COARSE AND LIPSCHITZ UNIVERSALITY

Florent Baudier, Gilles Lancien, Pavlos Motakis, Thomas H Schlumprecht

To cite this version:

Florent Baudier, Gilles Lancien, Pavlos Motakis, Thomas H Schlumprecht. COARSE AND LIPSCHITZ UNIVERSALITY. Fundamenta Mathematicae, 2021, 254 (2), pp.181-214. 10.4064/fm956-92020 . hal-03377393

HAL Id: hal-03377393
https://hal.science/hal-03377393
Submitted on 14 Oct 2021

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

COARSE AND LIPSCHITZ UNIVERSALITY

F. BAUDIER, G. LANCIEN, P. MOTAKIS, AND TH. SCHLUMPRECHT

Abstract

In this paper we provide several metric universality results. We exhibit for certain classes \mathscr{C} of metric spaces, families of metric spaces $\left(M_{i}, d_{i}\right)_{i \in I}$ which have the property that a metric space $\left(X, d_{X}\right)$ in \mathscr{C} is coarsely, resp. Lipschitzly, universal for all spaces in \mathscr{C} if the collection of spaces $\left(M_{i}, d_{i}\right)_{i \in I}$ equi-coarsely, respectively equi-Lipschitzly, embeds into $\left(X, d_{X}\right)$. Such families are built as certain Schreier-type metric subsets of c_{0}. We deduce a metric analog to Bourgain's theorem, which generalized Szlenk's theorem, and prove that a space which is coarsely universal for all separable reflexive asymptotic- c_{0} Banach spaces is coarsely universal for all separable metric spaces. One of our coarse universality results is valid under Martin's Axiom and the negation of the Continuum Hypothesis. We discuss the strength of the universality statements that can be obtained without these additional set theoretic assumptions. In the second part of the paper, we study universality properties of Kalton's interlacing graphs. In particular, we prove that every finite metric space embeds almost isometrically in some interlacing graph of large enough diameter.

Contents

1. Introduction 1
2. Preliminaries 3
2.1. Coarse and Lipschitz geometry 3
2.2. Trees, derivations, and Bourgain's index theory 4
2.3. Schreier sets and higher order Tsirelson spaces 5
3. Metric universality via descriptive set theory 6
3.1. Lipschitz universality via a Lipschitz c_{0}-index 6
3.2. Coarse universality via a coarse c_{0}-index in $\mathrm{MA}+\neg \mathrm{CH}$ 9
3.3. Coarse universality via strong boundedness 11
4. Coarse universality and barycentric gluing 12
5. Universality properties of interlacing graphs 15
5.1. Almost isometric universality of the interlacing graphs 15
5.2. Metric universality and metric elasticity 20
5.3. Separating interlacing graphs in Banach spaces with nonseparable biduals 22
References 24

2010 Mathematics Subject Classification. 46B06, 46B20, 46B85, 46T99, 05C63, 20 F65.
The first named author was supported by the National Science Foundation under Grant Number DMS-1800322. The second named author was supported by the French "Investissements d'Avenir" program, project ISITE-BFC (contract ANR-15-IDEX-03). The third named author was supported by the National Science Foundation under Grant Numbers DMS-1600600 and DMS-1912897. The fourth named author was supported by the National Science Foundation under Grant Numbers DMS-1464713 and DMS-1711076 .

1. Introduction

A metric space $Y_{c u}$ is said to be coarsely universal for a class \mathscr{M} of metric spaces if every metric space in \mathscr{M} coarsely embeds into $\mathrm{Y}_{\text {cu }}$. By modifying the definition accordingly we can obviously consider universality in various categories: [Banach spaces \sim isomorphic embeddings], [metric spaces~bi-Lipschitz embeddings], etc. A natural question is thus the following: Given a class of metric spaces can we find a metric space that is universal for this class with respect to a given type of metric embedding? There are numerous embedding results that provide satisfactory answers to this broad question. That ℓ_{∞} is isometrically universal for the class of separable metric spaces is a reformulation of the (elementary but fundamental) Fréchet-Kuratowski embedding theorem [Fré10, Kur35]. Note that ℓ_{∞} is not separable and thus does not belong to the class it is a universal space for. This leads us to refine the question to, say: is there a member of the class that is universal for the class itself? Urysohn's space [Ury25] answers positively this question for the class of separable metric spaces and isometric embeddings. However, it is not always possible to find a universal space within the considered class. A (relatively) simple example is the class of separable super-reflexive Banach spaces when universality refers to isomorphic embeddings. A much more difficult result of Szlenk [Szl68] states that there is no separable reflexive Banach space that is isomorphically universal for the class of separable reflexive Banach spaces. Szlenk's theorem was improved by Bourgain [Bou80] who showed that a separable Banach space that is isomorphically universal for the class of separable reflexive spaces is also isomorphically universal for all separable Banach spaces. So if we want to show that a separable Banach space contains an isomorphic copy of every separable Banach space we only need to show that it contains an isomorphic copy of every separable reflexive Banach space. To prove this remarkable rigidity result in the context of isomorphic universality, Bourgain ingeniously incorporated techniques from descriptive set theory. Bourgain's descriptive set theoretic approach for universality problems, was further extended by Bossard [Bos02] to show that a class of Banach spaces which is analytic, in the Effros-Borel structure of subspaces of $C[0,1]$, and contains all separable reflexive Banach spaces, must contain a universal space.

We will not discuss the numerous variants of the universality problem but instead we will focus on the following rigidity phenomenon in the context of universality. We voluntarily do not specify a specific type of embeddings.
Problem 1.1. For what classes \mathscr{C} and \mathscr{D} of metric spaces such that $\mathscr{C} \subset \mathscr{D}$, a universal space for \mathscr{C} is also a universal space for \mathscr{D} ?

The first part of the article revolves around Problem 1.1 in the Lipschitz and coarse categories. Our first theorem says that a metric space is Lipschitzly universal for the class of all separable metric spaces, if it is universal for the uncountable collection $\mathscr{C}:=\left\{\left(\mathrm{S}_{\alpha}(\mathbb{Q}), d_{\infty}\right): \alpha<\omega_{1}\right\}$, which we will refer to as the collection of rational-valued smooth Schreier metric spaces. Each metric space $\left(\mathrm{S}_{\alpha}(\mathbb{Q}), d_{\infty}\right)$, in a certain sense developed in Section 3, exhibits c_{0} behavior of complexity ω^{α}. Consequently, the entire hierarchy captures enough structure of c_{0}, and thus confers its good universality properties. None of the metric spaces in \mathscr{C} is coarsely universal. The most natural Banach space analogue to a metric space $\left(\mathrm{S}_{\alpha}(\mathbb{Q}), d_{\infty}\right)$ is S_{α}^{*}, the dual of the classical Schreier Banach space, in which $\left(\mathrm{S}_{\alpha}(\mathbb{Q}), d_{\infty}\right)$ Lipschitz embeds. It it worth pointing out that the space S_{α}^{*} is a (non-reflexive) separable dual space, thus it fails to contain c_{0} and it has the RNP (respectively by a classical theorems of Bessaga-Pelczynski from [BP58] and Uhl from [Uhl72]). By another classical theorem of Heinrich-Mankiewicz from [HM82], each S_{α}^{*} (and thus also $\left(\mathrm{S}_{\alpha}(\mathbb{Q}), d_{\infty}\right)$) does not contain a Lipschitz copy of c_{0} (or of a dense subset of it).

Theorem A. If a complete separable metric space contains bi-Lipschitz copies of $\left(\mathrm{S}_{\alpha}(\mathbb{Q}), d_{\infty}\right)$ for every countable ordinal α, then it is Lipschiztly universal for the class of all separable metric spaces.

Theorem A should be thought of as a purely Lipschitz analogue of the linear universality result that states that if a Banach space X is isomorphically universal for the class of separable reflexive asymptotic- c_{0} Banach spaces then X contains an isomorphic copy of c_{0}. This linear universality can be found in [OSZ07], as it is explained at the end of section 1] Similarly to the linear setting we use an ordinal index à la Bourgain.

In the context of coarse universality, technical difficulties arise and we need some additional set-theoretic axioms (Martin's Axiom and the negation of the Continuum Hypothesis) to prove a coarse analogue of Theorem A. Note that here we consider integer-valued Schreier metric spaces $\left(\mathrm{S}_{\alpha}(\mathbb{Z}), d_{\infty}\right), \alpha<\omega_{1}$. Each space $\left(\mathrm{S}_{\alpha}(\mathbb{Z}), d_{\infty}\right)$ is a subset of $\left(\mathrm{S}_{\alpha}(\mathbb{Q}), d_{\infty}\right)$ and therefore it Lipschitz (i.e., also coarsely) embeds into the Banach space S_{α}^{*}. To deduce that each $\left(\mathrm{S}_{\alpha}(\mathbb{Z}), d_{\infty}\right)$ fails to be coarsely universal we need to argue slightly differently since we do not know if S_{α}^{*} has this property or not. The space $\left(\mathrm{S}_{\alpha}(\mathbb{Z}), d_{\infty}\right)$ Lipschitz (and thus coarsely) embeds in the dual Tsirelson space T_{α}^{*}, a reflexive Banach space. By Kalton's result from [Kal07], c_{0} does not coarsely embed in a reflexive space and therefore $\left(\mathrm{S}_{\alpha}(\mathbb{Z}), d_{\infty}\right)$ cannot be coarsely universal.
Theorem B. $(\mathrm{MA}+\neg \mathrm{CH})$ If a separable metric space contains coarse copies of $\left(\mathrm{S}_{\alpha}(\mathbb{Z}), d_{\infty}\right)$ for every countable ordinal α, then it is coarsely universal for the class of all separable metric spaces.

We end the first part with several results which have statements which are somewhat weaker than TheoremB, but can be shown without any further axioms. In particular, we show the following.
Theorem C. If a separable metric space (M, d) contains coarse copies of $\left(\mathrm{S}_{\alpha}(\mathbb{Z}), d_{\infty}\right)$ for every countable ordinal α, then the class of all separable bounded metric spaces embeds equi-coarsely into (M, d).

With the help of a deep result of Dodos [Dod09], we prove Theorem D below. Note that the assumption is formally stronger than that of TheoremB or Theorem C.

Theorem D. If a separable metric space is coarsely universal for the class of all reflexive asymptoticc_{0} Banach spaces then it is coarsely universal for the class of all separable metric spaces.

The second part of the article discusses some universality properties of the sequence of interlacing graphs $\left([\mathbb{N}]^{k}, d_{\mathrm{I}}\right)_{k}$ and their applications to universality problems. The geometry of these graphs is intimately connected to the geometry of c_{0} via the summing norm, and we prove the following universality property.
Theorem E. For every finite metric space X and every $\varepsilon>0$, there exists $k:=k(X, \varepsilon) \in \mathbb{N}$ such that X admits a bi-Lipschitz embedding into $\left([\mathbb{N}]^{k}, d_{\mathrm{I}}\right)$ with distortion at most $1+\varepsilon$.

Note that it follows from this almost isometric universality property of the interlacing graphs and the work of Eskenazis, Mendel and Naor [EMN19] that the sequence of interlacing graphs $\left([\mathbb{N}]^{k}, d_{\mathrm{I}}\right)_{k}$ does not equi-coarsely embed into any Alexandrov space of nonpositive curvature.

Then, we discuss the connection between metric universality, the geometry of the interlacing graphs, and a nonlinear version of Johnson-Odell elasticity.

In [Kal07], Kalton showed that a separable Banach X that is coarsely universal for all separable metric spaces cannot have all its iterated duals separable. The argument is based on the existence of uncountably many well separated copies of the interlacing graphs in c_{0}. We conclude the paper by showing that it can be generalized to prove the following.

Theorem F. Let X be a separable Banach space with non separable bidual $X^{* *}$ and such that no spreading model generated by a normalized weakly null sequence in X is equivalent to the ℓ_{1}-unit vector basis. Assume that X coarsely embeds into a Banach space Y. Then there exists $k \in \mathbb{N}$ such that $Y^{(2 k)}$ is non separable.

In connection with this last result, it is important to note that ℓ_{1} is known to coarsely embed into ℓ_{2}.

2. Preliminaries

2.1. Coarse and Lipschitz geometry. If X and Y are two metric spaces, the Y-distortion of X, denoted $c_{Y}(X)$, is defined as the infimum of those $D \in[1, \infty)$ such that there exist $s \in(0, \infty)$ and a map $f: X \rightarrow Y$ so that for all $x, y \in X$

$$
\begin{equation*}
s \cdot d_{X}(x, y) \leq d_{Y}(f(x), f(y)) \leq s \cdot D \cdot d_{X}(x, y) \tag{1}
\end{equation*}
$$

When (1) holds we say that X bi-Lipschitzly embeds into Y with distortion D. We introduce some convenient terminology and notation that will allow us to treat all at once various embedding notions.

Definition 2.1. Let X and Y be metric spaces. Let $\rho, \omega:[0, \infty) \rightarrow[0, \infty)$. We say that $X(\rho, \omega)$ embeds into Y if there exists $f: X \rightarrow Y$ such that for all $x, y \in X$ we have

$$
\begin{equation*}
\rho\left(d_{X}(x, y)\right) \leq d_{Y}(f(x), f(y)) \leq \omega\left(d_{X}(x, y)\right) \tag{2}
\end{equation*}
$$

If $\left\{X_{i}\right\}_{i \in I}$ is a collection of metric spaces. We say that $\left\{X_{i}\right\}_{i \in I}(\rho, \omega)$-embeds into Y if for every $i \in I, X_{i}(\rho, \omega)$-embeds into Y.

We will say that $\left\{X_{i}\right\}_{i \in I}$ equi-coarsely embeds into Y if there exist non-decreasing functions $\rho, \omega:[0, \infty) \rightarrow[0, \infty)$ such that $\lim _{t \rightarrow \infty} \rho(t)=\infty$ and $\left\{X_{i}\right\}_{i \in I}(\rho, \omega)$-embeds into Y. We say that $\left\{X_{i}\right\}_{i \in I}$ equi-bi-Lipschiztly embeds into Y if $\left\{X_{i}\right\}_{i \in I}(\rho, \omega)$-embeds into Y, where ρ and ω are increasing and linear on $[0, \infty)$.

Note that equi-bi-Lipschitz embeddability is a stronger condition than merely assuming that $\sup _{i \in I} c_{Y}\left(X_{i}\right)<\infty$ since it does not allow for arbitrarily large or arbitrarily small scaling factors in (1). However if Y is a Banach space rescaling is possible, and the two notions coincide.

Aharoni's embedding theorem Aha74] states that there exists a universal constant $K \in[1, \infty)$ such that every separable metric space bi-Lipschitzly embeds into c_{0} with distortion at most K. The optimal distortion in Aharoni's embedding theorem is $K=2$ as shown in [KL08]. A consequence of Aharoni's embedding theorem, which will be used repeatedly, is that a metric space is Lipschitzly (resp. coarsely) universal for the class of separable metric spaces if and only if it contains a biLipschitz (resp. coarse) copy of c_{0}.
2.2. Trees, derivations, and Bourgain's index theory. A tree T over a set X is a collection of finite sequences $\left(x_{1}, \ldots, x_{n}\right)$ of elements of a set X with the property that whenever $\left(x_{1}, \ldots, x_{n}\right)$ is in T then $\left(x_{1}, \ldots, x_{n-1}\right)$ is in T as well. A tree is well-founded if it has no infinite branch, i.e., there is no sequence $\left(x_{k}\right)_{k=1}^{\infty}$ in X such that for all $n \in \mathbb{N}\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in T$. There is a classical ordinal derivation on trees which is defined transfinitely as follows:

$$
\begin{aligned}
& T^{0}=T \\
& T^{\alpha+1}=\left\{\left(x_{1}, x_{2}, \ldots, x_{n}\right):\left(x_{1}, x_{2}, \ldots, x_{n}, x_{n+1}\right) \in T^{\alpha}\right\}, \text { for any ordinal } \alpha \\
& T^{\beta}=\cap_{\alpha<\beta} T^{\alpha} \text { for any limit ordinal } \beta
\end{aligned}
$$

We definite $o(T)$, the order of a tree T, to be the least ordinal number such that $T^{o(T)}=\emptyset$, and by convention we set $o(T)=\infty$ if such an ordinal does not exist. Note that if T is well-founded then the derivation produces a strictly decreasing sequence of trees and thus $o(T)<\infty$. For every ordinal α it is easy to construct a tree T_{α} such that $o\left(T_{\alpha}\right)=\alpha$. In Section 2 we will need to strengthen a crucial result about trees on Polish spaces, which are complete, separable and metrizable spaces. A tree T on a topological space X is closed if for every $n \in \mathbb{N}, \mathrm{~T} \cap X^{n}$ is closed in X^{n} equipped with
the product topology. The following proposition, which follows from [Kec95, Theorem 31.1], was observed by Bourgain [Bou80, Proposition 3].

Proposition 2.2. If T is a closed and well founded tree on a Polish space, then $o(T)<\omega_{1}$, where ω_{1} denotes the first uncountable ordinal.

