | | is AUC with power type q).

Szlenk index and subspaces or quotients with a basis

In this section we show that the Szlenk index of a reflexive Banach space is determined by its subspaces or quotients with a basis, when it is countable. For subspaces, it is a refinement of Proposition 3.1 in [START_REF] Lancien | On the Szlenk index and the weak * -dentability index[END_REF]. The result for quotients was given by Proposition 3.5 in [START_REF] Lancien | On the Szlenk index and the weak * -dentability index[END_REF]. Proposition 3.1. Let X be a reflexive Banach space and let α < ω 1 so that Sz(X) > α. Then (i) There is a subspace Y of X with a basis such that Sz(Y ) > α.

(ii) There exists a subspace Z of X such that X/Z has a basis and Sz(X/Z) > α.

Proof.

(i) We will just slightly refine the proof of Proposition 3.1 in [START_REF] Lancien | On the Szlenk index and the weak * -dentability index[END_REF]. So let us recall the construction. We first introduce a family (T α ) α<ω 1 of well founded trees in ω <ω (the set of finite sequences of natural numbers) constructed inductively as follows:

T 0 = {∅} T α+1 = {∅} ∪ ∞ n=0 n T α , where n T α = {n s, s ∈ T α }. T α = {∅} ∪ ∞ n=0 n T αn , if α is a limit ordinal and (α n ) ∞
n=0 an enumeration of [0, α). The trees T α are equipped with their natural order: (m 1 , .., m l ) ≤ (n 1 , .., n k ) if l ≤ k and m i = n i for i ≤ l. Note that the height of T α is ht(T α ) = α. Moreover, if for s in T α we denote T α (s) = {t ∈ ω <ω , s t ∈ T α } and h α (s) = ht(T α (s)), we have that T α (s) = T hα(s) . Recall also (see [START_REF] Lancien | On the Szlenk index and the weak * -dentability index[END_REF]) that for any 1 ≤ α < ω 1 , there exists a bijection ϕ α : ω → T α such that for any s, s in T α , s < s implies ϕ -1 α (s) < ϕ -1 α (s ). Assume now that Sz(X) > α. So there exist ε > 0 and

x * ∈ S α ε (B X * ). Pick a sequence (ε n ) ∞ n=1 such that ∞ n=1 (1 + ε n ) ≤ 2.
We build, by induction on n,

(x * ϕα(n) ) ∞ n=0 in B X * , (x n ) ∞ n=1 in S X , a finite ε n -net F n of
the unit ball of the linear span of {x 1 , .., x n } and G n a finite subset of S X * which is norming for F n so that:

(a) x * ϕα(0) = x * ∅ = x * . (b) ∀n ∈ ω x * ϕα(n) ∈ s hα(ϕα(n)) ε (B X * ) (c) ∀n ≥ 1, x n ∈ G ⊥ n-1 . (d) ∀n ≥ 1 (x * ϕα(n) -x * sn )(x n ) > ε 6
, where s n is the predecessor of

ϕ α (n). (e) ∀n ≥ 2 ∀1 ≤ k ≤ n -1 |(x * ϕα(n) -x * sn )(x k )| ≤ 2 -n .
Set x * ϕα(0) = x * ∅ = x * . Let now n ≥ 1 and assume that x * ϕα(k) , x k , F k and G k have been constructed for 0 ≤ k ≤ n -1 and satisty a)...e). There exists i n < n such that

ϕ α (n) = ϕ α (i n ) k n , with k n ∈ N. By induction hypothesis x * ϕα(in) ∈ s hα(ϕα(in)) ε (B X * ) ⊂ s hα(ϕα(n))+1 ε (B X * ).
Since X is reflexive, we can apply Lemma 2.2 and the above inclusion to find x * ϕα(n)

and

x n ∈ S G ⊥ n-1
such that (d) and (e) are satisfied. Then we pick an ε n -net F n of the unit ball of the linear span of {x 1 , .., x n } and G n a finite subset of S X * which is 1-norming for F n . Our inductive construction is now finished.

