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We consider the relaxation to thermal equilibrium of the Galerkin-truncated Euler-equations
in three-dimensions, from which vortex-stretching is removed. We prove that helicity and
enstrophy are conserved by the system. Using statistical mechanics, we derive analytical
predictions for the equilibrium energy and helicity spectra. Results are verified using pseudo-
spectral direct numerical simulations. Results show that if the initial condition contains
helicity, the system relaxes to a force-free large-scale structure akin to an ABC flow.

1. Introduction

The dynamics of two and three-dimensional turbulence are dramatically different. Whereas
in three dimensions kinetic energy shows the tendency to cascade towards the small-scales
(Kolmogorov 1941), in two dimensions energy is more inclined to concentrate in space-
filling vortical structures (Kraichnan 1967; Onsager 1949). A question that we have addressed
recently (Bos 2021), is whether this difference in behavior is a direct consequence of the
change in dimension, or that it is caused by the geometrical fact that in two-dimensional flows
the velocity-gradient is perpendicular to the vorticity, which removes the vortex-stretching
from the dynamics. In the framework of the Navier-Stokes equations, these two possibilities
seem equivalent, since the change from three to two dimensions leads to the suppression
of vortex-stretching. However, it is possible to formulate a three-dimensional variant of the
Navier-Stokes equations, where vortex-stetching is removed in every point in space. One way
to interpret this system is that we consider two-dimensional three-component dynamics in an
isotropic three-dimensional setting, another is that we apply a force to the three-dimensional
Navier-Stokes equations, which compensates for the vortex-stretching term.
Either way, this turbulence without vortex-stretching, in the absence of forces and viscosity,
reduces the dynamics to a flow governed by the modified Euler-equation,
ow
EP +u-Vw =0, (1.1)
with w = V X u and u the velocity. In Bos (2021) we showed using closure analysis that
turbulence without vortex-stretching, which conserves enstrophy defined as

1
W=(w-w) (1.2)
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with (e) a volume average, shows a tendency to cascade this enstrophy to the small scales of
the system as in two-dimensional turbulence (Batchelor 1969; Leith 1968; Kraichnan 1967).
In that work we did not observe conservation of any other quantity by the system. Indeed,
kinetic energy,

1
E= §<u~u), (1.3)

is not conserved by three dimensional turbulence without vortex-stretching. We considered
however the specific case of mirror-symmetry, i.e., a flow without mean-helicity. In the present
investigation we proof first that helicity is conserved by the system. Then, using statistical
mechanics and numerical simulations, we show that the presence of helicity completely
changes the dynamics of the system. We note here that our manner of removing the vortex-
stretching also removes strain-self-amplification (Carbone & Bragg 2020; Johnson 2020)
and simultaneously removes both local and nonlocal contributions to the strain induced by
vortex-stretching (Buaria et al. 2020).

One might obviously question the relevance of turbulence without vortex-stretching to
realistic turbulent flows. We have discussed this to some extent in Bos (2021). Reasons to
further investigate this system are actually numerous. A first justification is, as in Bos (2021),
to better understand the role of vortex-stretching by removing it. Indeed, recently an important
body of research has focused on the decimation of turbulence to investigate its dynamics
(Frisch et al. 2012; Biferale et al. 2012; Alexakis 2017). Also Kraichnan’s test-field model
(Kraichnan 1971) is based on the removal of a particular feature of the turbulent dynamics, the
incompressibility constraint, to measure the Lagrangian decorrelation induced by pressure
fluctuations. Yet another important motivation to study the present system is mathematical,
since the main difficulty in the mathematical study of the singularity of the incompressible
3D Euler equations is the stretching and amplification of vorticity (Constantin 2007; Kerr
1993; Hou & Li 2006). The removal of the vortex-stretching term might give a handle on
this challenging problem. For instance, in future investigation, the vortex stretching can
be introduced only partially, or locally, to assess how strong vortex stretching must be for
singular structures to be created. A motivation which was not so clearly mentioned before,
is the following. Two-dimensional three-component flows are important asymptotic states in
turbulence (Biferale et al. 2017). For instance, we can mention rapidly rotating turbulence or
turbulence in the presence of a magnetic field (Davidson 2013; Sagaut & Cambon 2008). The
present turbulent flow is in some sense the three-dimensional isotropic analog of such flows.
We think that the present isotropic case, which is geometrically rather simple to describe,
shares certain key features with 2D3C flows, such as the conservation of helicity. In order for
the present flow to be valuable in these above mentioned applications, we should understand
its main features.

