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We prove that the class of reflexive asymptotic-c0 Banach spaces is coarsely rigid, meaning that if a Banach space X coarsely embeds into a reflexive asymptotic-c0 space Y , then X is also reflexive and asymptotic-c0. In order to achieve this result we provide a purely metric characterization of this class of Banach spaces. This metric characterization takes the form of a concentration inequality for Lipschitz maps on the Hamming graphs, which is rigid under coarse embeddings. Using an example of a quasireflexive asymptotic-c0 space, we show that this concentration inequality is not equivalent to the non equi-coarse embeddability of the Hamming graphs.

Introduction

The concept of rigidity for a class of mathematical objects has permeated mathematical fields. A prime example of a rigidity problem arose in geometric group theory. Take a finitely generated group Γ which is an algebraic object. One can apprehend Γ in the category of metric spaces by looking at its Cayley graph. Then, a fundamental aspect of Gromov's geometric group theory program [START_REF] Gromov | Infinite groups as geometric objects[END_REF] is to understand how much of the algebraic properties of a group one can recover knowing solely the large scale shape of its Cayley graph. A class G of groups is said to be quasi-isometrically rigid if every group that is quasi-isometric to a group in G is actually virtually isomorphic to a group in G. A quasi-isometric embedding is what we call a coarse-Lipschitz embedding in this paper (see all the relevant definitions of non linear embeddings in subsection 2.3). It is quite remarkable that many classes of groups are known to be quasi-isometrically rigid: free groups, hyperbolic groups, amenable groups, and we refer to [START_REF] Kapovich | Lectures on quasi-isometric rigidity[END_REF] for a detailed list.

In this work, we provide a Banach space analogue of this type of results. A class C of Banach spaces is called coarsely rigid if it follows from Y being a member of C and X being coarsely embedded into Y , that X is also in C. Let us insist on the fact that coarse embeddings are very weak embeddings. Indeed, it is classical that L 1 coarsely embeds into 2 (while it does not coarse-Lipschitz embed). On the other hand Nowak [START_REF] Nowak | On coarse embeddability into lp-spaces and a conjecture of Dranishnikov[END_REF] showed that for any p ∈ [1, ∞), 2 coarsely embeds into p . This was extended by Ostrovskii [START_REF] Ostrovskii | Coarse embeddability into Banach spaces[END_REF] who proved that 2 coarsely embeds into any Banach space with an unconditional basis and of non-trivial cotype. On a more elementary level, note that R coarse-Lipschitz embeds into Z. Therefore coarsely rigid classes are rare. The class of spaces that coarsely embed into a fixed metric space (M, d), or the class of spaces in which a fixed (M, d) does not coarsely embed are clearly coarsely rigid. It is for instance rather simple to see that a Banach space X has dimension less than n ∈ N if and only if the integer grid Z n equipped with the 1 metric does not coarsely embed into X. Besides such simple coarsely rigid classes, very few rigidity results have been obtained so far. Let us describe three important examples. Randrianarivony showed in [START_REF] Randrianarivony | Characterization of quasi-Banach spaces which coarsely embed into a Hilbert space[END_REF] that a quasi-Banach space X coarsely embeds into a Hilbert space if and only if there is a probability space (Ω, B, µ) such that X is linearly isomorphic to a subspace of L 0 (Ω, B, µ). This clearly describes a class of quasi-Banach spaces that is coarsely rigid. Then, a major achievement by Mendel and Naor [START_REF] Mendel | Metric cotype[END_REF] was a purely metric extension of the linear notion of Rademacher cotype. Using that notion of metric cotype they were able to show that within the class of Banach spaces with non-trivial type the class {X : inf{q ≥ 2 : X has Rademacher cotype q } ≤ q} is coarsely rigid. It is still unclear and important to understand whether the non-trivial type restriction is necessary. Another important rigidity result was obtained by Kalton [START_REF] Kalton | Coarse and uniform embeddings into reflexive spaces[END_REF]. Indeed, he showed that, within the class of Banach spaces that do not have 1 -spreading models (or equivalently spaces with the alternating Banach-Saks property), the class of reflexive Banach spaces is coarsely rigid. It then follows from an ultraproduct argument that, within the class of Banach spaces with non-trivial type, the class of super-reflexive Banach spaces is coarsely rigid. Since 1 coarsely embeds into 2 we need at least to exclude spaces which contain 1 , to obtain both conclusions. The last papers of N. Kalton ([14] among others, see also the survey [START_REF] Godefroy | The non-linear geometry of Banach spaces after Nigel Kalton[END_REF] and references therein) show that asymptotic structures of Banach spaces often provide linear properties that are invariant under coarse or coarse-Lipschitz embeddings. Our work follows this program: studying the links between asymptotic structures and large scale geometry of Banach spaces.

