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Abstract: The focusing distance of the eye fluctuates during accommodation. However, the
visual role of these accommodation fluctuations is not yet fully understood. The fluctuation
complexity is one of the obstacles to this long standing challenge in visual science. In this work
we seek to develop a statistical approach that i) accurately describes experimental measurements
and ii) directly generates randomized and realistic simulations of accommodation fluctuations
for use in future experiments. To do so we use the random walk approach, which is usually
appropriate to describe the dynamics of systems that combine both randomness and memory.

© 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

The focusing distance fluctuates when the eye fixates a steady target, mostly because of the
changing optical power of the crystalline lens. Accommodation fluctuations are often considered
a non-stationary random process, with possibly drifting mean [1] and/or time-varying spectral
density [2]. Power-laws approximate the global structure of the accommodation spectral density
[3–5], although a distribution of power-law exponents better describe typical spectra [6,7].
Despite this mathematical complexity, factors affecting accommodation fluctuations have been
well characterized in literature using spectral analysis of time series. Non-stationarity is probably
attributable to the low frequency component of the spectrum (<0.5 Hz), which increases in
amplitude when the viewing conditions make the eye relatively insensitive to defocus error: with
low luminance [8], small pupil size [9,10], low spatial frequency of the sinusoidal target [11] and
(for some subjects) when chromatic cues are suppressed [12,13]. Besides their characteristics,
challenges remain in understanding the role of fluctuations in the accommodation system
[14]. One approach to address these questions is to develop optical eye models that simulate
accommodation fluctuations during visual experiments [15–17].

Accommodation fluctuations appear to belong to the class of random processes that are
non-stationary (with mean, variance, or power spectrum that vary with time), but that have
stationary increments [18]. Leahy et al. tested accommodation fluctuations for stationarity using
the runs test [1]. They detected non-stationarity in 75% of time series of the accommodation
signal, and in only 6% of the corresponding time series of increments. Therefore, accommodation
fluctuations are conveniently specified by the statistics of their stationary increments. As in Leahy
et al. [1], we define the signal increment as the difference between signals at two consecutive
measurement times. With this definition, signal increment is proportional to instantaneous signal
velocity. The stationarity of increments simplifies the statistical description of the temporal
dynamics of accommodation. Owing to the stationarity of increments, the autocorrelation of
increments (ACI) is a function of one single variable (the temporal lag τ):

ACI(τ) = ⟨δs(t)δs(t + τ)⟩ (1)

In Eq. (1), δs(t) is the increment of the accommodation signal s(t), in diopters (D). The signal
increment is the difference between successive measurements separated by the temporal resolution
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of measurement (δt) : δs(t) = s(t + δt) − s(t). The symbol ⟨⟩ stands for ensemble-averaging over
a large number of independent observations. It is a probabilistic definition of averaging.

An analogy between accommodation fluctuations and particle dynamics offers an interesting
framework to describe their complex temporal dynamics. The temporal dynamics of particle
motion are complex because they can have different statistical characteristics depending on the
time scale of observation: random versus directional, stable versus drifting. When studying
particle dynamics, we may define the particle position recursively and in that case the statistics of
position increments defines the particle trajectory as a random walk. The ACI function of particle
position quantifies its tendency to continue in the same direction [19]. Positive ACI(τ) value
indicates that there is on average no change of direction in the particle motion during a τ duration.
When the ACI function is positive over the [τ1; τ2] interval of temporal lags, the particle motion
is said to be persistent during that timescale. Persistence occurs for example in trajectories
described by the fractional Langevin equation, as a result of particle mass and persistence of the
random force exerted by the thermal bath ("fractional noise") [19,20]. Anti-persistence can occur
as a result of elasticity of the surrounding medium or potential energy [21]. The reference for
particle dynamics is the Brownian motion, for which position increments at two distinct times
are not correlated: the ACI function of particle position is null, except for τ = 0.