In the next section we will briefly recall the relevance of statistical mechanics to turbulence
research. Then, in section 3 we will show that helicity and enstrophy are conserved by the
modified Euler-equation. Subsequently we will derive the statistical mechanics equilibrium
predictions for the energy spectrum. The shape of the resulting equilibrium spectrum suggests
that in the absence of vortex-stretching, helicity might play an important role in the dynamics
of turbulence, unlike the classical three-dimensional case. Sec. 4 presents the numerical
method and the generation of initial conditions. In Sec. 5 we present a numerical assessment
of the theoretical results, including analyses of the conserved quantities, equilibrium spectra,
and the physical-space characterization of the velocity field. Sec. 6 presents the conclusions.



2. Equilibrium statistical mechanics of the Euler-equations

The study of turbulence using equilibrium statistical mechanics started with the work of
Onsager (1949). Not so long after that, Lee (1952) showed that if the Galerkin-truncated
Euler equations are analyzed, a Liouville equation can be formulated which allows a direct
application of equilibrium statistical mechanics. The reasoning, which we will discuss in
more detail in this investigation, is that if the Euler-equations are represented by a finite
number of Fourier modes, their dynamics is incompressible in phase-space. Applying then
equilibrium statistical mechanics to the Fourier-modes leads to the prediction of the most
probable, thermal-equilibrium state, corresponding to an equidistribution of energy over all
accessible locations of phase-space. The Fourier-distribution of kinetic energy is given by

UK = 5 (k) - (k) e

with w(k) the Fourier-coefficient associated with the velocity at wavevector k and k the
norm of this wavevector. Lee’s result implies that the average energy distribution is simply
constant

U(k) = constant = 2/, (2.2)

where the constant is named 2/, for later convenience. This energy-distribution corresponds
to an isotropic kinetic energy spectrum,

2
E(k) = 4nk*U (k) = % (2.3)

We note that the energy spectrum is here and in the following distinguished from the
kinetic energy by its argument k. Expression (2.3) is radically different from observations
of freely evolving three-dimensional Navier-Stokes turbulence, which displays a close to
k=3/3 wavenumber dependence over a wide range of scales. However, it can be concluded
from this analysis that turbulence with kinetic energy at large scales will have a tendency to
transfer turbulent excitation towards the smaller scales as to approach this equilibrium state.
Indeed, since the large scales (small k) of high-Reynolds numbers turbulence are nearly
unaffected by viscous-stresses, these scales are approximately obeying the Euler equations.
For instance, in forced three-dimensional turbulence, an energy spectrum close to expression
(2.3) is observed (Lesieur 1990; Alexakis & Brachet 2019) for wavenumbers k smaller than
the wavenumber associated with the forcing. If we let these large scales freely evolve, the
tendency of the large scales, piloted by the Euler-equations will transfer energy to larger
k. In natural systems, viscous dissipation will damp this energy if the wavenumber is large
enough so that the equilibrium state (2.3) is never attained in the absence of external forcing.
Equilibrium statistical mechanics do therefore help to determine cascade directions.

The analysis by Lee considered the kinetic energy of the three-dimensional turbulent
fluctuations as the only invariant of the system. In the 1960s another invariant was shown
to exist in three-dimensional bounded flow (Moreau 1961; Moffatt 1969). This invariant is
named helicity and is defined as

