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ASYMPTOTIC SMOOTHNESS IN BANACH SPACES,

THREE SPACE PROPERTIES AND APPLICATIONS

R.M. CAUSEY, A. FOVELLE, AND G. LANCIEN

Abstract. We study four asymptotic smoothness properties of Banach
spaces, denoted Tp,Ap,Np and Pp. We complete their description by
proving the missing renorming theorem for Ap. We prove that asymp-
totic uniform flattenability (property T∞) and summable Szlenk index
(property A∞) are three space properties. Combined with the posi-
tive results of the first named author, Draga, and Kochanek, and with
the counterexamples we provide, this completely solves the three space
problem for this family of properties. We also derive from our charac-
terizations of Ap and Np in terms of equivalent renormings, new coarse
Lipschitz rigidity results for these classes.

1. Introduction

The main purpose of the Ribe program is to find metric characterizations
of linear properties of Banach spaces. Originally, it was mainly concerned
with local properties, that is isomorphic properties of finite dimensional
subspaces of a Banach space. We refer to [34] and [2] for a discussion of its
origins and motivations. In the last twenty years, the asymptotic structure
of Banach spaces, which, very vaguely speaking, deals with their finite codi-
mensional subspaces, also proved to be central in the non linear geometry
of Banach spaces. We refer the reader to the seminal works of N. Kalton
([27] and [26] for instance) and to the survey [19] and references therein.

In this article, we describe in details four different properties related to
the asymptotic uniform smoothness of Banach spaces, that we shall de-
note Tp,Ap,Np and Pp. In section 2, we give their definitions in terms of
two-players games on a Banach space X. Let us just mention for this intro-
duction that each of them coincide with the existence of a special form of
so-called upper `p estimates for weakly null trees in X.

In section 3, we give the main characterizations of these properties, which
involve, upper `p estimates for weakly null trees, the existence of quantita-
tively good equivalent asymptotically uniformly smooth norms and, dualy,
the behaviour of the Szlenk index. We refer the reader to section 3 for the
precise statements and definitions. Most of the results that we will recall
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are taken from previous works of the first named author (see [6], [7], [9]).
However, the renorming characterization of Ap was missing. This is the main
new result of this section, that we state here.

Theorem A. Fix 1 < p < ∞ and let q be conjugate to p. Let X be a
Banach space. The following are equivalent

(i) X ∈ Ap.
(ii) There exists a constant c > 0 such that for any weak neighborhood

basis D at 0 in X, any n ∈ N, and any weakly null (xt)t∈D6n in the
unit ball of X, there exists t ∈ Dn such that

∀a = (ai)
n
i=1 ∈ `np ,

∥∥∥ n∑
i=1

aixt|i

∥∥∥ ≤ c‖a‖p.
(iii) There exists a constant M ≥ 1 and a constant C > 0, such that for

any τ ∈ (0, 1] there exists a norm | | on X satisfying M−1‖x‖X ≤
|x| ≤M‖x‖X for all x ∈ X and

∀σ ≥ τ, ρ| |(s) ≤ Csp,
where ρ| | denotes the modulus of asymptotic uniform smoothness of

| | (see definition in section 2).
(iv) X has q-summable Szlenk index.

Let us recall that a property (P ) of Banach spaces is separably determined
if a Banach space X has (P ) if and only if all its separable subspaces have
(P ). In section 4, we provide a short and unified proof of the fact that all
these properties are separably determined.

Section 5 is devoted to the study of the three space problem for Tp,Ap,Np
and Pp. A property (P ) of Banach spaces is a Three Space Property (3SP
in short) if it passes to quotients and subspaces and a Banach space X has
(P ) whenever it admits a subspace Y such that Y and X/Y have (P ). The
properties Tp,Ap,Np and Pp pass quite simply to subspaces, quotients or
isomorphs and it was proved in [10] that Pp is a 3SP. First, we take the
opportunity of this paper to provide a more direct argument for this. Then,
with a single example, we show that, for 1 < p <∞, Tp,Ap and Np are not
3SP. Finally, and this is the main result of this section, we show

Theorem B. Asymptotic uniform flattenability (property T∞) and summa-
ble Szlenk index (property A∞) are three space properties.

A net in a metric space (M,d) is a subset M of M such that there exist
0 < a < b so that for every z 6= z′ in M, d(z, z′) ≥ a and for every x in M ,
d(x,M) < b. Let us use, for the simplicity of this introduction, that two
infinite dimensional Banach spaces X and Y are coarse Lipschitz equivalent
if and only if there exist two nets in X and Y that are Lipschitz equivalent.
The precise definition of a coarse Lipschitz equivalence is given in section 6
and can be roughly described as a Lipschitz equivalence at large distances.
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In [17] and [18], it is proved that Tp is stable under Lipschitz equivalences, Pp
is stable under coarse Lipschitz equivalences and A∞ = N∞ is stable under
coarse Lipschitz equivalences. In [28], N. Kalton proved that for 1 < p <∞,
the class Tp is not stable under coarse Lipschitz equivalences. Thanks to
our renorming theorems from section 3, we can almost complete this set of
results.

Theorem C. Let p ∈ (1,∞). Then, the class Ap and the class Np are stable
under coarse-Lipschitz equivalences.

To be perfectly clear, let us point that for Np, this is deduced from already
existing results, while for Ap it relies on our new renorming characterization.

In section 7 we conclude this paper by gathering a few known examples
of T∞ or A∞ spaces and related questions.

2. The properties

All Banach spaces are over the field K, which is either R or C. We let BX
(resp. SX) denote the closed unit ball (resp. sphere) of X. By subspace,
we shall always mean closed subspace. Unless otherwise specified, all spaces
are assumed to be infinite dimensional.

Let us first recall the definition of the Szlenk index. For a Banach space
X, K ⊂ X∗ weak∗-compact, and ε > 0, we let sε(K) denote the set of
x∗ ∈ K such that for each weak∗-neighborhood V of x∗, diam(V ∩K) ≥ ε.
We define the transfinite derivations

s0
ε(K) = K,

sξ+1
ε (K) = sε(s

ξ
ε(K)),

and if ξ is a limit ordinal,

sξε(K) =
⋂
ζ<ξ

sζε(K).

For convenience, we let s0(K) = K. If there exists an ordinal ξ such that

sξε(K) = ∅, we let Sz(K, ε) denote the minimum such ordinal, and oth-
erwise we write Sz(K, ε) = ∞. We let Sz(K) = supε>0 Sz(K, ε), where
Sz(K) =∞ if Sz(K, ε) =∞ for some ε > 0. We let Sz(X, ε) = Sz(BX∗ , ε)
and Sz(X) = Sz(BX∗). In this work, we will exclusively be concerned with
Banach spaces X such that Sz(X) 6 ω, where ω is the first infinite ordi-
nal. Since Sz(X) = 1 if and only if X has finite dimension, and otherwise
Sz(X) > ω, we will actually only be concerned with the case Sz(X) = ω.
By compactness, Sz(X) 6 ω if and only if Sz(X, ε) is a natural number for
each ε > 0. We note that Sz(X) < ∞ if and only if X is Asplund. One
characterization of Asplund spaces is that every separable subspace has a
separable dual.

We recall that for any Banach space X and 0 < ε, δ < 1,

Sz(X, εδ) 6 Sz(X, ε)Sz(X, δ).
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From this it follows that if Sz(X, ε) is a natural number for each ε > 0, the
Szlenk power type

p(X) := lim
ε→0+

logSz(X, ε)

| log(ε)|
is finite. It also holds that for any ordinal ξ, any ε > 0, and any natural
number n, if Sz(X, ε) > ξ, then Sz(X, εn) > ξn. Indeed, this follows from
realizing

BX∗ =
1

n
BX∗ + . . .+

1

n
BX∗

and noting that the ε
n -derivations act on one summand at a time in the

same way that the ε-derivations act on BX∗ . Therefore the ε-Szlenk in-
dex grows subgeometrically but superarithmetically. The superarithmetic
growth implies that for any infinite dimensional Banach space, p(X) > 1.

We define the following modulus. For ε > 0,

θ
∗
X(ε) = max{δ ≥ 0, sε(BX∗) ⊂ (1− δ)BX∗}.

For 1 6 q < ∞, we say X has q-summable Szlenk index provided there
exists a constant c > 0 such that for any n ∈ N and any ε1, . . . , εn > 0 such
that sε1 . . . sεn(BX∗) 6= ∅,

∑n
i=1 ε

q
i 6 cq. In the q = 1 case, we refer to this

as summable Szlenk index rather than 1-summable Szlenk index.
We also define the modulus of asymptotic uniform smoothness of X. If X

is infinite dimensional, for σ > 0, we define

ρX(σ) = sup
y∈BX

inf
E∈cof(X)

sup
x∈BE

‖y + σx‖ − 1,

where cof(X) denotes the set of finite codimensional subspaces of X. For
the sake of completeness, we define ρX(σ) = 0 for all σ > 0, when X is finite
dimensional. We note that

ρX(σ) = sup{lim sup
λ
‖y + σxλ‖ − 1 : (xλ) ⊂ BX is a weakly null net}.

It follows easily from the triangle inequality that ρX is a convex function.

Since ρX(0) = 0, we deduce that σ 7→ ρX(σ)
σ is non-decreasing on (0,∞).

Therefore

inf
σ>0

ρX(σ)

σ
= lim sup

σ→0+

ρX(σ)

σ
.

We say X is asymptotically uniformly smooth (in short AUS ) if

inf
σ>0

ρX(σ)

σ
= 0.

We say X is asymptotically uniformly smoothable (AUS-able) if X admits
an equivalent AUS norm. For 1 < p < ∞, we say X is p-asymptotically
uniformly smooth (in short p-AUS ) if

sup
σ>0

ρX(σ)

σp
<∞.
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We say X is p-asymptotically uniformly smoothable (p-AUS-able) if X ad-
mits an equivalent p-AUS norm. We say X is asymptotically uniformly flat
(AUF ) if there exists σ0 > 0 such that ρX(σ0) = 0. We say X is asymptoti-
cally uniformly flattenable if X admits an equivalent AUF norm. Of course,
p-AUS spaces and AUF spaces are AUS spaces.

It is well known that the dual Young function of the modulus of asymp-
totic uniform smoothness is equivalent to the so-called modulus of weak∗

asymptotic uniform convexity δ
∗
X (see Proposition 2.1 and Corollary 2.3 in

[13]). It is also clear that δ
∗
X is equivalent to θ

∗
X . It will be more conve-

nient for us to work with θ
∗
X . We shall only need the following version of

Proposition 2.1 in [13].

Proposition 2.1. There exists a universal constant C ≥ 1 such that for
any Banach space X and any 0 < σ, τ < 1,

(1) If ρX(σ) < στ , then θ
∗
X(Cτ) ≥ στ .

(2) If θ
∗
X(τ) > στ , then ρX( σC ) ≤ στ .

For 1 6 q <∞, a Banach space X, and a sequence (xi)
∞
i=1 ⊂ X, we define

the (possibly infinite) quantity

‖(xi)∞i=1‖wq = sup{‖(x∗(xi))∞i=1‖`q : x∗ ∈ BX∗}.

We also define this quantity for finite sequences,

‖(xi)ni=1‖wq = sup{‖(x∗(xi))ni=1‖`nq : x∗ ∈ BX∗}.

Note that, if p ∈ (1,∞] is the conjugate exponent of q, we have that

‖(xi)∞i=1‖wq = inf
{
c ∈ (0,∞], ∀a = (ai)

∞
i=1 ∈ `p ‖

∞∑
i=1

aixi‖ ≤ c‖a‖p
}
.

A similar formula is valid for ‖(xi)ni=1‖wq .