In general, particle trajectories are described by the mean square displacement, which quantifies
the fluctuation range of position with time. For a Brownian motion the mean square displacement
is proportional to time, and the coefficient of proportionality is twice the diffusivity (for a random
walk along one direction). The mean square displacement is a very illustrative statistical quantity.
Consider for example a large number of molecules contained in a tiny drop of dye that we
disperse in a glass of water at t = 0. The law of large number states that the surface area of
the diffusing drop, at time t, is proportional to the mean square displacement. In this work we
apply the particle dynamics approach to study accommodation fluctuations. By analogy with the
mean square displacement of particle position, we define the mean square defocus (MSD) of the
accommodation signal s(t):

MSD(t) =
⟨︂(︁

s(t) − s(0)
)︁2⟩︂ (2)

The symbol ⟨⟩ stands for ensemble-averaging, over a set of independent observations, at fixed
measurement time t.

In this work we analyze the ACI and MSD functions of the accommodation signal, for both
near and far vision. We describe how the two functions mathematically relate. We also describe
how the ACI function can be used as model input to perform simulations of accommodation
fluctuations as random walks that accurately reproduce the average spectra of accommodation
measurements.

2. Methods

2.1. Data collection

This research was approved by The National University of Ireland Research Ethics Committee.
Informed consent was obtained from all participants. All subjects were treated according to
the Helsinki convention. The dominant eye of eight young and healthy subjects was analyzed
using a custom-built aberrometer. The aberrometer used near-infrared light (780 nm) and had a
high temporal sampling (173 Hz). It measured Zernike coefficients of ocular wavefronts over a
fixed pupil of 3.9 mm diameter. Subjects looked at a 6/12 Snellen O through a Badal lens, at
photopic light level (80 cd/m2 luminance). The black letter was printed on a white paper and
illuminated with green light (530 nm). We measured time series of the accommodative signal for
two viewing distances : subjects first fixated the Snellen O at their far point, then a 4 diopters
(D) accommodative demand was added to their far point. Four 46.24 s long measurement trials
were performed, for each viewing distance. The raw data of accommodation signals have been
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analyzed in a previous publication [1]. Subjects reported either emmetropia or slight myopia
for their dominant eye. With the calibrated aberrometer, we measured their Zernike spherical
refraction (from the measured Zernike defocus coefficient z0

2 [22]) in the -0.70 D to +0.20 D
range. Mean Zernike refraction was -0.31 D.

2.2. Data analysis

Each trial led to a time series of 8000 Zernike defocus coefficients, z0
2(tk), which we defined

using the standard convention for vision science [23]. For 1 ≤ k ≤ 8000, the accommodation
signal was computed in diopters (D) as:

s(tk) =
16

√
3

Φ2 z0
2(tk) (3)

where the pupil diameter for Zernike analysis isΦ = 3.9 mm. In Eq. (3), we neglected higher-order
aberrations in the definition of the accommodation signal. Incorporating spherical aberration in
the calculation increased noise significantly and was detrimental to study the microfluctuations
in accommodation. In Ref. [1] (Fig. 6), we showed on one example that incorporating spherical
aberration in the definition of accommodation signal decreases the amplitude of its ACI function
at non-zero time lags. Such decorrelation is characteristic of increased noise. For 1 ≤ k ≤ 7999,
accommodation increment was computed as the difference between successive measurements:

δs(tk) = s(tk+1) − s(tk) (4)

We have estimated the ACI (in D2) at time lag τn = ti+n − ti (0 ≤ τn ≤ 5.8 s, for 0 ≤ n ≤ N − 1,
with N = 1000):

ACI(τn) =
1

N − n

i=N−n∑︂
i=1
δs(ti)δs(ti+n) (5)

The ACI is also defined as an even function for negative time lags, ACI(−τn) = ACI(τn). The
ACI is estimated as a temporal average (summation) instead of the ensemble average of Eq. (1).
The equivalence between the two methods of averaging is, by definition, valid when the δs(t)
random process is ergodic and N large [18]. At zero lag, the ACI(0) value is an estimate of the
variance of increments, assuming that they have zero mean. We note that the ACI function scales
as the square of the temporal resolution of measurement, δt2. We can normalize and analyze the
ACI(τn)/δt2 function, which represents the autocorrelation function of accommodation velocity.