In this article we exhibit a new example of an unrestricted class of infinite dimensional Banach spaces that is coarsely rigid. The notion of an asymptotic-c 0 space will be recalled in Section 3.

Theorem A. Let Y be a reflexive asymptotic-c 0 Banach space. If X is a Banach space that coarsely embeds into Y , then X is also reflexive and asymptotic-c 0 .

Since there are reflexive asymptotic-c 0 spaces, like Tsirelson's original space T * [START_REF] Tsirel'son | Not every Banach space contains an imbedding of lp or c0[END_REF], which will be recalled later, Theorem A immediately implies the main result from [START_REF] Baudier | The coarse geometry of Tsirelson's space and applications[END_REF], where the existence of an infinite dimensional Banach space that does not coarsely contain 2 is proved. Our proof of Theorem A, which is carried out in Section 4, follows from the following purely metric characterization of the linear property of being "reflexive and asymptotic-c 0 " in terms of a concentration inequality for Lipschitz maps on the Hamming graphs (see the definition and notation in subsection 2.2). Theorem B. A Banach space X is reflexive and asymptotic-c 0 if and only if there exists C ≥ 1 such that for every k ∈ N and every Lipschitz map f :

[N] k , d (k) H → X there exists M ∈ [N] ω so that diam f ([M] k ) ≤ CLip(f ).
This concentration inequality was introduced in [START_REF] Baudier | The coarse geometry of Tsirelson's space and applications[END_REF] where it was shown to hold for maps taking values into Tsirelson's original space T * . The space T * is the prototypical example of a separable reflexive asymptotic-c 0 Banach space, and the proof from [START_REF] Baudier | The coarse geometry of Tsirelson's space and applications[END_REF] can be generalized to show that the same concentration inequality holds for maps with values into any reflexive asymptotic-c 0 Banach space. The more conceptual approach undertaken in this article to prove that any reflexive asymptotic-c 0 Banach space satisfies the above metric concentration inequality, requires the central notion of asymptotic structure from [START_REF] Maurey | Asymptotic infinite-dimensional theory of Banach spaces, Geometric aspects of functional analysis[END_REF] which is described in section 3. In order to prove the converse, the crucial step is to show that if a Banach space X satisfies the metric concentration inequality, then all its asymptotic models generated by weakly-null arrays are isomorphic to c 0 . The notion of asymptotic models was introduced by Halbeisen and Odell in [START_REF] Halbeisen | On asymptotic models in Banach spaces[END_REF]. Then the conclusion follows from an unexpected link between the notions asymptotic structure and asymptotic models (see Section 3). Indeed, it was proved by D. Freeman, E. Odell, B. Sari and B. Zheng [START_REF] Freeman | On spreading sequences and asymptotic structures[END_REF] that a separable Banach space which does not contain a copy of 1 is asymptotic-c 0 whenever all its asymptotic models generated by weakly-null arrays are isomorphic to c 0 .