We next define four different two-players games on a Banach space X.
Fix 1 < p 6 ∞ and let 1/p + 1/q = 1. For c > 0 and n ∈ N, we define the
T (c, p) game on X, the A(c, p, n) game, and the N(c, p, n) game. Let D be
a weak neighborhood basis at 0 in X. In the T (c, p) game, Player I chooses
a weak neighborhood U1 ∈ D, and Player II chooses x1 ∈ U1 ∩ BX . Player
I chooses U2 ∈ D, and Player II chooses x2 ∈ U2 ∩ BX . Play continues in
this way until (xi)

∞
i=1 has been chosen. Player I wins if ‖(xi)∞i=1‖wq 6 c, and

Player II wins otherwise.
The A(c, p, n) game is similar, except the game terminates after the nth

turn. Player I wins if ‖(xi)ni=1‖wq 6 c, and Player II wins otherwise.
In the N(c, p, n) game, as in the A(c, p, n) game, the game terminates

after the nth turn. Player I wins if
∥∥∥∑n

i=1 xi

∥∥∥ 6 cn1/p, and Player II wins

otherwise.
Finally, in the Θ(c, n) game, Player I wins if

∥∥∥∑n
i=1 xi

∥∥∥ 6 c, and Player

II wins otherwise.
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It is known (see [6], section 3) that each of these games is determined.
That is, in each game, either Player I or Player II has a winning strat-
egy. We let tp(X) denote the infimum of c > 0 such that Player I has a
winning strategy in the T (c, p) game, provided such a c exists, and we let
tp(X) = ∞ otherwise. We let ap,n(X) denote the infimum of c > 0 such
that Player II has a winning strategy in the A(c, p, n) game, and we let
ap(X) = supn ap,n(X). We note that ap(X) is the infimum of c > 0 such
that for each n ∈ N, Player I has a winning strategy in the A(c, p, n) game
if such a c exists, and ap(X) = ∞ otherwise. We let θn(X) denote the
infimum of c > 0 such that Player I has a winning strategy in the Θ(c, n)

game, noting that θn(X) 6 n. Finally, we let np,n(X) = θn(X)/n1/p and
np(X) = supn np,n(X), noting that np(X) is the infimum of c > 0 such that
for each n ∈ N, Player I has a winning strategy in the N(c, p, n) game,
provided such a c exists, and np(X) =∞ otherwise.

Let D6n = ∪ni=1D
i. Let D<ω = ∪∞i=1D

i, and let Dω denote the set of
all infinite sequences whose members lie in D. Let D6ω = D<ω ∪Dω. For
s, t ∈ D<ω, we let s a t denote the concatenation of s with t. We let |t|
denote the length of t. For 0 6 i 6 |t|, we let t|i denote the initial segment
of t having length i, where t|0 = ∅ is the empty sequence. If s ∈ {∅}∪D<ω,
we let s ≺ t denote the relation that s is a proper initial segment of t.

We say a function ϕ : D<ω → D<ω is a pruning provided that

(i) |ϕ(t)| = |t| for all t ∈ D6n,
(ii) if s ≺ t, then ϕ(s) ≺ ϕ(t),
(iii) if ϕ((U1, . . . , Uk)) = (V1, . . . , Vk), then Vk ⊂ Uk.

We define prunings ϕ : D6n → D6n similarly.
Given D a weak neighborhood basis of 0 in X and (xt)t∈D<ω ⊂ X, we say

(xt)t∈D<ω is

(i) weakly null of type I provided that for each t = (U1, . . . , Uk), xt ∈ Uk,
(ii) weakly null of type II provided that for each t ∈ {∅} ∪D<ω,

(xta(U))U∈D is a weakly null net. Here D is directed by reverse
inclusion.

The notions of weakly null of types I and II for collections indexed by D6n

are defined similarly. Note that a weakly null collection of type I is weakly
null of type II. We now link these notions with our various games.

Proposition 2.2. Let X be a Banach space, let p ∈ (1,∞] and c > 0.
Then, Player II has a winning strategy in the T (c, p) game on X if and only
if there exists a collection (xt)t∈D<ω ⊂ BX such that

(a) (xt)t∈D<ω is weakly null of type I, and
(b) for each τ ∈ Dω, ‖(xτ |i)∞i=1‖wq > c.

Proof. First, if such a collection exists, we can use it to define a winning
strategy for Player II in the T (c, p) game. When Player I chooses U1 ∈ D,
then Player II chooses x(U1). Player I chooses U2 ∈ D, to which Player II’s
response is x(U1,U2). Play continues in this way, and the result is (xτ |i)

∞
i=1 for
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some τ ∈ Dω, which satisfies ‖(xτ |i)∞i=1‖wq > c. On the other hand, if Player
II has a winning strategy in the T (c, p) game, we define by induction on k the
vector x(U1,...,Uk) to be Player II’s response according to this winning strategy
following the choices U1, x(U1), U2, x(U1,U2), . . . , Uk in the T (c, p) game. It
follows from the rules of the game that (a) is satisfied, and it follows from
the fact that Player II plays according to a winning strategy that (b) is
satisfied. �

Analogous statements about (xt)t∈D6n ⊂ BX can be made for theA(c, p, n),
N(c, p, n), and Θ(c, n) games. We also have

Proposition 2.3. Let X be a Banach space, let p ∈ (1,∞] and c > 0.
Then, Player II has a winning strategy in the T (c, p) game if and only if
there exists a collection (xt)t∈D<ω ⊂ BX such that

(a) (xt)t∈D<ω is weakly null of type II, and
(b) for each τ ∈ Dω, ‖(xτ |i)∞i=1‖wq > c.

Proof. Since any collection which is weakly null of type I is also weakly
null of type II, by the previous proposition, it is sufficient to note that
if (xt)t∈D<ω ⊂ BX is weakly null of type II, then there exists a pruning
ϕ : D<ω → D<ω such that (xϕ(t))t∈D<ω ⊂ BX is weakly null of type I.
Moreover, property (b) is retained by the collection (xϕ(t))t∈D<ω . �

Again, analogous statements hold for collections indexed by D6n and the
games A(c, p, n), N(c, p, n), and Θ(c, n). Unless otherwise specified, by a
weakly null collection (xt)t∈D<ω in X, we shall mean weakly null of type II.
However, it might be convenient to use that we may assume it to be weakly
null of type I.

It is quite clear that the existence of winning strategies, and therefore the
constants associated with these games, do not depend upon the particular
choice of D. Indeed, if D1, D2 are two weak neighborhood bases at 0 in
X, and Player I has a winning strategy in any of the games above when
Player I is required to choose from D1, then this winning strategy can be
used to construct a winning strategy choosing from D2 by choosing at each
stage of the game any member of D2 which is a subset of the member
of D1 indicated by the winning strategy. From this it follows that the
values of the associated constants also do not depend on D. In particular,
in the case that X∗ is separable, we can fix a countable, linearly ordered
weak neighborhood basis D and, by identifying D with N, characterize the
constants tp(X), ap,n(X), ap(X), θn(X), np,n(X), np(X) using trees indexed
by N<ω or N6n rather than D<ω or D6n. Therefore in the case that X has
a separable dual, these constants are sequentially determined. Moreover,
if X is separable and there exists some 1 < p 6 ∞ such that any of the
constants tp(X), ap(X), np(X), then Sz(X) 6 ω, X is Asplund, and X∗ is
separable. However, we can only use N<ω (resp. N6n) in place of D<ω

(resp. D6n) as index sets to compute the values of these constants once
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we already know that X∗ is separable, because of examples like `1 with
the Schur property. So, for example, once we know p(X) is finite, we can
characterize its value using trees indexed by N<ω, but we cannot use trees
indexed by N<ω to determine whether tp(X) is finite.

We conclude this section with elementary statements that we shall use
to stabilize weakly null trees. Note that the operation described below is
actually a pruning.

Proposition 2.4. Let (D,6D) be any directed set, F a finite set, n a nat-
ural number, and f : Dn → F a function. There exists θ : D6n → D6n

preserving lengths and initial segments such that

(i) if θ((U1, . . . , Uk)) = (V1, . . . , Vk), then Uk 6D Vk,
(ii) f ◦ θ|Dn is constant.

Proof. We work by induction. For x ∈ F , let Ix = {U ∈ D : f((U)) = x}.
Since ∪x∈F Ix = D and F is finite, there exists some x ∈ F such that Ix is
cofinal in D. This means that for any U ∈ D, there exists VU ∈ Ix such that
U 6D VU . Define θ((U)) = (VU ) and note that f ◦ θ|D1 ≡ x.

Next, assume the result holds for some n and fix f : Dn+1 → F . For
each U ∈ D, define fU : Dn → F by fU ((U1, . . . , Un)) = f((U,U1, . . . , Un)).
By the inductive hypothesis, there exist θU : D6n → D6n which preserves
lengths and initial segments and satisfying (i) and (ii). Fix xU ∈ F such
that fU ◦ θU |Dn ≡ xU . Define g : D1 → F by g((U)) = xU . By the base
case, there exists φ : D1 → D1 satisfying (i) and (ii) with f replaced by
g. Define θ : D6n+1 → D6n+1 by θ((U)) = φ(U) and θ((U,U1, . . . , Uk)) =
φ(U) a θφ(U)(U1, . . . , Uk).

�

Corollary 2.5. Let (D,6D) be any directed set, (K, d) a totally bounded
metric space, n a natural number, and f : Dn → K a function. For any
ε > 0, there exist θ : D6n → D6n preserving lengths and initial segments
and a subset B of K of diameter less than ε such that

(i) if θ((U1, . . . , Uk)) = (V1, . . . , Vk), then Uk 6D Vk,
(ii) f(θ(t)) ∈ B for all t ∈ Dn.

Proof. Let B1, . . . , Bm be a cover of K by sets of diameter less than ε.
Define g : Dn → {1, . . . ,m} by letting g(t) = min{i 6 m : f(t) ∈ Bi}.
Apply Proposition 2.4 to g.

�

3. The properties and their relations

Throughout, we let Ban denote the class of all Banach spaces over K. We
let Sep denote the class of separable members of Ban. For 1 < p 6∞, we let
Tp denote the class of Banach spaces X such that tp(X) < ∞. The classes
Ap and Np are defined similarly using ap and np. We let Pp =

⋂
1<r<p Tr.

We let D1 denote the class of all Banach spaces the Szlenk index of which
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does not exceed ω. We now present the following alternative descriptions of
each class. we have chosen to quickly indicate the easy arguments, to give
precise references for others and to detail the new ones.

We start with the description of Tp. The next theorem is the main result
from [6]. We briefly explain the easy implications and emphasize the key
part of the proof.

Theorem 3.1. Fix 1 < p 6 ∞ and let q be conjugate to p. Let X be a
Banach space. The following are equivalent

(i) X ∈ Tp.
(ii) There exists a constant c > such that for any weak neighborhood

basis D at 0 in X and any weakly null (xt)t∈D<ω ⊂ BX , there exists
τ ∈ Dω such that ‖(xτ |i)∞i=1‖wq 6 c.

(iii) X is p-AUS-able (resp. AUF-able if p =∞).
(iv) There exist an equivalent norm | · | on X and c > 0 such that for

each ε ∈ [0, 1], sε(B
|·|
X∗) ⊂ (1−cεq)B|·|X∗. In other words, θ

∗
|·|(ε) ≥ cεq

Proof. The equivalence between (i) and (ii) follows immediately from our
discussions on winning strategies in the T (c, p) game. More precisely, tp(X)
is the infimum of those c for which (ii) holds.

The equivalence between (iii) and (iv) is a immediate consequence of the
duality Proposition 2.1.

We now detail the rather simple implication (iii) ⇒ (i) and assume, as
we may, that X is p-AUS. We look at 1 < p < ∞ and p = ∞ separately.
First consider the case 1 < p < ∞. We note that supσ>0 ρX(σ)/σp < ∞
if and only if there exists a constant C > 1 such that for any x ∈ X and
σ > 0, there exists a weak neighborhood U of 0 in X such that for any
y ∈ U ∩BX , ‖x+σy‖p 6 ‖x‖p+Cpσp+ε. A finite net argument yields that
for any compact G ⊂ X and ε > 0, there exists a weak neighborhood U of
0 such that for any x ∈ G, any scalar b with |b| 6 1, and any y ∈ U ∩ BX ,
‖x+by‖p 6 ‖x‖p+Cp|b|p. Using this fact, for ε > 0, we can define a winning
strategy for Player I in the T (C+ε, p) game by fixing (εi)

∞
i=1 ⊂ (0, 1). Player

I’s initial choice U1 is arbitrary. Once U1, x1, . . . , Un, xn have been chosen, let

G =
{∑n

i=1 bixi : (bi)
n
i=1 ∈ B`np

}
and choose Un+1 such that for any x ∈ G,

y ∈ Un+1∩BX , and any b with |b| 6 1, ‖x+by‖p 6 ‖x‖p+Cp|b|p+εn+1. This
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completes the recursive construction. For any m ∈ N and (bi)
m
i=1 ∈ B`mp ,∥∥∥ m∑

i=1

bixi

∥∥∥p 6 ∥∥∥m−1∑
i=1

bixi

∥∥∥p + Cp|bm|p + εm

6
∥∥∥m−2∑
i=1

bixi

∥∥∥p + Cp|bm−1|p + Cp|bm|p + εm−1 + εm

6 Cp
m∑
i=1

|bi|p +

m∑
i=1

εi 6 C
p +

∞∑
i=1

εi.