We have computed the MSD (in D2) at time lag τn:

MSD(τn) =
1

N − n

i=N−n∑︂
i=1

(︁
s(ti+n) − s(ti)

)︁2 (6)

The MSD is estimated as a temporal average (summation) instead of the ensemble average
of Eq. (2). The equivalence between Eq. (2) and Eq. (6) depends on the ergodicity of the
accommodation signal s(t).

To remove the effect of blinks on our analysis, we have inspected the raw CCD frames acquired
by the aberrometer. When the eye was not completely open, we disregarded the corresponding
data point. Overall, 13% of the data were disregarded. In Eq. (5) and Eq. (6), we set to zero each
member of the sum for which one term is not valid, and then reduce by 1 unit the normalization
factor N − n. The duration of measurements without a blink was also analyzed (mean 7.8 s) in
order to set the duration over which we analyze the ACI and MSD functions. We choose a 5.8 s
interval duration (N = 1000), which is slightly shorter than the typical duration without a blink.
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2.3. Statistical analysis

For each viewing distance, the ACI and MSD were estimated for 256 intervals of duration 5.8 s
each (256 observations = 8 subjects × 4 trials × 8 intervals per trial). We computed the statistical
mean and the standard deviation of ACI and MSD when averaging over the 256 observations, at
fixed time lag τn.

2.4. Relationship between ACI and MSD

In Appendix A, we show that the increment of MSD at time lag τn, δMSD(τn) = MSD(τn+1) −
MSD(τn), is equal to the temporal summation of ACI in the ±τn−1 interval of time lags:

δMSD(τn) =

i=n−1∑︂
i=−(n−1)

ACI(τi) (7)

For mathematical convenience, the derivation of Eq. (7) is given with the probabilistic
definitions of ACI and MSD (Eq. (1) and Eq. (2), respectively) and the hypothesis of stationary
increments.

Equation (7) agrees with the well-known statistical properties of Brownian dynamics, for which
increments at two different times are uncorrelated:

∑︁i=n−1
i=−(n−1) ACI(τi) = ACI(0) = σ2 (σ2 being

the variance of increments). For Brownian dynamics, Eq. (7) gives: δMSD(τn) = σ
2. The MSD

is proportional to time lag τn: MSD(τn) = σ
2δtτn, with δt = tk+1 − tk the temporal resolution

of measurements. Using the well-known MSD law of Brownian motion, MSD(τn) = 2Kτn, we
identify the diffusion coefficient : K = σ2δt/2.

The accuracy of Eq. (7), for our experimental estimates of ACI and MSD, is investigated in the
Results section.

2.5. Simulation of accommodation fluctuations as a random walk

Owing to their stationarity, accommodation increments conveniently describe accommodation
fluctuations. We modeled accommodation fluctuations as a random walk, with the mean
ACI function as model input, for a given viewing distance. Each time series of increments
(δs(tk), with k ≤1000 and tk ≤ 5.8 s) is generated as a multivariate normal random vector
(size 1000 × 1), with zero mean and correlation matrix K (size 1000 × 1000 ) of components
kij = ACI(ti − tj). Time series of simulated accommodation signal are then obtained by temporal
summation of increments. Simulations were performed with a MATLAB code that is available
as supplementary material, Dataset 1, Ref. [24]. We simulated 10000 time series, and we
have compared simulations with measurements for each viewing distance in order to check that
the random walk accurately simulates the temporal statistics of measurements. First we have
compared the MSD of accommodation simulations and measurements. Then we compared the
periodograms of accommodation signal simulations and measurements. As in Leahy et al. [1],
we have used the Lomb-Scargle periodogram as an estimate of the power spectral density of the
accommodative signal. This approach is robust to missing data caused by the subject blinking.