H = %(u-w). (2.4

After the introduction of the concept of helicity, it was anticipated by Kraichnan (1973)
using equilibrium statistical mechanics that the presence of helicity should not dramatically
influence the dynamics. The principal reasoning to come to this insight was based on an
analysis similar to that of Lee. The equilibrium state he derived for the kinetic energy
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Figure 1: Absolute equilibrium energy spectra for three-dimensional turbulence with and

without helicity.
spectrum is
8rak?
Ek)= "5 e (2.5)

where 3 is a Lagrange multiplier. This expression is sketched in Fig. 1. We show how the
presence of helicity alters the equilibrium prediction (2.3) for the kinetic energy spectrum
for three cases, with value 8 = 0, i.e., zero helicity, Bkmax/a@ = 1, the maximum helical case,
and an intermediate case. Even for the most helical case, the large scales are unaffected and
only the highest wavenumbers display the influence of the helicity on the energy distribution.
Again, these scales are in real turbulence damped by viscous dissipation. From this analysis
Kraichnan concluded that the influence of helicity on three-dimensional turbulence should
be small. This was confirmed soon after using two-point closure (André & Lesieur 1977),
and later by direct numerical simulations (Borue & Orszag 1997).

A situation where the presence of two distinct invariants does change the dynamics
considerably is the case of two-dimensional turbulence. In such flows, the enstrophy is
conserved together with the energy. For this case, Kraichnan (1967) derived equilibrium
predictions and deduced the directions of energy and enstrophy cascades.

Since these pioneering investigations, a wide range of turbulent systems have been analyzed
using statistical mechanics. The most well-known approaches are the equilibrium states
computed using a point-vortex approach of 2D turbulence (Onsager 1949; Montgomery &
Joyce 1974; Lundgren & Pointin 1977) and the equilibrium theory of Robert & Sommeria
(1991) and Miller (1990), considering coarse-grained 2D turbulence (see also Eyink & Spohn
(1993)). A large variety of problems has since then been tackled using statistical mechanics
such as the prediction of mixing in stratified turbulence (Venaille et al. 2017), vorticity
in a vortex-ring (Mohseni 2001), axisymmetric turbulence as applied to Von-Karman flow
(Leprovost et al. 2006; Naso et al. 2010), the characterization of magnetohydrodynamic
turbulence (Frisch et al. 1975; Fyfe & Montgomery 1976; Servidio et al. 2008), of plasma
turbulence (Zhu & Hammett 2010) and random reversals in turbulent systems Shukla ez al.
(2016). An investigation, somewhat similar to the present one, gives insights in the coupling
of different two-dimensional turbulent velocity fields (Salmon 2013). In a recent manuscript
(van Kan et al. 2021) further motivations are given to study truncated turbulent systems using
statistical mechanics.

A complete review is beyond the scope of the present investigation. Therefore we refer
for extensive reviews on statistical mechanics applied to two-dimensional turbulence to
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Kraichnan & Montgomery (1980) for the older work and to Bouchet & Venaille (2012) for
more recent developments.

3. Analytical considerations

In this section we will first prove that the nonlinearity of the vorticity-advection equation
conserves both enstrophy and helicity. Using this information, we then formulate a statistical
mechanics of the truncated system. The presence of the two invariant quantities (enstrophy
and helicity) leads, for non-zero helicity, to a thermal equilibrium state with energy peaking
at the largest possible scale of the system. This conclusion is opposite to the result for classic
three-dimensional turbulence, where helicity only modifies the smallest alowed scales of the
system, as was observed in Fig. 1.

3.1. Conservation of integral quantities

The governing equation of our system is Eq. (1.1). Multiplying by w and averaging yields

aw
= —(w- (u-Vw)), 3.1
= (@ (- Yw)) 3.1
where W = % <||w||2). Incompressibility allows to write
aw 1
T —_v. 2 )
= =3V (ullw|), (3:2)

and the integral of the gradient-term on the right-hand side is zero for statistically homoge-
neous, or periodic, flows so that we obtain conservation of enstrophy,

dw
— =0. 33
7 (3.3)

The proof of conservation of helicity is somewhat more involved and follows the same
reasoning as in Frisch (1995) for the Euler equations. We need the relations,

(fVg) =—(eVf) (3.4)
(f-Vxg)y=(g-VxF), (3.5)

valid for arbitrary scalar fields f, g and vector fields f, g. Furthermore for incompressible
fields u, w, we have

Vx(uxw)=w- -Vu—-—u-Vw. (3.6)

The proof of helicity conservation goes as follows. Helicity is defined as
1
H = E(w Su). (3.7)
The evolution of H is then given by
dH 1 (/0w ou
E‘§(<E'“>+<E"”>) 38)
which can be written using (3.5) as

dr -\ o

which avoids the need to know the equation for du/dt. Using vector-identity Eq. (3.6), we

dH_<8w.u> (3.9)



6
can rewrite the vorticity equation (3.1),
ow

B =VX(uXw)—(w-V)u, (3.10)
so that for the time-evolution of helicity we can write,
dH
I =(u-VX(uXxw))—(u-(w-Vu)) (3.11)

where both terms on the right-hand-side can be shown to be zero using expressions (3.4)
and (3.5) and incompressibility. We note here that this proof can be extended to the case of
two-dimensional three-component flows (Biferale ez al. 2017).