If
∑∞

i=1 εi was chosen small enough, depending on the modulus of continuity
of the function t 7→ tp on [0, C + 1], this strategy is a winning strategy for
Player I in the T (C + ε, p) game. Therefore X has Tp. For the p =∞ case,
the argument is similar, except there exists a constant C such that for any
x ∈ X and σ > 0, there exists a weak neighborhood U of 0 such that for
any y ∈ U ∩BX , ‖x+ σy‖ 6 max{‖x‖, Cσ}.

Finally, we refer the reader to [6] for the difficult implication (i)⇒ (iv).
�

We now turn to the characterizations of Ap. Note that item (iii) is a
completely new characterization. For that reason we recall the old argu-
ments and detail the new ones. As we will see later, A∞ = N∞, so we limit
ourselves to p ∈ (1,∞) in the next statement.

Theorem 3.2. Fix 1 < p < ∞ and let q be conjugate to p. Let X be a
Banach space. The following are equivalent

(i) X ∈ Ap.
(ii) There exists a constant c > 0 such that for any weak neighborhood

basis D at 0 in X, any n ∈ N, and any weakly null (xt)t∈D6n ⊂ BX ,
there exists t ∈ Dn such that ‖(xt|i)ni=1‖wq ≤ c.

(iii) There exists a constant M ≥ 1 and a constant C > 0, such that for
any τ ∈ (0, 1] there exists a norm | | on X satisfying M−1‖x‖X ≤
|x| ≤M‖x‖X for all x ∈ X and

∀σ ≥ τ, ρ| |(s) ≤ Csp.

(iv) X has q-summable Szlenk index.

Proof. The equivalence between (i) and (ii) follows again from our initial
discussion on games.

The implication (ii) ⇒ (iii) is new. Let us prove it. Fix 1 < p < ∞.
Suppose that X is a Banach space and a > 1 is such that for each n ∈ N
and (xt)t∈D6n ⊂ BX weakly null, there exists t ∈ Dn such that for all scalar
seqeunces (ai)

n
i=1, ∥∥∥ n∑

i=1

aixt|i

∥∥∥p 6 ap n∑
i=1

|ai|p.
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We first note that for any x ∈ X, n ∈ N, and (xt)t∈D6n ⊂ BX weakly
null, there exists t ∈ Dn such that for all scalar sequences (ai)

n
i=1,

(1)
∥∥∥x+

n∑
i=1

aixt|i

∥∥∥p 6 (2a)p
[
‖x‖p +

n∑
i=1

|ai|p
]
.

Indeed, for an appropriate branch t, it holds that∥∥∥x+
n∑
i=1

aixt|i

∥∥∥p 6 2p max
{
‖x‖p,

∥∥∥ n∑
i=1

aixt|i

∥∥∥p}
6 (2a)p max

{
‖x‖p,

n∑
i=1

|ai|p
}
6 (2a)p

[
‖x‖p +

n∑
i=1

|ai|p
]
.

Let now A = 2a. Set f0(x) = ‖x‖
A and for n ∈ N, define

fn(x) =

[
sup
(xt)

inf
t

sup
(ai)

1

Ap

∥∥∥x+
n∑
i=1

aixt|i

∥∥∥p − n∑
i=1

|ai|p
]1/p

,

where the outer supremum is taken over all weakly null collections (xt)t∈D6n

in BX , the infimum is taken over t ∈ Dn, and the inner supremum is taken
over all scalar sequences (ai)

n
i=1. It follows from taking xt = 0 for all t that

fn(x) > ‖x‖
A for all x ∈ X and n ∈ N. On the other hand, it follows from

(1) that fn(x) 6 ‖x‖ for all n ∈ N. We also have that fn(cx) = |c|fn(x),
for each n ∈ N ∪ {0}, each x ∈ X, and each scalar c. Let us detail this
last fact. It is clear that fn(0) = 0, so assume c 6= 0. It is also clear that
f0(cx) = |c|fn(x). Then we fix n ∈ N, x ∈ X and n ∈ N. For an arbitrary
(xt)t∈D6n ⊂ BX weakly null and b > fn(x), there exists t ∈ Dn such that
for all (ai)

n
i=1,

1

Ap

∥∥∥x+

n∑
i=1

aixt|i

∥∥∥p − n∑
i=1

|ai|p 6 bp.

Then

1

Ap

∥∥∥cx+
n∑
i=1

aixt|i

∥∥∥p − n∑
i=1

|ai|p

= |c|p
[ 1

Ap

∥∥∥x+
n∑
i=1

c−1aixt|i

∥∥∥p − n∑
i=1

|c−1ai|p
]
6 |c|pbp.

Since this holds for any (xt)t∈D6n ⊂ BX weakly null, it holds that fn(cx) 6
|c|fn(x). Repeating the argument, we deduce that fn(x) = fn(c−1cx) 6
|c|−1fn(cx), which gives the reverse inequality.

The key step will be to show the following: for each n ∈ N ∪ {0}, each
weakly null net (xU )U∈D ⊂ BX , and each σ > 0,

(2) lim sup
U

fn(x+ σxU )p 6 fn+1(x)p + σp.
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So assume η < lim sup
U

fn(x+ σxU )p. By passing to a subnet and relabeling,

we can assume η < fn(x+σxU )p for all U . For each U , we find (xUt )t∈D6n ⊂
BX weakly null such that for each t ∈ Dn, there exists (ai)

n
i=1 such that

1

Ap

∥∥∥x+ σxU +

n∑
i=1

aix
U
t|i

∥∥∥p − n∑
i=1

|ai|p > η.

We define the weakly null collection (xt)t∈D6n+1 ⊂ BX by letting x(U) = xU
and x(U,U1,...,Uk) = xU(U1,...,Uk) for 1 6 k 6 n. By the definition of fn+1(x)p,

for any ε > 0, there exists s ∈ Dn+1 such that for all (bi)
n+1
i=1 ,

1

Ap

∥∥∥x+

n+1∑
i=1

bixs|i

∥∥∥p − n+1∑
i=1

|bi|p 6 fn+1(x)p + ε.

Write s = (U,U1, . . . , Un) and let t = (U1, . . . , Un). Then there exists (ai)
n
i=1

such that, combining this paragraph with the previous and letting b1 = σ
and bi+1 = ai for 1 6 i 6 n, it holds that

η <
1

Ap

∥∥∥x+ σxU +
n∑
i=1

aix
U
s|i

∥∥∥p − n∑
i=1

|ai|p

=
1

Ap

∥∥∥x+
n+1∑
i=1

bixs|i

∥∥∥p − n+1∑
i=1

|bi|p + σp 6 fn+1(x)p + ε+ σp.

Therefore η < fn+1(x)p + ε+ σp. Since η < lim sup
U

fn(x+ σxU )p and ε > 0

were arbitrary, we have proved (2).
The next step is to average the fpn’s. So, fix N ∈ N and define

gN (x)p =
1

N

N−1∑
n=0

fn(x)p.

Clearly, we still have that for all x ∈ X and N ∈ N, ‖x‖A 6 gN (x) 6 ‖x‖
and gN (cx) = |c|gN (x) for all scalars c. Then, applying (2) for each n ∈
{0, . . . , N − 1}, we obtain that for any weakly null net (xU )U∈D ⊂ BX , any
N ∈ N, and x ∈ ABX ,

(3) lim sup
U

gN (x+ σxU )p 6 gN (x)p + σp +
Ap

N
.

The last stage of the proof is to “convexify” our function gN . For that
purpose, we set

|x|N = inf
{ n∑
i=1

gN (xi) : n ∈ N, x =
n∑
i=1

xi

}
,

which defines an equivalent norm on X satisfying ‖x‖A 6 |x|N 6 ‖x‖. More-

over, B
|·|N
X is the closed, convex hull of {x ∈ X : gN (x) < 1}. We shall now
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prove that

(4) ∀σ > 0, ρ(X,|·|N )(σ) 6
Ap

p

(
σp +

1

N

)
.

First we fix y ∈ X such that gN (y) < 1. From this it follows that ‖y‖ 6 A.

Fix σ > 0 and (yU )U∈D ⊂ B
|·|N
X weakly null, define xU = A−1yU ∈ BX , so

(xU )U∈D ⊂ BX is weakly null. Then we apply (3) to get

lim sup
U
|y + σyU |pN 6 lim sup

U
gN (y + σAxU )p

6 gN (y) + σpAp +
Ap

N
< 1 + σpAp +

Ap

N
.

Therefore, by concavity of the function h(t) = (1 + t)1/p,

lim sup
U
|y + σyU |N − 1 6

(
1 + σpAp +

Ap

N

)1/p − 1 6
Ap

p

(
σp +

1

N

)
.

Next fix x ∈ B|·|NX . As noted above, B
|·|N
X is the closed, convex hull of {y ∈

X : gN (y) < 1}. Therefore for each ε > 0, we can find y1, . . . , yk ∈ X with

gN (yi) < 1 and convex coefficients w1, . . . , wk such that |x−
∑k

i=1wiyi| < ε.
Then

lim sup
U
|x+ σyU | − 1 6 ε+ lim sup

U

k∑
i=1

wi(|yi − σyU |N − 1)

6 ε+
k∑
i=1

wi

(Ap
p

(
σp +

1

N

))
= ε+

Ap

p

(
σp +

1

N

)
.

Since ε > 0 was arbitrary, this finishes the proof of (4).
Finally, it is clear that, by taking N large enough in (4) we have for any

τ > 0 there exists an equivalent norm | · | on X such that ‖x‖A 6 |x| 6 ‖x‖
and for any σ > τ , ρ(X,|·|)(σ) 6 Ap

1
p σ

p. We have proved that X satisfies (iii).

Next we prove (iii)⇒ (iv), which is also new. So assume (iii) is satisfied.
Then, it follows from Proposition 2.1 that there exists γ ∈ (0, 1] so that for
any t0 ∈ (0, 1] there exists a norm | | on X satisfying

∀x ∈ X, M−1‖x‖X ≤ |x| ≤M‖x‖X and ∀t ∈ [t0, 1], θ
∗
| |(t) ≥ γtq.

Fix now ε1, . . . , εn ∈ (0, 1] and pick an equivalent norm | | as above for t0 =
min{ ε1

4M2 , . . . ,
εn

4M2 }. Assume that sε1 . . . sεnBX∗ 6= ∅. Then sε1 . . . sεn(MB| |∗) 6=
∅ and by homogeneity, s ε1

M
. . . s εn

M
(B| |∗) 6= ∅. So, if we denote σε the Szlenk

derivation on X∗ where the diameter is taken with respect to the norm | |,
we have that σ ε1

M2
. . . σ εn

M2
B| |∗ 6= ∅. Then classical manipulations on the

Szlenk derivation imply that

1

2
B| |∗ ⊂ σ ε1

4M2
. . . σεn4M2B| |∗ ⊂

n∏
k=1

(
1−

γεqk
4qM2q

)
B| |∗ .
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The argument for the first inclusion can be found in [33] (proof of Propo-

sition 3.3) and the second inclusion follows from the definition of θ
∗
| | and

homogeneity. Finally we use the fact that t ≤ − log(1− t), for t ∈ [0, 1) and

elementary calculus to deduce that
∑n

k=1 ε
q
k ≤

4qM2q

γ log 2. This finishes the

proof.

We now turn to (iv) implies (ii). This was already proved in [7] in a
more general setting. We include the proof for the sake of completeness.
So, let M be such that if ε1, . . . , εn > 0 are such that sε1 . . . sεn(BX∗) 6= 0,
then

∑n
i=1 ε

q
i 6 M q. Let D be a weak neighborhood basis of 0 in X and

assume that c > 0 is such that, for some n ∈ N and (xt)t∈D6n weakly null
in BX we have that for each t ∈ Dn, there exists (ai)

n
i=1 ∈ B`np satisfying

‖
∑n

i=1 aixt|i‖ > c. For each t ∈ Dn, fix x∗t ∈ BX∗ and (ati)
n
i=1 ∈ B`np such

that

Re x∗t

( n∑
i=1

atixt|i

)
=
∥∥∥ n∑
i=1

atixt|i

∥∥∥ > c.

Define f : Dn → B`n∞ by letting f(t) = (x∗t (xt|1), . . . , x∗t (xt|n)). Fix δ > 0
arbitrary. By Corollary 2.5, there exist (bi)

n
i=1 ∈ B`n∞ and θ : Dn → Dn

preserving lengths and initial segments such that for all t ∈ Dn and 1 6 i 6
n,

(i) if θ((U1, . . . , Uk)) = (V1, . . . , Vk), then Vk ⊂ Uk, and
(ii) |x∗θ(t)(xθ(t)|i)− bi| < δ.

By replacing xs with xθ(s) and x∗t with x∗θ(t) for each s ∈ D6n and t ∈
Dn, we can relabel and assume that the original collections (xt)t∈D6n and
(x∗t )t∈Dn ⊂ BX∗ satisfy this property.