3. Results

Figure 1(a) shows the ACI as a function of time lag, for each viewing distance (solid black line:
near vision, solid green line : far vision). The solid line is the mean, and the shaded area shows
the mean ± standard deviation of measurements. We estimated the ACI for intervals of duration
5.8 s, and we averaged over 256 observations for each viewing distance (8 subjects × 4 trials ×
8 intervals per trial). Figure 1(b) zooms in the ACI function in the 0<τ<0.5 s interval of time
lags. For clarity, the ACI(0) peak was removed in Fig. 1(b). Figure 1(c) shows the MSD as a
function of time lag, for each viewing distance (solid black line: near vision, solid green line :

https://doi.org/10.6084/m9.figshare.14761779
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far vision). The solid line is the mean, and the shaded area shows the mean ± standard deviation
of measurements. We measured MSD for intervals of duration 5.8 s, and we averaged over 256
observations for each viewing distance (8 intervals × 4 trials × 8 subjects).

Fig. 1. (a) Autocorrelation of increments (ACI) as a function of time lag, for each viewing
distance. The ACI is normalized by the temporal resolution squared (δt2). (b) Zoom of the
ACI functions in the 0-0.5 s interval of temporal lags. The ACI(0) value at zero lag has
been removed for clarity. (c) Mean square defocus (MSD) as function of time lag, for each
viewing distance. The dashed lines have equal slopes (0.0036 D2/s). (a-c) Solid black line:
mean function for near vision, solid green line: mean function for far vision. The shaded
area shows the mean ± standard deviation of measurements. For each viewing distance, we
estimated ACI and MSD functions for intervals of duration 5.8 s, and we averaged over 256
observations (8 subjects × 4 trials × 8 intervals per trial).

For far vision, the ACI peaks at zero lag and quickly drops to zero (Fig. 1(a)) like for a
Brownian motion. The MSD is approximately proportional to time lag (Fig. 1(c)), which also
confirms the approximation as Brownian dynamics. The dashed green line shows the least square
linear fit with zero intercept. The slope is 0.0036 D2/s, and corresponds to 2× the diffusion
coefficient for a model of Brownian dynamics.

For near vision, the ACI is positive for short time lags (τ<0.1 s, Fig. 1(b)): accommodation
fluctuations are persistent at that time scale. The ACI is negative for intermediate time lags
(0.1<τ<0.5 s, Fig. 1(b)): accommodation fluctuations are anti-persistent at that time scale. For
long time lags (τ>1 s, Fig. 1(a)), the ACI is essentially null and the MSD is well approximated
by a linear function of time lag (Fig. 1(c)). In Fig. 1(c), the slope of the linear approximation for
near vision (dashed black line) is equal to 0.0036 D2/s, as for far vision. The non-zero intercept,
for near vision, distinguishes accommodation fluctuations from Brownian dynamics.

Figure 2(a-b) illustrates Eq. (7) with our estimates of ACI and MSD, for near (a) and far (b)
vision. The increase rate of MSD at time lag τ (solid green line) is well approximated by the
temporal sum of the ACI function in the ±τ interval (dashed black line). Figure 2(a-b) also
emphasizes, for near (a) and far (b) vision, the departure from Brownian dynamics, i.e. constant
increase rate of MSD. The dashed red line, in Fig. 2(a-b), corresponds to the 0.0036 D2/s value
that approximates the increase rate of MSD at the long time scale (slope of dashed lines in
Fig. 1(c)). For far vision, a constant increase rate of MSD is a good approximation for τ<0.25 s
approximately. For near vision, the increase rate of MSD oscillates near the 0.0036 D2/s but
does not appear to converge. Moreover, in Fig. 2, the departure from Brownian dynamics appears
more pronounced for near than for far vision.
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Fig. 2. Two approaches to compute the increase rate of mean square defocus (MSD), for
each viewing distance: near vision (a) and far vision (b). (a-b) The solid green line shows
the first approach: direct calculation of MSD increase rate (δMSD/δt, derivative of the MSD
function in Fig. 1(c)). The dashed black line shows the second approach using the ACI
function (ΣACI/δt, integral on the ±τ interval of the ACI function in Fig. 1(a)). For each
viewing distance, the mean MSD and the mean ACI are calculated by averaging over 256
observations (8 subjects×4 trials ×8 intervals per trial).