We note that the conservation of helicity is a global flow property in our system. For the
original Euler-equations, helicity is not only a global property, but is also conserved in sub-
domains consisting of closed vortex-tubes. The proof of this requires that forces applied to
the system are irrotational (Moffatt 1969). The system considered in the present investigation
can be seen as the Euler equation to which we apply a force which compensates for vortex
stretching in every point in space (Bos 2021). Since the curl of this force is equal to (minus)
the vortex-stretching term in the vorticity equation, it is easily observed that this force is not
irrotational, and helicity in the present system is therefore not conserved in closed vortex
tubes.

Strictly spoken, the enstrophy and the helicity are not the only conserved quantities.
Indeed, as for two-dimensional turbulence, all other even powers of the vorticity, <||w||2">
are conserved by the system. Furthermore, not only the total enstrophy is conserved, but
also the individual components, (wi), (wi) and (wﬁ) are conserved independently. We will
consider the case where these different contributions are comparable, so that we can focus
on the sum of the contributions, the total enstrophy.

3.2. Statistical equilibrium distributions

In this section we will derive, using tools from statistical mechanics, the spectral energy
distribution corresponding to thermal equilibrium of a finite set of Fourier-modes. We refer
to Salmon (1998) and Thalabard (2013) for detailed derivations using the present approach.
We consider that the flow is decomposed on a finite number N of Fourier-components w (k).
The vector-space k is thus decomposed by its coordinates k,,, with n = 1..N. Note that
in this section, the subscript n does not indicate a vector index, but simply a counter. The
value N corresponds to the total number of modes. This means that in a three-dimensional
cubic domain with Ny, modes in each direction, N = N} 3. Note that the Fourier coefficients
of velocity satisfy the conjugate symmetry u(k) = u ( k), because the velocity is a real
quantity in physical space, thus the total number of independent degrees of freedoms of the
system is N /2.

We consider incompressible flow, where the divergence in Fourier-space implies k-u (k) =
0, so that only two-independent Fourier-coefficients are needed to represent the velocity-
vector u(k,,). Since, in addition, the Fourier-coefficients are complex, in total 4 independent
real coeflicients describe each mode. These modes are denoted y,,, Y5y, Yns» Yn,» Where n
runs from 1 to N. In total therefore, if we have N wave-vector coordinates representing
a three-dimensional velocity field, we have to consider the dynamics of a system of 4N
coordinates in phase-space. A convenient way to choose the independent modes will be
described now.

Following Walefte (1992), Cambon & Jacquin (1989) and Kraichnan (1973), we represent
the velocity field of an incompressible 3D fluid by using a helical-mode decomposition.
Every 3D Fourier vector u(k) can be represented by two orthogonal complex helical waves
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h* = x k + it with k = k/k the unit vector parallel to k. Here the unit vector i can be
chosen as W = z X k/|z X k| for an arbitrary vector z. It then follows that

u(k) = ut(k)h* (k) +u~(k)h~ (k) . (3.12)

Note that u* (k) and u~ (k) are complex numbers.