Define εi = max{0, |bi| − 2δ} for each 1 6 i 6 n. We will prove that
for each 0 6 j 6 n and t ∈ Dn−j , there exists x∗ ∈ sεn−j+1 . . . sεn(BX∗),
and if j < n, this x∗ can be chosen such that for each 1 6 i 6 n − j,
|x∗(xt|i)− bi| 6 δ. We prove this claim by induction on j. By convention, in
the j = 0 case, sεn+1sεn(BX∗) = BX∗ and we just take x∗ = x∗t ∈ BX∗ . Next,
assume the result holds for some 0 6 j < n. By the inductive hypothesis,
for each t ∈ Dn−j−1 and U ∈ D, since t a (U) ∈ Dn−j , there exists x∗U ∈
sεn−j+1 . . . sεn(BX∗) such that for each 1 6 i 6 n− j − 1, |x∗U (xt|i)− bi| 6 δ
and |x∗U (x|ta(U)) − bn−j | 6 δ. If εn−j = 0, we pick any U in D and set
x∗ = x∗U . Note that the conclusions are satisfied, since, by convention

x∗U ∈ sεn−j+1 . . . sεn(BX∗) = sεn−jsεn−j+1 . . . sεn(BX∗).

Consider now the case εn−j > 0. If x∗ is any weak∗-cluster point of (x∗U )U∈D,
then clearly |x∗(xt|i)−bi| 6 δ for each 1 6 i 6 n−j−1. Note also that, since
(xta(U))U∈D is weakly null, there exists U0 ∈ D such that for all U ⊂ U0,
|x∗(xta(U))| < δ. This implies that

∀U ⊂ U0, ‖x∗U − x∗‖ ≥ |(x∗U − x∗)(xta(U))| > |bn−j | − 2δ = εn−j .
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We now use that x∗ is a weak∗-cluster point of (x∗U )U⊂U0 ⊂ sεn−j+1 . . . sεn(BX∗)
to deduce that x∗ ∈ sεn−j . . . sεn(BX∗). This finishes our inductive proof of
our claim.

Applying this claim for j = n yields the existence of some x∗ ∈ sε1 . . . sεn(BX∗),
from which it follows that

∑n
i=1 ε

q
i 6M

q. We can now use this information
to estimate the constant c. We define I = {i 6 n : |bi| > 2δ}. Then, for any
t ∈ Dn,

c < Re x∗t

( n∑
i=1

atixt|i

)
6 δn+

n∑
i=1

|ati||bi| 6 3δn+
∑
i∈I
|ati||bi|

6 5δn+
∑
j∈I
|ati|εi 6 5δn+ ‖(ati)i∈I‖`np ‖(εi)i∈I‖`nq 6 5δn+M.

Since δ > 0 was arbitrary, we conclude that c 6M . This finishes the proof
of this last implication.

�

Next we describe the class Np. A more general version of the following
result in proved in [9].

Theorem 3.3. Fix 1 < p 6 ∞ and let q be conjugate to p. Let X be a
Banach space. The following are equivalent.

(i) X ∈ Np.
(ii) There exists a constant K > 0 such that for any n ∈ N and any

weakly null collection (xt)t∈D≤n in BX , there exists t ∈ Dn such that

‖
∑n

i=1 xt|i‖ ≤ Kn1/p.
(iii) There exists a constant M ≥ 1 and a constant c > 0 such that for

each σ ∈ (0, 1], there exists a norm | | on X such that M−1|x| ≤
‖x‖X ≤M |x| for all x ∈ X and
(a) if 1 < p <∞, ρ| |)(σ) 6 cσp

(b) if p =∞, ρ| |(c) 6 σ.

Proof. Again, the equivalence between (i) and (ii) follows from our initial
discussion on games.

The argument for (ii) ⇒ (iii) is an adaptation of the proof of Theorem
4.2 in [18] to the non separable case. We refer the reader to this paper or
[9].

Let us briefly explain the simple implication (iii)⇒ (ii). Let us assume,
as we may, that ‖ ‖ satisfies (iii) for σ = 1

2 . We shall show the existence
of a constant C ≥ 2 such that (ii) is satisfied. Let (xt)t∈D≤n be a weakly

null tree in BX . Pick t ∈ D≤n such that 2 < ‖
∑k

i xt|i‖ ≤ 3 (if this is not
possible we are done). Now we pick recursively Uk+1, . . . , Un so that for all

k < l ≤ n, we have, if we denote s = t a (Uk+1, · · ·Un), ‖
∑l

i xs|i‖ > 2

and ‖
∑l

i xs|i‖ ≤ ‖
∑l−1

i xs|i‖(1 + 2c2−p). It now follows from classical use
of Orlicz functions (see for instance the proof of Theorem 6.1 in [29]) that

there exist a constant K > 0 so that ‖
∑n

i=1 xt|i‖ ≤ Kn1/p. �
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We recall that Pp is defined to be
⋂

1<r<p Tr. Then we have.

Theorem 3.4. Fix 1 < p 6 ∞ and let q be conjugate to p. Let X be a
Banach space. The following are equivalent

(i) X ∈ Pp.
(ii) For each 1 < r < p, X is r-AUS-able.

(iii) There exists an equivalent norm | · | on X such that for all 1 < r < p,
X is r-AUS.

(iv) For each 1 < r < p, θn(X) = o(n1/r).
(v) p(X) 6 q.

Proof. The equivalence between (i) and (ii) follows from Theorem 3.1. The
fact that (ii) implies (v) follows from Proposition 2.1. The implication
(v) ⇒ (iii) is proved in [8] in a very general setting (non separable, for
higher ordinals and operators). Obviously (iii) implies (ii). The implication
(ii) ⇒ (iv) also follows from Theorem 3.1. Finally (iv) ⇒ (ii) relies on an
averaging of the norms provided by (iii) in Theorem 3.3. �

We finally summarize what is known about the inclusions between these
classes.

Theorem 3.5. Recall that D1 denotes the class the of all Banach spaces
with Szlenk index at most ω. Then

(i) D1 =
⋃

1<p6∞ Tp =
⋃

1<p6∞ Ap =
⋃

1<p6∞Np =
⋃

1<p6∞ Pp.

(ii) For 1 < p <∞, Tp ( Ap ( Np ( Pp.
(iii) T∞ ( A∞ = N∞ ( P∞.

Proof. Let 1 < p ≤ ∞. We clearly have that Tp ⊂ Ap ⊂ Np ⊂ Pp. It follows
from (iv) in Theorem 3.1 and (ii) in Theorem 3.4 that Pp ⊂ D1. We have
already explained that if X ∈ D1, then p(X) < ∞, so Theorem 3.4 implies
that X ∈ Tr, for 1 < r < p. Our statement (i) follows from gathering all
these pieces of information.

The fact that the inclusions are strict in (ii), as well as T∞ 6= A∞ =
N∞ 6= P∞ are proved in [9].

�

4. Separable determinations

We start with a simple but fundamental statement about selecting weakly
null sequences from weakly null nets in AUS-able Banach spaces.

Proposition 4.1. Let X be a Banach space with Sz(X) 6 ω. Let D be
a weak neighborhood basis at 0 in X. For any (xU )U∈D ⊂ BX such that
xU ∈ U for all U ∈ D, there exists a function f : N→ D such that (xf(n))

∞
n=1

is a weakly null sequence.

Proof. Since Sz(X) 6 ω, X ∈ Tr for some 1 < r < ∞. Let 1/r + 1/s = 1
and c > tr(X). Let φ be a winning strategy in the T (c, r) game. Let V1

be determined by φ and fix U1 ∈ D such that U1 ⊂ V1. Let Player II
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choose xU1 ∈ U1 ∩ BX . Let V2 be determined by φ and fix U2 ∈ D such
that U2 ⊂ V2. Let Player II choose xU2 ∈ U2 ∩ BX . Continue in this
way until U1, U2, . . . have been chosen. Define f(n) = Un and note that
‖(xf(n))

∞
n=1‖ws = ‖(xUn)∞n=1‖ws 6 c < ∞. Therefore (xf(n))

∞
n=1 is weakly

null. �

We are now ready to give a unified proof of the separable determination
of all the properties considered in this paper.

Theorem 4.2. If X is a Banach space with Sz(X) 6 ω, then for each
1 < p 6∞,

tp(X) = sup{tp(E) : E 6 X is separable},

and this supremum is attained, although possibly infinite. The same is true
of ap(X), np(X), and θn(X). In particular, if X is a Banach space all of
whose separable subspaces lie in Tp, then X lies in Tp. The same conclusion
holds for Ap, Np, Pp and D1

Proof. It is clear that tp(X) > sup{tp(E) : E 6 X is separable}. If c >
t(X), then there exists a collection (xt)t∈D<ω such that for each τ ∈ Dω,
‖(xτ |i)∞i=1‖wq > c.

First, we build ϕ : N<ω → D<ω which preserves lengths and immedi-
ate predecessors such that (xϕ(t))t∈N<ω is weakly null. We define ϕ(t) by
induction on |t|. By Proposition 4.1 applied to (x(U))U∈D, there exists
f : N → D such that (x(f(n)))

∞
n=1 is weakly null. Define ϕ((n)) = (f(n)).

Next, if ϕ(t) has been defined, apply Proposition 4.1 to (xϕ(t)a(U))U∈D
to select g : N → D such that (xϕ(t)a(g(n)))

∞
n=1 is weakly null. Define

ϕ(t a (n)) = ϕ(t) a (g(n)). This completes the construction.
Define yt = xϕ(t). It follows that for any τ1 ∈ Nω, there exists a unique

τ ∈ Dω such that ϕ(τ1|i) = τ |i for all i ∈ N, so that

‖(yτ1|i)
∞
i=1‖wq = ‖(xτ |i)

∞
i=1‖wq > c.

Therefore if F is the closed linear span of (yt)t∈N<ω , then tp(F ) > c. This
shows that tp(X) 6 sup{tp(E) : E 6 X is separable}. Next, let R denote
the set of rational numbers r such that tp(X) > r. For each r ∈ R, let Fr
be a separable subspace of X such that tp(Fr) > r, and let E be the closed
span of Er, r ∈ R. Then tp(E) = tp(X), and the supremum is attained.
The arguments for ap(X), np(X), θn(X) are similar.

If X is a Banach space all of whose separable subspaces lie in Tp ⊂ D1,
then tp(X) = sup{tp(E) : E 6 X is separable} must be finite. Indeed, if
the supremum were infinite, then since it is attained, there would exist some
separable E 6 X such that tp(E) = ∞, and E ∈ {Tp. Similar arguments
hold for Ap and Np.
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For Pp, we note that

X ∈ Pp ⇔ (∀1 < r < p)(X ∈ Tr)

⇔ (∀1 < r < p)(∀E 6 X separable)(E ∈ Tr)

⇔ (∀E 6 X separable)(∀1 < r < p)(E ∈ Tr)

⇔ (∀E 6 X separable)(E ∈ Pp)

Assume now that X ∈ {D1. Then, for any p ∈ Q ∩ (1,∞), X ∈ {Tp. So
for any p ∈ Q ∩ (1,∞), there exists a separable subspace Ep of X so that
Ep ∈ {Tp. Then the closed linear span of these Ep’s is a separable subspace
of X which belongs to {D1.

�

5. Three space properties

5.1. Introduction. We recall that a property (P ) of Banach spaces is a
Three Space Property (3SP in short) if it passes to quotients and subspaces
and a Banach space X has (P ) whenever it admits a subspace Y such that
Y and X/Y have (P ).

Note first that the properties considered in this paper pass easily to sub-
spaces and quotients.

Proposition 5.1. Fix 1 < p 6 ∞ and X ∈ Ban. If X is in any of the
classes Tp,Ap,Np, or Pp, then any subspace, quotient, or isomorph of X lies
in the same class.

Proof. For subspaces and isomorphs, the result is clear. For quotients, the
result follows easily from the dual characterizations of these properties du-
ality, which clearly pass to weak∗-closed subspaces of X∗ (we recall that
(X/Y )∗ is canonically isometric to Y ⊥ ⊂ X∗ by a weak∗-weak∗-continuous
map). �

The following lemma will allow us, when convenient, to reduce our ques-
tions to the separable setting.

Lemma 5.2. Let I be a class of Banach spaces which contains all subspaces,
quotients, and isomorphs of its members. Suppose also that membership in
I ∩ Sep is a 3SP, and that if X is a Banach space such that every separable
subspace of X lies in I, then X lies in I. Then membership in I is a 3SP.

