
HAL Id: hal-03377469
https://hal.science/hal-03377469

Submitted on 31 Mar 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Cosmology with the kinetic Sunyaev-Zeldovich effect:
Independent of the optical depth and σ_8

Joseph Kuruvilla

To cite this version:
Joseph Kuruvilla. Cosmology with the kinetic Sunyaev-Zeldovich effect: Independent of the op-
tical depth and σ_8. Astronomy and Astrophysics - A&A, 2022, 660, pp.A113. �10.1051/0004-
6361/202142325�. �hal-03377469�

https://hal.science/hal-03377469
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


A&A 660, A113 (2022)
https://doi.org/10.1051/0004-6361/202142325
c© J. Kuruvilla 2022

Astronomy
&Astrophysics

Cosmology with the kinetic Sunyaev–Zeldovich effect: Independent
of the optical depth and σ8

Joseph Kuruvilla

Université Paris-Saclay, CNRS, Institut d’Astrophysique Spatiale, 91405 Orsay, France
e-mail: joseph.kuruvilla@universite-paris-saclay.fr

Received 28 September 2021 / Accepted 3 February 2022

ABSTRACT

Cosmological constraints obtained by the kinetic Sunyaev–Zeldovich experiments are degenerate with the optical depth
measurement – an effect that is commonly known as the optical-depth degeneracy. In this work, we introduce a new statistic based
on the first moment of relative velocity between pairs in a triplet, which is capable of constraining cosmological parameters indepen-
dently of the optical depth and of σ8. Using 22 000 N-body simulations from the Quijote suite, we quantified the information content
in the new statistic using Fisher matrix forecast. We find that it is able to obtain strong constraints on the cosmological parameters,
particularly on the summed neutrino mass. The constraints bring an improvement on all cosmological model parameters by a factor of
6.2–12.9 and 2.3–5.7 when compared to those obtained from the mean pairwise velocity and from the redshift-space halo power spec-
trum, respectively. Thus, this new statistic paves a way forward in constraining cosmological parameters independent of the optical
depth and σ8 when using data from future kinetic Sunyaev–Zeldovich experiments alone.

Key words. large-scale structure of Universe – cosmology: theory – cosmic background radiation

1. Introduction

One of the outstanding questions in modern physics is related
to the determination of the mass of neutrinos, which has fun-
damental implications for both particle physics and cosmology.
Neutrino oscillation experiments have established that neutri-
nos ought to have a non-zero mass (e.g., Forero et al. 2014;
Gonzalez-Garcia et al. 2016; Capozzi et al. 2017; de Salas et al.
2017). However, these oscillation experiments are only sensitive
to the mass splittings between the neutrino mass eigenstates and
in order to measure the absolute scale of the neutrino mass, other
experiments are required. Recently, the Karlsruhe Tritium Neu-
trino (KATRIN) experiment reported the first direct detection of
sub-eV neutrino mass, with an upper limit on the ‘effective neu-
trino mass’ of 0.8 eV (Aker et al. 2021). This is based on the
kinematic measurements through the observation of the energy
spectrum of tritium β-decay in a way that is model independent.

All the while, stronger constraints on the summed neutrino
mass (Mν) can be obtained by combining various cosmologi-
cal probes since the massive neutrinos leave an imprint on var-
ious cosmological observables (e.g., Wong 2011; Lesgourgues
& Pastor 2012). Yet these constraints have an additional model
dependence. Assuming the standard ‘lambda cold dark matter’
(ΛCDM) model, one of the strongest constraints on the summed
neutrino mass has been obtained by combining the cosmic
microwave background (CMB, Planck Collaboration VI 2020),
baryonic acoustic oscillation, and redshift-space galaxy cluster-
ing (eBOSS Collaboration 2021) to obtain an upper limit of
Mν < 0.102 eV. However, by considering extensions of the stan-
dard cosmological model, the upper limit becomes less strin-
gent (e.g., Vagnozzi et al. 2018; Choudhury & Hannestad 2020).
The community can expect the summed neutrino mass to be
measured with increased precision from cosmological probes
in the foreseeable future with the advent of next generation of

CMB surveys (e.g., the Simons Observatory1 (SO, Ade et al.
2019), CMB-S42 (Abazajian et al. 2016)) as well as the stage
IV galaxy redshift surveys (e.g., the ‘Dark Energy Spectro-
scopic Instrument’3 (DESI, DESI Collaboration 2016), Euclid4