Figure 3 shows simulations of accommodation fluctuations, using the ACI function as model
input for near and far vision. In Fig. 3(a-b) we compare one simulation (solid green line) with
one measurement (solid black line) of accommodative signal over a time interval of 5.6 s, for
near (a) and far (b) vision. Simulation fluctuations and drifts are similar to measurements. Only
the mean level of accommodation is not reproduced by the simulation. Figure 3(c-d) compares
the MSD of measurements (solid black line, mean of 256 measurements) and simulations (solid
green line, mean of 10000 simulations), for near (c) and far (d) vision. Shaded areas delimit
the mean ± standard deviation. Simulations reproduce very well the MSD of measurements.
The standard deviation of simulations is lower than the standard deviation of measurements,
especially at short time lags. Figure 3(e-f) compares the power spectral density of measurements
(solid black line: mean of 256 measurements) and simulations (solid green line: mean of 10000
simulations), for near (e) and far (f) vision. Shaded areas delimit the mean ± standard deviation.

Figure 4 shows, for near vision, the differences in the accommodation fluctuations of two
subjects. The condition of near vision in our study was stimulated with a +4 D lens. For
subject ED, near vision corresponded to the middle of his/her accommodative range. Mean
accommodative effort was 3.67 D for near vision, but subject ED could maintain a stable
accommodative effort up to 6.47 D during another experiment (see Fig. 2 in Ref. [1]). Mean
accommodative effort for subject EL at near vision (3.31 D) was much closer to his/her maximal
effort (4.65 D). For the three descriptions of accommodation fluctuations in Fig. 4 (PSD in
Fig. 4(a), ACI in Fig. 4(b), and MSD in Fig. 4(c)), the data of subject ED (green lines) and EL (red
lines) differ significantly and lay on both sides of the mean data (black lines). As discussed in [1],
the PSD at low spatial frequencies (≤ 1 Hz) is flat for subject ED, who is focusing at the middle
of his/her accommodative range. The PSD of subject EL resembles more a straight line, as it was
observed for most subjects at both ends of their accommodative range [1]. Remarkably, the ACI
function (Fig. 4(b)) of subject ED shows an extended interval with negative values (ACI(τ)<0 for
0.11<τ<0.51 s), and higher |ACI(τ)| values in the τ<0.5 s interval. As a result, and according to



Research Article Vol. 12, No. 11 / 1 Nov 2021 / Biomedical Optics Express 6903

Fig. 3. (a-b) Example of simulated (solid green line) and measured (solid black line)
accommodation signal, for near (a) and far (b) vision. (c-d) Mean square defocus (MSD)
as a function of time lag (solid black line: mean of 256 measurements, solid green line:
mean of 10000 simulations), for near (c) and far (d) vision. Shaded areas delimit the mean ±

standard deviation. (e-f) Power spectral density (PSD) of the accommodation signal (solid
black line: mean of 256 measurements, solid green line: mean of 10000 simulations), for
near (e) and far (f) vision. Shaded areas delimit the mean ± standard deviation.

the model of Eq. (7), the MSD function (Fig. 4(c)) increases faster at short time lags for subject
ED and then reaches a plateau for τ>2 s. This plateau is characteristic of stabilized focus.

Fig. 4. Accommodation fluctuations for near vision : subject ED (green lines), subject
EL (red lines), and mean of 8 subjects (black lines). (a) Power spectral density (PSD). (b)
Autocorrelation of increments (ACI). (c) Mean square defocus (MSD).
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4. Discussion