In order to facilitate the reading of Section 2, we recall Bourgain's ordinal index "measuring" the presence of a given basic sequence in a Banach space. This idea was introduced in [Bou80] for a basis of $C[0,1]$, but can be (and has been extensively) applied for other basic sequences (see for instance Definitions 3.1 and 3.6 in [AJO05] or [Ode04]). In this article we will be mostly interested in the canonical basis of c_{0}.

Let $\left(e_{i}\right)_{i}$ be a normalized basic sequence, X be a Banach space, and $K \geq 1$. Denote by $T\left(X,\left(e_{i}\right)_{i}, K\right)$ the set of finite sequences $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ of elements in X such that

$$
\begin{equation*}
\frac{1}{K}\left\|\sum_{k=1}^{n} a_{k} x_{k}\right\| \leq\left\|\sum_{k=1}^{n} a_{k} e_{k}\right\| \leq K\left\|\sum_{k=1}^{n} a_{k} x_{k}\right\| \tag{3}
\end{equation*}
$$

It is clear that $T\left(X,\left(e_{i}\right)_{i}, K\right)$ is a closed tree on X. It is also straightforward that X contains a K^{2} isomorphic copy of $Y=\overline{\operatorname{span}\left(e_{i}\right)}$ if and only if $T\left(X,\left(e_{i}\right)_{i}, K\right)$ is not well founded (or in other words has an infinite branch). Moreover, if X is separable (and thus Polish), it follows from Proposition 2.2 that X contains an K^{2}-isomorphic copy of $Y=\overline{\operatorname{span}\left(e_{i}\right)}$ if and only if $o\left(T\left(X,\left(e_{i}\right)_{i}, K\right)\right)=\omega_{1}$. At the technical level, Bourgain constructed for every ordinal α, a separable reflexive Banach space X_{α} such that for some universal constant $K>0, T\left(X_{\alpha},\left(e_{i}\right)_{i}, K\right) \geq \alpha$, where $\left(e_{i}\right)_{i}$ is a basis of $C[0,1]$. If a separable Banach space Z is isomorphically universal for all separable reflexive Banach spaces, it is easy to see that it must be C-isomorphically universal for all separable reflexive Banach spaces for some $C \geq 1$. Indeed, if there exists a sequence of reflexive separable Banach spaces $\left(X_{n}\right)$ so that the embedding constants of them escape to infinity, then the reflexive separable space $\left(\sum_{n} X_{n}\right)_{2}$ would not embed into Z. Thus Z will contain a C-isomorphic copy of all the X_{α} 's and thus $T\left(Z,\left(e_{i}\right)_{i}, D\right)=$ ω_{1} for some $D \geq 1$, and based on the above discussion it follows that Z contains an isomorphic copy of $C[0,1]$ (which is well-known to be linearly isometrically universal for all separable Banach spaces thanks to Banach's embedding theorem [Ban32]).

Bourgain's $\left(e_{i}\right)$-index of X is defined as follows:

$$
\mathrm{I}\left(X,\left(e_{i}\right)\right)=\sup \left\{o\left(T\left(X,\left(e_{i}\right)_{i}, K\right)\right): K \geq 1\right\}
$$

We collect the key properties of the Bourgain's index of the canonical basis of c_{0}, simply denoted by $I_{\mathrm{c}_{0}}$, that we will need later on.

Proposition 2.3. Let X, Y be separable Banach spaces.
(1) If X is a subspace of Y then $I_{\mathrm{c}_{0}}(X) \leq I_{\mathrm{C}_{0}}(Y)$.
(2) If X is isomorphically equivalent to Y then $I_{\mathrm{c}_{0}}(X)=I_{\mathrm{c}_{0}}(Y)$.
(3) c_{0} embeds isomorphically into X if and only if $I_{\mathrm{c}_{0}}(X) \geq \omega_{1}$.
2.3. Schreier sets and higher order Tsirelson spaces. Schreier sets proved to be very useful to measure indices as well as to construct Banach spaces having certain indices. We will also use them in the more general metric context. We denote by $[\mathbb{N}]^{<\omega}$ the set of finite subsets of \mathbb{N}. An element $\bar{n}=\left\{n_{1}, n_{2}, \ldots, n_{k}\right\} \in[\mathbb{N}]^{<\omega}$ will always be written in strictly increasing order, i.e., $n_{1}<n_{2}<\ldots<$ n_{k}. If A and B are finite subsets of \mathbb{N} we write $n \leq A<B$ if $n \leq \min (A) \leq \max (A)<\min (B)$. For a countable ordinal α we denote by $\mathrm{S}_{\alpha} \subset[\mathbb{N}]^{<\omega}$ the Schreier family of order α which is defined recursively as follows:

$$
\mathrm{S}_{0}=\{\{n\}: n \in \mathbb{N}\}
$$

$\mathrm{S}_{\alpha+1}=\left\{\bigcup_{j=1}^{n} E_{j}: E_{j} \in \mathrm{~S}_{\alpha}\right.$, for $j=1,2 \ldots n$ and $\left.n \leq E_{1}<E_{2}<\ldots<E_{n}\right\}$
$\mathrm{S}_{\beta}=\left\{A \in[\mathbb{N}]^{<\omega}: \exists n \in \mathbb{N}\right.$, so that $n \leq A$, and $\left.A \in \mathrm{~S}_{\alpha_{n}}\right\}$, if β is a limit ordinal, and $\left(\alpha_{n}\right) \subset$ $[0, \alpha)$ is a (fixed) sequence which increases to β.
The above definition of S_{β}, for β limit ordinal, is dependent on the choice of the sequence $\left(\alpha_{n}\right)$, but for our purposes the specific choice of $\left(\alpha_{n}\right)$ will be irrelevant. The Schreier sets $\left(S_{\alpha}\right)_{\alpha<\omega_{1}}$ are collections of finite subsets of \mathbb{N} with increasing complexity which naturally generate trees $T\left(\mathrm{~S}_{\alpha}\right):=\left\{\left(n_{1}, n_{2}, \ldots, n_{k}\right):\left\{n_{i}\right\}_{i=1}^{k} \in \mathrm{~S}_{\alpha}\right\}$ on \mathbb{N}. It is not difficult to prove by transfinite induction that $o\left(T\left(\mathrm{~S}_{\alpha}\right)\right)=\omega^{\alpha}+1$.

We now describe a procedure to generate metric spaces using Schreier sets. Let \mathscr{G} be a family of finite subsets of \mathbb{N} and let \mathbb{E} be a non-empty (finite or infinite) countable subset of \mathbb{R}. We define the subset of $c_{00}(\mathbb{N})$

$$
X_{\mathscr{G}, \mathbb{E}}=\left\{\sum_{i \in G} c_{i} e_{i}: G \in \mathscr{G}, c_{i} \in \mathbb{E} \text { for } i \in G\right\}
$$

where $\left(e_{i}\right)$ is the canonical basis of c_{00}. We will endow $X_{\mathscr{G}, \mathbb{E}}$ with the metric d_{∞} induced by the standard c_{0}-norm $\|\cdot\|_{\infty}$. When $\mathscr{G}=S_{\alpha}$ we will simply denote by $\left(\mathrm{S}_{\alpha}(\mathbb{E}), d_{\infty}\right)$ the metric space obtained. These metric spaces naturally embed into the higher order Tsirelson spaces T_{α}^{*}, which are reflexive Banach spaces whose duals T_{α} have norms which are implicitly defined based on an admissibility condition that involves the Schreier sets. Although the original space constructed by Tsirelson [Tsi74] was T_{α}^{*}, for $\alpha=1$, nowadays their duals T_{α}, are usually referred to as Tsirelson spaces, and it is easier to define T_{α}^{*} by first defining T_{α}. We recall the crucial properties of the Banach space T_{α}^{*} (c.f. [OSZ07]), that are needed in this article. The separable reflexive Banach space T_{α}^{*} is asymptotic- c_{0} and has a 1-unconditional basis $\left(u_{i}\right)_{i}$ with the property that for any $G \in \mathrm{~S}_{\alpha}$ the sequence $\left(u_{i}\right)_{i \in G}$ is 2-equivalent to the unit vector basis of $\ell_{\infty}^{|G|}$. From the latter property it follows that the natural embedding of $\left(\mathrm{S}_{\alpha}(\mathbb{E}), d_{\infty}\right)$ in T_{α}^{*} (mapping $\sum_{i \in G} c_{i} e_{i}$ to $\sum_{i \in G} c_{i} u_{i}$, for $G \in \mathrm{~S}_{\alpha}$) is a 4-Lipschitz isomorphism. Moreover, it follows from [OSZ07] that Bourgain's c_{0}-index of T_{α}^{*} tends to ω_{1} as α tends to ω_{1}.

3. Metric universality Via descriptive set theory

This section is deeply inspired by the profound ideas introduced by Bourgain and Bossard in connection with isomorphic universality, and the unification of these approaches initiated by Argyros and Dodos AD07]. The most natural approach to prove Theorem A (resp. Theorem B), is to mimic Bourgain's strategy and construct an ordinal index that will detect the presence of a bi-Lipschitz (resp. coarse) copy of c_{0}, and which behaves similarly to Bourgain c_{0}-index. We can indeed (though non-trivially) adjust Bourgain's approach to prove the Lipschitz universality result in Section 3.1. Unfortunately some difficulties arise in the coarse setting. On one hand, in Section 3.2, we use additional set theoretic axioms to prove Theorem B. On the other hand, we need to resort to the delicate theory of strongly bounded classes of Banach spaces to prove Theorem D. This is carried over in Section 3.3 where we will use a deep theorem of Dodos. With this organization, we hope it will be clear what is the scope of application of Bourgain's strategy and why it partially fails to work in the coarse framework.
3.1. Lipschitz universality via a Lipschitz c_{0}-index. To detect the presence of a linear isomorphic copy of $C[0,1]$ Bourgain used a tree ordinal index where the trees are defined by a fixed basis of $C[0,1]$. By completeness, we only need to find a dense subset of c_{0}, in order to detect a Lipschitz copy of c_{0} while to detect a coarse copy of c_{0} we only need to find a 1-net of c_{0}. Note that $X_{[\mathbb{N}]<\omega, \mathbb{Q}}$ is a dense subset of c_{0} and that $X_{[\mathbb{N}]<\omega, \mathbb{Z}}$ is a 1 -net in c_{0}. It will be very useful to understand $X_{\mathscr{G}}, \mathbb{E}$ as the collection of all $f: \mathbb{N} \rightarrow \mathbb{E}$ for which there is $G \in \mathscr{G}$ so that $\operatorname{supp}(f) \subset G$. To handle the
nonlinearity of our universality problem we will introduce combinatorial objects called vines which will be a substitute for trees. The elements of a vine \mathscr{V} will also be collections of elements of X, but they will be indexed over collections of finitely supported functions $f: \mathbb{N} \rightarrow \mathbb{E}$, where \mathbb{E} is a fixed countable subset of \mathbb{R}, with $0 \in \mathbb{E}$. Such elements will be called bunches. For a collection \mathscr{V} of bunches to be called a vine it must also be closed under a certain restriction operation. Formally, for a (finite or infinite) countable subset \mathbb{E} of \mathbb{R}, with $0 \in \mathbb{E}$, and finite subset G of \mathbb{N} we call the set

$$
[\mathbb{E}, G]=\{f: \mathbb{N} \rightarrow \mathbb{E} \text { with } \operatorname{supp}(f) \subset G\}
$$

an \mathbb{E}-bunch. Note that if $G=\emptyset$, then $[\mathbb{E}, G]=\{0\}$, where $0: \mathbb{N} \rightarrow \mathbb{E}$ is the constant zero map. We put

$$
c_{00}^{\mathbb{E}}=\bigcup_{G \in[\mathbb{N}]<\omega}[G, \mathbb{E}]=\left\{\left(\xi_{j}\right) \subset \mathbb{E}:\left\{j \in \mathbb{N}: \xi_{j} \neq 0\right\} \text { is finite }\right\}
$$

which is dense in c_{0} if \mathbb{E} is dense in \mathbb{R}. Given a set X and a countable subset \mathbb{E} of \mathbb{R}, every element of the form $\chi=\left(x_{f}\right)_{f \in[\mathbb{E}, G]}$ in $X^{[\mathbb{E}, G]}$ will be called an \mathbb{E}-bunch over X. We define a partial order on the set of \mathbb{E}-bunches over X as follows. If $\chi=\left(x_{f}\right)_{f \in[\mathbb{E}, F]}, \psi=\left(y_{f}\right)_{f \in[\mathbb{E}, G]}$ we shall write $\chi \preceq \psi$ if F is an initial segment of G and for every $f \in[\mathbb{E}, F]$ we have $y_{f}=x_{f}$. This makes sense because $[\mathbb{E}, F] \subset[\mathbb{E}, G]$. If $G=\emptyset$ then $X^{[\mathbb{E}, G]}$ will be in an obvious way identified with X, and we note that for $G \in[\mathbb{N}]^{<\omega}$ and $\left(x_{f}\right)_{f \in[\mathbb{E}, G]}, x_{0} \equiv\left(x_{f}\right)_{f \in[\mathbb{E}, \emptyset]} \preceq\left(x_{f}\right)_{f \in[\mathbb{E}, G]}$, or more generally $\left(x_{f}\right)_{f \in[\mathbb{E}, F]} \preceq\left(x_{f}\right)_{f \in[\mathbb{E}, G]}$ for all initial segments F of G.

A set \mathscr{V} of \mathbb{E}-bunches over X is called an \mathbb{E}-vine over X if for all $\chi \in \mathscr{V}$ the set $[\psi \preceq \chi]$ is a subset of \mathscr{V}. Note that $[\psi \preceq \chi]$ is finite and totally ordered and hence (\mathscr{V}, \preceq) is a tree in the abstract classical sense. We shall say that the \mathbb{E}-vine \mathscr{V} is well founded if the tree (\mathscr{V}, \preceq) is well founded, i.e., it contains no infinite totally ordered subsets. We define the derivatives of vines:

For a vine \mathscr{V} we put

$$
\mathscr{V}^{(1)}=\mathscr{V} \backslash\{\chi \in \mathscr{V}: \chi \text { is } \preceq \text {-maxinal }\},
$$

and recursively for any ordinal

$$
\mathscr{V}^{(\alpha+1)}=\left(\mathscr{V}^{(\alpha)}\right)^{(1)}
$$

and for a limit ordinal α,

$$
\mathscr{V}^{(\alpha)}=\bigcap_{\beta<\alpha} \mathscr{V}^{(\beta)}
$$

Then, the ordinal index of \mathscr{V} is $o(\mathscr{V})=\min \left\{\alpha: \mathscr{V}^{(\alpha)}=\emptyset\right\}$. This is well defined if \mathscr{V} is well founded. As for trees, under appropriate assumptions, being well founded is equivalent to having countable ordinal index. This will be proved in Proposition 3.2.

For $n \in \mathbb{N} \cup\{0\}$ we define

$$
\mathscr{V}_{(n)}=\left\{\chi=\left(x_{f}\right)_{f \in[\mathbb{E}, G]}:|G|=n\right\}=\mathscr{V} \cap\left(\bigcup_{G \in[\mathbb{N}]^{n}} X^{[\mathbb{E}, G]}\right)
$$

If X is a topological space then for each $G \in[\mathbb{N}]^{n}$ the set $X^{[\mathbb{E}, G]}$ can be equipped with the product topology. Then the disjoint union $\cup_{G \in[\mathbb{N}]^{n}} X^{[\mathbb{E}, G]}$ can be endowed with the induced topology. In particular, $\mathscr{V}_{(n)}$ is a topological space. We shall call \mathscr{V} a closed \mathbb{E}-vine if $\mathscr{V}_{(n)}$ is a closed subset of $\cup_{G \in[\mathbb{N}]^{n}} X^{[\mathbb{E}, G]}$ for all $n \in \mathbb{N}$. This is equivalent to saying that for all $G \in[\mathbb{N}]^{<\omega}$ the set $\mathscr{V} \cap X^{[\mathbb{E}, G]}$ is closed. Note that \mathscr{V} being closed does not imply that the set $\cup_{\chi=\left(x_{f}\right)_{f \in[\mathbb{E}, G]} \in \mathscr{V}}\left\{x_{f}: f \in[\mathbb{E}, G]\right\}$ is a closed subset of X.

We can define $\pi_{n}: \mathscr{V}_{(n+1)} \rightarrow \mathscr{V}_{(n)}$ as follows. If $G \in[\mathbb{N}]^{n+1}$ set $G^{\prime}=G \backslash\{\max (G)\}$. Given $\chi=\left(x_{f}\right)_{f \in[\mathbb{E}, G]}$ in $\mathscr{V}_{(n+1)}$ we define $\pi_{n}(\chi)=\left(x_{f}\right)_{f \in\left[\mathbb{E}, G^{\prime}\right]}$, which is in $\mathscr{V}_{(n)}$. Note that a collection \mathscr{V} of \mathbb{E}-bunches over X is an \mathbb{E}-vine if and only if for all $n \in \mathbb{N}$ we have that $\pi_{n}\left[\mathscr{V}_{(n+1)}\right] \subset \mathscr{V}_{(n)}$. Also, if X is a topological space then π_{n} is a continuous function.

The following is an analogue for vines of [Bou80, Lemma 2] and the proof is nearly identical.
Lemma 3.1. Let \mathbb{E} be a countable subset of \mathbb{R} and \mathscr{V} be a closed \mathbb{E}-vine over a complete metric
 well founded.