Note that, by the standard Mazur technique, our condition (c) implies that (ii) This is a particular case of Proposition 3.5 in [START_REF] Lancien | On the Szlenk index and the weak * -dentability index[END_REF]. The reflexive case being easier, let us just point for the sake of completeness that in the above construction, we only pick

(x n ) ∞ n=1 is a 2-basic
x n ∈ S X such that (x * ϕα(n) -x * sn )(x n ) > ε 3 . If we denote u * n = x * ϕα(n) - x *
sn , still using the standard Mazur gliding hump technique, we can insure that (u * n ) is a basic sequence. Since X is reflexive, we have that (u * n ) converges weakly to 0 in X * . Let now F be the closed linear span of (x * ϕα(n) ) ∞ n=0 and Z = F ⊥ ⊂ X. We still have that (u * n ) converges to 0 weakly in F , i.e. weak * in (X/Z) * . It then follows from the construction of (u * n ) that x * ∈ s α ε 3

(B (X/Z) * ) and Sz(X/Z) > α.

Main result

We start this section by recalling the know results on reflexive spaces having an equivalent norm which is AUS and AUC. It was shown in [START_REF] Kutzarova | An isomorphic characterization of the property (β) of Rolewicz[END_REF], with a different terminology, that if a norm of a reflexive Banach space is AUS and AUC then it has property (β). We will need the following quantitative version of this result (see Theorem 5.2 in [START_REF] Dilworth | Compactly uniformly convex spaces and property β of Rolewicz[END_REF]). Theorem 4.1. Let X be a reflexive Banach space. Assume that ρ X (t) ≤ at p and δ X (t) ≥ bt q for some a, b > 0 and p, q ∈ (1, ∞) and all t ≤ 1, then there exits c > 0

such that β X (t) ≥ ct pq-p p-1 , for t ≤ 1.
Note that Theorem 5.2 in [START_REF] Dilworth | Compactly uniformly convex spaces and property β of Rolewicz[END_REF] is stated with indices called b X and d X instead of ρ X and δ X respectively, where b X (t) = sup{lim sup n→∞ x + tx n -1} and d X (t) = inf{lim inf n→∞ x + tx n -1}, the above sup and inf being taken over all weakly null sequences in B X . The proof of Theorem 5.2 in [START_REF] Dilworth | Compactly uniformly convex spaces and property β of Rolewicz[END_REF] can be easily adapted to the moduli ρ X and δ X .

We will now prove our main result, which gathers all the linear characterizations of the Banach spaces admitting an equivalent norm with property (β). Before to state it, let us recall that a blocking of a basic sequence (e n ) ∞ n=1 in a Banach space X is a sequence of subspaces (X k ) ∞ k=1 of X such that for any k ≥ 1, X k is the linear span of {e n k , .., e n k+1 -1 }, where n 1 = 1 and (n k ) ∞ k=1 is an increasing sequence in N. For C ≥ 1 and p, q ∈ (1, ∞), we say that such a blocking satisfies (C, p, q) estimates if for all x 1 , .., x m in the linear span of (e n ) with consecutive disjoint supports with respect to the blocking (X k ):

1 C m i=1 x i p 1/p ≤ m i=1 x i ≤ C m i=1
x i q 1/q .

Theorem 4.2. Let X be a reflexive Banach space. The following assertions are equivalent.

(i) Sz(X) ≤ ω and Sz(X * ) ≤ ω.

(ii) There exists p ∈ (1, ∞) such that X admits an equivalent AUS norm with power type p and there exists q ∈ (1, ∞) such that X admits an equivalent AUC norm with power type q.

(iii) There exist p, q ∈ (1, ∞) such that X admits an equivalent norm which is simultaneously AUS of power type p and AUC of power type q.

(iv) There exists r ∈ (1, ∞) such that X admits an equivalent norm with property (β) with power type r.

(v) There exists C ≥ 1 and 1 < q ≤ p < ∞ so that each basic sequence in X has a blocking which admits (C, p, q) estimates.