The concentration inequality in Theorem B clearly prevents the equi-coarse embeddability of the sequence of Hamming graphs. We show in section 5 that the converse is not true. More precisely, we provide an example of a non reflexive Banach space in which the Hamming graphs do not equi-coarsely embed. In this paper we will only consider trees of finite height. For a set X we will call a family (x n : n ∈ [N] ≤k ), for k ∈ N, a tree of height k. Sometimes we are also considering unrooted trees of height k, which are families of the form (x n : n ∈ [N] ≤k \ ∅). We call for n ∈ [N] k a sequence of the form (x m : m n) = (x {n 1 ,n 2 ,...,n l } ) k l=0 a branch of the tree (x n : n ∈ [N] ≤k ), and (x m : ∅ ≺ m n) = (x {n 1 ,n 2 ,...,n l } ) k l=1 a branch of the unrooted tree (x n : n ∈ [N] ≤k \ {∅}). Sequences of the form (x n∪{i} ) i>max(n) where n ∈ [N] ≤k-1 (for a tree of height k), are called nodes of the tree (x n : n ∈

[N] ≤k ). If (x n : n ∈ [N] ≤k ) is a tree in X and M = {m 1 , m 2 , . . .} ∈ [N] ω we call (x m : m ∈ [M]
≤k ) a refinement of (x n : n ∈ [N] ≤k ). By relabeling xn = x {m i :i∈n} , for n ∈ [N] ≤k , the family (x n : n ∈ [N] ≤k ) is a tree which we also call a refinement of (

x n : n ∈ [N] ≤k ).
If X is a Banach space we call a tree (x n : n ∈ [N] ≤k ) in X normalized if x n ∈ S X , for all n ∈ [N] ≤k , and weakly convergent, or weakly null if all its nodes are weakly converging or weakly null, respectively. Here S X denotes the unit sphere in X, while B X denotes the closed unit ball. 

H ( m, n) = {i ∈ {1, 2, . . . , k} :

m i = n i } and put H ω k = [N] k , d (k) 
H . 2.3. Embeddings. Let (X, d X ) and (Y, d Y ) be two metric spaces and f :

X → Y . One defines ρ f (t) = inf d Y (f (x), f (y)) : d X (x, y) ≥ t , and ω f (t) = sup{d Y (f (x), f (y)) : d X (x, y) ≤ t}. Note that for every x, y ∈ X, (2) ρ f (d X (x, y)) ≤ d Y (f (x), f (y)) ≤ ω f (d X (x, y)).
The moduli ρ f and ω f will be called the compression modulus and the expansion modulus of the map f , respectively. We adopt the convention sup(∅) = 0 and inf(∅) = +∞. The map f is a coarse embedding if lim t→∞ ρ f (t) = ∞ and ω f (t) < ∞ for all t > 0. A map f : X → Y is said to be a uniform embedding if lim t→0 ω f (t) = 0 and ρ f (t) > 0 for all t > 0, i.e. f is an injective uniformly continuous map whose inverse is uniformly continuous.

If one is given a family of metric spaces (X i ) i∈I , one says that (X i ) i∈I equi-coarsely (resp. equi-uniformly) embeds into Y if there exist non-decreasing functions ρ, ω : [0, ∞) → [0, ∞) and for all i ∈ I, maps f i : X i → Y such that ρ ≤ ρ f i , ω f i ≤ ω, and lim t→∞ ρ(t) = ∞ and ω(t) < ∞ for all t > 0 (resp. lim t→0 ω(t) = 0 and ρ(t) > 0 for all t > 0).

We call a map f :

X → Y Lipschitz continuous if Lip(f ) = sup d(f (x), f (y) d(x, y) : x, y ∈ X, d(x, y) > 0 < ∞,
and we call it a bi-Lipschitz embedding, if it is injective and, if f and f -1 are both Lipschitz continuous.

A coarse Lipschitz embedding is a map f : X → Y , for which there are numbers θ ≥ 0, and 0 < c 1 < c 2 , so that

(3) c 1 d X (x, y) ≤ d Y (f (x), f (y)) ≤ c 2 d X (x, y), whenever x, y ∈ X and d(x, y) ≥ θ.