Proof. We fix an enumeration $\left\{\varepsilon_{i}: i \in \mathbb{N}\right\}$ of \mathbb{E} and for all $n \in \mathbb{N}$ we set $\mathbb{E}_{n}=\left\{\varepsilon_{1}, \ldots, \varepsilon_{n}\right\}$. Assuming $\mathscr{V} \neq \varnothing$, we can find an $x_{0} \equiv\left(x_{f}\right)_{f \in[\mathbb{E}, 0]} \in \mathscr{V} \cap X=\mathscr{V}_{(0)}$. Since $V_{(0)}=\overline{\pi_{0}\left(V_{(1)}\right)}$ we find $\chi_{1}=\left(x_{f}^{(1)}\right)_{f \in\left[\mathbb{E},\left\{k_{1}\right\}\right]} \in \mathscr{V}_{(1)}$ so that $\left\|\pi_{0}\left(\chi_{1}\right)-x_{0}\right\|<1$. By assumption there exists $k_{2}>k_{1}$ and $\chi_{2}=\left(x_{f}^{(2)}\right)_{f \in\left[\mathbb{E},\left\{k_{1}, k_{2}\right\}\right]} \in \mathscr{V}_{(2)}$ so that for $f \in\left[\mathbb{E}_{1},\left\{k_{1}\right\}\right]$ we have $d\left(x_{f}^{(1)}, x_{f}^{(2)}\right) \leq 1 / 2$. Proceed inductively to find an increasing sequence of integers $\left(k_{m}\right)_{m=1}^{\infty}$ and a sequence $\left(\chi_{m}\right)_{m=1}^{\infty}$ so that $\chi_{m}=$ $\left(x_{f}^{(m)}\right)_{f \in\left[\mathbb{E},\left\{k_{1}, k_{2}, \ldots, k_{m}\right\}\right]} \in \mathscr{V}_{(m)}$ and for all $m \in \mathbb{N}$ and $f \in\left[\mathbb{E}_{m},\left\{k_{1}, \ldots, k_{m}\right\}\right]$ we have $d\left(x_{f}^{(m)}, x_{f}^{(m+1)}\right) \leq$ $1 / 2^{m}$. We conclude that for any $m_{0} \in \mathbb{N}$ and $f \in\left[\mathbb{E}_{m_{0}},\left\{k_{1}, \ldots, k_{m_{0}}\right\}\right]$ the sequence $\left(x_{f}^{(m)}\right)_{m \geq m_{0}}$ is Cauchy and we denote its limit by y_{f}. Because \mathscr{V} is an \mathbb{E}-vine it is closed under taking projections π_{n} and because \mathscr{V} is assumed to be closed we deduce that $\psi_{m}=\left(y_{f}\right)_{f \in\left[\mathbb{E},\left\{k_{1}, \ldots, k_{m}\right\}\right]}$ is in \mathscr{V} for all $m \in \mathbb{N}$. Because $\left(\psi_{m}\right)_{m}$ is an infinite chain the \mathbb{E}-vine \mathscr{V} must be ill founded.

The following is the analogue of Proposition 2.2 for vines.
Proposition 3.2. Let \mathbb{E} be a countable subset of \mathbb{R} and \mathscr{V} be a closed \mathbb{E}-vine on a Polish space. If \mathscr{V} is well founded then $o(\mathscr{V})<\omega_{1}$.

Proof. We will show that there is $\eta<\omega_{1}$ so that $\mathscr{V}^{(\eta)}=\emptyset$. It is easily observed that for any $n \in \mathbb{N}$ and ordinal α we have

$$
\begin{equation*}
\left(\mathscr{V}^{(\alpha+1)}\right)_{(n)}=\pi_{n}\left[\left(\mathscr{V}^{(\alpha)}\right)_{(n+1)}\right], \tag{4}
\end{equation*}
$$

i.e., a χ of length n is in $\mathscr{V}^{(\alpha+1)}$ if an only if it is the direct predecessor of a ψ of length $n+1$ in $\mathscr{V}^{(\alpha)}$. For $n \in \mathbb{N}$, consider the decreasing hierarchy of closed sets $\overline{\left(\mathscr{V}^{(\alpha)}\right)_{(n)}}, \alpha<\omega_{1}$ of $\cup_{G \in[\mathbb{N}]^{n}} X^{[\mathbb{E}, G]}$. Because X is Polish, so is $\cup_{G \in[\mathbb{N}]^{n}} X^{[\mathbb{E}, G]}$ and therefore there must exist an $\alpha_{n}<\omega_{1}$ so that for all $\beta>\alpha_{n}$ we have $\overline{\left(\mathscr{V}^{\left.\left(\alpha_{n}\right)\right)_{(n)}}\right.}=\overline{\left(\mathscr{V}^{(\beta)}\right)_{(n)}}$. This is because in a Polish space there can be no strictly increasing transfinite hierarchy of open sets of length ω_{1}. Take $\eta=\sup _{n} \alpha_{n}$ and define $\mathscr{W}=\cup_{n=1}^{\infty} \overline{\left(\mathscr{V}^{(\eta)}\right)_{(n)}}$. We observe that \mathscr{W} is an \mathbb{E}-vine over X. We show that \mathscr{W} satisfies the assumption of Lemma 3.1. Indeed, for $n \in \mathbb{N}$ we have

$$
\begin{aligned}
\mathscr{W}_{(n)} & =\overline{\left(\mathscr{V}^{(\eta)}\right)_{(n)}}=\overline{\left(\mathscr{V}^{(\eta+1)}\right)_{(n)}}(\text { by the choice of } \eta) \\
& =\overline{\pi_{n}\left[\left(\mathscr{V}^{(\eta)}\right)_{(n+1)}\right]} \text { (by (4)) } \\
& \left.=\overline{\pi_{n}\left[\overline{\left(\mathscr{V}^{(\eta)}\right)_{(n+1)}}\right]} \text { (by continuity of } \pi_{n}\right) \\
& =\overline{\pi_{n}\left[\mathscr{W}_{(n+1)}\right]} .
\end{aligned}
$$

This means that either $\mathscr{W}=\emptyset$ or \mathscr{W} is ill founded. Because \mathscr{V} is closed $\mathscr{W} \subset \mathscr{V}$ and because \mathscr{V} is well founded, so is \mathscr{W} and hence $\mathscr{W}=\emptyset$. It follows that $\mathscr{V}^{(\eta)}=\cup_{n \in \mathbb{N}}\left(\mathscr{V}^{(\eta)}\right)_{(n)} \subset \mathscr{W}=\emptyset$. Therefore, $o(\mathscr{V}) \leq \eta$.

We can now introduce an ordinal index that will capture the presence of a bi-Lipschitz copy of c_{0} in a metric space. For any $C>0$, any metric space (M, d), and any countable subset \mathbb{E} of \mathbb{R}, it is easy to verify that the set (think of $[\mathbb{E}, G]$ being a subset of c_{0})

$$
\mathscr{V}(M, \mathbb{E}, C)=\left\{\left(x_{f}\right)_{f \in[\mathbb{E}, G]}: \begin{array}{c}
G \in[\mathbb{N}]^{<\omega}, x_{f} \in M \text { for } f \in[\mathbb{E}, G], \text { and } \\
\forall f, g \in[\mathbb{E}, G] \quad \frac{1}{C}\|f-g\|_{\infty} \leq d\left(x_{f}, x_{g}\right) \leq C\|f-g\|_{\infty}
\end{array}\right\},
$$

is a closed \mathbb{E}-vine on M. We define the Lipschitz c_{0}-index of M as

$$
\mathrm{I}_{\mathrm{c}_{0}}^{\mathrm{Lip}}(M)=\sup \{o(\mathscr{V}(M, \mathbb{Q}, C): C>0\} .
$$

Proposition 3.3. Let M be a Polish space. Then, c_{0} bi-Lipschitzly embeds into M if and only if $\mathrm{I}_{\mathrm{c}_{0}}^{\mathrm{Lip}}(M) \geq \omega_{1}$.
Proof. The necessary implication is easy. Indeed, if ψ is a Lipschitz embedding from c_{0} into M, define for $G \in[\mathbb{N}]^{<\omega}$ and $f \in[\mathbb{Q}, G], x_{f}=\psi\left(\sum_{i \in G} f(i) e_{i}\right)$. Then, for some $C \geq 1$, the set $\left\{\left(x_{f}\right)_{f \in[\mathbb{Q}, G]}: G \in[\mathbb{N}]^{<\omega}\right\}$ is included in $\mathscr{V}(M, \mathbb{Q}, C)$ which is therefore ill founded.

Assume now that $\mathrm{I}_{\mathrm{c}_{0}}^{\mathrm{Lip}}(M)=\omega_{1}$, then for every countable ordinal α there exist $C_{\alpha}>0$ such that $o\left(\mathscr{V}\left(M, \mathbb{Q}, C_{\alpha}\right) \geq \alpha\right.$. Using a simple pigeonhole argument we can find $C \geq 1$ and an uncountable sub-collection U of $\left[1, \omega_{1}\right)$, such that for all $\alpha \in U$ we have $C_{\alpha} \leq C$. Since obviously $o(\mathscr{V}(M, \mathbb{Q}, C)) \geq o\left(\mathscr{V}\left(M, \mathbb{Q}, C_{\alpha}\right)\right) \geq \alpha$ for every $\alpha \in U$, it follows from Proposition 3.2 that $\mathscr{V}(M, \mathbb{Q}, C)$ is not well founded, i.e., there exists a strictly increasing sequence of integers $\left(k_{m}\right)_{m}$ and for $m \in \mathbb{N} \cup\{0\}$ an M-bunch $\chi_{m}=\left(x_{f}^{(m)}: f \in\left[\left\{k_{1}, k_{2}, \ldots, k_{m}\right\}, \mathbb{E}\right]\right) \in \mathscr{V}(M, \mathbb{Q}, C)$ so that $\chi_{0} \preceq \chi_{1} \preceq \chi_{2} \ldots$. But this means that for every finitely supported $f:\left\{k_{1}, k_{2}, k_{3}, \ldots,\right\} \rightarrow \mathbb{Q}$ there is an $x_{f} \in M$, so that $\chi_{m}=\left(x_{f}: f \in\left[\left\{k_{1}, k_{2}, \ldots, k_{m}\right\}, \mathbb{E}\right]\right)$, for $m \in \mathbb{N}$. We define

$$
\psi: c_{00}^{\mathbb{Q}} \rightarrow M \text { by } \psi\left(\left(q_{j}\right)_{j}\right)=x_{f} \text { where } f:\left\{k_{1}, k_{2}, \ldots\right\} \rightarrow \mathbb{Q}, \text { is defined by } f\left(k_{j}\right)=q_{j} .
$$

It follows that ψ is a bi-Lipschitz embedding from $c_{00}^{\mathbb{Q}}$ (with the c_{0}-norm) into M. Since $c_{00}^{\mathbb{Q}}$ is dense in c_{0} and M is complete, ψ can be extended to a bi-Lipschitz embedding from c_{0} into M.

To complete the proof of Theorem Ait remains to show that if a complete separable metric space M is Lipschitz-universal for the collection of rational valued Schreier metrics then $\mathrm{I}_{\mathrm{c}_{0}}^{\mathrm{Lip}}(M) \geq \omega_{1}$.
Proof of Theorem Assume that for every ordinal $\alpha,(M, d)$ admits bi-Lipschitz embeddings of $\left(\mathrm{S}_{\alpha}(\mathbb{Q}), d_{\infty}\right)$. Thus, after an eventual extraction argument, there exist a constant $C>0$, an uncountable $A \subset\left[0, \omega_{1}\right)$, and maps $F_{\alpha}:\left(\mathrm{S}_{\alpha}(\mathbb{Q}), d_{\infty}\right) \rightarrow(M, d), \alpha \in A$, such that for all $f, g \in \mathrm{~S}_{\alpha}(\mathbb{Q})$ and $\alpha \in A$

$$
\begin{equation*}
\frac{1}{C}\|f-g\|_{\infty} \leq d\left(F_{\alpha}(f), F_{\alpha}(g)\right) \leq C\|f-g\|_{\infty} . \tag{5}
\end{equation*}
$$

It follows that $\mathscr{V}(M, \mathbb{Q}, C)$ has ordinal index at least $o\left(\mathrm{~S}_{\alpha}\right)=\omega^{\alpha}+1$, for all $\alpha \in A$. To see this, define for every f in $\mathrm{S}_{\alpha}(\mathbb{Q})$ the vector $x_{f}=F_{\alpha}(f)$ and let $\mathscr{W}=\left\{\left(x_{f}\right)_{f \in[\mathbb{Q}, G]}: G \in \mathrm{~S}_{\alpha}\right\}$, which is thanks to (5) a sub-vine of $\mathscr{V}(M, \mathbb{Q}, C)$ that has the same tree index as S_{α}.
3.2. Coarse universality via a coarse c_{0}-index in $\mathbf{M A}+\neg \mathbf{C H}$. The technique from Section 3.1 do not seem to be robust enough to prove the statement of Theorem B without any further set theoretic assumptions. The main roadblock is that the simple extraction argument that provides equi-biLipschitz embeddings from an uncountable collection of bi-Lipschitz embeddings does not hold in the coarse setting. Under some additional set-theoretic axioms, $\mathrm{MA}+\neg \mathrm{CH}$, we can prove Theorem B. The advantage of assuming that Martin's Axiom holds, but the Continuum Hypothesis fails, lies in the fact that the following diagonalization property of infinite subsets of \mathbb{N} (cf. [Fre84, page 3ff] will be valid.

Lemma 3.4. $(M A+\neg C H)$ Let $\left(N_{\alpha}\right)_{\alpha<\omega_{1}} \subset[\mathbb{N}]^{\omega}$ have the property that $N_{\beta} \backslash N_{\alpha}$ is finite whenever $\alpha<\beta$ (in which case we say that N_{β} is almost contained in N_{α} and write $N_{\beta} \subset^{a} N_{\alpha}$). Then there exists N in $[\mathbb{N}]^{\omega}$ so that $N \subset{ }^{a} N_{\alpha}$, for all $\alpha<\omega_{1}$.

This diagonalization property will now be used to prove an "equi-regularization" principle for expansion and compression moduli. Let us detail the case of the compression modulus. We first need some preparation. Denote \mathscr{I} the class of all non decreasing maps $f: \mathbb{N} \rightarrow \mathbb{N} \cup\{0\}$ satisfying $f(1)=0, \lim _{n \rightarrow \infty} f(n)=\infty$ and $f(n+1) \leq f(n)+1$ for all $n \in \mathbb{N}$. It will be useful to note that the map $j: \mathscr{I} \rightarrow[\mathbb{N}]^{\omega}$, defined by $j(f)=\{n \in \mathbb{N}, f(n+1)>f(n)\}$ is a bijection, and that its inverse is given by $j^{-1}(A)(n)=\sum_{i<n} \mathbb{1}_{A}(i)$, for $A \in[\mathbb{N}]^{\omega}$ and $n \in \mathbb{N}$. We shall also use the following easy fact. If $j(f)=\left\{m_{1}<m_{2}<\cdots\right\}$ and $j(g)=\left\{n_{1}<n_{2}<\cdots\right\}$ with $n_{i} \leq m_{i}$ for all $i \in \mathbb{N}$, then $f \leq g$. In particular, if $j(f) \subset j(g)$, then $f \leq g$. We start with an easy lemma.
Lemma 3.5. Let $\left(g_{\alpha}\right)_{\alpha<\omega_{1}} \subset \mathscr{I}$. Then there exists $\left(f_{\alpha}\right)_{\alpha<\omega_{1}} \subset \mathscr{I}$ such that
(1) For all $\alpha<\omega_{1}$ and all $n \in \mathbb{N}, f_{\alpha}(n) \leq g_{\alpha}(n)$.
(2) For all $\alpha<\beta<\omega_{1}, j\left(f_{\beta}\right) \subset^{a} j\left(f_{\alpha}\right)$.

Proof. We shall build $\left(f_{\alpha}\right)_{\alpha<\omega_{1}}$ by transfinite induction. So, set $f_{1}=g_{1}$ and assume that $\beta_{0}<\omega_{1}$ is such that we have found $\left(f_{\alpha}\right)_{\alpha<\beta_{0}}$ satisfying (1) and (2). Since $\left\{\alpha<\beta_{0}\right\}$ is countable, a classical diagonal argument yields the existence of $M \in[\mathbb{N}]^{\omega}$ such that $M \subset^{a} j\left(f_{\alpha}\right)$ for all $\alpha<\beta_{0}$. Let $j\left(g_{\beta_{0}}\right)=\left\{n_{1}<n_{2}<\cdots\right\}$. Then pick $m_{1}<m_{2}<\cdots \in M$ so that $n_{i} \leq m_{i}$ for all $i \in \mathbb{N}$ and set $f_{\beta_{0}}=j^{-1}\left(\left\{m_{1}, m_{2}, \ldots\right\}\right)$. We have that $f_{\beta_{0}} \leq g_{\beta_{0}}$ and $j\left(f_{\beta_{0}}\right) \subset M \subset^{a} j\left(f_{\alpha}\right)$ for all $\alpha<\beta_{0}$. This concludes our induction.