For near and far vision, we observed persistence of accommodation fluctuations at short time lags
(ACI(τ)>0 for τ<0.1 s, Fig. 1(b)) and anti-persistence at intermediate time lags (ACI(τ)<0 for
0.1<τ<0.5 s, Fig. 1(b)). Similar scales of persistence and anti-persistence have been reported in
a study of eye motion when fixating a steady target [25]. The analysis of eye motions as a random
walk brought new perspectives in modeling the process with physiologically-inspired features
such as self-avoidance and potential minimization [26]. A self-avoiding random walk accounts
for the persistence of eye motion at short time scale and is a strategy to reduce perceptual fading
by avoiding looking at recently visited features of the target. Potential energy minimization
accounts for the anti-persistence of eye motion at longer time scale and models the ability to fixate
a steady target. Here in our work the simulation of accommodation fluctuations as a random walk
uses measurement statistics (mean ACI) as model input, and is therefore more of a descriptive
model; nevertheless, a physiologically-inspired random walk may also be an interesting approach,
for future research, to model accommodation fluctuations.

We found that the mean square defocus (MSD, Fig. 3(c-d)) and the spectral density (PSD,
Fig. 3(e-f)) of simulations show good agreement with measurements. We interpret the good
agreement in terms of MSD as a consequence of Eq. (7). The good agreement in terms of spectral
density was less predictable, and shows that the ACI function captures sufficient information to
model accurately accommodation fluctuations as a random walk.

The ACI function is almost null for long time lags (τ>1s, Fig. 1(a)) and, in agreement with
Eq. (7), the MSD increase rate is equal (≃ 0.0036 D2/s) for both near and far vision (see linear
approximations, as parallel dashed lines in Fig. 1(c)). In that sense, accommodation fluctuations
at the long time scales are similar for near and far vision. At the long time scale, the influence
of viewing distance on accommodation fluctuations does not reach consensus in the literature
[14]. Some studies report an increase in the amplitude of the low frequency component of
accommodation with decreasing viewing distance [4,27–30]. Gambra et al., however, do not
report such a trend [31] and are more in line with our result. At the intermediate time scale
(0.1-0.5 s), the ACI function of the accommodation signal is negative (Fig. 1(a)). Accommodation
fluctuations are anti-persistent at that time scale, and we expect that this feature may well describe
the ability of subjects to maintain a stable focus. More experiments with variable depth of focus,
as described in the literature [8–14], will allow us to study this hypothesis. At the short time scale
(high frequency), there is a general agreement in the literature that accommodation fluctuations
increase in amplitude for near vision [10,27–30,32,33]. The comparison of MSD functions (near
and far, in Fig. 1(c)) clearly confirms this result. Different results have however been obtained
concerning the decrease in amplitude for fluctuations at the subject’s near point (see Ref. [27]
for example). With only 4 D of accommodation stimulus and young subjects, we likely did not
reach the near point for most subjects. Some of the observed inter-subject differences in the
accommodation fluctuations may be related to the proximity between the near point and the
accommodative state induced by the 4D stimulus. Figure 4 shows that two subjects with distinct
accommodative range had different accommodation fluctuations for near vision, at any time scale.
Moreover, we note that significant inter-subject differences in accommodation fluctuations have
been attributed to individual pulse rates and breathing rates [34,35]. On the one hand, we could
choose not to pool the data of different subjects because of those well documented inter-subject
differences. On the other hand, the random walk approach introduces probabilistic quantities
(Eqs. (1),2) that require averaging over a large number of independent experiments. Because a
subject cannot perform a large number of measurement trials we averaged across subjects, and
time (Eqs. (5),6), to estimate those probabilistic quantities.

Time scales of (anti-)persistence are similar for near and far vision. However, for far vision,
the effect of persistence is barely visible on the MSD plot (Fig. 1(c)) because the ACI(0) peak
dominates the ACI curve (Fig. 1(a)) and imposes near-Brownian dynamics at any time scale:
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the MSD is proportional to temporal lag. Brownian dynamics have long been associated to
biological noise because they describe the motion of particles with temperature. Recent advances
in particle tracking have shown that there are many examples of Brownian-like particle transport
associated to vital functions at cell and organ scales [19]. Accommodation fluctuations may
be another example. Often depicted as plant noise [36], in the sense that they are neither
controlled nor optimized, accommodation fluctuations can provide temporal cues to guide the
accommodation system [37,38]. Previous authors have investigated the detectability [39] and role
as a directional cue [40] of accommodation fluctuations, which were artificially introduced in the
visual scene as simple harmonics. Similarly, we plan to investigate the role of accommodation
fluctuations by introducing either optical defocus or numerical blur [41] in the visual scene as a
computer-generated random walk.