Asymptotic properties of Banach spaces and their interplay

For two basic sequences (x i ) and (y i ) in some Banach spaces X and Y, respectively, and C ≥ 1, we say that (x i ) and (y i ) are C-equivalent, and we write (x i ) ∼ C (y i ), if there are positive numbers A and B, with C = A • B, so that for all (a j ) ∈ c 00 , the vector space of all sequences x = (ξ j ) in R for which the support supp(x) = {j :

ξ j = 0} is finite, we have 1 A ∞ i=1 a i x i ≤ ∞ i=1 a i y i ≤ B ∞ i=1 a i x i .
In that case we say that 1 A is the lower estimate and B the upper estimate of (y i ) with respect to (x i ). Note that (x i ) and (y i ) are C-equivalent if and only C ≥ T • T -1 , where the linear operator T : span(

x i : i ∈ N) → span(y i : i ∈ N), is defined by T (x i ) = y i , i ∈ N.
If (e i ) is a Schauder basis of a Banach space X, we recall that (x n ) is a block sequence in X with respect to the basis (e i ) if max(supp

(x 1 )) < min(supp(x 2 )) ≤ max(supp(x 2 )) < • • • ≤ max(supp(x n-1 )) < min(supp(x n )) ≤ • • • .
For k ∈ N we denote by E k the set of all norms on R k , for which the unit vector basis (e i ) k i=1 is a normalized monotone basis. With an easily understood abuse of terminology this can also be referred to as the set of all pairs (E, (e j ) k j=1 ), where E is a k-dimensional Banach space and (e j ) k j=1 is a monotone basis of E. We define a metric δ k on E k as follows : For two spaces

E = (R k , • E ) and F = (R k , • F ) we let δ k (E, F ) = log I E,F • I -1 E,F
, I E,F : E → F , is the formal identity. It also well known and easy to show that (E k , δ k ) is a compact metric space. The following definition is due to Maurey, Milman, and Tomczak-Jaegermann [START_REF] Maurey | Asymptotic infinite-dimensional theory of Banach spaces, Geometric aspects of functional analysis[END_REF].

Definition 3.1. (The k-th asymptotic structure of X [18].)
Let X be a Banach space. For k ∈ N we define the k-th asymptotic structure of X to be the set, denoted by {X} k , of spaces E = (R k , • ) ∈ E k for which the following is true:

∀ε > 0 ∀X 1 ∈ cof(X) ∃x 1 ∈ S X 1 ∀X 2 ∈ cof(X) ∃x 2 ∈ S X 2 . . . ∀X k ∈ cof(X) ∃x k ∈ S X k (4) (x j ) k j=1 ∼ 1+ε (e j ) k j=1 . For 1 ≤ p ≤ ∞ and c ≥ 1,
we say that X is c-asymptotically p , if for all k ∈ N and all spaces E ∈ {X} k , with monotone normalized basis (e j ) k j=1 , (e j ) k j=1 is c-equivalent to the k p unit vector basis. We say that X is asymptotically p , if it is c-asymptotically p for some c ≥ 1. In case that p = ∞ we say that the space X is c-asymptotically c 0 , or asymptotically c 0 .

We denote by T * the Banach space originally constructed by Tsirelson in [START_REF] Tsirel'son | Not every Banach space contains an imbedding of lp or c0[END_REF]. It was the first example of a Banach space that does not contain any isomorphic copies of p nor c 0 . Since it is the archetype of a reflexive asymptotic-c 0 space, we explain shortly its construction (we will also use it at the end of section 5). Soon after, in [START_REF] Figiel | A uniformly convex Banach space which contains no lp[END_REF], it became clear that the more natural space to define is T , the dual of T * , because the norm of this space is more conveniently described. It has since become common to refer to T as Tsirelson space instead of T * . Figiel and Johnson in [START_REF] Figiel | A uniformly convex Banach space which contains no lp[END_REF] gave an implicit formula that describes the norm of T as follows. For E, F ∈ [N] <ω and n ∈ N we mean by n ≤ E that n ≤ min E and by E < F that max(E) < min(F ). We call a sequence (E j ) n j=1 of finite subsets of