The main implication to prove is (ii) ⇒ (iii). Let us first state and prove separately a more precise statement. Lemma 4.3. Let X be a reflexive Banach space. Assume that there exist p, q ∈ (1, ∞) such that X admits an equivalent AUS norm with power type p and an equivalent AUC norm with power type q. Then X admits an equivalent norm which is simultaneously AUS of power type p and AUC of power type 4q.

Proof. We shall adapt the proof of Proposition IV.5.2 in [START_REF] Deville | Smoothness and renormings in Banach spaces[END_REF], which is due to John and Zizler [START_REF] John | A short proof of a version of Asplund averaging theorem[END_REF]. The technique is a variant of the so-called Asplund averaging method initiated by E. Asplund in [START_REF] Asplund | Averaged norms[END_REF]. So assume that there exist a, b > 0 such that X admits an equivalent norm N satisfying δ N (t) ≥ at q for all t ∈ (0, 1) and an equivalent norm M satisfying ρ M (t) ≤ bt p for all t ∈ (0, 1). Assume also, as we may, that for all x ∈ X, N (x) ≤ M (x) ≤ CN (x), with C ≥ 1. Note that Corollary 2.4 insures the existence of c > 0 so that δ M * (t) ≥ ct q , where q is the conjugate exponent of p. We now define ∀n ≥

1 ∀x * ∈ X * x * * n = N * (x * ) + n -1 M * (x * ). Then n is the predual norm of * n on X and we set ∀x ∈ X |x| = ∞ n=1 n -3 x n .
We start with the estimation of ρ | | . It is easy to check that there exists c 1 > 0 such that for all n ≥ 1, δ * n (t) ≥ c 1 n -1 t q . Then Corollary 2.4 yields the existence of b 1 > 0 such that ρ n (t) ≤ 2nb 1 t p . Let now x ∈ X so that |x| = 1 and t ∈ (0, 1). Note that there exist A, B > 0 such that for all x ∈ X and n ≥ 1, A|x| ≤ x n ≤ B|x| and A|x| ≤ N (x) ≤ B|x|.

Therefore |y| ≤ t implies that y n x -1 n ≤ BA -1 t. Pick n 0 ≥ 1 such that 2B n>n 0 n -3 ≤ Ct p , with C > 0 that will be made precise later. Then we can find a finite codimensional subspace E of X such that for all y ∈ E with |y| ≤ t we have

∀n ≤ n 0 x + y n = x n x x n + y x n n ≤ x n (1 + nb 1 B p A -p t p ) ≤ x n + nb 1 B p+1 A -p t p .
Therefore

n 0 n=1 n -3 x + y n ≤ n 0 n=1 n -3 x n + t p b 1 B p+1 A -p n 0 n=1 n -2 ≤ 1 + Ct p , where C = b 1 B p+1 A -p ∞ n=1 n -2 . Note that x + y n ≤ B(1 + t) ≤ 2B.
Finally, our initial choice of n 0 implies that |x + y| ≤ 1 + 2Ct p . We have shown that | | is AUS with power type p.

Let us now turn to the study of

δ | | . First, note that ∀n ≥ 1 ∀x ∈ X 1 - 1 n N (x) ≤ x n ≤ N (x).
Consider x ∈ X so that |x| = 1 and t ∈ (0, 1). Let now n 0 be the integer so that n 0 -1 ≤ αt -q ≤ n 0 , where the choice of the constant α > 0 will be explained later. Recall that |y| ≥ t implies that for all n ≥ 1, y n x -1 n ≥ AB -1 t and N (y)N (x) -1 ≥ AB -1 t. So we may pick a finite codimensional subspace E of X such that for all y ∈ B E , with |y| ≥ t we have (4.1)

N (x + y) ≥ N (x) 1 + aA q B q t q . Thus (4.2) x + y n 0 = 1 - 1 n 0 N (x + y) ≥ 1 - t q α 1 + aA q B q t q x n 0 ≥ x n 0 + Dt q ,
with D = aA q (2B q ) -1 , if α was initially chosen large enough (depending only on a, A, B).