Proof. Let X be a Banach space and suppose that Y is a subspace of X
such that Y,X/Y ∈ I. If X ∈ {I, then there exists a separable subspace E
of X such that E ∈ {I. Fix a countable, dense subset S of E and for each
x ∈ S, fix a countable subset Rx of Y such that

‖x‖X/Y = inf
y∈Rx

‖x− y‖.

Let G denote the closed span of

E ∪
⋃
x∈S

Rx
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and let F denote the closed span of
⋃
x∈S Rx. Then F,G are separable

and F , being a subspace of Y , lies in I ∩ Sep. Moreover, it follows from the
construction of G that G/F is isometric to a subspace of X/Y , which means
G/F also lies in I ∩ Sep. Therefore G lies in I, as does E 6 G. Therefore
every separable subspace of X lies in I, as does X. �

5.2. Past results. It was shown by Draga, Kochanek, and the first named
author in [10] that membership in Pp is a 3SP, although it was not stated
in this way. We isolate here a shorter and more direct argument. We will
show the following.

Theorem 5.3. Fix a Banach space X, a closed subspace Y of X, and
1 < p 6∞.

(i) If np(Y ) and np(X/Y ) are finite, then there exist constants C, λ such

that for all 2 6 n ∈ N, np(X) 6 C(log n)λ.
(ii) If Y and X/Y have Pp, so does X.

The fact that Pp is a 3SP was shown in Theorem 7.5 of [10]. The proof
there established an inequality similar to Theorem 5.3(i), but using ap rather
than np. In fact, the argument there was given for asymptotic Rademacher
type p, which deals with Rademacher averages of arbitrary linear combina-
tions of the branches of weakly null trees, which added significant techni-
cality to the proof. Because np deals only with flat linear combinations, we
sketch the simpler proof below.

We will use the following, which is an analogue of a lemma of Enflo,
Lindenstrauss, and Pisier in their solution of the Palais problem [14].

Lemma 5.4. For any Banach space X, any closed subspace Y of X, and
any m,n ∈ N,

θmn(X) 6 6[θm(X/Y )θn(X) + θm(X)θn(Y )].

Let us first deduce Theorem 5.3 from Lemma 5.4.

Proof of Theorem 5.3. (i) By Lemma 5.4, for any n ∈ N,

np,n2(X) =
θn2(X)

n2/p
6 6
(θn(X/Y )

n1/p
+
θn(Y )

n1/p

)θn(X)

n1/p

6 cnp,n(X),

where c = 10(np(X/Y )+np(Y )). We argue as in Theorem 3 of [14] to deduce
the existence of the constants C and λ.

(ii) Assume Y,X/Y have Pp. Fix 1 < r < s < p. Since Y,X/Y have
Pp, they also have Ns, which means there exist constants C, λ such that

for all 2 6 n, θn(X) = ns,n(X)n1/s 6 C(log n)λn1/s. Then nr,n(X) =

θn(X)/n1/r 6 C(log n)λn1/r−1/s, which vanishes as n tends to infinity.
Therefore for 1 < r < p, nr(X) <∞, so X ∈ Pp =

⋂
1<r<p Nr.

�
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We next recall an easy technical piece which we will need for the proof of
Lemma 5.4.

Claim 1. Let X be a Banach space and Y a closed subspace. For any weak
neighborhood U1 of 0 in X and R, δ > 0, there exists a weak neighborhood
U2 of 0 in X such that if x ∈ U2 ∩RBX with ‖x‖X/Y < δ, then there exists
y ∈ U1 ∩RBY such that ‖x− y‖ < 6δ.

Proof. If it were not so, then for some weak neighborhood U1 of 0 in X
and some R, δ > 0, there would exist a weakly null net (xλ) ⊂ RBX such
that, for all λ, ‖xλ‖X/Y < δ and for all y ∈ U1 ∩ RBY , ‖xλ − y‖ > 6δ.
For each λ, we can fix yλ ∈ Y such that ‖xλ − yλ‖ < δ. By passing to
a subnet and relabeling, we can assume (yλ) is weak∗-convergent to some
y∗∗ ∈ BX∗∗ . Fix ε > 0 and a finite subset F of X∗ such that V := {x ∈
X : (∀x∗ ∈ F )(|x∗(x)| < 2ε)} ⊂ U1. Since (xλ) is weakly null and (yλ) is
weak∗-convergent to y∗∗, we can find λ1, a finite subset G of the index set
of (xλ), and positive numbers (wλ)λ∈G summing to 1 such that

(i) for all x∗ ∈ F and λ ∈ {λ1} ∪G, |y∗∗(x∗)− x∗(yλ)| < ε,
(ii) ‖

∑
λ∈Gwλxλ‖ < δ.

Let y1 = yλ1 −
∑

λ∈Gwλyλ ∈ V and note that

‖y1 − xλ1‖ 6 ‖yλ1 − xλ1‖+
∑
λ∈G

wλ‖yλ − xλ‖+ ‖
∑
λ∈G

wλxλ‖ < 3δ.

Since ‖xλ1‖ 6 R, ‖y1‖ 6 R + 3δ. If ‖y1‖ 6 R, let y = y1, and otherwise let
y = R

‖y1‖y1, noting that ‖y − x‖ 6 ‖y − y1‖ + ‖y1 − x‖ < 6δ. By convexity

of V , y ∈ V ⊂ U1, and we reach a contradiction.
�

Let us now sketch the proof of Lemma 5.4.

Sketch. If Y is finite dimensional, then θn(Y ) = 0 and θn(X/Y ) = θn(X)
for all n ∈ N. Then the inequality follows, without the factor of 6, using
submultiplicativity of θn(X). A similar conclusion holds if X/Y is finite
dimensional. We can therefore assume Y,X/Y are infinite dimensional, and
θn(Y ), θn(X/Y ) ≥ 1 for all n ∈ N.

Of course, the idea is to consider a weakly null tree indexed by Dmn

to consist of inner trees of height m, and outer trees of height n. For
ψ > θm(X/Y ), ψ1 > θm(X), φ > θn(Y ), and φ1 > θn(X), we can fix
winning strategies χ, χ1, $, and $1 for Player I in each of the games Θ(ψ,m)
on X/Y , Θ(ψ1,m) on X, Θ(φ, n) on Y , and Θ(φ1, n) on X, respectively. For
a weakly null collection (xt)t∈D6mn ⊂ BX , we claim that we can recursively
select t1 ∈ Dm, y1 ∈ Y , t2 ∈ D2m such that t1 ≺ t2, y2 ∈ Y , . . ., such that,
with t = tn ∈ Dmn, for all 1 6 i 6 n,

(i) ‖yi −
∑im

j=(i−1)m+1 xt|i‖ 6 6ψ,

(ii) ‖
∑im

j=(i−1)m+1 xt|i‖ 6 ψ1,

(iii) ‖
∑n

i=1
yi

10ψ1
‖ 6 φ,
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(iv) ‖
∑n

i=1

yi−
∑im

j=(i−1)m+1 xt|j
10ψ ‖ 6 φ1.

Then ∥∥∥mn∑
i=1

xt|i

∥∥∥ 6 ∥∥∥ m∑
i=1

[
yi −

im∑
j=(i−1)m+1

xt|j
]∥∥∥+

∥∥∥ n∑
i=1

yi

∥∥∥
6 6ψφ1 + 6ψ1φ.

Since ψ > θm(X/Y ), ψ1 > θm(X), φ > θn(Y ), and φ1 > θn(X) were
arbitrary, this will yield the inequality.

We now explain how to choose ti and yi. Assume that for some k < n,
we have already chosen t1 ≺ . . . ≺ tk, ti ∈ Dim, and y1, . . . , yk. Assume also
that (yi/10ψ1)ki=1 and ((yi −

∑im
j=(i−1)m+1 xtk|j )/10ψ)ki=1 have been chosen

by Player II against Player I, who is using strategies $ and $1, respectively.
Let U,U1 be the weak neighborhoods chosen for the next stage of the game
by strategies $ and $1, respectively. By replacing these sets with subsets
if necessary, we can assume they are convex.

By Claim 1, there exists a weak neighborhood W of 0 in X, which we
can also assume is convex, such that if x ∈W ∩ψ1BX satisfies ‖x‖X/Y 6 ψ,

then there exists y ∈ U ∩ 1
2U1 ∩ψ1BY such that ‖y−x‖ 6 6ψ. Let Q : X →

X/Y denote the quotient map and, using the strategies χ and χ1, choose

tk ≺ s1 ≺ . . . ≺ sm = tk+1 ∈ D(k+1)m such that for each 1 6 j 6 m,

xsj ∈ Gj ∩Q−1(Hj) ∩
1

m
W ∩ 1

2m
U1.

Here, the sets Hj are determined by χ playing against Player II’s choices of
xs1 + X/Y, . . . , xsm + X/Y and the sets Gj are determined by χ1 playing
against Player II’s choices of xs1 , . . ., xsm . Note that Gj ∩ Q−1(Hj) is a
weak neighborhood of 0 in X. Playing according to χ and χ1 guarantees
that

‖
(k+1)m∑
j=km+1

xtk+1|j‖ = ‖
m∑
j=1

xsj‖ 6 ψ1

and

‖
(k+1)m∑
j=km+1

xtk+1|j‖X/Y = ‖
m∑
j=1

xsj‖X/Y 6 ψ.

Since
∑m

j=1 xsj ∈
1
mV + . . .+ 1

mV = V , there exists yk+1 ∈ U ∩ 1
2U1 ∩ψ1BY

such that

‖yk+1 −
m∑
j=1

xs|j‖ 6 6ψ.

Note also that yk+1−
∑m

j=1 xsj ∈
1
2U1 + 1

2mU1 + . . .+ 1
2mU1 = U1. Therefore

yk+1

φ1
∈ U ∩BY and

yk+1 −
∑(k+1)m

j=km+1 xtk+1|j
10ψ

∈ U1 ∩BX
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have been chosen in accordance with the winning strategies $ and $1,
respectively. This completes the recursive choices. Items (i) and (ii) are
seen to be satisfied from the construction, while items (iii) and (iv) follow
from the fact that the outer sequences were chosen according to χ and χ1.

�

5.3. A counterexample. For p ∈ (1,∞), contrary to Pp, none of the prop-
erties Tp, Ap, Np is a three space property. Before proving this result by
giving a counterexample, let us introduce the following definition.

Definition 5.5. Let X be a Banach space and p ∈ (1,∞). We say that X
has the weak p-Banach-Saks property if there exists a positive constant C
such that for every weakly null sequence (xn) in BX and every k ∈ N, we
can find a subsequence (xnj )j of (xn) such that∥∥∥ k∑

j=1

xnj

∥∥∥ ≤ Ck1/p

for all n1 < · · · < nk.

Let us notice that every Banach space with property Np, 1 < p <∞, has
the weak p-Banach-Saks property. For instance, use item (iii) of Theorem
3.3 and mimic the argument of (iii)⇒ (ii) in the proof of that statement.

Proposition 5.6. Let p ∈ (1,∞). Then the properties Tp, Ap and Np are
not three space properties.

Proof. Let us consider the Kalton-Peck reflexive spaces Zp (see [30] or [5]),
that satisfies the following: Zp may be normed in such a way that it has
a closed subspace M isometric to `p with Zp/M also isometric to `p. It
is known that Zp does not have the weak p-Banach-Saks property (see [5]).
Hence, since `p has property Tp, we get the result by combining the previous
remark and item (ii) of Theorem 3.5. �

In fact, we can even prove that Zp does not have any of the concentration
properties indexed by p considered in [15] and therefore deduce the following.

Proposition 5.7. Let p ∈ (1,∞). Then the properties HFCp, HICp, HCp,
HFCp,d and HCp,d introduced in [15] are not three spaces properties.

For clarity, we will only define one of them here. First, for k ∈ N, let us
denote [N]k = {n = (n1, · · · , nk) ∈ Nk;n1 < n2 < · · · < nk}. We endow [N]k

with the following distance, called the Hamming distance:

∀n,m ∈ [N]k, dH(n,m) = |{1 ≤ j ≤ k;nj 6= mj}|.
We say that a Banach space X has property HFCp if there exists λ > 0 such

that, for every k ∈ N and every 1-Lipschitz function f : ([N]k, dH)→ X, one
can find an infinite subset M of N so that

∀n,m ∈ [M]k, ‖f(n)− f(m)‖ ≤ λk
1
p .
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We refer the reader to [15] for the definitions of the other concentration
properties.

Proof of Proposition 5.7. We use the notation from Theorem 6.1 [30]. For

k ∈ N, the map g :

{
[N]k → Zp
n 7→

∑k
j=1 unj

is 2-Lipschitz and satisfies

‖g(n)− g(m)‖ = 21/p

(
ln(2k)

p
+ 1

)
k1/p

for all integers n1 < m1 < n2 < · · · < nk < mk. Therefore, Zp does not
have any of the properties mentioned above. The result follows from the
fact that `p has them all. �

5.4. Asymptotic uniform flatenability. In the case p =∞, the situation
is different. First, we easily have the following.