(Laureijs et al. 2011) and Nancy Grace Roman space telescope5

(Spergel et al. 2015)).
Currently, the Mν constraints from galaxy clustering are

mainly obtained using two-point statistics, namely, the power
spectrum in the Fourier space or the two-point correlation func-
tion in the configuration space. The impact of massive neutrinos
on the two-point clustering statistics has been studied quite
extensively using N-body simulations both in the real (e.g., Saito
et al. 2008; Wong 2008; Castorina et al. 2015) and the red-
shift space (e.g., Villaescusa-Navarro et al. 2018; García-Farieta
et al. 2019). However, these statistics are affected by the Mν−σ8
degeneracy, thus acting as a limitation in measuring the summed
neutrino mass. The three-point clustering statistics in the Fourier
space (i.e., the bispectrum) has been shown to break this degen-
eracy (Hahn et al. 2020; Hahn & Villaescusa-Navarro 2021). In
addition, it has been shown that the three-point cluster statis-
tics contain additional cosmological information compared to
its two-point counterpart and it is thus able to obtain substan-
tial improvements with regard to constraints on other cosmo-
logical parameters as well (e.g., Yankelevich & Porciani 2019;
Chudaykin & Ivanov 2019; Gualdi & Verde 2020; Agarwal
et al. 2021; Samushia et al. 2021). Currently there are efforts
to understand the possibility of constraining summed neutrino
mass using various summary statistics, among others, such as

1 https://simonsobservatory.org/
2 https://cmb-s4.org/
3 https://www.desi.lbl.gov/
4 https://www.euclid-ec.org/
5 https://roman.gsfc.nasa.gov/

Open Access article, published by EDP Sciences, under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

A113, page 1 of 9

https://doi.org/10.1051/0004-6361/202142325
https://www.aanda.org
http://orcid.org/0000-0002-0088-5182
mailto:joseph.kuruvilla@universite-paris-saclay.fr
https://simonsobservatory.org/
https://cmb-s4.org/
https://www.desi.lbl.gov/
https://www.euclid-ec.org/
https://roman.gsfc.nasa.gov/
https://www.edpsciences.org
https://creativecommons.org/licenses/by/4.0


A&A 660, A113 (2022)

the one-point probability distribution function of the matter den-
sity (e.g., Uhlemann et al. 2020) and the void size function (e.g.,
Bayer et al. 2021).

Another plausible avenue is to use velocity statistics such
as the mean pairwise velocity, which provides a complementary
view to the clustering information, either through the peculiar
velocity surveys or the kinetic Sunyaev–Zeldovich (kSZ) effect.
Mueller et al. (2015) showed that the mean pairwise velocity
can be utilised to constrain the summed neutrino mass, while
Kuruvilla et al. (2020) studied its interplay between the baryonic
feedback and the summed neutrino mass effects at nonlinear sep-
aration scales. Furthermore, the three-point mean relative veloc-
ity statistics is able to obtain stronger constraints on the summed
neutrino mass when compared to the mean pairwise velocity
(Kuruvilla & Aghanim 2021). However, the growth rate mea-
surement from the kSZ effect of the CMB are degenerate with
the optical depth (e.g., Keisler & Schmidt 2013; Battaglia 2016;
Flender et al. 2017) and this degeneracy acts as a limitation in
measuring the cosmological parameters (e.g., Smith et al. 2018),
which is commonly referred to as the optical depth degeneracy.
It has been suggested that the use of fast radio bursts can be
used to break this degeneracy (Madhavacheril et al. 2019). In
this paper, we develop a new statistic that is independent of the
optical depth and based on the use of the first moment of the
three-point relative velocities, namely, the mean relative veloci-
ties between pairs in a triplet. Thus, we are able to circumvent
the problem of optical depth as a limitation factor in kSZ experi-
ments – thereby formulating one of the main goals of this paper.

The remainder of this work is structured as follows. In
Sect. 2, we describe the newly introduced summary statistic
based on three-point mean relative velocities. The Quijote suite
of simulation used in this work is introduced briefly in Sect. 3.1.
The information content in the velocity statistics is studied using
the Fisher-matrix formalism, which is briefly summarised in
Sect. 3.2. Our results are presented in Sect. 4. We present our
conclusions in Sect. 5.

2. Cosmology using the kSZ effect

2.1. Kinetic Sunyaev–Zeldovich effect

As the CMB photons interact with the free electrons of hot
ionised gas along the line of sight (LOS), the apparent CMB
temperature changes. This is due to the fact that there is a trans-
fer of energy from electrons to the resulting scattered photons
as the electrons have a significantly higher kinetic energy than
the photons. In this work, we focus on the secondary effect that
is known as the kinetic Sunyaev–Zeldovich (kSZ; Sunyaev &
Zeldovich 1972, 1980). It arises when the scattering medium is
moving relative to the Hubble flow. The fractional temperature
fluctuation caused due to kSZ is

∆T (n̂)
Tcmb

∣∣∣∣∣
kSZ

= −

∫
dl σT

(
ue · n̂

c

)
ne,

= −τ

(
ue · n̂

c

)
, (1)

where σT is the Thomson scattering cross-section, Tcmb is the
CMB temperature, c is the speed of light, ue is the peculiar veloc-
ity of free electrons, and ne is the physical free electron number
density. The integral

∫
dl is computed along the LOS which is

given by n̂. The optical depth is defined as τ =
∫

dl σT ne, that
is, the integrated electron density.