Armed with Lemma 3.4 we can now prove our "equi-regularization" principle below for compression moduli.
Proposition 3.6. $(M A+\neg C H)$ Let $\left(\rho_{\alpha}\right)_{\alpha<\omega_{1}}$ be a family of non decreasing maps from $[0, \infty)$ to $[0, \infty)$ and so that $\lim _{t \rightarrow \infty} \rho_{\alpha}(t)=\infty$ for all $\alpha<\omega_{1}$. Then there exist an uncountable subset C of ω_{1} and $\rho:[0, \infty) \rightarrow[0, \infty)$ such that $\rho \leq \rho_{\alpha}$ for all $\alpha \in C$ and $\lim _{t \rightarrow \infty} \rho(t)=\infty$.
Proof. First, note that for all $\alpha<\omega_{1}$, we can find $g_{\alpha} \in \mathscr{I}$ such that $g_{\alpha}(n) \leq \rho_{\alpha}(n)$, for all $n \in \mathbb{N}$. Then consider the family $\left(f_{\alpha}\right)_{\alpha<\omega_{1}}$ associated to $\left(g_{\alpha}\right)_{\alpha<\omega_{1}}$ through Lemma 3.5. Next, we apply Lemma 3.4 to get $M \in[\mathbb{N}]^{\omega}$ such that $M \subset^{a} j\left(f_{\alpha}\right)$ for all $\alpha<\omega_{1}$. For $n \in \mathbb{N}$, denote

$$
C_{n}=\left\{\alpha<\omega_{1}, M \cap\{n, n+1, \ldots\} \subset j\left(f_{\alpha}\right)\right\} .
$$

Clearly, there exists $n_{0} \in \mathbb{N}$ such that $C_{n_{0}}$ is uncountable. We set $C=C_{n_{0}}$ and define $f=j^{-1}(M \cap$ $\left.\left\{n_{0}, n_{0}+1, \ldots\right\}\right) \in \mathscr{I}$. Then, for all $\alpha \in C$, we have $j(f) \subset j\left(f_{\alpha}\right)$ and therefore $f \leq f_{\alpha}$. Finally, ρ defined by $\rho=0$ on $[0,1)$ and $\rho=f(n)$ on $[n, n+1)$, for $n \in \mathbb{N}$, is the desired map.

Similarly, for expansion moduli, we have.
Proposition 3.7. $(M A+\neg C H)$ Let $\left(\omega_{\alpha}\right)_{\alpha<\omega_{1}}$ be a family of non decreasing maps from $[0, \infty)$ to $[0, \infty)$ and so that $\omega_{\alpha}(0)=0$. Then there exist an uncountable subset C of ω_{1} and $\omega:[0, \infty) \rightarrow[0, \infty)$ such that $\omega \geq \omega_{\alpha}$ for all $\alpha \in C$.
Proof. The argument is very similar. Let us just describe the few adjustments. We now consider the class \mathscr{J} of all functions $f: \mathbb{N} \cup\{0\} \rightarrow \mathbb{N} \cup\{0\}$ such that $f(0)=0$ and $f(n+1) \geq f(n)+1$ for all $n \geq 0$. The map $k: \mathscr{J} \rightarrow[\mathbb{N}]^{\omega}$ defined by $k(f)=k(\mathbb{N})$ is a bijection. Then, for every $\alpha<\omega_{1}$, there exists $g_{\alpha} \in \mathscr{J}$ such that $g_{\alpha}(n) \geq \omega_{\alpha}(n)$ for all $n \in \mathbb{N}$. Playing the same game as before, but with the sets $k\left(g_{\alpha}\right)$ instead of $j\left(g_{\alpha}\right)$, we obtain (under MA $+\neg \mathrm{CH}$) the existence of an uncountable subset C of ω_{1} and of $g \in \mathscr{J}$ such that $g \geq g_{\alpha}$ for all $\alpha \in C$. The proof is then concluded by setting $\omega(0)=0$ and $\omega=g(n)$ on $(n-1, n]$, for $n \in \mathbb{N}$.

From Propositions 3.6 and 3.7, we deduce immediately.
Proposition 3.8. $(M A+\neg C H)$ If $\left(X_{\alpha}, d_{\alpha}\right)_{\alpha<\omega_{1}}$ is a collection of metric spaces such that for all $\alpha<\omega_{1}, X_{\alpha}$ embeds coarsely into a metric space (M, d), then there exists an uncountable subset C of ω_{1} such that $\left(X_{\alpha}, d_{\alpha}\right)_{\alpha \in C}$ embeds equi-coarsely into (M, d).
Proof of Theorem B The argument goes along essentially the same lines as the proof of Theorem A, modulo the fact that we have to work with vines defined in terms of the compression and expansion moduli. Let us outline the main steps and the place where (MA $+\neg \mathrm{CH}$) is used.

Let ρ, ω be two elements of the class \mathscr{F} of all non decreasing functions from $[0, \infty) \rightarrow[0, \infty)$ that are vanishing at 0 and tending to ∞ at ∞. Let also (M, d) be a complete separable metric space. Then, we define

$$
\begin{aligned}
& \mathscr{V}(M, \mathbb{Z}, \rho, \omega)=\left\{\left(x_{f}\right)_{f \in[\mathbb{Z}, G]}: G \in[\mathbb{N}]^{<\omega}, x_{f} \in M \text { for } f \in[\mathbb{E}, G], \text { and for } f, g \in[\mathbb{E}, G]\right. \\
&\text { we have } \left.\rho\left(\|f-g\|_{\infty}\right) \leq d\left(x_{f}, x_{g}\right) \leq \omega\left(\|f-g\|_{\infty}\right)\right\}
\end{aligned}
$$

and the coarse c_{0}-index of M as

$$
\mathrm{I}_{\mathrm{c}_{0}}^{\text {coarse }}(M)=\sup \{o(\mathscr{V}(M, \mathbb{Z}, \rho, \omega): \rho, \omega \in \mathscr{F}\}
$$

The next step is to prove the analogue of Proposition 3.3. c_{0} coarsely embeds into M if and only if $I_{c_{0}}^{\text {coarse }}(M) \geq \omega_{1}$. For the non trivial implication, the pigeonhole argument yielding a uniform constant C is replaced by Propositions 3.6 and 3.7 to prove the existence of $\rho, \omega \in \mathscr{F}$ such that $\mathscr{V}(M, \mathbb{Z}, \rho, \omega)$ is not well founded (this is where $(\mathrm{MA}+\neg \mathrm{CH})$ is used). Then it implies the existence of a coarse embedding of the integer grid of c_{0} (and therefore of c_{0}) into M.

Finally, assume that a separable metric space (M, d), that we may assume to be complete, contains a coarse copy of all spaces $\left(\mathrm{S}_{\alpha}(\mathbb{Z}), d_{\infty}\right)$, for $\alpha<\omega_{1}$. As in the proof of Theorem A, this implies that $\mathrm{I}_{\mathrm{c}_{0}}^{\text {coarse }}(M) \geq \omega_{1}$, which finishes the proof.
Remark 3.9. We recall that a metric space X coarse-Lipschitz embeds into a metric space Y if X (ρ, ω)-embeds into Y where, for all $t \geq 0, \rho(t)=A t-B$ and $\omega(t)=C t+D$ for some constants $A, B, C, D>0$. It follows clearly from the tools and arguments developed in the last two subsections that we have, without assuming any further set theoretical axioms, the following statement: a separable metric space containing coarse-Lipschitz all the spaces $\left(\mathrm{S}_{\alpha}(\mathbb{Z}), d_{\infty}\right)$, for $\alpha<\omega_{1}$, must a contain a coarse-Lipschitz copy of c_{0}.

It is natural to wonder if Theorem B holds without MA $+\neg \mathrm{CH}$.
Problem 3.10. If a separable metric space contains coarse copies of $\left(\mathrm{S}_{\alpha}(\mathbb{Z}), d_{\infty}\right)$ for every countable ordinal α, is it coarsely universal for the class of all separable metric spaces?

We discuss some positive partial results in Section 4
3.3. Coarse universality via strong boundedness. While we do not know how to prove Theorem B without further set axioms, we can prove Theorem D. Recall that the canonical embedding of $\left(\mathrm{S}_{\alpha}(\mathbb{Z}), d_{\infty}\right)$ in T_{α}^{*} is a 4-Lipschitz isomorphism onto its image, and thus the stronger assumption that the metric space contains every separable reflexive asymptotic-c c_{0} space, rather than merely the collection of metric spaces $\left(\mathrm{S}_{\alpha}(\mathbb{Z})\right)_{\alpha<\omega_{1}}$, allows us to take advantage of the deep theory of strongly bounded classes of Banach spaces introduced by Argyros and Dodos [AD07]. A class \mathscr{C} of separable Banach spaces is said to be strongly bounded if for every analytic subset A of \mathscr{C}, there exists $Y \in \mathscr{C}$ that contains isomorphic copies of every $X \in A$. Recall also that an infinite-dimensional Banach space X is said to be minimal if X isomorphically embeds into every infinite-dimensional
subspace of itself (e.g. the classical sequence space c_{0} is minimal). We will need the following deep result of Dodos [Dod09, Theorem 7].
Theorem 3.11. For any infinite-dimensional minimal Banach space Z not containing ℓ_{1}, the class

$$
\mathrm{NC}_{Z}:=\{Y \in \mathrm{SB}: Z \text { does not linearly embed into } Y\}
$$

is strongly bounded.
Proof of Theorem D Denote R the set of all reflexive elements of SB and $\mathrm{As}_{c_{0}}$ the set of all elements of SB that are asymptotic- c_{0}. Let now M be a separable metric space such that every space in $\mathrm{R} \cap \mathrm{As}_{c_{0}}$ coarsely embeds into M. If we denote $\mathrm{CE}_{M}=\{Y \in \mathrm{SB}: Y$ coarsely embeds into $M\}$, we have that $\mathrm{R} \cap \mathrm{As}_{c_{0}} \subset \mathrm{CE}_{M}$. It is easily checked that CE_{M} is analytic (see the proof of Theorem 1.7 - section 7.1 in [dMB19]). Recall that we denoted $\mathrm{NC}_{\mathrm{c}_{0}}$ the set of all $Y \in \mathrm{SB}$ such that c_{0} does not linearly embed into Y. If we assume, aiming for a contradiction that $\mathrm{CE}_{M} \subset \mathrm{NC}_{\mathrm{c}_{0}}$, since CE_{M} is an analytic subset of $\mathrm{NC}_{\mathrm{c}_{0}}$, which is strongly bounded by Theorem 3.11, there would exist $X \in \mathrm{NC}_{\mathrm{c}_{0}}$ such that any element of CE_{M}, and therefore any element of $\mathrm{R} \cap \mathrm{As}_{c_{0}}$, linearly embeds into X. This is actually impossible since Bourgain's c_{0}-index of the separable, reflexive and asymptotic- c_{0} space T_{α}^{*} tends to ω_{1} as α tends to ω_{1} (see [OSZ07]). Therefore Bourgain's $c_{0}-$ index of X would be uncountable and X would contain an isomorphic copy of c_{0}; a contradiction with $X \in \mathrm{NC}_{\mathrm{c}_{0}}$. So we can now deduce the existence of $Y \in \mathrm{CE}_{\mathrm{M}}$ such that c_{0} linearly embeds into Y, and hence by composition c_{0} coarsely embeds into M. Since by a theorem of Aharoni [Aha74], every separable metric space bi-Lipschitzly embeds into c_{0}, every separable metric space coarsely embeds into M. This concludes our proof.

Remarks 3.12. The same technique was used by B. de Mendonça Braga in [dMB19] to prove that a Banach space which is coarsely universal for all reflexive separable Banach spaces is coarsely universal for all separable metric spaces.

The reader will easily adapt the above proof to show that a Banach space that is Lipschitz universal for $\mathrm{R} \cap \mathrm{As}_{c_{0}}$ is Lipschitz universal for all separable metric spaces. But this was also a consequence of Theorem A

4. Coarse universality and barycentric gluing

The motivation for this section is to provide a somewhat weaker statement than Theorem B, that does not require MA $+\neg$ CH. We will show that containing coarse copies of the Schreier metric spaces $\left(\mathrm{S}_{\alpha}(\mathbb{Z}), d_{\infty}\right)$ for every $\alpha<\omega_{1}$, is a sufficient condition to equi-coarsely contain every separable bounded metric spaces. The reason we have the boundedness restriction is because without MA $+\neg \mathrm{CH}$ we only have the following equi-regularization principle (which is weaker than the equi-regularization principle obtained under MA $+\neg \mathrm{CH}$).
Lemma 4.1. Let C_{0} be an uncountable subset of ω_{1}. Assume that for each $\alpha \in C_{0}$, we have increasing functions $\rho_{\alpha}, \omega_{\alpha}:[0, \infty) \rightarrow[0, \infty)$ so that $\rho_{\alpha}(t) \leq \omega_{\alpha}(t)$ for all $t \in[0, \infty)$ and $\lim _{t \rightarrow \infty} \rho_{\alpha}(t)=$ ∞. Then there exist increasing functions $\rho, \omega:[0, \infty) \rightarrow[0, \infty)$ and a decreasing nested sequence $\left(C_{k}\right)_{k \in \mathbb{N}}$ of uncountable subsets of ω_{1} so that
(i) $\rho(t) \leq \omega(t)$ for all $t \in[0, \infty)$, and $\lim _{t \rightarrow \infty} \rho(t)=\infty$,
(ii) for all $k \in \mathbb{N}, \alpha \in C_{k}$, and $0 \leq t \leq k$ we have $\rho(t) \leq \rho_{\alpha}(t)$ and $\omega_{\alpha}(t) \leq \omega(t)$.

Proof. For all $k \in \mathbb{N}$ and $\alpha \in C_{0}$ define

$$
s(\alpha, k)=\min \left\{t \in \mathbb{N}: \rho_{\alpha}(t) \geq k\right\}, \quad t(\alpha, k)=\max \left\{t \in \mathbb{N}: \omega_{\alpha}(t) \leq k\right\}
$$

and also define

$$
M(\alpha, k)=\min \{n \in \mathbb{N}: s(\alpha, k)<s(\alpha, n)\}, \quad N(\alpha, k)=\min \{n \in \mathbb{N}: t(\alpha, k)<t(\alpha, n)\} .
$$

Because, for each fixed $k \in \mathbb{N}$, the sets $\left\{s(\alpha, k): \alpha \in C_{0}\right\},\left\{t(\alpha, k): \alpha \in C_{0}\right\},\left\{M(\alpha, k): \alpha \in C_{0}\right\}$, $\left\{N(\alpha, k): \alpha \in C_{0}\right\}$ are all countable we may find uncountable sets $C_{0} \supset C_{1} \supset C_{2} \supset \cdots$ so that for each $k \in \mathbb{N}$ and $\alpha, \beta \in C_{k}$ we have $s(\alpha, k)=s(\beta, k)=s_{k}, t(\alpha, k)=t(\beta, k)=t_{k}, M(\alpha, k)=$ $M(\beta, k)=M_{k}$, and $N(\alpha, k)=N\left(\beta_{k}\right)=N_{k}$. Clearly, we have $s_{k} \leq s_{k+1}$ and $t_{k} \leq t_{k+1}$, for all $k \in \mathbb{N}$. We also observe that $\lim _{k} s_{k}=\lim _{k} t_{k}=\infty$. Indeed, it is easy to see that $s_{k}<s_{M_{k}}$ and $t_{k}<t_{N_{k}}$. Pick $k_{1}<k_{2}<\cdots$ so that $\left(s_{k_{j}}\right)_{j}$ and $\left(t_{k_{j}}\right)_{j}$ are both strictly increasing.

We now define $\rho, \tilde{\omega}:[0, \infty) \rightarrow[0, \infty)$ as follows.

$$
\rho(t)=\left\{\begin{array}{ll}
0 & \text { if } 0 \leq t<s_{k_{1}} \\
k_{j} & \text { if } s_{k_{j}} \leq t<s_{k_{j+1}}, j \in \mathbb{N}
\end{array}, \tilde{\omega}(t)= \begin{cases}k_{1} & \text { if } 0 \leq t \leq t_{k_{1}} \\
k_{j} & \text { if } t_{k_{j-1}}<t \leq t_{k_{j}}, j \geq 2\end{cases}\right.
$$

and $\omega(t)=\rho(t) \vee \tilde{\omega}(t)$. The conclusion follows straightforwardly after observing that $s_{k_{j}}, t_{k_{j}} \geq j$ for all $j \in \mathbb{N}$.

Using the concept of vines introduced in Section 3.2 in the coarse context we now deduce the following.