As stated above, all coordinates k of the considered part of Fourier space are individually
labeled k,,, with n ranging from 1 to N. Since at each coordinate k, we have 4 individual
real coefficients y,,, Yn,, Yn;» Yn,» We can thus define using this representation,

Yny = R(u* (k). Yn, = I(u*(kn)),
Yns = %(u_(kn))» Yng = S(u_(kn)) (3.13)

The main motivation to use the helical mode decomposition in the present investigation is
that we have a simple relation between the generalized coordinates and the modal energy,
helicity and enstrophy,

%u(k) cuf(K) = upul +u_u’

= Yy + Yoy ¥ Vi + Yy = En, (3.14)
%u(k) cw*(K) = k (upuy —u_u’)

= |kl (yi1 + Yy = Vg —yi) = Hy, (3.15)
%w(k) W (K) = kK> (uguls +u_u’)

= |knl* (73, + Yy + Vi + Y)) = Wa. (3.16)

In the following we will use that all four coefficients y, correspond to the same position in
Fourier-space so that we can write |k,| = k. Now that we have defined the invariants as a
function of the generalized coordinates y,, in phase space, we can proceed the derivation of
the equilibrium distribution.

The fundamental principle of equilibrium statistical mechanics states that in systems
satisfying a Liouville equation (nondivergent evolution of the generalized coordinates), the
probability density P(y) eventually becomes uniform over all accessible parts of phase space
(Salmon 1998). We will compute the average spectral energy distribution associated with this
thermal equilibrium state. An essential ingredient to compute the average corresponding to
this distribution is the probability density. The partial density, or partition function for mode
1, Py (Ynys - Yn,) is considered to satisfy a Boltzmann-Gibbs equilibrium distribution,

Py (Ynys oo Yny) = Crexp [—Sa] (3.17)

where S, is a function of the constants of motion and C,, is a constant. For instance, if
enstrophy and helicity are conserved, as in our case, the quantity S, writes

Sy = aW, + BH,, (3.18)

where @ and S are Lagrange multipliers representing some kind of inverse statistical
temperature or chemical potential. The function P,, gives thus the probability to find values
yn, for mode n. It is at this point that the approach of different physical systems is distinct.
For 2D turbulence, W,, and the energy E,, would appear, whereas in classical 3D turbulence,
E, and H,, would appear in expression (3.18).



We have thus, substituting definitions (3.15) and (3.16) in (3.17),

Py (Ynys oY) = Cuexp [ (k2@ = kB) (v, +¥n,)
+ (=K +kB) (v, + 2] (3.19)
We define Z,, the integral of Py,

Zn = / // Py dymsdymdyn,. (3.20)

The average enstrophy per mode is given by

(Wad = D K2y ym) (3.21)

i=1..4
-y L //// 2Py ys | 49y Yy @Yy (3.22)
i= l 4

From Eq. (3.17) and Eq. (3.20) it is observed that we can compute the average directly using
1 07,

= (W), 3.23
= (W) (3.23)
and similarly
1 07,
= (Hp). 3.24
- g = () (3.24)
The integral (3.20) can be computed to yield,
2
4
ey (32
so that we find for the enstrophy and helicity,
2ak2 28
(Wn) = ey (Hp) = 22 (3.26)
The enstrophy spectrum and helicity spectrum are therefore, due to isotropy,
87mk4 _8mBk*
W) = o HO = s (327)
so that the kinetic energy spectrum writes
8nak2
E(k) = ﬂ2 (3.28)

This last expression is the principal theoretical result of the present investigation. An
important feature of this expression, in contrast to expression (2.5) derived for classical
turbulence, is that in the present case helicity does mainly affect the large scales. Expression
(3.28) and its implications will be verified using simulations.

3.3. Integral relations between the enstrophy, helicity and energy for the equilibrium
distributions

Since the enstrophy and helicity are conserved quantities of the system, the statistical
characterization of our system in statistical equilibrium is completely determined by the



values of the enstrophy and helicity,

kmax kmax
W= kK*E(k)dk H = H(k)dk (3.29)
kmin kmin
as soon as we know ki, and k.« and the initial conditions. Indeed, the unknown coefficients
a and g in the equilibrium spectra are fully determined by the other parameters. This allows
to predict the long-time expected value of the kinetic energy

Kmax
E:/ E(k)dk, (3.30)
kmin

as a function of the enstrophy and helicity. Let us illustrate this for the simplest, mirror-
symmetric case. For that case we have g = 0, leading to

k, 2 3

mx (2 8r k3,

W = 8 n X Dmax (3.31)
kmin a 3 a

which allows to express « as a function of W and kp,x, where we used that kpin < kmax-
Substituting this in the kinetic energy spectrum and integrating yields