The kSZ signal detection is challenging because of its small
amplitude and the fact that its spectrum is identical to that of
primary CMB temperature fluctuations. One of the approaches
used to detect the kSZ signal is to employ the pairwise
statistic (e.g., Hand et al. 2012; Hernández-Monteagudo et al.
2015; Planck Collaboration Int. XXXVII 2016; Schaan et al.
2016; Soergel et al. 2016; De Bernardis et al. 2017; Li et al.
2018; Calafut et al. 2021; Chen et al. 2022). There is existing
evidence of the kSZ signal using other techniques as well (e.g.,
Hernández-Monteagudo et al. 2015; Schaan et al. 2016, 2021;
Nguyen et al. 2020; Tanimura et al. 2021; Chaves-Montero et al.
2021).

In the case of the kSZ pairwise signal, the temperature acts
as a proxy for the peculiar velocity, and, as such, it probes the
optical depth weighted pairwise velocity (e.g., Hand et al. 2012;
Soergel et al. 2018)

〈∆T kSZ(r12)〉
Tcmb

' −τ
w̄(r12)

c
, (2)

where 〈∆T kSZ
12 〉 is the mean temperature difference between the

objects ‘1’ and ‘2’, and w̄(r12) is the mean radial component of
the pairwise velocity that can be defined in the single streaming
regime as follows:

〈w12|r12〉p =
〈(1 + δ1)(1 + δ2)(u2 − u1)〉
〈(1 + δ1)(1 + δ2)〉

, (3)

where δi ≡ δ(xi) is the density contrast, ui ≡ u(xi) ≡ u(xi)/aH
is the normalised peculiar velocity, a is the scale factor, and H is
the Hubble constant. Using perturbation theory at leading order
(LO), the mean radial matter pairwise velocity can be written as
(e.g., Fisher 1995; Juszkiewicz et al. 1998; Reid & White 2011)

〈w12|r12〉p = w̄(r12) r̂12 ' −
f
π2 r̂12

∫ ∞

0
k j1(kr12) P(k) dk, (4)

where r̂12 is the unit vector along the pair ‘12’, the subscript p
implies that the averages are computed over all pairs with sep-
aration r12, P(k) denotes the linear matter power spectrum, and
j1(x) = sin(x)/x2 − cos(x)/x. It should be noted that Eq. (2)
assumes that there is no correlation between optical depth and
velocity field. Following Eqs. (2) and (4), we can see that

∆T kSZ ∝ τ fσ2
8, (5)

thus implying that the growth rate measurement from the pair-
wise kSZ is perfectly degenerate with optical depth (Keisler &
Schmidt 2013). Here, we presented the argument for the matter
component, however, in the observations there is an additional
bias dependence entering in the above equation, which comes
about as a result of the galaxy bias and while assuming no veloc-
ity bias.

2.2. New statistics based on mean relative velocity between
pairs in a triplet

In the previous section, we mentioned about the mean rela-
tive velocity between two tracers (i.e., between a pair) or the
mean pairwise velocity. However, this can be generalised to the
case of three tracers, in which we can consider two mean rela-
tive velocity between pairs in a triplet with separations 4123 =
(r12, r23, r31): (i) 〈w12|4123〉t, and (ii) 〈w23|4123〉t. The subscript
t here implies that the averages are computed over all triplets
with separations (r12, r23, r31). Similarly to Eq. (3), in the single
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stream fluid approximation, the mean relative velocity between
pair 12 in a triplet can be written as (Kuruvilla & Porciani 2020):

〈w12|4123〉t =
〈(1 + δ1)(1 + δ2)(1 + δ3)(u2 − u1)〉
〈(1 + δ1)(1 + δ2)(1 + δ3)〉

' 〈δ1u2〉 − 〈δ2u1〉 + 〈δ3u2〉 − 〈δ3u1〉

= w̄(r12) r̂12 −
1
2

[w̄(r23) r̂23 + w̄(r31) r̂31] . (6)

The three-point mean relative velocity statistics can be com-
posed into both its radial (Ri j) and transverse (Ti j) component
in the plane of the triangle defined by the particles. This is in
contrast to the mean pairwise velocity for which the transverse
component is zero. In the case of 〈w12|4123〉t, it follows as:

〈w12|4123〉t = 〈w12 · r̂12|4123〉t r̂12 + 〈w12 · t̂|4123〉t t̂
= R12(4123) r̂12 + T12(4123) t̂ , (7)

where t̂ = (r̂23 − cos χ r̂12)/ sin χ, r̂23 is the unit vector along the
pair ‘23’, and χ = arccos(r̂12 · r̂23). In this work, we make use
of only the radial component and for the pair marked 12 for the
triplet, it can be written as

R12(4123) = w̄(r12) −
1
2

[
w̄(r23) cos χ

− w̄(r31)
r12 + r23 cos χ√

r2
12 + r2

23 + 2r12r23 cos χ

]
. (8)

Similarly, the mean radial relative velocity between the pair 23
in 4123 can be written as

R23(4123) = w̄(r23) −
1
2

[
w̄(r12) cos χ

− w̄(r31)
r23 + r12 cos χ√

r2
12 + r2

23 + 2r12r23 cos χ

]
. (9)

Similarly to Eq. (2), the three-point mean relative temperature
difference from kSZ can be expressed as:

∆T kSZ
i j (4123)

Tcmb
' −τ

Rh
i j(4123)

c
, (10)

where Rh
i j(4123) respresents the three-point mean relative veloc-

ity statistics for haloes (biased tracers), and to first approxima-
tion it can be written down as linear bias term times Ri j(4123)
(Kuruvilla & Aghanim 2021). Based on the radial mean relative
velocities between pairs in a triplet, we can introduce a new ratio
statistic, namely:

R(4123) =
〈w12 · r̂12|4123〉t

〈w23 · r̂23|4123〉t
, (11)

which tells us how quickly the average infall velocity of pair
12 performs in comparison to the average infall velocity of pair
23 for a specific triangular configuration 4123. On linear scales,
using perturbation theory at LO, R(4123) can be written as the
ratio between Eqs. (8) and (9)

R(4123) =
R12(4123)
R23(4123)

=
Rh

12(4123)

Rh
23(4123)

≡
∆T kSZ

12 (4123)

∆T kSZ
23 (4123)

. (12)

The above statistic is thus independent of optical depth, σ8, and
linear bias. In the following sections, we take a detailed look at
whether the Ansatz of σ8 and linear bias independence holds up.
Additionally, we study the cosmological information content in
R(4123).

3. Data and analysis

3.1. Quijote simulation suite

In this work, we make use of the Quijote6 (Villaescusa-Navarro
et al. 2020) suite of simulations, which was run using the tree-
PM code gadget-3 (Springel 2005). Spanning more than a
few thousand cosmological models, it contains 44 100 N-body
simulations. These simulations have a box length of 1 h−1 Gpc,
tracking the evolution of 5123 cold dark matter (CDM) par-
ticles. The initial conditions (ICs) were generated at redshift
z = 127 using the second-order Lagrangian perturbation theory.
The fiducial cosmological parameters (assuming zero-summed
neutrino mass) for the simulation is as follows: the total mat-
ter density: Ωm = 0.3175; baryonic matter density: Ωb =
0.049; primordial spectral index of the density perturbations:
ns = 0.9624; amplitude of the linear power spectrum on the
scale of 8 h−1 Mpc: σ8 = 0.834; and the present-day value of
the Hubble constant: H0 ≡ H(z = 0) = 100 h km s−1 Mpc−1,
with h = 0.6711. This is broadly consistent with the Planck
2018 result (Planck Collaboration VI 2020). The suite con-
sists of 15 000 random realisations for the fiducial cosmol-
ogy. For the purpose of calculating derivatives, Quijote pro-
vides a set of 500 random realisations wherein only one param-
eter is varied with respect to the fiducial cosmology. The
variations are as follows: {Ω+

m,Ω
−
m,Ω

+
b ,Ω

−
b , n

+
s , n

−
s , σ

+
8 , σ

−
8 } =

{0.3275, 0.3075, 0.051, 0.047, 0.9824, 0.9424, 0.849, 0.819} and
{h+, h−} = {0.6911, 0.6511}.

In addition, the suite also provides 500 realisations for
three massive neutrino cosmology, where the summed neutrino
masses are 0.1, 0.2, and 0.4 eV, respectively. The initial condi-
tions for these simulations were produced using the Zeldovich
approximation (ZA), with 5123 neutrino particles in addition to
the CDM particles. To compute the numerical derivatives with
respect to massive neutrinos, the Quijote suite provides an addi-
tion 500 random realisations for the fiducial cosmology, in which
the ICs were also generated using ZA.

In this work, we use the halo catalog data from 22 000 N-
body simulations of the Quijote suite. These halos were identi-
fied using a friends-of-friends algorithm. We selected halos that
have a halo mass of Mh > 5 × 1013 h−1 M� (corresponding to
groups and clusters of galaxies) at z = 0, which gives a mean
number density of n̄ ∼ 0.92 × 10−4 h3 Mpc−3 for the reference
simulations. Additionally, in the case of (i) fiducial cosmology,
and (ii) for variations in σ8 (both σ+

8 and σ−8 ), we used 30 real-
isations of the particle data (randomly down-sampled to 1003

particles) to compute R(4123).

3.2. Fisher-matrix formalism

To quantify the error estimates on the cosmological parameters,
we used the Fisher-matrix formalism which can be defined as
(e.g., Tegmark et al. 1997; Heavens 2009; Verde 2010):

Fαβ =

〈
−
∂2 lnL
∂θα∂θβ

〉
, (13)

where θα and θβ are two of the cosmological model parameters
and L is the likelihood of the data given a model. Assuming
a Gaussian likelihood, we can express the Fisher information
matrix as

Fαβ =
∂R

∂θα
· Ĉ−1 ·

∂RT

∂θβ
, (14)

6 https://quijote-simulations.readthedocs.io/
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whereR represents the data vector for the ratio statistic we intro-
duced in Eq. (11) and Ĉ−1 is the precision matrix (i.e., the inverse
covariance matrix). It should be noted that in the definition of
Fαβ, we neglected a term that appears due to the cosmology
dependence of the covariance matrix. However, the correction
has been shown to have a negligible effect (Kodwani et al. 2019).
We compute the covariance matrix of R directly from the simu-
lations as follows:

C̃ =
1

Nsims − 1

Nsims∑
i=1

(
Ri −R

) (
Ri −R

)T
, (15)

where R = N−1
sims

∑Nsims
i=1 Ri, and Nsims denotes the total number of

simulations used to compute the covariance matrix (in this work
Nsims = 15 000). While Eq. (15) gives an unbiased estimate of
the covariance matrix, its inversion leads to a biased estimate of
the precision matrix. This, however, can be statistically corrected
by applying a multiplicative correction factor to the precision
matrix (Kaufmann 1967; Anderson 2003; Hartlap et al. 2007):

Ĉ−1 =
Nsims − Nbins − 2

Nsims − 1
C̃−1, (16)

where Nbins is the number of bins in R.
We numerically computed the derivatives required to con-

struct the Fisher information matrix using the Quijote suite of
simulations, which provides 500 realisations where only one
cosmological parameter is varied while the rest are fixed at its
fiducial value. Thus, in the case when the model parameters are
one of the following: θ ≡ {Ωm,Ωb, h, ns, σ8}, we can make use of
the central difference approximation to compute the derivative
numerically, namely:

∂R

∂θ
'
R(θ + dθ) −R(θ − dθ)

2 dθ
· (17)

In the case of the neutrino mass, the fiducial value is 0.0 eV
and it cannot have negative values, hence, we obtain the partial
derivative using

∂R

∂Mν
'
−R(Mν = 0.4) + 4R(Mν = 0.2) −R(Mν = 0)

0.4
· (18)

Thus, we utilise two sets of massive neutrino simulations from
Quijote, with Mν = 0.2 eV and Mν = 0.4 eV for the Fisher infor-
mation matrix. However, the initial condition of the simulations
with the massive neutrinos were generated using ZA. To main-
tain consistency in computing the partial derivative, we made
use of another 500 realisations of the fiducial cosmology (with
Mν = 0 eV) simulation in which the initial conditions were also
generated using ZA.

4. Results

In Fig. 1, we show the direct measurements of R(4123) from
the 15 000 reference halo catalogs (solid blue line) and com-
pare it with the LO predictions (dashed orange line). We
consider all triangular configurations with rmin ∈ (40, 45)
and rmax ∈ (115, 120), and such that r12 ≥ r23 ≥ r31.
All the separation scales have a bin width of 5 h−1 Mpc.
It thus corresponds to a total of 766 triangular configu-
rations, spanning from configuration ‘0’ being the small-
est (i.e., 4123 ∈ {(40, 45), (40, 45), (40, 45)} h−1 Mpc) to con-
figuration ‘765’ being the largest (4123 ∈ {(115, 120),
(115, 120), (115, 120)} h−1 Mpc). In Appendix A, we show the

2.5

5.0

7.5

10.0

12.5

R
(4

12
3)

Haloes

Theory

0 150 300 450 600 750
Triangle configurations

−0.25

0.00

∆
R
/R

th
eo

ry

Fig. 1. Comparison of theoretical prediction (orange dashed line) for
R(4123) using perturbation theory at LO against the direct measurement
(blue solid line) from the halo catalogs of the Quijote suite of simula-
tion is shown in the top panel. While the residual showing the deviation
of the theoretical prediction from the direct measurement from the sim-
ulations is shown in the bottom panel. The blue shaded region denotes
the 5% region. The triangle configuration go from the smallest being
{(40, 45), (40, 45), (40, 45)} h−1 Mpc to the largest which corresponds to
{(115, 120), (115, 120), (115, 120)} h−1 Mpc. The vertical dashed lines
correspond to a change (increase) in the value of r12 bin in 4123.

comparison between the theoretical predictions and the direct
measurements when r12 is fixed to (115, 120) h−1 Mpc for the
triangular configurations. We can see from Eqs. (8) and (9) that
the LO prediction for the mean three-point relative velocities
(R12 and R23) will be equal to each other when r12 = r23, irre-
spective of the length of the third side. This is directly visible
in Fig. 1, where Rtheory = 1 when this condition is met. When
comparing the theoretical predictions with the direct measure-
ments from the halo catalogs, we see that it is generally accu-
rate within 4–5% for configurations with all separation lengths
greater than 55 h−1 Mpc. As is expected when the separation
length decreases, the fidelity of the LO prediction also decreases
with the maximum deviation at about 27% for the triangular con-
figuration {(100, 105), (50, 55), (50, 55)} h−1Mpc. This motivates
us to directly measure R from the simulations to compute the
derivatives for the Fisher information matrix.