We have also that for all n > n 0 and all y ∈ B E with |y| ≥ t,

(4.3) x + y n ≥ (1 - 1 n )N (x + y) ≥ 1 - t q α 1 + aA q B q t q x n ≥ x n .
Given (ε n ) n 0 -1 n=1 in (0, 1), the standard Mazur technique allows us to choose E such that we also have

∀n < n 0 ∀y ∈ B E x + y n ≥ x n -ε n .
Therefore, if the ε n 's are chosen small enough, we get that

(4.4) ∀n < n 0 ∀y ∈ B E n 0 -1 n=1 n -3 x + y n ≥ n 0 -1 n=1 n -3 x n - D 2n 3 0 t q .
Note that n 0 ≤ αt -q + 1 ≤ t -q (α + 1). Then, summing equations (4.2), (4.3) and (4.4) we obtain that for all y ∈ B E with |y| ≥ t

|x + y| ≥ |x| + D 2n 3 0 t q ≥ 1 + D 2(α + 1) 3 t 4q ,
which concludes our proof.

Remark 4.4. It follows from Corollary 2.4 that we could also build an equivalent norm which is AUC of power type q and AUS with a power type in (1, p). We do not know if it is possible to preserve both power types together. To the best of our knowledge the similar question for uniformly smooth and convex norms is still open. Remark 4.5. It is worth mentioning that one can use a nice Baire category argument to show that if a reflexive Banach space X admits an equivalent AUS norm and an equivalent AUC norm then it admits an equivalent norm which is simultaneously AUS and AUC. However, the very nature of Baire's Lemma makes it quite hopeless to get a quantitative result such as Lemma 4.3 so easily. Let us nevertheless describe this qualitative argument.

Proof. We shall adopt here the presentation of the Asplund averaging technique, based on Baire's Lemma that can be found in [START_REF] Deville | Smoothness and renormings in Banach spaces[END_REF] (p. 52-56). Let us denote by P the set of norms on X that are equivalent to the original norm and let B be the closed unit ball of . For N, M ∈ P , we set

d(N, M ) = sup{|N (x) -M (x)|, x ∈ B}.
Then (P, d) is open in the complete metric space of all continuous semi-norms on (X, ) equipped with d and therefore a Baire space. Assume first that is AUC. We will the show that C = {N ∈ P, N is AUC} is a dense G δ subset of P . For n ∈ N, we denote O n the set of all N in P so that there exists δ > 0 such that forall x ∈ X with N (x) = 1, there exists a finite codimensional subspace Y of X satisfying:

∀y ∈ Y with N (y) = 1, N (x + 2 -n y) > 1 + δ.
It is not difficult to check that for all n ∈ N, O n is an open subset of P and that C = n∈N O n . This shows that C is a G δ subset of P . It is also an exercise to verify that for any N ∈ P and any n ∈ N, the norm N + 2 -n is AUC. This finishes the proof of the fact that C is a dense G δ subset of P , whenever it is non empty. Following [START_REF] Deville | Smoothness and renormings in Banach spaces[END_REF], we now denote P * the set of all norm on X * that are dual to an element of P . If B * is the closed unit ball of the dual norm of , we set

∀N * , M * ∈ P * d * (N * , M * ) = sup{|N * (x * ) -M * (x * )|, x * ∈ B * }.
It is shown in [START_REF] Deville | Smoothness and renormings in Banach spaces[END_REF] that the map N → N * , where N * is the dual norm of N , is a homeomorphism from (P, d) onto (P * , d * ). Therefore, it follows from our study of C and from Corollary 2.4 that the set S of all AUS norms in P is a dense G δ subset of P , whenever it is non empty. Finally, we use that (P, d) is a Baire space to obtain that C∩S is non empty whenever C and S are non empty.

Let us now gather all these results to complete the proof of our main result.

Proof of Theorem 4.2. The equivalence (i) ⇔ (ii) follows from Theorem 2.5 and Corollary 2.6.

(ii) ⇒ (iii) This follows from Lemma 4.3.

(iii) ⇒ (iv) This is a direct consequence of Theorem 4.1.