Theorem 4.2. Let (M, d) be a separable metric space and assume that for every $\alpha<\omega_{1}$ the metric space $\left(\mathrm{S}_{\alpha}(\mathbb{Z}), d_{\infty}\right)$ embeds coarsely into (M, d). Then the class of all separable bounded metric spaces embeds equi-coarsely into (M, d).
More precisely, there exist $m_{0} \in M$ and equi-coarse embeddings $F_{n}: B_{n}=\left\{x \in c_{0}:\|x\|_{\infty} \leq n\right\} \rightarrow$ (M, d) so that for all $n \in \mathbb{N}$ we have $F_{n}(0)=m_{0}$.
Proof. Let \tilde{M} be a countable dense subset of M. Since each $\left(\mathrm{S}_{\alpha}(\mathbb{Z}), d_{\infty}\right)$ is a uniformly discrete metric space, it follows from a straightforward perturbation argument that every $\left(\mathrm{S}_{\alpha}(\mathbb{Z}), d_{\infty}\right)$ embeds coarsely into (\tilde{M}, d) via a map f_{α} with compression and expansion moduli $\rho_{\alpha}, \omega_{\alpha}$. By passing to an uncountable set $C_{0} \subset \omega_{1}$ we can assume that there exists $m_{0} \in \tilde{M}$ so that for all $\alpha \in C_{0}$ we have $f_{\alpha}(0)=m_{0}$. For each $\alpha \in C_{0}$ and $n \in \mathbb{N}$ denote $B_{\alpha, n}=\left\{x \in \mathrm{~S}_{\alpha}(\mathbb{Z}):\|x\|_{\infty} \leq n\right\}$ and $F_{\alpha, n}=\left.f_{\alpha}\right|_{B_{\alpha, n}}:\left(B_{\alpha, n}, d_{\infty}\right) \rightarrow \tilde{M}$.

Take the functions ρ, ω and the sets $C_{0} \supset C_{1} \supset C_{2} \supset \cdots$ given by Lemma 4.1. By the conclusion of that lemma, it follows that for every $\beta \in C_{2 n}$ the function $f_{\beta}:\left(\mathrm{S}_{\beta}(\mathbb{Z}), d_{\infty}\right) \rightarrow M$ is a (ρ, ω)-coarse embedding on every subset of $\left(\mathrm{S}_{\beta}(\mathbb{Z}), d_{\infty}\right)$ with diameter at most $2 n$, and also because $\beta \in C_{0}$ we have $f_{\beta}(0)=m_{0}$. In particular, for all $n \in \mathbb{N}$ and $\alpha \in C_{2 n}, F_{\alpha, n}:\left(B_{\alpha, n}, d_{\infty}\right) \rightarrow \tilde{M}$ is a (ρ, ω) embedding with $F_{\alpha, n}(0)=m_{0}$.

Next, we will use Proposition 3.2 to show that for all $N \in \mathbb{N}$ there exists a function $F_{N}: B_{N} \rightarrow M$ that is a (ρ, ω)-coarse embedding with the additional property that $F_{N}(0)=m_{0}$. More precisely, we will define this F_{N} on the subset $B(N, \mathbb{Z})$ of B_{N} consisting of all integer valued sequences in the set B_{N}. Because this is a 1-net of B_{N} and N is arbitrary we may then deduce the desired conclusion. We denote $\mathbb{I}_{N}=[-N, N] \cap \mathbb{Z}$ and consider the closed \mathbb{I}_{N}-vine define by

$$
\begin{gathered}
\mathscr{V}:=\left\{\left(x_{f}\right)_{f \in\left[\mathbb{I}_{N}, G\right]}: G \in[\mathbb{N}]^{<\omega}, x_{f} \in M \text { for } f \in\left[\mathbb{I}_{N}, G\right], x_{0}=m_{0}, \text { and for } f, g \in\left[\mathbb{I}_{N}, G\right]\right. \\
\text { we have } \left.\rho\left(\|f-g\|_{\infty}\right) \leq d\left(x_{f}, x_{g}\right) \leq \omega\left(\|f-g\|_{\infty}\right)\right\}
\end{gathered}
$$

Because for each $\alpha \in C_{2 N}$ the space ($B_{\alpha, N}, d_{\infty}$) (ρ, ω)-embeds into (M, d) via $F_{\alpha, N}$, which maps 0 to m_{0}, it follows that $o(\mathscr{V}) \geq \omega_{1}$. Because we are only considering coarse embeddings we may assume that (M, d) is complete. By Proposition 3.2 the \mathbb{I}_{N}-vine \mathscr{V} must be ill founded, i.e., there exists a strictly increasing sequence of integers $\left(k_{m}\right)_{m}$ and for every finitely supported $f:\left\{k_{i}: i \in \mathbb{N}\right\} \rightarrow \mathbb{I}_{N}$ there exists $x_{f} \in M$ so that $\chi_{m}=\left(x_{f}\right)_{f \in\left[\mathbb{I}_{N},\left\{k_{1}, \ldots, k_{m}\right\}\right]}$ is in \mathscr{V} for all $m \in \mathbb{N}$. By the definition of \mathscr{V} it follows that the map from $B(N, \mathbb{Z})$ to (M, d) given by $\sum_{i=1}^{\infty} m_{i} e_{i} \mapsto x_{f}$, where $f:\left\{k_{i}: i \in \mathbb{N}\right\} \rightarrow I_{n}$ is the function with $f\left(k_{i}\right)=m_{i}$, is a (ρ, ω)-embedding.

The last result of this section is a variation of the barycentric gluing technique, which has an interest on its own. With this gluing technique we can show that if we can equi-coarsely embed the bounded subsets of c_{0} (or equivalently every separable bounded metric spaces) into a metric space M then M^{4} is coarsely universal. In particular, an immediate consequence of Theorem 4.2 and Theorem 4.4, below, is

Corollary 4.3. Let (M, d) be a separable metric space, If for every $\alpha<\omega_{1}$ the metric space $\left(\mathrm{S}_{\alpha}(\mathbb{Z}), d_{\infty}\right)$ embeds coarsely into (M, d), then c_{0} coarsely embeds into M^{4}.

The original barycentric gluing technique (see [Bau07]), creates a coherent embedding of a metric space into a Banach space, by pasting embeddings of balls of growing radii together. Here, the process is reversed in the sense that we will paste balls of Banach spaces into metric spaces, but our proof has the caveat that it requires the gluing into M^{4}, rather than in M. Here is our general result.

Theorem 4.4. Let $(X,\|\cdot\|)$ be a Banach space and (M, d) be a metric space. Assume that there exist increasing functions $\rho, \omega:[0, \infty) \rightarrow[0, \infty)$ that are tending to ∞ at $\infty, m_{0} \in M$, and for all $n \in \mathbb{N}$, maps $h_{n}: n B_{X}: \rightarrow M$, so that $h_{n}(0)=m_{0}$, and for all $x, y \in n B_{X}$

$$
\begin{equation*}
\rho(\|x-y\|) \leq d\left(h_{n}(x), h_{n}(y)\right) \leq \omega(\|x-y\|) \tag{6}
\end{equation*}
$$

We equip M^{4} with the ℓ_{∞}-metric associated with d, that we still denote d. Then there is a $\left.\tilde{\rho}, \tilde{\omega}\right)$ embedding of X into M^{4} where $\tilde{\rho}(t)=\frac{1}{2} \rho\left(\frac{t}{2}\right)$ and $\tilde{\omega}(t)=8 \omega(3 t)$, for all $0<t<\infty$.

Proof. Choose inductively $r_{0}=0<r_{1}<r_{2}<\ldots$ in \mathbb{N}, so that

$$
\begin{equation*}
\rho\left(r_{n+1}\right)>2 \omega\left(r_{n}\right) \text { and } r_{n+1} \geq 2 r_{n} \tag{7}
\end{equation*}
$$

For $n \in \mathbb{N}$ we define the following map $\alpha_{n}:[0, \infty) \rightarrow[0,1]$ (set $r_{-4}=r_{-3}=r_{-2}=r_{-1}=r_{0}=0$.)

$$
\alpha_{n}(t)= \begin{cases}0 & \text { if } t<r_{n-4} \text { or } t>r_{n} \\ \frac{t-r_{n-4}}{r_{n-3}-r_{n-4}} & \text { if } r_{n-4} \leq t<r_{n-3} \\ 1 & \text { if } r_{n-3} \leq t \leq r_{n-1} \\ \frac{r_{n}-t}{r_{n}-r_{n-1}} & \text { if } r_{n-1}<t \leq r_{n}\end{cases}
$$

The support of α_{n} is $\left(r_{n-4}, r_{n}\right)$, and $\left\{t: \alpha_{n}(t)=1\right\}=\left[r_{n-3}, r_{n-1}\right]$.
For $i \in\{0,1,2,3\}$ we define $F^{(i)}: X \rightarrow M$ as follows: For $x \in X$ we choose $l \in \mathbb{Z}^{+}$, so that $r_{4(l-1)+i} \leq\|x\|<r_{4 l+i}$ and put

$$
F^{(i)}(x)=h_{r_{4 l+i}}\left(\alpha_{r_{4 l+i}}(\|x\|) x\right)
$$

Then we define the map

$$
F: X \rightarrow M^{4}, \quad x \mapsto\left(F^{(0)}(x), F^{(1)}(x), F^{(2)}(x), F^{(3)}(x)\right)
$$

We will show that the map F from X into M^{4}, satisfies:

$$
\begin{equation*}
\frac{1}{2} \rho\left(\frac{\|x-y\|}{2}\right) \leq d(F(x), F(y)) \leq 3 \omega(3\|x-y\|) \tag{8}
\end{equation*}
$$

Firstly, we estimate the compression function. Let $x, y \in X$, and assume without loss of generality that $\|x\| \leq\|y\|$. Choose $l \in \mathbb{N}_{0}$ and $i \in\{0,1,2,3\}$, so that $r_{4 l+i-2} \leq\|y\| \leq r_{4 l+i-1}$. It is sufficient to show that $d\left(F^{(i)}(y), F^{(i)}(x)\right) \geq \tilde{\rho}(\|x-y\|)$. We first note that $\alpha_{4 l+i}(y)=1$ and thus $F^{(i)}(y)=$ $h_{r_{4 l+i}}(y)$. We consider two cases.
Case 1. $r_{4 l+i-3} \leq\|x\|$, thus $\alpha_{4 l+i}(x)=1$ and $F^{(i)}(x)=h_{r_{4 l+i}}(x)$. It follows that

$$
d\left(F^{(i)}(x), F^{(i)}(y)\right)=d\left(\left(h_{r_{4 l+i}}(x), h_{r_{4 l+i}}(y)\right) \geq \rho(\|x-y\|)\right.
$$

Case 2. $\|x\|<r_{4 l+i-3}$. Thus, for some $m \leq l$

$$
\begin{aligned}
d\left(F^{(i)}(x), F^{(i)}(y)\right) & \geq d\left(F^{(i)}(y), m_{0}\right)-d\left(F^{(i)}(x), m_{0}\right) \\
& =d\left(h_{r_{4 l+i}}(y), h_{r_{4 l+i}}(0)\right)-d\left(h_{r_{4 m+i}}\left(\alpha_{4 m+i}(\|x\|) x\right), h_{r_{4 m+i}}(0)\right) \\
& \geq \rho(\|y\|)-\omega(\|x\|) \\
& \geq \frac{1}{2} \rho(\|y\|)+\frac{1}{2} \rho\left(r_{4 l+i-2}\right)-\omega\left(r_{4 l+i-3}\right) \\
& \geq \frac{1}{2} \rho(\|y\|) \geq \frac{1}{2} \rho\left(\frac{\|x-y\|}{2}\right) .
\end{aligned}
$$

Secondly, we estimate the expansion function. We fix $i \in\{0,1,2,3\}$ and we consider three cases. Case 1. For some $n \in \mathbb{N}$ we have $r_{n-1} \leq\|x\| \leq\|y\| \leq r_{n}$. If $n=4 l+i-1$ or $n=4 l+i-2$, then $\alpha_{4 l+i}(\|y\|)=\alpha_{4 l+i}(\|x\|)=1$, and therefore

$$
d\left(F^{(i)}(x), F^{(i)}(y)\right)=d\left(h_{r_{4 l+i}}(x), h_{r_{4 l+i}}(y)\right) \leq \omega(\|x-y\|) .
$$

If $n=4 l+i-3$, or $n=4 l+i$, then

$$
\left|\alpha_{4 l+i}(\|x\|)-\alpha_{4 l+i}(\|y\|)\right|=\left|\frac{\|x\|-\|y\|}{r_{n}-r_{n-1}}\right| \leq \frac{2}{r_{n}}\|x-y\|,
$$

and therefore

$$
\left\|\alpha_{4 l+i}(\|x\|) x-\alpha_{4 l+i}(\|y\|) y\right\| \leq \alpha_{4 l+i}(\|x\|)\|x-y\|+\|y\|\left|\alpha_{4 l+i}(\|x\|)-\alpha_{4 l+i}(\|y\|)\right| \leq 3\|x-y\|,
$$

which implies that

$$
d\left(F^{(i)}(x), F^{(i)}(y)\right)=d\left(h_{r_{4 l+i}}\left(\alpha_{4 l+i}(\|x\|) x\right), h_{r_{4 l+i}}\left(\alpha_{4 l+i}(\|y\|) y\right)\right) \leq \omega(3\|x-y\|) .
$$

From now we assume that there are $m, n \in \mathbb{N}, m<n$, so that $r_{m} \leq\|x\| \leq r_{m+1} \leq r_{n} \leq\|y\| \leq$ r_{n+1}. For $j=1,2, \ldots, n-m$, let z_{j} be the element on the the segment $[x, y]$ (i.e., points of the form $x+t(y-x)$ with $0 \leq t \leq 1)$ so that $\left\|z_{j}\right\|=r_{m+j}$, and put $z_{0}=x$ and $z_{n-m+1}=y$.
Case 2. $n-m \leq 3$.

$$
d\left(F^{(i)}(x), F^{(i)}(y)\right) \leq \sum_{i=1}^{n-m+1} d\left(F^{(i)}\left(z_{i-1}\right), F^{(i)}\left(z_{i}\right)\right) \leq \sum_{i=1}^{n-m+1} \omega\left(3\left\|z_{i-1}-z_{i}\right\|\right) \leq 4 \omega(3\|x-y\|) .
$$

Case 3. $n-m \geq 4$. It follows then from Case 2 that

$$
\begin{aligned}
d\left(F^{(i)}(x), F^{(i)}(y)\right) & \leq d\left(F^{(i)}(x), m_{0}\right)+d\left(F^{(i)}(y), m_{0}\right) \\
& =d\left(F^{(i)}(x), F^{(i)}\left(z_{j_{1}}\right)\right)+d\left(F^{(i)}(y), F^{(i)}\left(z_{j_{2}}\right)\right) \\
& \leq 4 \omega\left(3\left\|x-z_{1}\right\|\right)+4 \omega\left(3\left\|y-z_{2}\right\|\right) \leq 8 \omega(3\|x-y\|) .
\end{aligned}
$$

5. Universality properties of interlacing graphs

In [Kal07], Kalton showed that a Banach space X that is coarsely universal for the class of all separable metric spaces, or equivalently that coarsely contains c_{0}, cannot have separable iterated duals, i.e., $X^{(r)}$ is nonseparable from some $r \geq 2$. Kalton's argument is based on the metric properties of the interlacing graphs. As we will see in the next section, these graphs introduced by Kalton have some remarkable universality properties.
5.1. Almost isometric universality of the interlacing graphs. We define a slightly larger class of interlacing graphs than the ones introduced by Kalton. The set of vertices is $[\mathbb{N}]^{<\omega}$, the set of finite subsets of \mathbb{N}, and we declare that two vertices $A=\left\{a_{1}, \ldots, a_{n}\right\}$ and $B=\left\{b_{1}, \ldots, b_{m}\right\}$ in $[\mathbb{N}]^{<\omega}$ are adjacent if and only if $a \neq b$ and one of the following interlacing relations holds
(i) $n=m+1$ and $a_{i} \leqslant b_{i} \leqslant a_{i+1}$ for $1 \leqslant i \leqslant m$,
(ii) $m=n+1$ and $b_{i} \leqslant a_{i} \leqslant b_{i+1}$ for $1 \leqslant i \leqslant n$,
(iii) $n=m, a_{i} \leqslant b_{i} \leqslant a_{i+1}$ for $1 \leqslant i<n$, and $a_{n} \leqslant b_{n}$, or
(iv) $n=m, b_{i} \leqslant a_{i} \leqslant b_{i+1}$ for $1 \leqslant i<n$, and $b_{n} \leqslant a_{n}$.

We also connect the empty set with all singletons. We refer to this graph as the universal interlacing graph, and we denote $\left([\mathbb{N}]^{<\omega}, d_{\mathrm{I}}\right)$ the universal interlacing graph equipped with its canonical graph metric. Kalton's interlacing graph are defined in the same way besides only vertices with the same length were considered. More precisely, Kalton's interlacing graph of diameter k is the space $\left([\mathbb{N}]^{k}, d_{\mathrm{I}}^{(k)}\right)$, where the graph metric only refers to the interlacing relations (iii) or (iv) in this case. For $A, B \in[\mathbb{N}]^{k}$, although it is obvious that $d_{\mathrm{I}}^{(k)}(A, B)=1$ if and only if $d_{\mathrm{I}}(A, B)=1$, it is not immediately clear that on $[\mathbb{N}]^{k}$ the metrics $d_{\mathrm{I}}^{(k)}$ and d_{I} coincide. As we shall see later, this is indeed the case.