Theorem 5.8. The property T∞ is a three space property.

Proof. Let us first recall that a separable Banach space is T∞ if and only if
it is isomorphic to a subspace of c0 (see [17]). It was shown by Johnson and
Zippin [25], who attributed it to Lindenstrauss, that being isomorphic to a
subspace of c0 is a three space property. So we deduce from Theorem 4.2,
Proposition 5.1 and Lemma 5.2 that T∞ is a three space property. �

By looking at the argument in [25], we can actually show slightly more.

Proposition 5.9. Let p ∈ (1,∞] and B be any one of the properties Tp, Ap
and Np. Let X be a Banach space with a closed subspace Y such that Y has
T∞ and X/Y has B. Then X has B.

Proof. By Theorem 4.2, we may assume that X is separable. Let T : Y → c0

be a linear embedding. It follows from Sobczyk’s theorem that c0 has the
separable extension property. Therefore T extends to a bounded linear map
S : X → c0. Define now U : X → c0 ⊕ X/Y by Ux = (Sx,Qx) where
Q : X → X/Y is the quotient map. It then easy to check that U is a linear
embedding from X into c0 ⊕X/Y . Finally, since B passes clearly to direct
sums, we deduce that c0 ⊕X/Y and therefore X have B. �

5.5. Summable Szlenk index. This subsection contains the proof of our
main result on three space properties. We will show that A∞ is a three space
property.

Recall that a Banach space is said to have property A∞ provided there
exists a constant c > 0 such that for each n ∈ N, Player I has a winning
strategy in the N(c,∞, n) game (since A∞ = N∞ according to Theorem
3.5): Player I chooses a weak neighborhood U1 of 0 in X and Player II
chooses x1 ∈ U1 ∩ BX . Player I chooses a weak neighborhood U2 of 0 in
X and Player II chooses x2 ∈ U2 ∩ BX . Play continues in this way until
x1, . . . , xn have been chosen. Player I wins if ‖

∑n
i=1 xi‖ 6 c and Player II
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wins otherwise. This game is determined, which means that for each c > 0
and n ∈ N, either Player I or Player II has a winning strategy in this game.

As we are going to use a separable reduction, we will be able to use trees
indexed by N. For that purpose we let

Tn = {(mi)
k
i=1 : k,m1, . . . ,mk ∈ N, k 6 n}.

Let U be a free ultrafilter on N. We let ∅ denote the empty sequence. For
t ∈ Tn, we let |t| denote the length of t. For t, s ∈ {∅} ∪ Tn−1, we let t a s
denote the concatenation of t with s. Given a Banach space X, we say that
a sequence (xi)

∞
i=1 ⊂ X is U-weakly null if it converges to 0 over U in the

weak topology. The notion of U-weak∗-null for a sequence (x∗i )
∞
i=1 ⊂ X∗ is

defined similarly. A collection (xt)t∈Tn ⊂ X is U-weakly null provided that
for each t ∈ {∅}∪Tn−1, (xta(m))

∞
m=1 is U-weakly null. We say (x∗t )t∈Tn ⊂ X∗

is U-weak∗-null provided that for each t ∈ {∅} ∪ Tn−1, (x∗ta(m))
∞
m=1 is U-

weak∗-null. Note that for each Banach space X and each n ∈ N, BX admits
a U-weakly null collection and BX∗ admits a U-weak∗-null collection, namely
the collections consisting entirely of zeros.

Proposition 5.10. Let Z be a Banach space such that Z∗ is separable, and
(z∗m)∞m=1 ⊂ Z a U-weak∗-null sequence in Z∗. For any δ > 0, there exists a
U-weakly null sequence (zm)∞m=1 ⊂ BZ such that

lim
m∈U

Re z∗m(zm) > lim
m∈U

‖z∗m‖
2
− δ.

Proof. If lim
m∈U
‖z∗m‖ = 0, simply take zm = 0 for all m ∈ N. Suppose that

r := lim
m∈U
‖z∗m‖ > 0. For each m ∈ N, fix xm ∈ BX such that Re z∗m(xm) >

‖z∗m‖ − δ. Let x∗∗ = weak∗- lim
m∈U

xm, where the limit is taken in BX∗∗ . Since

X∗ is separable, the weak∗-topology on BX∗∗ is metrizable, which means
some subsequence (um)∞m=1 of (xm)∞m=1 is weak∗-convergent to x∗∗. Define
u0 = 0. For each m ∈ N, let Cm = {i ∈ N0 : |z∗m(ui)| 6 δ}, where
N0 = {0} ∪ N. Note that 0 ∈ Cm for all m ∈ N. Define f : N → N0 by
letting f(m) = maxCm if maxCm < m, and let f(m) ∈ Cm ∩ [m,∞) be
arbitrary if maxCm > m. Note that lim

m∈U
f(m) = l ∈ N0 ∪ {∞}, where

N0 ∪ {∞} is the one-point compactification of N0. We claim that l = ∞.
Indeed, if l <∞, then

f−1({l}) ∩ {m ∈ N : |z∗m(ul+1)| < δ} ∈ U ,

and therefore there exists some l < m0 ∈ f−1({l}) ∩ {m ∈ N : z∗m(ul+1)}.
But this means that l + 1 ∈ Cm0 and l = maxCm0 , this is a contradiction.

Define now zm = 1
2(xm − uf(m)) ∈ BX . Since lim

m∈U
f(m) =∞ and weak∗-

limm→∞ um = x∗∗, weak∗- lim
m∈U

uf(m) = x∗∗. Therefore weak- lim
m∈U

zm = 0. By
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our choice of f(m), |z∗m(uf(m))| 6 δ for all m ∈ N, and

lim
m∈U

Re z∗m(zm) > lim
m∈U

Re
1

2
z∗m(xm)− lim

m∈U

1

2
|z∗m(uf(m))| >

r

2
− δ.

�

We define αUn (X) to be the infimum of a > 0 such that for any U-weakly
null (xt)t∈Tn ⊂ BX ,

lim
m1∈U

. . . lim
mn∈U

∥∥∥ n∑
i=1

x(m1,...,mi)

∥∥∥ 6 a.
We define βUn (X) to be the infimum of b > 0 such that for any U-weak∗-null
(x∗t )t∈Tn ⊂ BX∗ ,

b lim
m1∈U

. . . lim
mn∈U

∥∥∥ n∑
i=1

x∗(m1,...,mi)

∥∥∥ > n∑
i=1

lim
m1∈U

. . . lim
mi∈U

‖x∗(m1,...,mi)
‖.

The next proposition details a characterization and a dual formulation of
A∞ for spaces with separable dual.

Proposition 5.11. Let X be a Banach space such that X∗ is separable.

(i) X has A∞ if and only if supn α
U
n (X) <∞.

(ii) For each n ∈ N, αUn (X) 6 2βUn (X).
(iii) For each n ∈ N, βUn (X) 6 2αUn (X).

Proof. (i) Since X∗ is separable, there exists a metric d on BX that is
compatible with the weak topology. For each n ∈ N, let Un = {x ∈ X :
d(x, 0) < 1/n}.

First assume that X does not have property A∞. Then for each a > 0,
there exists n ∈ N such that Player I fails to have a winning strategy in
the A(a, n) game. Since the A(a, n) game is determined, Player II must
have a winning strategy in the A(a, n) game. We will choose (xt)t∈Tn ac-
cording to this winning strategy. First, let x(m) ∈ Um ∩ BX be Player
II’s response if Player I opens the game with Um. For 1 < k 6 n and
t = (m1, . . . ,mk), let xt ∈ Umk

∩BX be Player II’s response if Players I and
II have chosen Um1 , x(m1), . . . , x(m1,...,mk−1), Umk

. For each t = (mi)
n
i=1 ∈ Tn,

since Um1 , x(m1), Um2 , x(m1,m2), . . . , Umn , x(m1,...,mn) were chosen according

to Player II’s winning strategy,
∥∥∥∑n

i=1 x(m1,...,mi)

∥∥∥ > a. Therefore

lim
m1∈U

. . . lim
mn∈U

∥∥∥ n∑
i=1

x(m1,...,mi)

∥∥∥ > a.
Since xta(m) ∈ Um for each t ∈ {∅} ∪ Tn−1 and m ∈ N, it follows that
(xta(m))

∞
m=1 is weakly null, and is therefore a U-weakly null sequence, for

each t ∈ {∅} ∪ Tn−1. Therefore this collection (xt)t∈Tn ⊂ BX witnesses the
fact that αUn (X) > a. Since a > 0 was arbitrary, supn α

U
n (X) = ∞. By

contraposition, if supn α
U
n (X) <∞, X has property A∞.
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Next, suppose that X has property A∞. Fix a0 > 0 such that for all
n ∈ N, Player I has a winning strategy in the A(a0, n) game. Suppose
that for some n ∈ N, αUn (X) > a0. Fix αUn (X) > a > a0. There exists
(xt)t∈Tn ⊂ BX which is U-weakly null and such that

lim
m1∈U

. . . lim
mn∈U

∥∥∥ n∑
i=1

x(m1,...,mi)

∥∥∥ > a.

Let V1 be Player I’s first choice according to a winning strategy in the
A(a0, n) game. This means we can choose

m1 ∈ {m ∈ N : x(m) ∈ V1} ∩ {m ∈ N : ‖x(m)‖ > a} ∈ U , if n = 1

and

m1 ∈ {m ∈ N : x(m) ∈ V1}

∩
{
m ∈ N : lim

m2∈U
. . . lim

mn∈U

∥∥∥x(m) +

n∑
i=2

x(m,m2,...,mi)

∥∥∥ > a
}
∈ U , if n > 1

Let Player II’s choice in the A(a0, n) game be x(m1). Next, assume that for
some 1 6 k < n, V1, . . . , Vk and m1, . . . ,mk have been chosen such that

(a) V1, x(m1), . . . , Vk, x(m1,...,mk) have been chosen in the A(a0, n) game
with Player I playing according to a winning strategy,

(b) we have the inequality

lim
mk+1∈U

. . . lim
mn∈U

∥∥∥ n∑
i=1

x(m1,...,mi)

∥∥∥ > a,

Let Vk+1 be Player I’s next choice according to the winning strategy, let
Player II’s choice be x(m1,...,mk+1), where

mk+1 ∈ {m ∈ N : x(m1,...,mk,m) ∈ Vk+1}∩{
m ∈ N : lim

mk+2∈U
. . . lim

mn∈U

∥∥∥x(m1,...,mk,m) +
∑

i 6=k+1;1≤i≤n
x(m1,...,mi)

∥∥∥ > a
}
∈ U

We leave it to the reader to detail the cases k + 1 < n and k = n. Non-
emptiness of the relevant set follows from the relevant set’s membership
in U , so that in either the k + 1 < n and k + 1 = n case, an appro-
priate choice of mk+1 can be made. This completes the recursive con-
struction. From the construction, ‖

∑n
i=1 x(m1,...,mi)‖ > a. However, since

V1, x(m1), . . . , Vn, x(m1,...,mn) were chosen with Player I playing according to

a winning strategy in the A(a0, n) game, ‖
∑n

i=1 x(m1,...,mi)

∥∥∥ 6 a0. Since

a0 < a, this is a contradiction. Hence supn α
U
n (X) 6 a0 < ∞. Therefore if

X has property A∞, supn α
U
n (X) <∞.
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(ii) Fix a < αUn (X). Then there exists a U-weakly null collection (xt)t∈Tn ⊂
BX such that

a < lim
m1∈U

. . . lim
mn∈U

∥∥∥ n∑
i=1

x(m1,...,mi)

∥∥∥.
For each t = (m1, . . . ,mn) ∈ Nn, choose y∗t ∈ 1

2BX∗ such that

Re y∗t

( n∑
i=1

x(m1,...,mi)

)
=

1

2

∥∥∥ n∑
i=1

x(m1,...,mi)

∥∥∥.
Then

a

2
< lim

m1∈U
. . . lim

mn∈U
Re y∗(m1,...,mn)

( n∑
i=1

x(m1,...,mi)

)
.