(iv) ⇒ (i) Assume that the norm of X has property (β). Then, so does every separable subspace or separable quotient of X. Thus every separable subspace or quotient of X has a Szlenk index not exceeding ω (see Theorem 6.3 in [START_REF] Dilworth | Asymptotic geometry of Banach spaces and uniform quotients maps[END_REF] and references therein). We can now apply Proposition 3.1 to deduce that Sz(X) ≤ ω and Sz(X * ) ≤ ω.

(v) ⇒ (i) Assuming (v), we deduce from Theorem 4.3 in [START_REF] Prus | Nearly uniformly smooth Banach spaces[END_REF] (see also Corollary 9 in [START_REF] Kutzarova | An isomorphic characterization of the property (β) of Rolewicz[END_REF]) that every subspace Y of X with a basis admits an equivalent norm which is AUS and AUC and therefore is such that Sz(Y ) ≤ ω and Sz(Y * ) ≤ ω. Then, it follows from Proposition 3.1 that Sz(X) ≤ ω and Sz(X * ) ≤ ω.

(iii) ⇒ (v) Assume that ρ X (t) ≤ at p and δ X (t) ≥ bt q for some a, b > 0 and p, q ∈ (1, ∞). Let (e n ) be a basic sequence in X and Y be the closed linear span of the e n 's. Therefore ρ Y (t) ≤ ρ X (t) ≤ at p and δ Y (t) ≥ δ X (t) ≥ bt q . Then it follows from Theorem 4.3 in [START_REF] Prus | Nearly uniformly smooth Banach spaces[END_REF] that there exists C ≥ 1 and 1 < s ≤ r < ∞ so that (e n ) has a blocking which admits (C, r, s) estimates. A careful reading of the proof shows moreover that C, r and s are controlled by a, b, p and q and therefore can be chosen independently of the basic sequence (e n ).

Applications to the non linear geometry of Banach spaces.

Let us first recall the definition of the countably branching hyperbolic tree. For a positive integer N , We denote T = ∞ i=0 N i , where N 0 := {∅}, the set of all finite sequences of positive integers. For s ∈ T , we denote by |s| the length of s. There is a natural ordering on T defined by s ≤ t if t extends s. If s ≤ t, we will say that s is an ancestor of t. Then we equip T with the hyperbolic distance ρ, which is defined as follows. Let s and s be two elements of T and let u ∈ T be their greatest common ancestor. We set

ρ(s, s ) = |s| + |s | -2|u| = ρ(s, u) + ρ(s , u).
Let (M, d), (N, δ) be metric spaces. A map f : M → N is a bi-Lipschitz embedding if there exist constants A, B > 0 such that ∀x, y ∈ M Ad(x, y) ≤ δ(f (x), f (y)) ≤ Bd(x, y).

We say that f is a coarse Lipschitz embedding if there exist constants θ, A, B > 0 such that ∀x, y ∈ M d(x, y) ≥ θ ⇒ Ad(x, y) ≤ δ(f (x), f (y)) ≤ Bd(x, y).

It has been proved in [START_REF] Baudier | A new metric invariant for Banach spaces[END_REF] that for a reflexive Banach space X, Sz(X) ≤ ω and Sz(X * ) ≤ ω if and only if there is no bi-Lipschitz embedding from (T, ρ) into X. We also refer to [START_REF] Baudier | β-distorsion of some infinite graphs[END_REF] for a short, elegant and quantitative proof of the fact that there is no bi-Lipschitz embedding from (T, ρ) into a Banach space with property (β).

We can now state an easy generalization of Theorem 4.3 in [START_REF] Baudier | A new metric invariant for Banach spaces[END_REF] Corollary 5.1. Let Y be a Banach space with property (β) and assume that a Banach space X coarse Lipschitz embeds into Y . Then X admits an equivalent norm with property (β).