N admissible if n ≤ E 1 < E 2 < • • • < E n . For x = ∞
j=1 λ j e j ∈ c 00 and E ∈ [N] <ω we write Ex = j∈E λ j e j . As it was observed in [START_REF] Figiel | A uniformly convex Banach space which contains no lp[END_REF], if • T denotes the norm of T then for every x ∈ c 00 :

(5)

x T = max x ∞ , 1 2 sup n j=1 E j x T ,
where the supremum is taken over all n ∈ N and admissible sequences (E j ) n j=1 . The space T is the completion of c 00 with this norm and the unit vector basis is a 1-unconditional basis. Then it was proven in [START_REF] Figiel | A uniformly convex Banach space which contains no lp[END_REF] that T does not contain a subspace isomorphic to 1 , which, together with the easy observation that T certainly does not contain a subspace isomorphic to c 0 , yields by James' Theorem [12, Theorem 2] that T must be reflexive.

The following property of T * (see [START_REF] Tsirel'son | Not every Banach space contains an imbedding of lp or c0[END_REF]Lemma 4]) is essential:

(6) n j=1 x j T * ≤ 2 max 1≤j≤n x j T * if (x j ) n j=1 is a block sequence, with n ≤ supp(x 1 ).
The fact that T * is 2-asymptotic-c 0 is an easy consequence of the above estimate. This well known fact is hard to track down in the literature, and follows from the fact that every weakly null tree admits a refinement for which all branches are arbitrary small perturbations of blocks.

Remarks 3.2. Let us recall some easy facts about the asymptotic structure of a Banach space which can be found in [START_REF] Knaust | On asymptotic structure, the Szlenk index and UKK properties in Banach spaces[END_REF], [START_REF] Maurey | Asymptotic infinite-dimensional theory of Banach spaces, Geometric aspects of functional analysis[END_REF] or [START_REF] Odell | Trees and branches in Banach spaces[END_REF].

a) Let E = (R k , • ), with
• being a norm on R k , for which (e j ) is a normalized basis (but not necessarily monotone). If (e j ) satisfies ( 4) for some infinite dimensional Banach space X, then (e j ) k j=1 is automatically a monotone basis of E (by using the ideas of Mazur's proof that normalized weakly null sequences have basic subsequences with a basis constant which is arbitrarily close to 1). Therefore the above introduced definition of asymptotic structure coincides with the original one given in [START_REF] Maurey | Asymptotic infinite-dimensional theory of Banach spaces, Geometric aspects of functional analysis[END_REF]. b) For any infinite dimensional Banach space X and k ∈ N, {X} k is a closed and thus compact subset of E k with respect to the above introduced metric δ k on E k . c) For a k-dimensional space E with a monotone normalized basis (e j ) k j=1 to be in the k-asymptotic structure can be equivalently described by having a winning strategy in the following game between to players: We fix ε > 0. Player I (the "space chooser") choses a space X 1 ∈ cof(X), then player II (the "vector chooser") chooses a vector x 1 ∈ S X 1 , then player I and player II repeat these moves to obtain spaces X 1 , X 2 , . . . , X k in cof(X) and vectors x 1 , x 2 , . . . , x k , with x i ∈ S X i . The space E being in {X} k means that for every ε > 0 player II has a winning strategy, if his or her goal is to obtain a sequence (x j ) k j=1 which is (1 + ε)-equivalent to (e j ) k j=1 . For E ∈ E k with monotone basis (e j ) k j=1 and ε > 0 a winning strategy for the vector chooser can then be defined to be a tree family