For t ∈ Nn, set z∗t = y∗t and for each t ∈ {∅} ∪ Tn−1, define

z∗t = lim
m|t|+1∈U

. . . lim
mn∈U

y∗ta(m|t|+1,...,mn),

where all limits are taken with respect to the weak∗-topology. For (m1, . . . ,mk) ∈
Tn, define x∗(m1,...,mk) = z∗(m1,...,mk)−z

∗
(m1,...,mk−1) ∈ BX∗ .Note that (x∗t )t∈Tn ⊂

BX∗ is U-weak∗-null, which implies that

n∑
i=1

lim
m1∈U

. . . lim
mi∈U

‖x∗(m1,...,mi)
‖ 6 βUn (X) lim

m1∈U
. . . lim

mn∈U

∥∥∥ n∑
i=1

x∗(m1,...,mi)

∥∥∥
= βUn (X) lim

m1∈U
. . . lim

mn∈U
‖z∗(m1,...,mn) − z

∗
∅‖

6 βUn (X).

Note that because (xt)t∈Tn is U-weakly null and (x∗t )t∈Tn is U-weak∗-null, it
holds that for distinct i, j ∈ {1, . . . , n},

lim
m1∈U

. . . lim
mn∈U

x∗(m1,...,mi)
(x(m1,...,mj)) = 0.

Similarly, for each 1 6 i 6 n, lim
m1∈U

. . . lim
mn∈U

z∗∅(x(m1,...,mi)) = 0.
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Combining the facts above, we can write

a

2
< lim

m1∈U
. . . lim

mn∈U
Re z∗(m1,...,mn)

( n∑
i=1

x(m1,...,mi)

)
= lim

m1∈U
. . . lim

mn∈U
Re (z∗(m1,...,mn) − z

∗
∅)
( n∑
i=1

x(m1,...,mi)

)
= lim

m1∈U
. . . lim

mn∈U
Re
( n∑
i=1

x∗(m1,...,mi)

)( n∑
i=1

x(m1,...,mi)

)
=

n∑
i=1

lim
m1∈U

. . . lim
mn∈U

Re x∗(m1,...,mi)
(x(m1,...,mi))

=
n∑
i=1

lim
m1∈U

. . . lim
mi∈U

Re x∗(m1,...,mi)
(x(m1,...,mi))

6
n∑
i=1

lim
m1∈U

. . . lim
mi∈U

‖x∗(m1,...,mi)
‖ 6 βUn (X).

Since a < αUn (X) was arbitrary, we are done.

(iii) Fix b < βUn (X) and δ > 0. Then there exists a collection (x∗t )t∈Tn ⊂
BX∗ which is U-weak∗-null and

b lim
m1∈U

. . . lim
mn∈U

∥∥∥ n∑
i=1

x∗(m1,...,mi)

∥∥∥ < n∑
i=1

lim
m1∈U

. . . lim
mi∈U

‖x∗(m1,...,mi)
‖.

Note that this implies that

lim
m1∈U

. . . lim
mn∈U

∥∥∥ n∑
i=1

x∗(m1,...,mi)

∥∥∥ > 0.

We define a collection (xt)t∈Tn ⊂ BX which is U-weakly null and such that
for each 1 6 i 6 n,

lim
m1∈U

. . . lim
mi∈U

Re x∗(m1,...,mi)
(x(m1,...,mi)) >

1

2
lim
m1∈U

. . . lim
mi∈U

‖x∗(m1,...,mi)
‖ − δ.

To that end, for each t ∈ {∅}∪Tn−1, choose, as it is allowed by Proposition
5.10, (xta(m))

∞
m=1 ⊂ BX to be a U-weakly null sequence such that

lim
m∈U

Re x∗ta(m)(xta(m)) >
1

2
lim
m∈U
‖x∗ta(m)‖ − δ.

Note that, since (xt)t∈Tn is U-weakly null and (x∗t )t∈Tn is U-weak∗-null, we
have again that for all 1 ≤ i 6= j ≤ n

lim
m1∈U

. . . lim
mn∈U

x∗(m1,...,mi)
(x(m1,...,mj) = 0.
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Then, we can write

b

2
lim
m1∈U

. . . lim
mn∈U

∥∥∥ n∑
i=1

x∗(m1,...,mi)

∥∥∥− δn
<

1

2

n∑
i=1

lim
m1∈U

. . . lim
mi∈U

‖x∗(m1,...,mi)
‖ − δn

6
n∑
i=1

lim
m1∈U

. . . lim
mi∈U

Re x∗(m1,...,mi)
(x(m1,...,mi))

= lim
m1∈U

. . . lim
mn∈U

Re
( n∑
i=1

x∗(m1,...,mi)

)( n∑
i=1

x(m1,...,mi)

)
6 lim

m1∈U
. . . lim

mn∈U

∥∥∥ n∑
i=1

x∗(m1,...,mi)

∥∥∥∥∥∥ n∑
i=1

x(m1,...,mi)

∥∥∥
6 αUn (X) lim

m1∈U
. . . lim

mn∈U

∥∥∥ n∑
i=1

x∗(m1,...,mi)

∥∥∥.
Since lim

m1∈U
. . . lim

mn∈U

∥∥∥∑n
i=1 x

∗
(m1,...,mi)

∥∥∥ > 0, and since δ > 0 and b < βUn (X)

were arbitrary, we are done.
�

Remark 5.12. In item (i) of the preceding proof, we actually showed that if
X∗ is separable, then for each n ∈ N, αUn (X) is the infimum of a > 0 such
that Player I has a winning strategy in the A(a, n) game.

We can now turn to the heart of the proof.

Lemma 5.13. For any Banach space X with X∗ separable and any subspace
Y of X,

αUn (X) 6 40 max{αUn (Y ), αUn (X/Y )}2.

Proof. If X is finite dimensional, then αUn (X) = αUn (Y ) = αn(X/Y ) = 0, so
assume X is infinite dimensional. In this case, at least one of Y , X/Y must
also be infinite dimensional, which means

b := max{βUn (Y ), βUn (X/Y )} > 1.

Fix (x∗t )t∈Tn ⊂ BX∗ U-weak∗-null. We will define a bounded, U-weak∗-null
(y∗t )t∈Tn ⊂ Y ⊥ such that for each 1 6 i 6 n,

lim
m1∈U

. . . lim
mi∈U

‖x∗(m1,...,mi)
− y∗(m1,...,mi)

‖ 6 2 lim
m1∈U

. . . lim
mi∈U

‖x∗(m1,...,mi)
‖X∗/Y ⊥ .

To that end, for each t = (m1, . . . ,mi) ∈ Tn, fix w∗t ∈ Y ⊥ such that ‖x∗t −
w∗t ‖ < ‖x∗t ‖X∗/Y ⊥ + 2−mi and note that w∗t ∈ 3BY ⊥ . For t ∈ {∅} ∪ Tn−1,

let v∗t = weak∗- lim
m∈U

w∗ta(m) ∈ 3BY ⊥ and let y∗ta(m) = w∗ta(m) − v∗t . It is

clear that (y∗t )t∈Tn ⊂ Y ⊥ is bounded and U-weak∗-null. Note that for any
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t ∈ {∅}∪Tn−1, weak∗- lim
m∈U

(w∗ta(m)−x
∗
ta(m)) = v∗t − 0 = v∗t . By weak∗-lower

semicontinuity of the norm, it follows that

‖v∗t ‖ 6 lim
m∈U
‖w∗ta(m) − x

∗
ta(m)‖ = lim

m∈U
‖x∗ta(m)‖X∗/Y ⊥ .

Therefore

lim
m∈U
‖x∗ta(m)−y

∗
ta(m)‖ 6 lim

m∈U
‖x∗ta(m)−w

∗
ta(m)‖+‖v

∗
t ‖ 6 2 lim

m∈U
‖x∗ta(m)‖X∗/Y ⊥ .

From this it follows that

lim
m1∈U

. . . lim
mi∈U

‖x∗(m1,...,mi)
− y∗(m1,...,mi)

‖ 6 2 lim
m1∈U

. . . lim
mi∈U

‖x∗(m1,...,mi)
‖X∗/Y ⊥ .

Since (y∗t )t∈Tn ⊂ Y ⊥ = (X/Y )∗ is U-weak∗-null and bounded, by homogene-
ity, we have that

b lim
m1∈U

. . . lim
mn∈U

∥∥∥ n∑
i=1

y∗(m1,...,mi)

∥∥∥ > n∑
i=1

lim
m1∈U

. . . lim
mi∈U

‖y∗(m1,...,mi)
‖.

We start with the easy case and suppose first that

n∑
i=1

lim
m1∈U

. . . lim
mi∈U

‖x∗(m1,...,mi)
‖X∗/Y ⊥ >

1

1 + 4b

n∑
i=1

lim
m1∈U

. . . lim
mi∈U

‖x∗(m1,...,mi)
‖.

Since (x∗t |Y )t∈Tn ⊂ BY ∗ = BX∗/Y ⊥ is U-weak∗-null,

b lim
m1∈U

. . . lim
mn∈U

∥∥∥ n∑
i=1

x∗(m1,...,mi)

∥∥∥ > b lim
m1∈U

. . . lim
mn∈U

∥∥∥ n∑
i=1

x∗(m1,...,mi)

∥∥∥
X∗/Y ⊥

>
n∑
i=1

lim
m1∈U

. . . lim
mi∈U

‖x∗(m1,...,mi)
‖X∗/Y ⊥

>
1

1 + 4b

n∑
i=1

lim
m1∈U

. . . lim
mi∈U

‖x∗(m1,...,mi)
‖.

Next suppose that

n∑
i=1

lim
m1∈U

. . . lim
mi∈U

‖x∗(m1,...,mi)
‖X∗/Y ⊥ <

1

1 + 4b

n∑
i=1

lim
m1∈U

. . . lim
mi∈U

‖x∗(m1,...,mi)
‖.
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Then since b > 1,

b lim
m1∈U

. . . lim
mn∈U

∥∥∥ n∑
i=1

x∗(m1,...,mi)

∥∥∥ > b lim
m1∈U

. . . lim
mn∈U

∥∥∥ n∑
i=1

y∗(m1,...,mi)

∥∥∥
− b

n∑
i=1

lim
m1∈U

. . . lim
mi∈U

‖x∗(m1,...,mi)
− y∗(m1,...,mi)

‖

>
n∑
i=1

lim
m1∈U

. . . lim
mi∈U

‖y∗(m1,...,mi)
‖ − 2b

n∑
i=1

lim
m1∈U

. . . lim
mi∈U

‖x∗(m1,...,mi)
‖X∗/Y ⊥

>
n∑
i=1

lim
m1∈U

. . . lim
mi∈U

‖x∗(m1,...,mi)
‖ −

n∑
i=1

lim
m1∈U

. . . lim
mi∈U

‖x∗(m1,...,mi)
− y∗(m1,...,mi)

‖

− 2b

n∑
i=1

lim
m1∈U

. . . lim
mi∈U

‖x∗(m1,...,mi)
‖X∗/Y ⊥

>
n∑
i=1

lim
m1∈U

. . . lim
mi∈U

‖x∗(m1,...,mi)
‖ − 4b

n∑
i=1

lim
m1∈U

. . . lim
mi∈U

‖x∗(m1,...,mi)
‖X∗/Y ⊥

>
n∑
i=1

lim
m1∈U

. . . lim
mi∈U

‖x∗(m1,...,mi)
‖ − 4b

1 + 4b

n∑
i=1

lim
m1∈U

. . . lim
mi∈U

‖x∗(m1,...,mi)
‖

=
1

1 + 4b

n∑
i=1

lim
m1∈U

. . . lim
mi∈U

‖x∗(m1,...,mi)
‖.

Combining the two previous paragraphs we get

βUn (X) 6 b(1 + 4b) 6 5b2 = 5 max{βUn (Y ), βUn (X/Y )}2.

Combining this inequality with items (ii) and (iii) of Proposition 5.11 yields

αUn (X) 6 40 max{αUn (Y ), αUn (X/Y )}2.

�

We can now state and prove our result.

Theorem 5.14. The property A∞ is a three space property.

Proof. Assume first that Y is a closed subspace of a Banach space X such
that Y and X/Y are in A∞ ∩Sep. Then Y and X/Y are separable Asplund
spaces and Y ∗ = X∗/Y ⊥ and (X/Y )∗ = Y ⊥ are separable. So X∗ is sep-
arable and we can apply Lemma 5.13 and item (i) of Proposition 5.11 to
deduce that X has A∞. We have shown that membership in A∞ ∩ Sep is a
3SP. It then follows from Theorem 4.2 and Lemma 5.2 that A∞ is a 3SP.

�

Remark 5.15. Since reflexivity is also a three space property (cf [31]), we
can therefore deduce that property HFC∞ of [15], which is known to be
equivalent to being reflexive and asymptotic-c0 (cf [3]), is a three space
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property. However, the question of whether or not property HC∞ is a three
space property is open.

6. Non linear stabilities

We first define the non linear equivalences between Banach spaces that
we will discuss in this section.