In addition, R(4123) is unaffected by variation in σ8 as men-
tioned earlier in Sect. 2.2. To demonstrate this, we computed the
ratio of R(4123) for σ+

8 = 0.849 and σ−8 = 0.819 using dark
matter particles from 30 realisations and showcase this result in
Fig. 2. The (blue) dot represents the mean of the measurement,
while the scatter is shown using the (orange) error bars. Thus we
can conclude that R is independent of σ8. Similarly in Fig. 3,
we take a look at the bias dependence of R(4123) (black solid
line), and R12 (blue dashed line), where we show the ratio of each
between the halo and matter component for each of the summary
statistics. The bias term for the mean relative velocity between
pair ‘23’ in a triplet is similar to Rh

12, and is thus not shown in
the figure. As reported in Kuruvilla & Aghanim (2021), for these
triangular configurations (assuming a scale independent bias), it
yields a bias factor around 1.85 for R12 and R23. For the purpose
of computing these ratios in the figure, we used the mean relative
velocity information for matter from 30 realisations of the dark-
matter only simulations; and for the halo, we utilised the 15 000
catalogues. The shaded regions represent the 1σ errors from
the propagation of uncertainties of the mean relative velocity
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Fig. 2. Ratio of R at σ+
8 = 0.849 to R at σ−8 = 0.819. The (blue) solid

dot, and the (orange) error bar represents the mean and the relative error
on the mean, respectively.
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Fig. 3. Dashed (blue) line: bias for R12, i.e. the mean radial relative
velocity between pairs 1 and 2 in a triplet. The solid (black) line shows
the (weak) bias dependence of the ratio statistics R, which is equal to
one within 1–2% for all triangular configurations considered here.

statistics for matter and the halo. We can see that on large sepa-
ration scales, the newly introduced statistic (black solid line) is
bias-independent, while for the smallest triangle configuration,
there is a very weak dependence of bias when considering the
newly introduced statistic. This thus supports the Ansatz pre-
sented in Eq. (12), where the LO in perturbation theory renders
R to be bias independent on linear scales. For all triangular con-
figurations considered in this work, the bias is found to be equal
to one within 1–2%; hence, for the purposes of Fisher matrix for-
malism, we consider R being independent of a (constant) linear
bias term.

Since R is found to be independent of σ8 at the scales we
are probing (i.e., rmin ≥ 40 h−1 Mpc), this sets the statistic in
the unique position of being unaffected by the degeneracy in
the Mν−σ8 parameter plane. We checked the impact of summed
neutrino mass on R utilising three non-zero neutrino mass in
Fig. 4. The solid (blue) line shows the impact of Mν = 0.1 eV
on R when compared to zero neutrino-mass cosmology. Simi-
larly, the dashed (orange) and dash-dotted (green) lines show-
cases the impact of Mν = 0.2 and Mν = 0.4 eV, respectively.
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Fig. 4. Effect of summed neutrino mass onR(4123), as measured directly
from the simulations, when compared to zero neutrino mass fiducial
cosmology. The summed neutrino mass considered here are denoted in
the legend, and its units are given in eV.

As can be seen, when the neutrino mass increases there is a
decrease in the infall velocity between a pair in most of the tri-
angular configurations. This is related to the free-streaming of
neutrinos as a result of them having large thermal velocities. As
a result, below the free-streaming scale, neutrinos do not clus-
ter, which further slows down the collapse of the matter over-
all. This leads to an overall reduction in the growth of over-
all density perturbations at scales below free-streaming scale,
and thus causes a suppression of power on large Fourier modes
when looking at the matter power spectrum (e.g., Wong 2011;
Lesgourgues & Pastor 2012). When looking at R for all the
configurations we measured, the maximal effect of suppression
is seen in the case when Mν = 0.4 eV, and for the triangular
configuration {(100, 105), (50, 55), (50, 55)} h−1 Mpc when com-
pared to the zero neutrino mass cosmology.

4.1. Cosmological parameters

We now turn our attention to the information content in the new
ratio statistic, R, and we can see its viability in constraining the
cosmological model. As discussed in Sect. 3.2, we achieve this
using the Fisher information matrix, and the ingredients are the
partial derivatives of R with respect to the cosmological model
parameters and the covariance matrix (C). We showcase the cor-
relation matrix in Fig. 5, which is given as Ci j/

√
CiiC j j, wherein

the covariance matrix is directly measured from the simula-
tions using 15 000 realisations. We notice the presence of non-
diagonal terms within it being positively correlated at similar tri-
angular configurations, while also tending to be negatively cor-
related, as the configurations differ substantially.

We now take a look at the information content in R using
the Fisher information matrix formalism, as defined in Sect. 3.2.
As mentioned, we computed both the elements of it directly
from the simulations. Since the bias dependence of R was shown
to being very weak even at small scales (∼40–50 h−1 Mpc) and
independent at large scales (≥80 h−1 Mpc), we did not consider
the bias parameter in the Fisher-matrix formalism. Thus, the
model parameters are Ωm, Ωb, h, ns, and Mν. We show the results
of our Fisher forecast obtained from R (orange colour) in Fig. 6,
where the contour denote the 68.3% joint credible region for all
possible model parameters. The 1σ marginalised error for any
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Fig. 5. Correlation matrix (i.e., the covariance matrix of R normalised
by its diagonal elements) computed using 15 000 realisations of the Qui-
jote simulations. The triangle configurations are same as in Fig. 1.