F = x(X 1 , X 2 , . . . , X l ) : 1 ≤ l ≤ k, X 1 , X 2 , . . . , X l ∈ cof(X) ⊂ S X
with the property that for any choice of X 1 , X 2 , . . . , X k ∈ cof(X), and any l ≤ k, x(X 1 , X 2 , . . . , X l ) ∈ S X l and so that the sequence x(X 1 , X 2 , . . . , X l )

k l=1 is (1 + ε)- equivalent to (e j ) k
j=1 . Since the game has finitely many steps it is determined, meaning that either the vector chooser or the space chooser has a winning strategy. Using the language of the game and its determinacy it is then easy to see that the set {X} k is the smallest compact subset for which the space chooser has a winning strategy if for a given ε > 0 his or her goal is that the resulting sequence (x j ) k j=1 is at distance at most ε to {X} k (with respect to the metric δ k ). In particular a Banach space is asymptotically p , 1 ≤ p < ∞, or asymptotically c 0 , if and only if there is a c > 0 so that for each k ∈ N the space chooser has a winning strategy to get a sequence (x j ) k j=1 which is c-equivalent to the unit vector basis in k p , or k ∞ , respectively. d) Assume that X is a space with a separable dual. Then we can replace in the definition of {X} k the set cof(X) by a countable subset of cof(X), namely by the set

F ⊥ : F ⊂ {x * j : j ∈ N} finite , where {x * j : j ∈ N} ⊂ S X * is dense.
In that case normalized weakly null trees in X indexed by [N] ≤k can be used to describe the k-th asymptotic structure: If X * is separable and k ∈ N, a space E ∈ E k with monotone basis (e j ) k j=1 is in {X} k if and only if for every ε > 0 there is an unrooted weakly null tree T = x n : n ∈ [N] ≤k \ {∅} in S X for which all branches are (1 + ε)-equivalent to (e j ) k j=1 . It follows therefore from (c) and Ramsey's Theorem that X is asymptotically p , for 1 ≤ p < ∞, or asymptotically c 0 , if there is a C ≥ 1 so that for every k ∈ N every unrooted normalized weakly null tree of height k has a refinement (as introduced in subsection 2.1) all of whose branches are C-equivalent to the k p -unit vector basis. The following observation will reduce the proof of the main results to the separable case. Proposition 3.3. Let X be a reflexive Banach space. Then there exists a separable subspace Y of X so that for all k ∈ N we have {X} k = {Y } k .

We will need the following two lemmas first. Lemma 3.4. Let X be an infinite dimensional Banach space and let E be a k-dimensional Banach space with a normalized monotone Schauder basis (e i ) k i=1 . If for every ε > 0 there exists a weakly null tree

{x n : n ∈ [N] ≤k \ {∅}} ⊂ S X so that for every m = {m 1 , . . . , m k } ∈ [N] k the sequence (x {m 1 ,...,m i } ) k i=1 is (1 + ε)-equivalent to (e i ) k i=1 . Then (e i ) k i=1 is in {X} k . Proof. Recall that if Y ∈ cof(X) and (z i ) ∞
i=1 is a normalized weakly null sequence then lim i dist(z i , S Y ) = 0. Fixing ε > 0 and k ∈ N we will show that the vector player can choose a sequence that is (1+ε)-equivalent to (e i ) k i=1 . Take a weakly null tree (