Proof. We have that any separable subspace Z of X coarse Lipschitz embeds into Y and therefore into a separable subspace of Y with Szlenk index at most ω. Theorem 4.1 in [START_REF] Baudier | A new metric invariant for Banach spaces[END_REF] insures that Z is reflexive. Since the reflexivity is separably determined, we deduce that X is reflexive. Assume now that X does not admit an equivalent norm with property (β). Then it follows from Theorem 4.2 that Sz(X) > ω or Sz(X * ) > ω. We now use Proposition 3.1 to deduce the existence of a separable subspace Z of X such that Sz(Z) > ω or Sz(Z * ) > ω. Then Corollary 3.4 in [START_REF] Baudier | A new metric invariant for Banach spaces[END_REF] implies that there exists a bi-Lipschitz embedding f from (T, ρ) into Z and therefore into a separable subspace E of Y (using the fact that T is countable, uniformly discrete and a dilation if necessary). This contradicts the fact that E has property (β). To justify this last statement, one could use Corollary 3.4 in [START_REF] Baudier | A new metric invariant for Banach spaces[END_REF] and Theorem 4.2, but it is more natural to use directly Theorem 2.1 in [START_REF] Baudier | β-distorsion of some infinite graphs[END_REF].

We recall that a map f : M → N is called co-uniformly continuous if for every ε > 0, there exists δ > 0 such that for every x ∈ X, B(f (x), δ) ⊂ f (B(x, ε)) , where B(x, ε) denotes the closed ball of center x and radius ε. A map f : M → N that is both uniformly continuous and co-uniformly continuous is called a uniform quotient. We can now extend to the non separable setting the following result from [START_REF] Dilworth | The transfer of property (β) of Rolewicz by a uniform quotient map[END_REF].

Theorem 5.2. Let X, Y be two Banach spaces. Assume that X has property (β) and that f : X → Y is a uniform quotient. Then Y has an equivalent norm with property (β).

Proof. Under our assumptions, any separable linear quotient of Y is a uniform quotient of X. It follows from [START_REF] Dilworth | The transfer of property (β) of Rolewicz by a uniform quotient map[END_REF] that any separable linear quotient of Y has an equivalent norm with property (β). First, since reflexivity is determined by separable quotients and is implied by property (β), we obtain that Y is reflexive. Then we can apply Proposition 3.1 together with Theorem 4.2 to deduce that Y has an equivalent norm with property (β).

Final comments. It was kindly suggested to us by the referee to call the (β)renormable Banach spaces asymptotically super-reflexive spaces. This terminology can be justified by many analogies with super-reflexive spaces. There is first an obvious analogy with the uniformly convex and uniformly smooth renormings of super-reflexive spaces. Like super-reflexivity, it is a self dual property. Condition (i) in Theorem 4.2 also has its counterpart. Indeed, a Banach space X is super-reflexive if and only if Dz(X) ≤ ω and (or) Dz(X * ) ≤ ω, where the index Dz(X) is defined similarly to the Szlenk index, by peeling off weak * -slices of small diameter instead of weak * -open sets (see [START_REF] Lancien | On uniformly convex and uniformly Kadec-Klee renormings[END_REF]). Finally, they are characterized by the non embeddability of the countably branching hyperbolic tree, as super-reflexivity is characterized by the non embeddability of the dyadic hyperbolic tree (see the seminal work of J. Bourgain [START_REF] Bourgain | The metrical interpretation of super-reflexivity in Banach spaces[END_REF] and its extension by F. Baudier [START_REF] Baudier | Metrical characterization of super-reflexivity and linear type of Banach spaces[END_REF]).
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Corollary 2 . 6 .

 26 Let X be a reflexive Banach space. Then the following are equivalent. (a) Sz(X * ) ≤ ω. (b) There exists a > 0, p ∈ (1, ∞) and and equivalent norm | | on X * such that ρ | | (t) ≤ at p (we say that | | is AUS with power type p).

  sequence. Let Y be the closed linear span of {x n , n ≥ 1}. For s ∈ T α , we denote y * s the restriction of x * s to Y . Condition (e) implies that for any s ∈ T α (the set of sequences in T α having a successor in T α ), the sequence (y * s n ) n is weak * -converging to y * s in Y

* . Condition (d) insures that for all s ∈ T α and all n ∈ N, y * s n -y * s Y * ≥ ε 6 . We deduce that y * ∅ ∈ s α ε/6 (B Y * ) and that Sz(Y ) > α.