model parameter θα is given by
√

F−1
αα, and they are as follows

for the parameters we considered: {σΩm , σΩb , σh, σns , σMν} ≡

{0.0158, 0.0041, 0.0391, 0.0394, 0.1175} (where σMν
is given in

units of eV).
We compare these constraints with those obtained from the

mean pairwise velocity, and the mean relative velocity between
pairs in a triplet as reported in Kuruvilla & Aghanim (2021),
shown in Fig. 6 using blue contour. As a fair comparison, we
use the constraints obtained from them using rmin = 40 h−1 Mpc.
It presents a factor of improvement of {6.2, 7.6, 9.8, 12.9,
8.87} for {Ωm, Ωb, h, ns, Mν}, respectively, over the mean pair-
wise velocity. However, when comparing against the constraints
from Rh

12(4123) + Rh
23(4123) (i.e., the mean three-point relative

velocities), R has its constraining power reduced by a factor of
1.34–1.44 for all the model parameters. This shrinkage in con-
straining power was also seen when considering Rh

12 and Rh
23 sep-

arately as compared to its combination in Kuruvilla & Aghanim
(2021).

To study the information content in R(4123), so far, we made
use of all possible triangular configurations. However, we could
also study how it changes if we were to omit certain triangu-
lar configurations. We first checked this assumption by omitting
the equilateral and isosceles (where sides 12 and 23 are equal)
triangles. This selection corresponds to a total of 630 triangular
configuration, which equals to omitting 136 configurations from
the total possible set. We find that for this selection, the infor-
mation content of R is reduced by 10% for all the cosmological
parameters considered. We can make another selection criteria,
namely: to omit configurations that have more than a 10% devi-
ation from the theoretical predictions, as shown in Fig. 1. In this
case, the selection leads to a total configuration of 754 (which
implies that only 12 configurations were omitted from the total
possible set). The reduction of the information content as such
for this selection is very minimal compared to the total infor-
mation content, whereby the constraints for all the cosmological
parameters have been reduced by less than 1%.

4.2. Discussions

It is useful to consider how the constraints from R fares against
those obtained from clustering statistics. In order to answer

that question, we compare the constraints obtained in this work
with those obtained from the redshift space halo power spec-
trum and the halo bispectrum in Hahn et al. (2020). Compared
with the constraints from the redshift-space power multipoles for
kmax = 0.2 h Mpc−1 (which is closest to the rmin considered in
this work), R obtains a factor of improvement of {2.3, 3.6, 4.5,
5.4, 5.7} for {Ωm, Ωb, h, ns, Mν}, respectively. However it is
slightly reduced to {1.4, 2.9, 3.1, 3.3, 2.5} when comparing with
the constraints from power spectrum when kmax = 0.5 h Mpc−1.
This improvement over the power spectrum (a two-point sum-
mary statistics) is not surprising asR is based on the first moment
of the three-point relative velocity statistics. Hence, it is inter-
esting to compare the constraints against those obtained from
the redshift-space bispectrum monopole, and when using all tri-
angular configurations for kmax = 0.2 h Mpc−1, R still enjoys
an improvement by a factor of {1.8, 2.9, 3.2, 3.1, 1.8} for
{Ωm, Ωb, h, ns, Mν}, respectively. However, when considering
a larger set of triangular configurations for the bispectrum with
kmax = 0.5 h Mpc−1, there is less constraining power for R with
a factor of {0.7, 1.0, 1.0, 0.9, 0.4} for {Ωm, Ωb, h, ns, Mν},
respectively. This is not surprising, as the bispectrum monopole
in this case probes further into the nonlinear scales, whereas R
was analysed for triangular configurations with separation scales
of 40 h−1 Mpc and above.

As it currently stands, one of the limitations in applying the
new statistic, R(4123), directly to any observational data is the
lack of an estimator to measure the three-point mean radial rel-
ative velocities using the LOS velocities (as it will be the LOS
velocity that can be measured from either the peculiar velocity
surveys or kSZ experiments). In the case of the mean pairwise
velocity, Ferreira et al. (1999) demonstrated how such an estima-
tor can be constructed. Similarly for the case of Ri j(4123), and
R(4123), we will be constructing such an estimator in a future
work. The application of a ratio statistic to observational data
has its own complications. This could arise due to the noise in
the data; additionally, in a survey we might find that R23(4123) to
be zero for one of the triangular configuration bin, which could
lead to a catastrophic failure of our ratio statistic. However, this
would also be dealt with in the future when creating the estima-
tor for R.

In the case of the mean pairwise velocities, an alternative
estimator exists, based on each tracers’ transverse velocity com-
ponent (Yasini et al. 2019). On the other hand, the three-point
mean relative velocity consists of a non-vanishing mean trans-
verse component in the plane of the triangle (unlike in the
case of the pairwise velocity, which has its transverse com-
ponent equal to zero). Thus, we would construct an estima-
tor for the non-vanishing three-point mean transverse relative
velocity in a future work. Furthermore, the analysis we present
here takes only the radial component into consideration and,
hence, a combination of both radial and transverse components
of the three-point mean relative velocity could further improve
the chances of constraining the cosmological model with greater
accuracy.