5. Conclusion

The description of accommodation fluctuations as a random walk allows us to simulate time series
with realistic temporal characteristics, which should be useful for designing visual experiments
that investigate their role in vision. Persistence of accommodation increments (or velocity)
reveals inspiring similarity with eye motion during fixation of a stationary target.

Appendix A: derivation of Eq. (7)

We start from the probabilistic definition of the mean square defocus (MSD), which we write for
the discrete time tn :

MSD(tn) =
⟨︃(︁

s(tn) − s(t1)
)︁2⟩︃

We express the accommodation signal s(tn) as a function of its increment δs(tk):

s(tn) − s(t1) =
n−1∑︂
k=1
δs(tk)

Hence we re-write :

MSD(tn) =
⟨︃(︃ n−1∑︂

k=1
δs(tk)

)︃2⟩︃
=

⟨︃(︃ n−1∑︂
k=1
δs(tk)

)︃ (︃ n−1∑︂
h=1
δs(th)

)︃⟩︃
=

n−1∑︂
k=1

n−1∑︂
h=1

⟨︃
δs(tk)δs(th)

⟩︃
We change the index in the second sum (i = h − k) and obtain :

MSD(tn) =
n−1∑︂
k=1

n−1−k∑︂
i=1−k

⟨︃
δs(tk)δs(tk+i)

⟩︃
We now use the hypothesis of stationary increments and introduce the autocorrelation function

of increments (ACI) as a function of time lag ti = tk+i − tk:⟨︃
δs(tk)δs(tk+i)

⟩︃
= ACI(ti)
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and we obtain :

MSD(tn) =
n−1∑︂
k=1

n−1−k∑︂
i=1−k

ACI(ti) (A1)

Extracting the (k = n − 1) term in the sum gives:

MSD(tn) =
n−2∑︂
k=1

n−1−k∑︂
i=1−k

ACI(ti) +
n−1−(n−1)∑︂
i=1−(n−1)

ACI(ti)

=

n−2∑︂
k=1

n−1−k∑︂
i=1−k

ACI(ti) +
0∑︂

i=2−n
ACI(ti)

Extracting the (i = n − 1 − k) term in the sum gives:

MSD(tn) =
n−2∑︂
k=1

(︃ n−2−k∑︂
i=1−k

ACI(ti) + ACI(tn−1−k)

)︃
+

0∑︂
i=2−n

ACI(ti)

=

n−2∑︂
k=1

n−2−k∑︂
i=1−k

ACI(ti) +
n−2∑︂
k=1

ACI(tn−1−k) +

0∑︂
i=2−n

ACI(ti)

We change the index in sum (j = n − 1 − k) and obtain :

MSD(tn) =
n−2∑︂
k=1

n−2−k∑︂
i=1−k

ACI(ti) +
n−2∑︂
j=1

ACI(tj) +
0∑︂

i=2−n
ACI(ti)

We combine the two single-indexed sums into one sum:

MSD(tn) =
n−2∑︂
k=1

n−2−k∑︂
i=1−k

ACI(ti) +
n−2∑︂

i=2−n
ACI(ti) (A2)

According to Eq. (A1) we have:

MSD(tn−1) =

n−2∑︂
k=1

n−2−k∑︂
i=1−k

ACI(ti)

We identify MSD(tn−1) in Eq. (A2) and obtain:

MSD(tn) = MSD(tn−1) +

n−2∑︂
i=2−n

ACI(ti)

We introduce the increment: δMSD(tn−1) = MSD(tn) − MSD(tn−1) and we obtain:

δMSD(tn−1) =

n−2∑︂
i=2−n

ACI(ti)

We change the index and obtain Eq. (7):

δMSD(tn) =
n−1∑︂

i=1−n
ACI(ti)
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