W
klznax
so that we have a prediction for the final value of the kinetic energy as a function of the initial
condition for W. When both helicity and enstrophy are nonzero, the computation becomes

more tedious, but can still be performed analytically. We introduce the ratio y = 8/« so that
the helicity spectrum writes

E=~3

(3.32)

81y  k?
T k2—y?
For this expression to make sense, the minimum wavenumber should verify &k, > . Under
this constraint, we can integrate the helicity spectrum to obtain the expression

H(k) = (3.33)

2

8 k2. —y
H = = i = ki + 2 In | 2380 | (3.34)
@ kmin_y

which relates the helicity to kmax, kmin, @ and 5. For the helical cases, the relation between
energy and helicity is simply E = H/7y.

4. Numerical method and initial conditions

Direct numerical simulations (DNS) for the Euler equations without vortex-stretching are
performed using a standard pseudo-spectral solver with a third-order Adams-Bashforth time
integration scheme. The original code (Delache et al. (2014)) is formulated in velocity-
formulation and has to be adapted to be able to compute the Euler-equations without vortex-
stretching Eq. (1.1). The vortex-stretching is most conveniently removed from the vorticity
equation. Using Fourier-representation, the velocity equation is then readily obtained by
uncurling the equation (see Bos (2021) for details). Indeed, since for an incompressible
vector field we have V X Vxu = —Awu, we obtain by taking the curl of Eq. (1.1) the Laplacian
of the velocity-equation,

A
—06;” VX (u-Yw) =0, (4.1)
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so that for the Fourier-coefficients & we can write
ol
ot
where ¥ [e] indicates the Fourier transform. This formulation conserves by nature incom-
pressibility. Eq. (4.2) is integrated in our code.

Our computational domain is a periodic box in three dimensions with length of side L = 2
and a grid of size 1283. Higher resolutions do not seem necessary in the present case to assess
the analytical results.

Aliasing errors are removed using the 2/3 rule, i.e., the maximum wave number iS kpax =

[%] X ZT" = 43 where [e] is a rounding operation. The initial energy spectrum is defined as

+ #k x Flu - Vw] =0, 4.2)

E(k) = Cg (k/ko)* e 2K/ko)” (4.3)

with kg = 2.52 and Cg a constant. The initial complex arguments of velocity in Fourier
space are chosen randomly. This method generates initial fields with non-zero helicity. We
want to test our predictions for both mirror-symmetric flows and flows with mean-helicity.
In order to generate a helicity-free flow it is in principle possible to manipulate the phases
of the Fourier modes, but we have used a more intuitive manner by combining two velocity
fields.

We generate two velocity fields u, and u, with identical energy spectra but different
random phases. Then a helicity-free velocity field can be created by a linear combination of
these two fields as u. = u,+Auy. The constant A will be determined now. We first introduce
the notation

1
hap = E(ua S Wp). “4.4)

The mean helicity of field u, is
1 1
He =hee = §<uc “We) = E((ua +Aup) - (Wa + Awp))

1
= z(haa + /l(hab + hba) + /lzhbb)- 4.5)

Since hqq, hpp, hab, hpa can all be computed directly, the condition H, = 0 yields a quadratic
equation for A [i.e. Eq. (4.5)=0], which can be solved exactly to determine A. This procedure
allows to generate a zero-helicity initial condition with prescribed kinetic energy spectrum.
Due to rounding errors the helicity of the resulting initial condition is order 10~#, which is
sufficiently close to zero for our purposes.

5. Numerical investigation of the equilibrium states

In this section we will assess numerically the conservation of enstrophy and helicity. Subse-
quently we will check our predictions from statistical mechanics and show visualizations of
the equilibrium state.