Another caveat that we do not discuss in this work is the
mass dependence of the optical depth parameter, which has been
shown to increase as the halo mass increases (e.g., Battaglia
2016). We considered it as an averaged quantity, as shown in
Eqs. (2) and (10). However, we do not envision the mass depen-
dence to affect R(4123), as long as the ratio is measured using
the same mass bin. On the other hand, in assuming a fixed cos-
mology, we could consider a scenario where measuring Rh

23 is
fixed to a high halo mass bin while measuring Rh

12 for various
mass bins in Eq. (11). Thus, it could lead to making potential
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black dashed lines, and Mν is given in units of
eV.

measurements of the (scaled) mass dependence of optical depth
(and degenerate with the bias factor) from direct kSZ experiment
directly.

5. Conclusions

The determination of neutrino mass using cosmological observ-
ables has become one of the main goals set by forthcoming
cosmological surveys. However, two-point statistics are affected
overall by the Mν−σ8 degeneracy, whether we are using clus-
tering or relative velocity statistics (which limits the potential
of constraining neutrino mass from cosmology). With regard to
relative velocities, Kuruvilla & Porciani (2020) introduced the
three-point mean relative statistics (i.e., the mean relative veloc-
ity between pairs in a triplet) and, subsequently, in Kuruvilla &
Aghanim (2021), they quantified the cosmological information
content within. It was found to offer substantial information gain
when compared to two-point statistics (both power spectrum and
mean pairwise velocity), while being competitive with the con-
straints from the bispectrum.

In this paper, we extend the application of the mean three-
point relative velocity statistics and we introduce a new ratio
statistic, R, in Eq. (11), which is unaffected by σ8. This enables
us to constrain the neutrino mass, in addition to other cosmo-
logical parameters, independently of σ8. Moreover, in the con-
text of kSZ experiments, this statistic is independent of optical
depth, hence it circumvents the optical depth degeneracy which
currently acts a limiting factor in the determination of cosmo-
logical parameters from the kSZ experiments. Furthermore, the
leading order perturbation theory prediction suggests that R will
be bias-independent on linear scales. We verified this assump-
tion by measuring R values for both halos and matter, finding

that the bias is consistent with one at 1–2% for all triangular
configurations we probed in this work (rmin = 40 h−1 Mpc and
rmax = 120 h−1 Mpc).

We also studied the effect of summed neutrino mass on R
and found that as the neutrino mass increases the amplitude of R
decreases. This can be understood by the fact that due to the free
streaming of neutrinos, the collapse of matter slows down; also,
by the virtue that R acts as a proxy to the mean infall velocity
between pairs in a triplet, R decreases as Mν increases.

We used the Fisher-matrix formalism to quantify the infor-
mation content in R, where the necessary derivatives and the
covariance matrices were directly measured from the Quijote
suite of simulations. We utilised 15 000 realisations of the ref-
erence cosmology to compute the covariance matrix, and the
partial derivatives were also computed directly from the simu-
lations. We find that constraints obtained from R show a factor
of 6.2–12.9 in improvement when compared to the constraints
obtained from the mean pairwise velocity. When compared to
the power spectrum and bispectrum, it still achieves an improve-
ment in the constraints by a factor of 2.3–5.7 and 1.8–3.2,
respectively.

In summary, we have introduced a new statistic based on the
mean radial relative velocity between pairs in a triplet and we
have shown that it can act as robust cosmological observable
that could lead to sizeable information gain in comparison to the
mean radial pairwise velocity. One of the limitations of the kSZ
experiments is the optical depth degeneracy and, thus, breaking
this degeneracy requires some form of an external data set (for
e.g., using fast radio bursts as suggested in Madhavacheril et al.
2019). This new statistic thus provides a way forward in which
the cosmological parameters can be constrained using data from
future kinetic Sunyaev–Zeldovich experiments alone, without
being affected by the optical depth parameter.
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J. Kuruvilla: Cosmology with the kSZ

Appendix A: Shape dependence of R

Fig. A.1. Comparison of R measured directly from the halo catalogs
(left panel), and the LO analytical prediction (right panel). The trian-
gular configurations corresponds to the set where one of the leg of the
triangle (r12) is fixed to (115, 120) h−1 Mpc.

We compare the direct measurement of R from the halo cata-
logs (left panel) and the theoretical predictions (right panel) for a
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Fig. A.2. Ratio between R measured directly from the halo catalogs,
and the LO analytical prediction. The triangular configurations are the
same as in Fig. A.1.

small subset of triangular configurations in Fig. A.1. In this case,
we fix one side of the triangle, namely, r12, and vary the other two
sides. The top right bin in both panels (r23/r12 = r31/r12 = 1)
corresponds to the equilateral configuration. In Fig. A.2, we
show the ratio between them and see that the largest discrepancy
can be seen at r31/r12 ∼ 0.36 and r23/r12 ∼ 0.68. This is expected
as the separation decreases the fidelity of the LO prediction also
decreases.
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