The universality properties of the interlacing graphs stem from the fact that the interlacing metric admits an interpretation in terms of the summing norm on c_{0}. For A, B in $[\mathbb{N}]^{<\omega}$ define the summing distance

$$
d_{\mathrm{sum}}(A, B)=\left\|\sum_{i \in A} s_{i}-\sum_{i \in B} s_{i}\right\|_{\mathrm{sum}}
$$

where $\left(s_{i}\right)_{i}$ denotes the summing basis of c_{0}, endowed with the usual bimonotone version of the summing norm, i.e.

$$
\begin{equation*}
\left\|\sum_{i} a_{i} s_{i}\right\|_{\text {sum }}=\sup \left\{\left|\sum_{i=k}^{m} a_{i}\right|: k, m \in \mathbb{N}, k \leq m\right\} . \tag{9}
\end{equation*}
$$

In (9) one only needs to consider intervals at whose boundaries are sign-changes of the a_{i} 's. More precisely for a sequence $\left(a_{i}\right)$ in c_{00} let $0=m_{0}<m_{1}<\ldots m_{s}$ be chosen in \mathbb{N} so that for all $i \leq s$ the signs of a_{j} on $j \in\left[m_{i-1}+1, m_{i}\right]$ are the same (i.e., all non negative or all non positive) then

$$
\begin{equation*}
\left.\left\|\sum_{i} a_{i} s_{i}\right\|_{\mathrm{sum}}=\sup \left\{\left|\sum_{i=k}^{l} \sum_{m_{i-1}+1}^{m_{i}} a_{j}\right| 1 \leq k \leq l \leq s\right\}\right\} \tag{10}
\end{equation*}
$$

Thus for $A, B \subset[\mathbb{N}]^{<\omega}$ we write $A \triangle B$ in increasing order as $A \triangle B=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ and note that

$$
\begin{align*}
d_{\text {sum }}(A, B) & =\max \{|\#(A \cap E)-\#(B \cap E)|: E \text { is an interval of } \mathbb{N}\} \tag{11}\\
& =\max \left\{\left|\#\left(A \cap\left[x_{i}, x_{j}\right]\right)-\#\left(B \cap\left[x_{i}, x_{j}\right]\right)\right|: 1 \leq i \leq j \leq n\right\}
\end{align*}
$$

The above forms of the metric $d_{\text {sum }}$ will be used more often. We first show that the interlacing metric and the summing distance coincides. For fixed k, the coincidence of $d_{I}^{(k)}(A, B)$ with $\max \{|\#(A \cap E)-\#(B \cap E)|: E$ is an interval of $\mathbb{N}\}$ was already shown in [LPP20], where it was afterwards used in connection with the canonical norm of c_{0} instead of $\|\cdot\|_{\text {sum }}$.

For $n \in \mathbb{N}, A=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\} \in \mathbb{N}^{<\omega_{1}}$, with $a_{1}<a_{2}<\ldots a_{n}$, we call $A^{\prime}=\left\{a_{1}^{\prime}, a_{2}^{\prime}, \ldots a_{n}^{\prime}\right\}$, with $a_{1}^{\prime}<a_{2}^{\prime}<\ldots<a_{n}^{\prime}$ a shift to the left of A if $A^{\prime} \neq A$ and $a_{1} \leq a_{1}^{\prime} \leq a_{2} \leq a_{2}^{\prime} \leq \ldots \leq a_{n} \leq a_{n}^{\prime}$. We note that in this case

$$
\begin{equation*}
d_{I}\left(A, A^{\prime}\right)=d_{I}\left(A, A^{\prime} \backslash\left\{a_{n}^{\prime}\right\}\right)=d_{\text {sum }}\left(A, A^{\prime}\right)=d_{\text {sum }}\left(A, A^{\prime} \backslash\left\{a_{n}^{\prime}\right\}\right) \tag{12}
\end{equation*}
$$

For another set $B \in[\mathbb{N}]^{<\omega}$ we say that a left shift A^{\prime} of A is a shift towards B if $A^{\prime} \backslash A \subset B \backslash A$.
Theorem 5.1. For $A, B \in[\mathbb{N}]^{<\omega}$ we have that $d_{\mathrm{sum}}(A, B)=d_{I}(A, B)$.
Moreover if $k=\# A=\# B$ then there is a path of length $d_{I}(A, B)$ from A to B in the interlacing graph, which stays in $[\mathbb{N}]^{k}$. Thus the restriction of d_{I} to $[\mathbb{N}]^{k}$ is $d_{I}^{(k)}$.
Proof. We prove our statement by induction for all $m \in \mathbb{N} \cup\{0\}$, and all $A, B \in[\mathbb{N}]^{<\omega}$ with $m=$ $d_{\text {sum }}(A, B)$.

If $m=0$ and $d_{\text {sum }}(A, B)=0$ and thus $A=B$, our claim is trivial. If $m=1$ and $d_{\text {sum }}(A, B)=1$, we will show that $d_{I}(A, B)=1$. Write $A=\left\{a_{1}, \ldots, a_{n}\right\}, B=\left\{b_{1}, \ldots, b_{m}\right\}$ and assume, without loss of generality, that $\min (A \triangle B)=a_{i_{0}} \in A$. Note that $|n-m|=|\# A-\# B| \leq d_{\text {sum }}(A, B)=1$ and by the assumption $\min (A \triangle B)=a_{i_{0}} \in A$ we have $1 \leq \# A \cap\left[a_{i_{0}}, \max \{A \cup B\}\right]-\# B \cap\left[a_{i_{0}}, \max \{A \cup B\}\right]=$ $\left(n-i_{0}+1\right)-\left(m-i_{0}\right)$, i.e., $m \leq n \leq m+1$. Next, observe that for $1 \leq i \leq \min \{m, n\}$ we have $a_{i} \leq b_{i}$. Otherwise, set $j_{0}=\min \left\{1 \leq i \leq \min \{m, n\}: a_{i}>b_{i}\right\}$ and note that $a_{i_{0}}<b_{i_{0}}$ and thus $i_{0}<j_{0}$. If we set $E=\left[b_{i_{0}}, b_{j_{0}}\right]$ then $d_{\text {sum }}(A, B)=1 \geq \# B \cap E-\# A \cap E=\left(j_{0}-i_{0}+1\right)-\left(j_{0}-i_{0}-1\right)=2$. We also observe that for $1 \leq i \leq \min \{m, n-1\}$ we have $b_{i} \leq a_{i+1}$. If this is not the case, set $s_{0}=\min \left\{1 \leq i \leq \min \{m, n-1\}: b_{i}>a_{i+1}\right\}$ and observe that if $E=\left[a_{1}, a_{s_{0}+1}\right]$ then $\# A \cap E=s_{0}+1$ whereas $\# B \cap E=s_{0}-1$, which is absurd. Finally we distinguish the cases $n=m$ and $n=m+1$. If $n=m$ then we have demonstrated that (iii) of the definition of adjacency holds. If $n=m+1$ then we have demonstrated that (i) holds.

Assume now that for some $m \geq 2 \in \mathbb{N}$, and all $A, B \in[\mathbb{N}]^{<\omega}$ with $d_{\text {sum }}(A, B)<m$ it follows that $d_{\text {sum }}(A, B)=d_{I}(A, B)$, and that, $d_{I}(A, B)=d_{I}^{(k)}(A, B)$ if $k=\# A=\# B$.

Let $A, B \in[\mathbb{N}]^{<\omega}$ with $d_{\text {sum }}(A, B)=m$. If $A \subset B$, or $B \subset A$, and we assume without loss of generality that $B \subsetneq A$, we put $A^{\prime}=A \backslash\{a\}$, where $a \in A \backslash B$. Then $d_{\text {sum }}\left(A, A^{\prime}\right)=d_{I}\left(A, A^{\prime}\right)=1$ and $d_{\text {sum }}\left(A^{\prime}, B\right)=m-1$, and we deduce our claim from the induction hypothesis

Assuming that $A \not \subset B$ and $B \not \subset A$ we write $A \triangle B$ in increasing order as $A \triangle B=\left\{x_{1}, x_{2}, \ldots, x_{l}\right\}$. It follows that

$$
m=d_{\text {sum }}(A, B)=\max _{i \leq j}\left|\#\left(A \cap\left[x_{i}, x_{j}\right]\right)-\#\left(B \cap\left[x_{i}, x_{j}\right]\right)\right| .
$$

Without loss of generality we can assume that $x_{1} \in A \backslash B$. There is a $t \in \mathbb{N}$ and numbers $1 \leq i_{1}<$ $i_{2}<\ldots<i_{t}<l$ so that

$$
\left\{i_{s}: s=1, \ldots t\right\}=\left\{i \in\{1,2, \ldots, l-1\}: x_{i} \in A \text { and } x_{i+1} \in B\right\} .
$$

We will now define $A^{\prime} \in[\mathbb{N}]^{\omega}$ for which $d_{I}\left(A, A^{\prime}\right)=d_{\text {sum }}\left(A, A^{\prime}\right)=1$ and $d_{\text {sum }}\left(A^{\prime}, B\right) \leq m-1$, and consider the following two cases:
Case 1. For all $1 \leq j \leq l$ we have $\#\left(A \cap\left[x_{j}, x_{l}\right]\right)-\#\left(B \cap\left[x_{j}, x_{l}\right]\right)<m$. Then we put

$$
A^{\prime}=\left(A \backslash\left\{x_{i_{s}}: s \leq t\right\}\right) \cup\left\{x_{i_{s}+1}: s \leq t\right\},
$$

which is a left shift of A towards B.
Case 2. There is a $j \leq l$ so that $\#\left(A \cap\left[x_{j}, x_{l}\right]\right)-\#\left(B \cap\left[x_{j}, x_{l}\right]\right)=m$. It follows that $x_{l} \in A$ and we put

$$
A^{\prime}=\left(\left(A \backslash\left\{x_{i_{s}}: s \leq t\right\}\right) \cup\left\{x_{i_{s}+1}: s \leq t\right\}\right) \backslash\left\{x_{l}\right\} .
$$

We observe that if $\# A=\# B$ the second case cannot happen. Indeed, assume that there is a $j \leq l$ so that $\#\left(A \cap\left[x_{j}, x_{l}\right]\right)-\#\left(B \cap\left[x_{j}, x_{l}\right]\right)=m$, then $j>1$ and it follows that

$$
\begin{aligned}
\#\left(B \cap\left[x_{2}, x_{j-1}\right]\right)-\#\left(A \cap\left[x_{2}, x_{j-1}\right]\right) & =\#(B \backslash A)-\#\left(B \cap\left(\left\{x_{1}\right\} \cup\left[x_{j}, x_{l}\right]\right)-\left(\#(A \backslash B)-\#\left(A \cap\left(\left\{x_{1}\right\} \cup\left[x_{j}, x_{l}\right]\right)\right)\right.\right. \\
& =\#\left(A \cap\left(\left\{x_{1}\right\} \cup\left[x_{j}, x_{l}\right]\right)\right)-\#\left(B \cap\left(\left\{x_{1}\right\} \cup\left[x_{j}, x_{l}\right]\right)\right)=m+1
\end{aligned}
$$

which is a contradiction.

Thus, it follows $\# A^{\prime}=\# A$ if $\# A=\# B$.
From (12) it follows that $d_{I}\left(A, A^{\prime}\right)=d_{\text {sum }}\left(A, A^{\prime}\right)=1$. We need to show that $d_{\text {sum }}\left(A^{\prime}, B\right) \leq m-1$, and thus, by the triangle inequality $d_{\text {sum }}\left(A^{\prime}, B\right)=m-1$.

First let $i \in\{1,2 \ldots, l\}$ and define for $i \leq j \leq l$

$$
f(j)=\#\left(A^{\prime} \cap\left[x_{i}, x_{j}\right]\right)-\#\left(B \cap\left[x_{i}, x_{j}\right]\right)
$$

Observe that $f(i) \leq 1 \leq m-1$. We claim that for all $i<j \leq l$

$$
\begin{equation*}
f(j) \leq \min \left(\#\left(A \cap\left[x_{i}, x_{j}\right]\right)-\#\left(B \cap\left[x_{i}, x_{j}\right]\right), m-1\right) \tag{13}
\end{equation*}
$$

Since $A^{\prime} \backslash B \subset A \backslash B$ we have $f(j) \leq \#\left(A \cap\left[x_{i}, x_{j}\right]\right)-\#\left(B \cap\left[x_{i}, x_{j}\right]\right)$, for $i \leq j$.
Assume that our claim is not true, and let k be the minimum of all $j>i$ so that

$$
f(j)=1+\min \left(\#\left(A \cap\left[x_{i}, x_{j}\right]\right)-\#\left(B \cap\left[x_{i}, x_{j}\right]\right), m-1\right) .
$$

Since $f(k) \leq f(k-1)+1$ it follows that $\#\left(A^{\prime} \cap\left[x_{i}, x_{k-1}\right]\right)-\#\left(B \cap\left[x_{i}, x_{k-1}\right]\right)=m-1$ and since $A^{\prime} \triangle B \subset A \triangle B$ it follows that $x_{k} \in A$ and thus $\#\left(A \cap\left[x_{i}, x_{k-1}\right]\right)-\#\left(B \cap\left[x_{i}, x_{k-1}\right]\right)=m-1$ (otherwise $\#\left(A \cap\left[x_{i}, x_{k-1}\right]\right)-\#\left(B \cap\left[x_{i}, x_{k-1}\right]\right)=m$ and thus $\left.\#\left(A \cap\left[x_{i}, x_{k}\right]\right)-\#\left(B \cap\left[x_{i}, x_{k}\right]\right)=m+1\right)$. It follows therefore that $\#\left(A \cap\left[x_{i}, x_{k}\right]\right)-\#\left(B \cap\left[x_{i}, x_{k}\right]\right)=m$.

Either $k<l$ then $x_{k+1} \in B$, and since $x_{k} \in A$ it follows from the definition of A^{\prime} that $x_{k} \notin A^{\prime}$ and thus $f(k)=f(k-1)=m-1$, which contradicts our assumption. Or $k=l$ and thus $\#\left(A \cap\left[x_{i}, x_{l}\right]\right)-$ $\#\left(B \cap\left[x_{i}, x_{l}\right]\right)=m$, which implies that $x_{k}=x_{l} \notin A^{\prime}$, since the second case in the definition of A^{\prime} occurs, it would again follow that $f(k)=m-1$, which is also a contradiction.

Next we let $j=1, \ldots, l$, and put for $i=1,2, \ldots j$

$$
g(i)=\#\left(B \cap\left[x_{i}, x_{j}\right]\right)-\#\left(A^{\prime} \cap\left[x_{i}, x_{j}\right]\right),
$$

and claim that $g(i) \leq \min \left(\#\left(B \cap\left[x_{i}, x_{j}\right]\right)-\#\left(A \cap\left[x_{i}, x_{j}\right]\right), m-1\right)$ for all $i \in\{1,2, \ldots, l\}$.
Again since $B \triangle A^{\prime} \subset B \triangle A$ it follows that $g(i) \leq \#\left(B \cap\left[x_{i}, x_{j}\right]\right)-\#\left(A \cap\left[x_{i}, x_{j}\right]\right)$ for all $i \in\{1,2, \ldots, j\}$.
Assume our claim is not true and let k be the maximal $k<j$ so that $g(k)=m$. So it follows that $\#\left(B \cap\left[x_{k}, x_{j}\right]\right)-\#\left(A \cap\left[x_{k}, x_{j}\right]\right)=m$, and thus $x_{k} \in B$, and $x_{k-1} \in A\left(\right.$ note that $k \neq 1$ since $\left.x_{1} \in A\right)$ But this means that $x_{k} \in A^{\prime}$ and thus $\#\left(B \cap\left[x_{k}, x_{j}\right]\right)-\#\left(A^{\prime} \cap\left[x_{k}, x_{j}\right]\right)=m-1$, which is again a contradiction.

We therefore showed that for all $1 \leq i<j \leq l,\left|\#\left(A^{\prime} \cap\left[x_{i}, x_{j}\right]\right)-\#\left(B \cap\left[x_{i}, x_{j}\right]\right)\right| \leq m-1$, which finishes our proof.

The following Corollary could of course be also proven directly very easily.
Corollary 5.2. For all $k, m \in \mathbb{N}$ with $k<m,\left([\mathbb{N}]^{k}, d_{\mathrm{I}}^{(k)}\right)$ embeds isometrically into $\left([\mathbb{N}]^{m}, d_{\mathrm{I}}^{(m)}\right)$.
The following quantitative embedding result immediately implies TheoremE
Theorem 5.3. Let (X, d) be a n-point metric space, and $\alpha:=\alpha(X)=\frac{\operatorname{diam}(X)}{\operatorname{sep}(X)}$ be its aspect ratio, where $\operatorname{diam}(X)=\sup \left\{d_{X}(x, y): x, y \in X\right\}$ and $\operatorname{sep}(X)=\inf \left\{d_{X}(x, y): x, y \in X\right\}$. Then for every $0<\varepsilon<1$ and every integer $k \geqslant\left(n+\frac{3}{2}\right)\left(\frac{\alpha}{\varepsilon}+\operatorname{diam}(X)+1\right),(X, d)$ embeds with distortion $(1-\varepsilon)^{-1}$ into $\left([\mathbb{N}]^{k}, d_{\mathrm{I}}^{(k)}\right)$.