Definition 6.1. Let (M,d) and (N, δ) be two metric spaces. A map f :
M → N is a Lipschitz equivalence (or Lipschitz isomorphism) from M to
N if f is a Lipschitz bijection from M to N with Lipschitz inverse. If there
exists a Lipschitz equivalence from M to N , we say that M and N are

Lipschitz equivalent (or Lipschitz isomorphic) and we denote M
L∼ N .

Definition 6.2. Let (M,d) and (N, δ) be two unbounded metric spaces
and f : M → N be a map. We say that f is coarse Lipschitz if there exist
A,B ≥ 0 such that

∀x, y ∈M, δ(f(x), f(y)) ≤ Ad(x, y)−B.
We say that f is a coarse Lipschitz equivalence from M to N , if it is coarse
Lipschitz and there exists a coarse Lipschitz map g : N →M and a constant
C ≥ 0 such that

∀x ∈M d
(
(g ◦ f)(x), x

)
≤ C and ∀y ∈ N δ

(
(f ◦ g)(y), y

)
≤ C.

If there exists a coarse Lipschitz equivalence from M to N , we say that M

and N are coarse Lipschitz equivalent and denote M
CL∼ N .

This notion of coarse Lipschitz equivalent metric spaces is the same as
the notion of quasi-isometric metric spaces introduced by Gromov in [20]
(see also the book [16] by E. Ghys and P. de la Harpe).

We now turn to the notion of net in a metric space.

Definition 6.3. Let 0 < a ≤ b. An (a, b)-net in the metric space (M,d) is
a subsetM of M such that for every z 6= z′ inM, d(z, z′) ≥ a and for every
x in M , d(x,M) < b.
Then a subsetM of M is a net in M if it is an (a, b)-net for some 0 < a ≤ b.

Let us now give two technical equivalent formulations of the notion of
coarse Lipschitz equivalence between Banach spaces. We refer to [11] or [19]
for details.

Proposition 6.4. Let X and Y be two Banach spaces and let f : X → Y
be a map. The following assertions are equivalent.

(i) The map f is a coarse Lipschitz equivalence.
(ii) There exist A0 > 0 and K ≥ 1 such that for all A ≥ A0 and all

maximal A-separated subset M of X, N = f(M) is a net in Y and

∀x, x′ ∈M 1

K
‖x− x′‖ ≤ ‖f(x)− f(x′)‖ ≤ K‖x− x′‖.
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(iii) There exist two continuous coarse Lipschitz maps ϕ : X → Y and
ψ : Y → X and a constant C ≥ 0 such that ‖ϕ(x) − f(x)‖ ≤ C for
all x in X and

∀x ∈ X ‖(ψ ◦ ϕ)(x)− x‖ ≤ C and ∀y ∈ Y ‖(ϕ ◦ ψ)(y)− y‖ ≤ C.

The following results were obtained by Godefroy, Kalton and the third
named author in [17] and [18].

Theorem 6.5. Let p ∈ (1,∞]. Then

(1) The class Tp is stable under Lipschitz equivalences.
(2) The class Pp is stable under coarse-Lipschitz equivalences.
(3) The class A∞ = N∞ is stable under coarse-Lipschitz equivalences.

In fact, statement (2) and (3) are only proved for uniform homeomor-
phisms in [18] in the separable case. The adaptation for coarse-Lipschitz
equivalences relies on characterization (iii) in Proposition 6.4, which allows
to apply the so-called Gorelik principle (see also [11] for details). Then the
non separable case can easily be deduced by a standard separable saturation
argument combined with the separable determination of these properties. It
is then natural to wonder about the non linear stability of the classes Ap
and Np for 1 < p < ∞. The results we have detailed in section 3 together
with a careful examination of the statements in [18] or [11] will allow us to
easily obtain strong new stability results. We start with the following.

Theorem 6.6. For any p ∈ (1,∞), the class Ap is stable under coarse-
Lipschitz equivalences.

Proof. Let X ∈ Ap and Y a Banach space such that there exists a coarse
Lipschitz equivalence f from X to Y . Then, Corollary 6.7 in [11], which is
an extension of results in [18], insures the existence of a universal constant
K > 0 and a constant M > 0 (depending on f) so that for any ε > 0, there
exists a norm | | on Y satisfying

∀y ∈ Y, ‖y‖Y ≤ |y| ≤M‖y‖Y and ∀σ ∈ [0, 1], ρ| |(KM
2σ) ≤ ρX(σ) + ε.

With this result in hands, it is clear that characterization (iii) of Ap in
Theorem 3.2 is stable under coarse Lipschitz equivalences. �

We also have.

Theorem 6.7. For any p ∈ (1,∞), the class Np is stable under coarse-
Lipschitz equivalences.

Proof. Similarly to the previous proof, this is a direct consequence of Corol-
lary 6.7 in [11] and characterization (iii) of Np in Theorem 3.3. �

Obviously the above argument also can also be applied to prove that A∞
is stable under coarse Lipschitz equivalences, which, as we explained, was
already known.
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Problem 6.8. In [28], N. Kalton proved that for 1 < p < ∞, the class
Tp is not stable under uniform homeomorphisms. It is not known however
whether the class T∞ is stable under coarse Lipschitz isomorphisms (or even
uniform homeomorphisms). In fact, a positive answer would imply that a
Banach space coarse Lipschitz equivalent to c0 is linearly isomorphic to c0,
which is an important open question. Indeed, it is known that the class of
all L∞ spaces is stable under coarse Lipschitz equivalences [22] and that a
L∞ subspace of c0 is isomorphic to c0 [24].

7. Examples

We gather in this section a few known examples of T∞ or A∞ spaces and
related problems.

7.1. Non separable uniformly flatenable spaces. The first obvious ex-
amples of non separable T∞ (or equivalently, AUF-renormable) spaces are
given by c0(Γ) spaces, with Γ uncountable.

Proposition 7.1. For any set Γ, the space c0(Γ) equipped with its natural
norm is AUF.

Proof. It follows immediately from the definition of the norm of c0(Γ) that

∀t ∈ (0, 1) ρc0(Γ)(t) = 0.

�

The next result was already known. We present a proof using that T∞ is
a 3SP.

Theorem 7.2. Let K be a compact scattered space such that its Cantor
derived set of order ω, K(ω) is empty. Then C(K) is T∞.

Proof. We shall prove it by induction on n ∈ N such that K(n) = ∅. If
n = 1, then K ′ = ∅ and K is finite. Therefore C(K) is finite dimensional
and thus is T∞. Assume that the statement is true for n ∈ N and that
K(n+1) = ∅. The subspace of C(K) defined by Y = {f ∈ C(K), f|K′ = 0}
is clearly isometric to c0(K \K ′) and by Proposition 7.1 is T∞. Let now Q
be the restriction mapping from C(K) to C(K ′). It follows from the Tietze
extension theorem that Q is onto. Since Y is the kernel of Q, we have that
C(K ′) is isomorphic to C(K)/Y . By induction hypothesis, C(K ′) and thus
C(K)/Y are T∞. It now follows from Theorem 5.8 that C(K) is T∞. �

Remark 7.3. As we already mentioned, this is not a new result. Let us
indicate a few other ways to prove it.

(1) Let K be a compact space such that K(n) = ∅, n ∈ N. The dual
of C(K) is isometric to `1(K). Define the following equivalent norm
on `1(K):

∀µ ∈ `1(K), |µ| =
∑
x∈K

αx|µ(x)|,
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where αx = 2−i with 0 ≤ i ≤ n − 1 such that x ∈ K(i) \ K(i+1).
This formula comes from [32], where it is proved that this norm is
1-AUC∗ and is the dual norm of an equivalent norm on C(K). So
its predual norm is AUF.

(2) Let X be a separable subspace of C(K) and denote Y the Banach
subalgebra of C(K) generated by X. Then Y is isometric to a space

C(L), where L is a compact metrizable space such that L(ω) = ∅. It
follows from [4] that Y is either finite dimensional or isomorphic to
c0(N). So X is T∞ and we can apply the separable determination of
T∞ (Theorem 4.2) to deduce that C(K) is T∞.

(3) We conclude with the most sophisticated argument. It is known

that if K is a compact space such that K(ω) = ∅, then C(K) is
Lipschitz isomorphic to some c0(Γ) (see [12]). On the other hand,
being AUF renormable is stable under Lipschitz isomorphisms ([17]
for the separable case and [11] for the general case, or use separable
determination and saturation).

It is also important to mention that Theorem 7.2 provides (only in the
non separable setting) examples of T∞ spaces that are not isomorphic to a
quotient or a subspace of a c0(Γ) space. Indeed we have

Theorem 7.4. There exists a compact space K such that K(3) = ∅, but
C(K) is not isomorphic to a quotient of a subspace of a c0(Γ) space.

Let us indicate this now classical construction. There exists a scattered
separable uncountable compact space K so that K(3) = ∅. We refer to its
description in [36] page 1757. It’s construction is based on the Johnson-
Lindenstrauss space JL0 [23]. Since K is separable, C(K) admits a count-
able family of separating functionals (the Dirac maps at the points of the
dense countable subset of K). But C(K) is not separable, as K is uncount-
able and scattered and therefore non metrizable. It follows that C(K) is not
weakly Lindelöf determined (WLD in short): see Theorem 5.37 and Propo-
sition 5.40 in [21], or see [35]. We conclude by recalling that c0(Γ) is always
WLD and that being WLD is stable by passing to subspaces or quotients
(see also [21] and references therein).

Problem 7.5. We do not know if there exists a T∞ space which is not
isomorphic to quotient of a subspace of a C(K) space with K(ω) = ∅.

7.2. An interesting A∞ space. We already explained that showing that
T∞ is stable under coarse Lipschitz equivalences would imply that a Ba-
nach space coarse Lipschitz equivalent to c0 is linearly isomorphic to c0. At
this point it is only known that a Banach space coarse Lipschitz equivalent
to c0 is A∞ and L∞. Another hope was to show that a separable Banach
space which is A∞ and L∞ is necessarily T∞ (see conjecture after Theorem
5.6 in [18]). Let us mention here that this question has been solved nega-
tively by Argyros, Gasparis and Motakis in [1], who showed the existence
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of a separable Banach space X which is A∞ and L∞ but so that every in-
finite dimensional subspace of X contains an infinite dimensional reflexive
subspace.

Acknowledgments. We thank Petr Hàjek for valuable discussions on
non separable C(K) spaces and Gilles Godefroy for pointing to us the im-
portant example by Argyros, Gasparis and Motakis.
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[17] G. Godefroy, N. J. Kalton, and G. Lancien, Subspaces of c0(N) and Lipschitz isomor-
phisms, Geom. Funct. Anal. 10 (2000), no. 4, 798–820.

[18] , Szlenk indices and uniform homeomorphisms, Trans. Amer. Math. Soc. 353
(2001), no. 10, 3895–3918.

[19] G. Godefroy, G. Lancien, and V. Zizler, The non-linear geometry of Banach spaces
after Nigel Kalton, Rocky Mountain J. of Math. 44 (2014), no. 5, 1529–1583.

[20] M. Gromov, Hyperbolic groups, Essays in group theory, Math. Sci. Res. Inst. Publ.,
vol. 8, Springer, New York, 1987, pp. 75–263.



ASYMPTOTIC SMOOTHNESS 37
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la SMC, vol. 26, Springer, New York, 2008.

[22] S. Heinrich and P. Mankiewicz, Applications of ultrapowers to the uniform and Lips-
chitz classification of Banach spaces, Studia Math. 73 (1982), no. 3, 225–251.

[23] W. B. Johnson and J. Lindenstrauss, Some remarks on weakly compactly generated
Banach spaces, Israel J. Math. 17 (1974).

[24] W. B. Johnson and M. Zippin, On subspaces of quotients of (
∑
Gn)`p and (

∑
Gn)c0 ,

Israel J. Math. 13 (1972), 311–316 (1973).
[25] , Subspaces and quotient spaces of (

∑
Gn)`p and (

∑
Gn)c0 , Israel J. Math.

17 (1974), 50–55.
[26] N. J. Kalton, The uniform structure of Banach spaces, Math. Ann. 354 (2012), 1247–

1288.
[27] , Uniform homeomorphisms of Banach spaces and asymptotic structure, Trans.

Amer. Math. Soc. 365 (2013), 1247–1288.
[28] , Examples of uniformly homeomorphic Banach spaces, Israel J. Math. 194

(2013), no. 1, 1051–1079.
[29] N. J. Kalton and N. L. Randrianarivony, The coarse Lipschitz geometry of `p ⊕ lq,

Math. Ann. 341 (2008), no. 1, 223–237.
[30] N. J. Kalton and N. T. Peck, Twisted sums of sequence spaces and the three space

problem, Trans. Amer. Math. Soc. 255 (1979), 1–30.
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