x m : m ∈ [N] ≤k ) ⊂ S X so that for all m = {m 1 , . . . , m k } the sequence is (x {m 1 ,...,m i } ) k i=1 is (1 + δ)-equivalent to (e i ) k
i=1 , where we will choose δ > 0 later. For each turn 1 ≤ i ≤ k of the game when the subspace player chooses Y i ∈ cof(X) the vector player picks m i > m i-1 (where m 0 = 0) so that there is x i ∈ S Y i with x i -x {m 1 ,...,m i } ≤ δ. For δ sufficiently small, this strategy for choosing x i in S Y i insures that the sequence (x i ) k i=1 is (1 + ε)-equivalent to (e i ) k i=1 . Lemma 3.5. Let X be a reflexive Banach space, k ∈ N, (e i ) k i=1 ∈ {X} k , and let ε > 0. Then there exists a countably branching weakly null tree {x n : n ∈ [N] ≤k \ {∅}} in S X , all of whose branches are (1 + ε)-equivalent to (e i ) k i=1 . Proof. We recall that the Eberlein-Šmulyan theorem insures that if W is a relatively weakly compact set in a Banach space and x 0 ∈ W w then there exists a sequence ( Indeed, if f 1 , . . . , f d are in X * then Y = d j=1 ker(f j ) is in cof(X) and hence f j (x(Y )) = 0 for 1 ≤ j ≤ d. We may thus pick a sequence (Y l ) l in cof(X) with x(Y l ) w → 0. Assume that for some i ∈ N we have assigned for each {m 1 , . . . , m i } ∈ [N] i a vector x {m 1 ,...,m i } of the form x(Y m 1 , Y m 2 , . . . , Y m i ). As before, we may pick a sequence (Y

x i ) ∞ i=1 in W with x i w → x 0 . Let ε > 0 and let x(Y 1 , Y 2 , . . . , Y i ) : i = 1, 2, . . . , k, Y 1 , Y 2 , . . . , Y i ∈ cof(X) be a normalized tree with x(Y 1 , Y 2 , . . . , Y i ) ∈ S Y i
(i+1) l ) l so that x(Y m 1 , Y m 2 , . . . , Y m i , Y (i+1) l ) w → 0. For j > m i we define x {m 1 ,...,m i ,j} = x(Y m 1 , Y m 2 , . . . , Y m i , Y (i+1) l ),
for some large enough l. Thus, every (x {m 1 ,...,m i } ) k i=1 is of the form x(Y 1 , . . . , Y i ) k i=1 , and thus (1 + ε)-equivalent to (e j ) k j=1 .

Proof of Proposition 3.3. Since for every k ∈ N the k-asymptotic structure {X} k is separable (with respect to the metric introduced in Section 3 (b)), we can find a countable set {(e (l) j ) k j=1 : l ∈ N} ⊂ {X} k which is dense in {X} k and, using Lemma 3.5, a countable collection of weakly null trees (x (r) n : n ∈ [N] ≤k ) : r ∈ N in S X so that for each ε > 0 and each l ∈ N there is a r ∈ N, so that for all n ∈ [N] k , the sequence x We now turn to "sequential asymptotic properties" of Banach spaces. These are properties which involve sequences and their subsequences, as opposed to trees and their refinements.

Let X be a Banach space and k ∈ N. A family x (i)

j : i = 1, 2, . . . , k, j ∈ N ⊂ X, is called an array of height k in X. An array of infinite height in X is a family x (i) j : i, j ∈ N ⊂ X.
For (finite or infinite) arrays x (i) j : i = 1, 2, . . . , k, j ∈ N , or x (i) j : i, j ∈ N respectively, we call the sequence (x (i) j ) j∈N the i-th row of the array. We call an array weakly null if all rows are weakly null. A subarray of a finite array x (i)

j : i = 1, 2, . . . , k, j ∈ N ⊂ X, or an infinite array x (i) j : i ∈ N, j ∈ N ⊂ X, is an array of the form x (i) js : i = 1, 2, . . . , k, s ∈ N or x (i)
js : i ∈ N, s ∈ N , respectively, where (j s ) ⊂ N is a subsequence. Thus, for a subarray we are taking the same subsequence in each row.

The following notion was introduced by Halbeisen and Odell [START_REF] Halbeisen | On asymptotic models in Banach spaces[END_REF].

Definition 3.6. [START_REF] Halbeisen | On asymptotic models in Banach spaces[END_REF] A basic sequence (e i ) is called an asymptotic model of a Banach space X, if there exist an infinite array x (i) j : i, j ∈ N ⊂ S X and a null-sequence (ε n ) ⊂ (0, 1), so that for all n, all (a i )

n i=1 ⊂ [-1, 1] and n ≤ k 1 < k 2 < . . . < k n , it follows that n i=1 a i x (i) k i - n i=1
a i e i < ε n .