In particular, for all $\varepsilon>0(X, d)$ embeds with distortion at most $1+\varepsilon$ into $\left([\mathbb{N}]^{<\omega}, d_{\mathrm{I}}\right)$.
Proof. The proof of the general situation can be reduced to the special case where (X, d) is a finite metric space with even distances. Assuming that we have proven

Claim 5.4. Assume that for all $x, y \in X, d(x, y)$ is an even integer and that k is an integer number such that $k \geqslant \frac{1}{2}\left(n+\frac{3}{2}\right)(\operatorname{diam}(X)+2)$. Then, the space (X, d) embeds isometrically into $\left([\mathbb{N}]^{k}, d_{\mathrm{I}}^{(k)}\right)$.

Then we can finish the proof of the general case. Indeed, let $\varepsilon>0$ and choose an integer q such that $(\operatorname{sep}(X) \varepsilon)^{-1} \leq q \leq(\operatorname{sep}(X) \varepsilon)^{-1}+1$ and for each $x, y \in X$ define $k_{x, y}=\max \{k \in \mathbb{N} \cup\{0\}: k / q \leqslant$ $d(x, y)\}$. Define a metric \tilde{d} on X with

$$
\tilde{d}(x, y)=\min \left\{\sum_{i=1}^{\ell} \frac{k_{x_{i}, x_{i-1}}}{q}: x_{i} \in X \text { for } 0 \leqslant i \leqslant \ell \text { and } x=x_{0}, y=y_{\ell}\right\} .
$$

One can check that \tilde{d} is indeed a metric and for all $x, y \in X$ we have

$$
(1-\varepsilon) d(x, y) \leqslant \tilde{d}(x, y) \leqslant d(x, y),
$$

hence, it suffices to embed the space (X, \tilde{d}) with distortion 1 into $\left([\mathbb{N}]^{k}, d_{\mathrm{I}}^{(k)}\right)$ for appropriate k. Note that if we denote $\tilde{X}=(X, \tilde{d}), \operatorname{diam}(\tilde{X}) \leqslant \operatorname{diam}(X)$. By Claim 5.4 , the space $(X, 2 q \tilde{d})$ embeds isometrically into $\left([\mathbb{N}]^{k}, d_{\mathrm{I}}^{(k)}\right)$, for $k \geqslant \frac{1}{2}\left(n+\frac{3}{2}\right)(2 q \operatorname{diam}(X)+2)$. Recall that $q \leqslant(\operatorname{sep}(X) \varepsilon)^{-1}+1$, which implies that $\frac{1}{2}\left(n+\frac{3}{2}\right)(2 q \operatorname{diam}(X)+2) \leqslant\left(n+\frac{3}{2}\right)\left(\frac{\alpha}{\varepsilon}+\operatorname{diam}(X)+1\right)$.

Proof of Claim 5.4 We will find an embedding Φ from X into the linear span of $\left(s_{i}\right)_{i}$, endowed with the norm (9), so that for each $x \in X$ the vector $\Phi(x)$ is of the for form $\sum_{i \in A(x)} s_{i}$, with $\# A(x) \leq$ $(1 / 2)(n+3 / 2)(\operatorname{diam}(X)+2)$.

We enumerate $X=\left\{x_{2}, \ldots, x_{n+1}\right\}$. We add one more point x_{1} to obtain the set $\tilde{X}=\left\{x_{1}, x_{2}, \ldots, x_{n+1}\right\}$. We extend d on \tilde{X} by setting for $x \in X, d\left(x_{1}, x\right)=d\left(x, x_{1}\right)=D$, where D is the minimal even integer with $2 D \geqslant \operatorname{diam}(X)$. As the diameter of X is an even integer, we deduce $D \leqslant \operatorname{diam}(X) / 2+1$. It is straightforward to verify that the triangle inequality is still satisfied on \tilde{X}. For notational reasons, we add a "ghost" point x_{n+1} with the property $d\left(x, x_{n+1}\right)=0$ for all $x \in X$. We first define a map $\Phi_{0}: X \rightarrow\left\langle\left\{s_{i}: i \in \mathbb{N}\right\}\right\rangle$, the linear span of the s_{i} 's, by

$$
\Phi_{0}(x)=\frac{1}{2} \sum_{i=1}^{n+1}\left(d\left(x, x_{i}\right)-d\left(x, x_{i+1}\right)\right) s_{i} .
$$

If we denote by $\left(s_{i}^{*}\right)_{i}$ the sequence of coordinate functionals associated to $\left(s_{i}\right)_{i}$ we observe that for all $i \in \mathbb{N}$ and $x \in X$, the number $s_{i}^{*}\left(\Phi_{0}(x)\right)$ is an integer. We start by showing that $\Phi_{0}(x)$ is an isometric embedding. Let $1 \leqslant k \leqslant m \leqslant n+1$ be such that

$$
\begin{aligned}
\left\|\Phi_{0}(x)-\Phi_{0}(y)\right\| & \left.=\frac{1}{2} \right\rvert\, \sum_{i=k}^{m}\left(d\left(x, x_{i}\right)-d\left(x, x_{i+1}-d\left(y, x_{i}\right)+d\left(y, x_{i+1}\right)\right) \mid\right. \\
& =\frac{1}{2}\left|d\left(x, x_{m+1}\right)-d\left(y, x_{m+1}\right)-d\left(x, x_{k}\right)+d\left(y, x_{k}\right)\right| \\
& \leqslant \frac{1}{2}\left|d\left(x, x_{m+1}\right)-d\left(y, x_{m+1}\right)\right|+\frac{1}{2}\left|d\left(x, x_{k}\right)-d\left(y, x_{k}\right)\right| \leqslant d(x, y) .
\end{aligned}
$$

For the inverse inequality, let $x=x_{j}, y=x_{j^{\prime}}$ and let us assume without loss of generality $j<j^{\prime}$. Define $k=j$ and $m=j^{\prime}-1$. Then,

$$
\begin{aligned}
\left\|\Phi_{0}(x)-\Phi_{0}(y)\right\| & \geqslant \frac{1}{2}\left|\sum_{i=k}^{m}\left(d\left(x, x_{i}\right)-d\left(x, x_{i+1}\right)-d\left(y, x_{i}\right)+d\left(y, x_{i+1}\right)\right)\right| \\
& =\frac{1}{2}\left|d\left(x, x_{m+1}\right)-d\left(y, x_{m+1}\right)-d\left(x, x_{k}\right)+d\left(y, x_{k}\right)\right| \\
& =\frac{1}{2}|d(x, y)-d(y, y)-d(x, x)+d(y, x)|=d(x, y) .
\end{aligned}
$$

Define $\Phi_{1}(x)=\Phi_{0}(x)+D \sum_{i=1}^{n+1} s_{i}$. Then Φ_{1} is an isometric embedding of X into $\left\langle\left\{s_{i}: i \in \mathbb{N}\right\}\right\rangle$ so that for all $i \in \mathbb{N}$ and $x \in X$ the number $s_{i}^{*}\left(\Phi_{1}(x)\right)$ is a non-negative integer. For $k=1, \ldots, n+1$ define

$$
N_{k}=\max \left\{s_{k}^{*}\left(\Phi_{1}(x)\right): x \in X\right\} \text { and } M_{k}=\sum_{j=1}^{k} N_{j}
$$

Also define $M_{0}=0$. We are ready to define the desired embedding. For $x \in X$ set

$$
\Phi(x)=\sum_{k=1}^{n+1} \sum_{\substack{M_{k-1}<i \leqslant M_{k-1} \\+s_{k}^{*}\left(\Phi_{1}(x)\right)}} s_{i} .
$$

We deduce that $\Phi(x)$ is of the form $\sum_{i \in A(x)} s_{i}$ with

$$
\begin{aligned}
\# A(x) & =\sum_{k=1}^{n+1} s_{k}^{*}\left(\Phi_{1}(x)\right)=\frac{1}{2} \sum_{k=1}^{n+1}\left(d\left(x, x_{i}\right)-d\left(x, x_{i+1}\right)\right)+D(n+1) \\
& =\frac{1}{2}\left(d\left(x, x_{1}\right)-d\left(x, x_{n+1}\right)\right)+D(n+1)=\frac{1}{2} D+D(n+1) \\
& =\left(n+\frac{3}{2}\right) D \leqslant \frac{1}{2}\left(n+\frac{3}{2}\right)(\operatorname{diam}(\mathrm{X})+2)
\end{aligned}
$$

Applying to to $m_{i}=M_{i}, i=1,2 \ldots, n$ we deduce for $x, y \in X$ that

$$
\begin{align*}
\|\Phi(x)-\Phi(y)\| & =\max \left\{\left|\sum_{i=p}^{q} \sum_{j=M_{i-1}+1}^{M_{i}} s_{j}^{*}(\Phi(x)-\Phi(y))\right|: 1 \leq p \leq q \leq n\right\} \tag{14}\\
& =\max \left\{\sum_{i=p}^{q} s_{i}^{*}\left(\Phi_{0}(x)-\Phi_{0}(y)\right)\right\}=d(x, y) \tag{15}
\end{align*}
$$

Finally our conclusion follows therefore from Theorem 5.1 and Corollary 5.2 ,
5.2. Metric universality and metric elasticity. It is a well known and long standing open problem whether c_{0} isomorphically embeds into a Banach space whenever it bi-Lipschitzly embeds into it. Due to Aharoni's theorem this fundamental rigidity problem in nonlinear Banach space geometry can be reformulated as the following universality question.

Problem 5.5. Let X be a Banach space. If X is Lipschitz universal for the class of separable metric spaces, does X contain an isomorphic copy of c_{0} ?

It is possible to answer positively Problem 5.5 for Banach lattices using Kalton's work on the interlacing graphs. This fact seems to have been overlooked and we describe the argument in the ensuing discussion. Recall that a Banach space Y has Kalton's property \mathscr{Q} if there exists $C \in(0, \infty)$ such that for all $k \in \mathbb{N}$ and every Lipschitz map f from $\left([\mathbb{N}]^{k}, d_{\mathrm{I}}^{(k)}\right)$ to Y, there exists $\mathbb{M} \in[\mathbb{N}]^{\omega}$ such that for all $\bar{m}, \bar{n} \in[\mathbb{M}]^{k}$ we have

$$
\begin{equation*}
\|f(\bar{m})-f(\bar{n})\|_{Y} \leq C \operatorname{Lip}(f) \tag{16}
\end{equation*}
$$

Kalton showed that reflexive Banach spaces [Kal07, Theorem 4.1] and more generally, Banach spaces whose unit ball uniformly embeds into a reflexive Banach space [Kal07, Corollary 4.3] have Property \mathscr{Q}. It follows from (16) (and the fact that coarse embeddings f whose domains are graphs must be $\omega(1)$-Lipschitz) that the sequence of interlacing graphs cannot equi-coarsely embed into a Banach space with property \mathscr{Q}. Therefore if a Banach space X equi-coarsely contains the interlacing graphs, it must fail property \mathscr{Q}. By [Kal07, Corollary 4.3], the unit ball of X does not uniformly embed into a reflexive Banach space. But Kalton also proved $[$ Kal07, Theorem 3.8] that for a
separable Banach lattice X, B_{X} uniformly embeds into a reflexive Banach space if and only if X does not contain any subspace isomorphic to c_{0}. Thus, it follows from the above discussion that:

Theorem 5.6 (Kal07]). If X is a separable Banach lattice and if $\left([\mathbb{N}]^{k}, d_{\mathrm{I}}\right)_{k}$ equi-coarsely embeds into X, then X contains an isomorphic copy of c_{0}.

The following statement is an immediate consequence of Theorem 5.6.
Corollary 5.7. If a separable Banach lattice X is coarsely universal for the class of separable metric spaces, then X contains an isomorphic copy of c_{0}.

Thus, Problem 5.5 (as well as its coarse analogue) has a positive solution for Banach lattices. It is worth pointing out that the coarse (resp. uniform) analogue of Problem 5.5 does not hold in general since using the theory of Hölder free spaces, it is proved in [Kal04] that c_{0} coarsely (resp. uniformly) embeds into a Schur space. Recall that a Banach space has the Schur property if every weakly null sequence converges to 0 in the norm topology, and hence a Schur space cannot contain any isomorphic copy of c_{0}.

Remark 5.8. The Lipschitz version of Corollary 5.7 can be proven for a Banach space with an unconditional basis using classical linear and nonlinear Banach space theory. Indeed, for Banach spaces with an unconditional basis the following dichotomy holds: either the unconditional basis is not boundedly-complete, and by a result of James [Jam50] X will contain an isomorphic copy of c_{0}, or the unconditional basis is boundedly-complete and hence X will be isomorphic to a dual space and thus X will have the Radon-Nikodým property. Note that the two possibilities are mutually exclusive. In the first situation the conclusion of Corollary 5.7 already holds, and in the second situation we can use classical differentiability theory and obtain a contradiction. A similar dichotomy argument fails for Banach lattices since L_{1} is a Banach lattice that does not linearly contain c_{0} and yet L_{1} does not have the Radon-Nikodým property.

Theorem 5.6 has also an application to metric analogues of the linear notion of elasticity. In 1976 Schäffer raised the problem whether the isomorphism class of every infinite dimensional Banach space X is unbounded in the sense that $D(X):=\sup \left\{d_{B M}(Y, Z): Y, Z\right.$ are isomorphic to $\left.X\right\}=\infty$ where $d_{B M}$ denotes the Banach-Mazur distance ${ }^{1}$. Johnson and Odell introduced the notion of elasticity for their solution of Schäffer's problem for separable Banach spaces.

Definition 5.9 ([JO05]). Let $K \in[1, \infty)$. A Banach space Y is K-elastic provided that if a Banach space X isomorphically embeds into Y then X must be K-isomorphically embeddable into Y, and Y will be elastic if it is K-elastic for some K.

The connection with Schäffer's problem comes from the observation that if $D(X)<\infty$ then X as well as every isomorphic copies of X is $D(X)$-elastic. Elasticity is intimately connected to universality. First of all, it is immediate that every Banach space is crudely finitely representable into any elastic Banach space, in particular every elastic Banach space has trivial cotype. Second of all, a consequence of Banach-Mazur embedding theorem is that $C[0,1]$ is 1-elastic. Moreover, a key step in [JO05] is the following theorem.

Theorem 5.10. [JO05, Theorem 7] Let X be a separable infinite-dimensional Banach space. If X is elastic then c_{0} embeds isomorphically into X.

The conjecture from [JO05] that a separable elastic Banach space must contain an isomorphic copy of $C[0,1]$, was recently solved positively by Alspach and Sari (AS16].

[^0]We now discuss a metric analogue of Theorem 5.10. According to Johnson and Odell a Banach space Y is said to be Lipschitz K-elastic provided that if a Banach space is isomorphic to Y then X must bi-Lipschitzly embed into Y with distortion at most K. Johnson and Odell definition of Lipschitz elasticity is motivated by the fact that a Banach space X is K-elastic if and only if every isomorphic copy of X is K-isomorphic to a subspace of X (the proof uses an Hahn-Banach extension argument that goes back to Pelczyński [Peł60]). It was observed in [JO05] that it follows from Aharoni's embedding theorem and James' distortion theorem, that there exists $K \geq 1$ such that every Banach space that contains an isomorphic copy of c_{0} must be Lipschitz K-elastic. The constant K is related to the optimal distortion in Aharoni's embedding and can be taken to be $2+\varepsilon$ for every $\varepsilon>0$ due to [KL08]. Motivated by Definition 5.9 the following definition is another metric analogue of elasticity.

Definition 5.11. Let $K \in[1, \infty)$. A metric space Y is metric K-elastic provided that if a metric space X bi-Lipschitzly embeds into Y then X must be bi-Lipschitzly embeddable into Y with distortion at most K, and Y will be metric elastic if it is metric K-elastic for some K.

It is immediate that a Banach space that is metric K-elastic (as a metric space) is Lipschitz K elastic. With this stronger nonlinear notion of elasticity we obtain the following theorem, which contains a strong nonlinear analogue of Theorem 5.10 in the context of Banach lattices.

Theorem 5.12. Let X be a separable infinite-dimensional Banach lattice. The following assertions are equivalent.
(1) c_{0} isomorphically embeds into X.
(2) c_{0} bi-Lipschitzly embeds into X.
(3) c_{0} coarsely embeds into X.
(4) X is metric elastic.
(5) $\left([\mathbb{N}]^{k}, d_{\mathrm{I}}\right)_{k \in \mathbb{N}}$ embeds equi-bi-Lipschitzly into X.
(6) $\left([\mathbb{N}]^{k}, d_{\mathrm{I}}\right)_{k \in \mathbb{N}}$ embeds equi-coarsely into X.

Proof. (1) implies (2) implies (3) is trivial. (3) implies (1) is Corollary 5.7. (2) implies (4) follows from Aharoni's embedding theorem and the fact that separability is a Lipschitz invariant. For (4) implies (5), observe that an infinite-dimensional Banach space X has a 1 -separated sequence of unit vectors, and thus for all $k \in \mathbb{N}$, the k-dimensional interlacing graph $\left([\mathbb{N}]^{k}, d_{\mathrm{I}}\right)$ (which is countable, 1 -separated, and has diameter k) embeds bi-Lipschitzly into X with distortion at most k. Since X is metric K-elastic for some $K \geq 1$, it follows that $\sup _{k \in \mathbb{N}} c_{X}\left(\left([\mathbb{N}]^{k}, d_{\mathrm{I}}\right)\right) \leq K$. For Banach spaces, (5) implies (6) always holds. An appeal to Corollary 5.6 gives the remaining implication.
5.3. Separating interlacing graphs in Banach spaces with nonseparable biduals. The following concentration result for interlacing graphs was shown by Kalton [Kal07].