5.1. Conservation of enstrophy and helicity during relaxation

In Fig. 2 we show the time evolution of enstrophy, helicity and kinetic energy. Note that the
2

min®
For the case of mirror-symmetric truncated Euler-turbulence without vortex-stretching, a
clear conservation of enstrophy is observed, whereas the kinetic energy decays. Helicity

remains negligible throughout the simulation. The prediction of the kinetic energy, discussed

initial energy Ey is unity. Time is normalized by a characteristic time scale 7 = 1/,/Eok
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Figure 2: Time evolution of energy, enstrophy and helicity for the inviscid, force-free, 3D,
no vortex-stretching turbulence. (solid lines: helical case; dashed lines: mirror-symmetric
case; dotted line: the analytical prediction of the kinetic energy for the mirror-symmetric

case.)
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Figure 3: Inviscid relaxation for helicity-free turbulence. (a) Short time evolution, showing
the kinetic energy spectra at t = 0.1; 0.2; 0.4; 0.6; 1. (b) Long time evolution, showing the
spectra at t = 1; 2; 4; 6; 10; 20; 40; 60; 100; 120; 140.

in Sec. 3.3 is represented by a dotted line. It is observed that the expected steady state is
reached for the kinetic energy. This steady state is the predicted equilibrium state, where the
Fourier-modes all contain, on average, the same amount of enstrophy.

In Fig. 2 the same results are also plotted for the helical case. It is observed, that as shown
in our proof (Sec. 3.1), helicity is conserved by the system. As mentioned in Sec. 3.3, the
prediction of the final kinetic energy in the helical case is E = H/y. After calculation, we have
v = —0.9989 =~ —1 in our simulation. This corresponds to the observation that the kinetic
energy tends to the absolute value of the helicity. This tendency is not a coincidence, but
reflects the condensation of energy into a helical flow-structure at scales with wavenumber
k =1, as will be shown next. It is also shown that the presence of helicity allows the flow
to retain more kinetic energy in the system than the mirror-symmetric case does. Indeed,
whereas without helicity, the energy drops to less than 2% of its initial value, in the helical
case, this value is approximately 15%.
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Figure 4: Inviscid relaxation for helical turbulence. (a) Short time evolution, showing the
kinetic energy spectra at t = 0.1; 0.2; 0.4; 0.6; 1. (b) Long time evolution, showing the
spectra at t = 1; 2; 4; 6; 8; 10; 14; 16; 18; 30.

To further investigate the dynamics of the truncated system, we show in Fig. 3(a,b) the
evolution of the kinetic energy spectra towards the equilibrium state. It is observed that
enstrophy accumulates rapidly in the largest spatial frequencies, in a similar manner as
energy accumulates in classical truncated Euler dynamics (Cichowlas et al. 2005; Bos &
Bertoglio 2006). This evolution was correctly predicted and explained in Bos (2021).

The dynamics of the helical case (Fig. 4(a,b)) is quite similar, except for the persistent en-
ergy in the smallest wavenumbers. This is anticipated by the statistical-mechanics predictions
in Sec. 3 and we will focus on them now.

5.2. Comparison with predicted shapes

In Fig. 5 we compare the spectra associated to the relaxed state, obtained from the numerical
simulations, to the predictions (3.27 and 3.28) for the spectra. An excellent agreement is
observed. Fig. 5(a) shows the mirror-symmetric case, where a flat energy spectrum, associated
with equidistributed enstrophy is obtained. We do not show the enstrophy spectrum which is
simply obtained by the energy spectrum multiplied by k.

The most flagrant difference between the mirror-symmetric and helical cases is the
accumulation of helicity near the infra-red cut-off. In Fig. 5(b) we observe this for the
energy spectrum, and the same feature is observed for the enstrophy and helicity spectrum in
Fig. 5(c) and Fig. 5(d). The amount of energy in this large-scale feature is quite important.
Indeed, the £k = 1 mode contains 87% of the total energy. We will now focus on this energetic,
helical mode.

5.3. Visualization of the final state

An instantaneous visualization of the y-component of the velocity for the final state is
visualized in Fig. 6. It shows that our 3D, inviscid, no vortex-stretching system relaxes to a
large-scale structure. This could be suspected from the energy spectrum, and it is illustrated
in the visualizations. Since almost all energy and all helicity is contained in the k = 1
mode, a plausible three-dimensional structure is the Arnold-Beltrami-Childress, or ABC,
flow. A physical explanation for this, in the light of the statistical mechanics description
used here, is that adding the additional constraint of helicity conservation will change the
energy and therefore the enstrophy distribution. This will necessarily lead to a decrease of
the entropy of the system, since the highest entropy corresponds to enstrophy equipartition.
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Figure 5: Analytical spectra associated with the absolute equilibrium state and numerical
spectra. (a) Energy spectrum of the helicity-free case at r = 140. (b-d) Helical case at
t = 30. (b) Energy spectrum. (c) Enstrophy spectrum. (d) Absolute value of helicity
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Figure 6: Visualizations of the truncated inviscid system without vortex-stretching,
obtained from pseudo-spectral computations. Velocity in the y-direction (uy).
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Figure 7: Visualization of flow and verification of ABC flow proprieties. Analytical and
numerical results of uy(z) along the line (x = 0.66L, y = 0.5L).

The minimum change in entropy corresponds to a modification of the largest scales of the
system. Maximizing the helicity in the largest scales of the system is therefore the most
probable reaction of the system. Maximum helicity corresponds to alignment of velocity and
vorticity, and thus to an ABC flow. In the following, we verify that the k = 1 contribution of
the equilibrium state corresponds to such a flow.

The definition of an ABC flow with typical size L is

Uy =AsinZ+ Ccosy,
uy = BsinX+ Acos?z,
u, = Csinj+ Bcosx, 5.1

where X; = +27x; /L + ¢;. The + sign determines the sign of helicity. Simple algebra shows
that the parameters A, B, C satisfy the relations

A= (2) ¢ () - (2).
B = () + (12) - (u2). 52)
€= (u2) + {u2) - (i2)

We measure during equilibrium <uf€> = 3.7963, <u§,> =4.2210 and (uﬁ) = 1.8600. These
figures yield |A| = 2.4814, |B| = 1.5115 and |C| = 1.1980. Averaging the three relations
(5.1) for fixed positions x, y, z allows also to determine the phases ¢;. Doing so for our
simulation, we find x = —27x/L — 0.667r,y = —2ny/L — 0.2571,7 = —2nz/L — 0.4957 with
A>0,B>0,C>0.

In Fig. 7 we compare the resulting ABC-flow prediction to the results of the simulation
for an arbitrary cut through the domain along the z-direction, plotting the y-velocity. The
large-scale flow is indeed consistent with an ABC flow pattern. Superposed upon this large-
scale pattern, we observe random fluctuations with a larger spatial frequency, consistent
with the spectra we showed in the previous section. All other velocity-components in all
other directions (not shown) confirm this behavior of an ABC structure accompanied by
large-frequency noise.
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6. Conclusions

The main insight obtained in the present investigation can be summarized by the spectra
in Fig. 5. These figures illustrate the statistical equilibrium states of a truncated set of
Fourier-modes, governed by the Euler-equations without vortex-stretching. The kinetic
energy spectrum is flat for large wavenumbers, as was predicted in Bos (2021). However,
the largest scales allowed by the system are strongly affected if the initial conditions contain
helicity.

In the absence of helicity, the final state corresponds to a thermal equilibrium of Fourier
modes over which enstrophy is evenly distributed, on average. As soon as helicity is present,
the helicity allows a condensation of energy in the largest scales of the system. The flow-
structure associated with this is an Arnold-Beltrami-Childress flow and the energy of this
structure is directly determined by the amount of helicity in the system. It is shown in the
simulations carried out here that the initial amount of normalized helicity does not need
to be very large to have a large influence on the final state. Indeed, since the helicity is
conserved, the decrease of the kinetic energy (and constant enstrophy) leads to an increase
of its normalized value at the end.

The tendency of the largest scales of the inviscid system to absorb the helicity does have
implications for the cascade directions in a forced-dissipative system. Indeed, in turbulence
without vortex stretching, enstrophy is preferentially transfered to the large wavenumbers
(Bos 2021). In order to approach the equilibrium state, helicity will presumably show a
tendency to be transferred to small wavenumbers. The verification of such a novel dual
cascade scenario will be left for further research.

As a perspective we also plan to consider how these ideas carry over to two-dimensional
three-component flows. Indeed, in such flows vortex-stetching is also suppressed and thereby
helicity conserved by the nonlinearity. Whether such systems similarly relax to a helical
large-scale dynamics is a question which could have interesting geophysical applications.
An interesting first result pointing towards the importance of large-scale helical motion in
such systems can be found in Agoua et al. (2021), where a forced 2D3C flow is shown to
generate large-scale helical motion.
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