Theorem 5.13. Kal07, Theorem 3.5]. Let $k \in \mathbb{N}$ and Y be a Banach space such that $Y^{(2 k)}$, the iterated dual of order $2 k$ of Y, is separable. Assume that $\left(g_{i}\right)_{i \in I}$ is an uncountable family of 1Lipschitz maps from $\left([\mathbb{N}]^{k}, d_{\mathrm{I}}^{(k)}\right)$ to Y. Then there exist $i \neq j \in I$ and $\mathbb{M} \in[\mathbb{N}]^{\omega}$ such that for all $\bar{n} \in[\mathbb{M}]^{k}$ we have

$$
\left\|g_{i}(\bar{n})-g_{j}(\bar{n})\right\| \leq 3
$$

Vaguely speaking, it follows from Theorem 5.13 that if a Banach space X contains uncountably many well-separated 1-Lipschitz images of the interlacing graphs and if X coarsely embeds into a Banach space Y, then Y cannot have all its iterated duals separable. This idea was devised by Kalton in [Kal07] to show that if c_{0} coarsely embeds into a Banach space Y, then one of the iterated duals of Y is non separable (in particular, Y cannot be reflexive). It was adapted in [LPP20] to show that
the same conclusion holds if the James tree space $J T$ or its predual coarsely embeds into Y. In these proofs the non separability of the bidual of the embedded space plays an important role. However, since ℓ_{1} coarsely embeds into ℓ_{2}, this is not a sufficient condition. We will prove that a certain presence of ℓ_{1} in the embedded space is essentially the only obstruction.

Theorem 5.14. [Theorem F] Let X be a separable Banach space with non separable bidual $X^{* *}$, $\ell_{1} \not \subset X$, and such that no spreading model generated by a normalized weakly null sequence in X is equivalent to the ℓ_{1}-unit vector basis. Assume that X coarsely embeds into a Banach space Y. Then there exists $k \in \mathbb{N}$ such that $Y^{(2 k)}$ is non separable.
Proof. We start with the construction of our well separated 1-Lipschitz maps from $\left([\mathbb{N}]^{k}, d_{\mathrm{I}}^{(k)}\right)$ to X. Since X is separable and $X^{* *}$ is not, using Riesz Lemma and an easy transfinite induction, we can build $\left(x_{\alpha}^{* *}\right)_{\alpha<\omega_{1}}$ in $S_{X^{* *}}$ such that

$$
\forall \alpha<\omega_{1}, d\left(x_{\alpha}^{* *}, \overline{s p}\left(X \cup\left\{x_{\beta}^{* *}, \beta<\alpha\right\}\right)>\frac{3}{4} .\right.
$$

Fix now $\alpha<\omega_{1}$. Since $\ell_{1} \not \subset X$ it follows from a result by Odell and Rosenthal [OR75, Equivalences (1)-(5) on page 376] that for each $\alpha<\omega_{1}$ there is a sequence $\left(x_{\alpha, n}\right)_{n=1}^{\infty}$ in S_{X}, which converges weak * in $X^{* *}$ to $x_{\alpha}^{* *}$. In particular, the sequence $\left(x_{\alpha, n}\right)_{n=1}^{\infty}$ is weakly Cauchy. Since $d\left(x_{\alpha}^{* *}, X\right)>\frac{3}{4}$, we may as well assume, after extracting a subsequence, that $\left\|x_{\alpha, n}-x_{\alpha, m}\right\|>\frac{3}{4}$, for all $n \neq m$.
After passing to a further subsequence we can also assume that $\left(x_{\alpha, n}\right)_{n=1}^{\infty}$ has a spreading model. But this means, that all the sequences of the form $\left(x_{\alpha, n_{2 j}}-x_{\alpha, n_{2 j-1}}\right)_{j=1}^{\infty} \subset 2 B_{X}$, with $\left(n_{j}\right)_{j=1}^{\infty}$ increasing sequence in \mathbb{N}, have the same spreading model $\left(e_{j}^{\alpha}\right)_{j=1}^{\infty}$. Define now $\lambda_{k}^{\alpha}=\left\|\sum_{j=1}^{k} e_{j}^{\alpha}\right\|$. Since spreading models generated by weakly null sequences are 1 -suppression unconditional we have that for any $\alpha<\omega_{1}$, the sequence $\left(\lambda_{k}^{\alpha}\right)_{k}$ is non decreasing. It also follows from our assumptions on X and from the fact that $\left(x_{\alpha, m}-x_{\alpha, n}\right)_{n \neq m}$ is semi-normalized that

$$
\forall \alpha<\omega_{1}, \lim _{k \rightarrow \infty} \frac{k}{\lambda_{k}^{\alpha}}=\infty .
$$

For fixed $\alpha<\omega_{1}$ and $k \in \mathbb{N}$, we can apply Ramsey's Theorem and, after passing to a further subsequence, we can assume that for all $\bar{m}, \bar{n} \in[\mathbb{N}]^{k}$, with $k \leq m_{1}<n_{1}<m_{2}<n_{2}<\ldots<m_{k}<n_{k}$, we have

$$
\left\|\sum_{j=1}^{k} x_{\alpha, n_{j}}-x_{\alpha, m_{j}}\right\| \leq \frac{3}{2} \lambda_{k}^{\alpha} .
$$

Using then the usual diagonalization argument we can assume that for all $k \in \mathbb{N}$ and for all $\bar{m}, \bar{n} \in$ $[\mathbb{N}]^{k}$, with $m_{1}<n_{1}<m_{2}<n_{2}<\ldots<m_{k}<n_{k}$,

$$
\begin{equation*}
\left\|\sum_{j=1}^{k} x_{\alpha, n_{j}}-x_{\alpha, m_{j}}\right\| \leq \frac{3}{2} \lambda_{k}^{\alpha} . \tag{17}
\end{equation*}
$$

Then, we define for $\alpha<\omega_{1}$ and $k \in \mathbb{N}$,

$$
f_{\alpha}^{(k)}:[\mathbb{N}]^{k} \rightarrow X, \quad \bar{n} \mapsto \frac{2}{3 \lambda_{k}^{\alpha}} \sum_{i=1}^{k} x_{\alpha, n_{i}} .
$$

It follows from the definition of the interlaced distance, equation 17) and the monotonicity of $\left(\lambda_{k}^{\alpha}\right)_{k}$ that $f_{\alpha}^{(k)}$ is 1-Lipschitz.

Consider now $\alpha<\beta \in\left[1, \omega_{1}\right)$. Since $\operatorname{dist}\left(x_{\beta}^{* *}, s p\left(x_{\alpha}^{* *}\right)\right)>3 / 4$, by Hahn-Banach, there exists an $x_{\alpha, \beta}^{* * *} \in S_{X^{* * *}}$ with $x_{\alpha, \beta}^{* * *}\left(x_{\alpha}^{* *}\right)=0$ and $x_{\alpha, \beta}^{* * *}\left(x_{\beta}^{* *}\right)=\operatorname{dist}\left(x_{\beta}^{* *}, \operatorname{sp}\left(x_{\alpha}^{* *}\right)\right)>3 / 4$. By the principle of local
reflexivity (applied to the space X^{*}) there exists $x_{\alpha, \beta}^{*} \in S_{X^{*}}$ with $x_{\alpha}^{* *}\left(x_{\alpha, \beta}^{*}\right)=0$ and $x_{\beta}^{* *}\left(x_{\alpha, \beta}^{*}\right)>3 / 4$. it therefore follows that for any $\mathbb{M} \in[\mathbb{N}]^{\omega}$:

$$
\begin{align*}
\sup _{\bar{n} \in[\mathbb{M}]^{k}} \| & \left\|f_{\alpha}^{(k)}(\bar{n})-f_{\beta}^{(k)}(\bar{n})\right\| \tag{18}\\
& \geq \limsup _{n_{1} \in \mathbb{M}, n_{1} \rightarrow \infty} \limsup _{n_{2} \in \mathbb{M}, n_{2} \rightarrow \infty} \ldots \limsup _{n_{k} \in \mathbb{M}, n_{k} \rightarrow \infty} x_{\alpha, \beta}^{*}\left(\frac{2}{3 \lambda_{k}^{\beta}} \sum_{i=1}^{k} x_{\beta, n_{i}}-\frac{2}{3 \lambda_{k}^{\alpha}} \sum_{i=1}^{k} x_{\alpha, n_{i}}\right) \\
& \geq \frac{2}{3 \lambda_{k}^{\beta}} \frac{3 k}{4}=\frac{k}{2 \lambda_{k}^{\beta}} .
\end{align*}
$$

This finishes our construction of uncountably many well separated X-valued Lipschitz maps.
Assume now that X coarsely embeds into a Banach space Y such that all the iterated duals of Y are separable and let $g: X \rightarrow Y$ be such a coarse embedding. Of course, we may assume that $\omega_{g}(1) \leq 1$. Then, for any $\alpha<\omega_{1}$ and $k \in \mathbb{N}$, we define $g_{\alpha}^{(k)}=g \circ f_{\alpha}^{(k)}$. We have that $g_{\alpha}^{(k)}$ is 1-Lipschitz from $\left([\mathbb{N}]^{k}, d_{\mathrm{I}}^{(k)}\right)$ to Y. For a fixed $k \in \mathbb{N}$, we can therefore apply Theorem 5.13 to any uncountable subfamily of $\left(g_{\alpha}^{(k)}\right)_{\alpha<\omega_{1}}$. We then deduce from 18$\}$ that for any $k \in \mathbb{N},\left\{\alpha<\omega_{1}, \rho_{g}\left(\frac{k}{3 \lambda_{k}^{\alpha}}\right)>3\right\}$ is countable. This implies that the set $\left\{\alpha<\omega_{1} \exists k \in \mathbb{N}, \rho_{g}\left(\frac{k}{3 \lambda_{k}^{\alpha}}\right)>3\right\}$ is also countable and since $\left[1, \omega_{1}\right)$ is uncountable, there exists $\alpha<\omega_{1}$ such that for all $k \in \mathbb{N}, \rho_{g}\left(\frac{k}{3 \lambda_{k}^{\alpha}}\right) \leq 3$. This is in contradiction with the fact that for this given $\alpha<\omega_{1}, \frac{k}{3 \lambda_{k}^{\alpha}} \nearrow \infty$, if $k \nearrow \infty$ and $\lim _{t \rightarrow \infty} \rho_{g}(t)=\infty$.

Understanding quantitatively what is the order of the non-separable iterated dual in Theorem F is a very interesting problem.

Problem 5.15. Assume that X is c_{0}, or any separable Banach space with non separable bidual $X^{* *}$ and $\ell_{1} \not \subset X$ such that no spreading model generated by a normalized weakly null sequence is equivalent to the ℓ_{1}-unit vector basis. If X coarsely embeds into a Banach space Y, does it imply that $Y^{* *}$ is non separable?

REFERENCES

[Aha74] I. Aharoni, Every separable metric space is Lipschitz equivalent to a subset of c_{0}^{+}, Israel J. Math. 19 (1974), 284-291.
[AJO05] D. Alspach, R. Judd, and E. Odell, The Szlenk index and local l_{1}-indices, Positivity 9 (2005), no. 1, 1-44, DOI 10.1007/s11117-002-9781-0.
[AS16] D. E. Alspach and B. Sarı, Separable elastic Banach spaces are universal, J. Funct. Anal. 270 (2016), no. 1, 177-200.
[AD07] S. A. Argyros and P. Dodos, Genericity and amalgamation of classes of Banach spaces, Adv. Math. 209 (2007), 666-748.
[Ban32] S. Banach, Théorie des opérations linéaires, Warszawa, 1932.
[Bau07] F. Baudier, Metrical characterization of super-reflexivity and linear type of Banach spaces, Arch. Math. 89 (2007), 419-429.
[BP58] C. Bessaga and A. Pełczyński, On bases and unconditional convergence of series in Banach spaces, Studia Math. 17 (1958), 151-164.
[Bos02] B. Bossard, A coding of separable Banach spaces. Analytic and coanalytic families of Banach spaces, Fund. Math. 172 (2002), no. 2.
[Bou80] J. Bourgain, On separable Banach spaces, universal for all separable reflexive spaces, Proc. Amer. Math. Soc. 79 (1980), no. 2, 241-246.
[dMB19] B. de Mendonça Braga, On asymptotic uniform smoothness and nonlinear geometry of Banach spaces, J. Inst. Math. Jussieu (2019), available at arXiv:1808.03254 published online 25 March 2019.
[Dod09] P. Dodos, On classes of Banach spaces admitting "small" universal spaces, Trans. Amer. Math. Soc. 361 (2009), no. 12, 6407-6428.
[EMN19] A. Eskenazis, M. Mendel, and A. Naor, Nonpositive curvature is not coarsely universal, Inventiones Math. 217 (2019), no. 3, 833-886.
[Fré10] M. Fréchet, Les dimensions d'un ensemble abstrait, Mathematische Annalen 68 (1910), no. 2, 145-168.
[Fre84] D. H. Fremlin, Consequences of Martin's axiom, Cambridge Tracts in Mathematics, vol. 84, Cambridge University Press, Cambridge, 1984.
[HM82] S. Heinrich and P. Mankiewicz, Applications of ultrapowers to the uniform and Lipschitz classification of Banach spaces, Studia Math. 73 (1982), no. 3, 225-251.
[Jam50] R. C. James, Bases and reflexivity of Banach spaces, Ann. of Math. (2) 52 (1950), 518-527.
[JO05] W. B. Johnson and E. Odell, The diameter of the isomorphism class of a Banach space, Ann. of Math. (2) $\mathbf{1 6 2}$ (2005), no. 1, 423-437.
[Kal04] N. J. Kalton, Spaces of Lipschitz and Hölder functions and their applications, Collect. Math. 55 (2004), 171217.
[Ka107] , Coarse and uniform embeddings into reflexive spaces, Quart. J. Math. (Oxford) 58 (2007), 393-414.
[KL08] N. J. Kalton and G. Lancien, Best constants for Lipschitz embeddings of metric spaces into c_{0}, Fund. Math. 199 (2008), no. 3, 249-272.
[Kec95] A. Kechris, Classical descriptive set theory, Graduate Texts in Mathematics, vol. 156, Springer-Verlag, New York, 1995.
[Kur35] C. Kuratowski, Quelques problèmes concernant les espaces métriques non séparables, Fund. Math 25 (1935), 534-545.
[LPP20] G. Lancien, C. Petitjean, and A. Procházka, On the coarse geometry of James spaces, Canadian Math. Bull. 63 (2020), no. 1, 77-93.
[Ode04] E. Odell, Ordinal indices in Banach spaces, Extracta Math. 19 (2004), no. 1, 93-125.
[OR75] E. Odell and H. P. Rosenthal, A double-dual characterization of separable Banach spaces containing l^{1}, Israel J. Math. 20 (1975), 375-384.
[OSZ07] E. Odell, Th. Schlumprecht, and A. Zsák, Banach spaces of bounded Szlenk index, Studia Math. 183 (2007), 63-97.
[Peł60] A. Pełczyński, Projections in certain Banach spaces, Studia Math. 19 (1960), 209-228.
[Uh172] J. J. Uhl Jr., A note on the Radon-Nikodym property for Banach spaces, Rev. Roumaine Math. Pures Appl. 17 (1972), 113-115.
[Ury25] P.S. Urysohn, Sur un espace métrique universel, C. R. Acad. Sci. Paris 180 (1925), 803-806.
[Sz168] W. Szlenk, The non existence of a separable reflexive Banach space universal for all separable reflexive Banach spaces, Studia Math. 30 (1968), 53-61.
[Tsi74] B. S. Tsirel'son, Not every Banach space contains an imbedding of l_{p} or c_{0}, Funct. Anal. Appl. 8 (1974), no. 2, 138-141.
F. Baudier, Department of Mathematics, Texas A\&M University, College Station, TX 77843, USA

E-mail address: florent@math.tamu.edu
G. Lancien, Laboratoire de Mathématiques de Besançon, Université Bourgogne Franche-Comté, 16 route de Gray, 25030 Besançon Cédex, Besançon, France

E-mail address: gilles.lancien@univ-fcomte.fr
P. Motakis, Department of Mathematics and Statistics, York University, 4700 Keele Street, Toronto, Ontario, M3J 1P3, Canada

E-mail address: pavlosmotis@yahoo.com
Th. Schlumprecht, Department of Mathematics, Texas A\&M University, College Station, TX 77843-3368, USA, and Faculty of Electrical Engineering, Czech Technical University in Prague, Zikova 4, 16627, Prague, Czech Republic

E-mail address: schlump@math.tamu.edu

[^0]: ${ }^{1}$ This widely use terminology can be misleading since $\log \left(d_{B M}\right)$ (and not $d_{B M}$) is a semi-metric.