In [START_REF] Halbeisen | On asymptotic models in Banach spaces[END_REF] the following was shown. j : i, j ∈ N ⊂ S X is an infinite array, all of whose rows are normalized and weakly null. Then there is a subarray of x (i) j : i, j ∈ N which has a 1-suppression unconditional asymptotic model (e i ). We call a basic sequence (e i ) c-suppression unconditional, for some c ≥ 1, if for any (a i ) ⊂ c 00 and any

A ⊂ N i∈A a i e i ≤ c ∞ i=1 a i e i .
We call (e i ) c-unconditional if for any (a i ) ⊂ c 00 and any

(σ i ) ∈ {±1} N ∞ i=1 a i e i ≤ c ∞ i=1 σ i a i e i .
Note that a c-unconditional basic sequence is c-suppression unconditional.

The following important result was shown in [START_REF] Freeman | On spreading sequences and asymptotic structures[END_REF] and it is an integral ingredient of the proof of Theorem B. Theorem 3.8. [8, Theorem 4.6] If a separable Banach space X does not contain any isomorphic copy of 1 and all the asymptotic models generated by normalized weakly null arrays are equivalent to the c 0 unit vector basis, then X is asymptotically c 0 .

Asymptotic models can be seen as a generalization of spreading models, a notion which was introduced much earlier by Brunel and Sucheston [START_REF] Brunel | On B-convex Banach spaces[END_REF]. Spreading models are asymptotic models for arrays with identical rows. Definition 3.9. [START_REF] Brunel | On B-convex Banach spaces[END_REF] Let E be a Banach space with a normalized basis (e i ) and let (x i ) be a basic sequence in a Banach space X. We say that E with its basis (e i ) is a spreading model of (x i ), if there is a null-sequence (ε n ) ⊂ (0, 1), so that for all n, all (a i )

n i=1 ⊂ [-1, 1] and n ≤ k 1 < k 2 < . . . < k n , it follows that n i=1 a i x k i X - n i=1 a i e i E < ε n or, in other words, if lim k 1 →∞ lim k 2 →∞ . . . lim kn→∞ n j=1 a j x k j X = n j=1 a j e j E .
Using Ramsey's Theorem it is easy to see that every normalized basic sequence has a subsequence which admits a spreading model, which of course also follows form the above cited result in [START_REF] Halbeisen | On asymptotic models in Banach spaces[END_REF]. A spreading model E with basis (e i ) generated by a normalized weakly null sequence is 1-suppression unconditional [4, Proposition 1, p. 24].

Let k ∈ N and let x (i) j : i = 1, 2, . . . , k, j ∈ N ⊂ S X be a normalized weakly null array of height k. We extend this array to an infinite array x (i)

j : i ∈ N, j ∈ N , by letting x (sk+i) j = x (i) j , for s ∈ N and i = 1, 2, . . . , k.
By Proposition 3.7 we can pass to a subarray (z

(i) j : i ∈ N, j ∈ N) of (x (i) j : i ∈ N, j ∈ N)
which admits an asymptotic model (e j ). Now letting e (i) j = e (j-1)k+i , for i = 1, 2, . . . , k and j ∈ N we observe that the array (e (i) j ) i,j∈N is the joint spreading model of (z

(i) j : i ∈ N, j ∈ N),
a notion introduced and discussed in [START_REF] Argyros | Joint spreading models and uniform approximation of bounded operators[END_REF]. We recall the definition of joint spreading models and will first recall the definition of plegmas. 

(i) 1 , s (i) 2 , . . . , s (i) m ) ⊂ N for i = 1, . . . , k. The family (s i ) k i=1 is called a plegma if s (1) 1 < s (2) 1 < • • • < s (k) 1 < s (1) 2 < s (2) 2 < • • • < s (k) 2 < • • • < s (1) m < s (2) m < • • • < s (k) m . Definition 3.11. [1, Definition 3.1] Let x (i) j : 1 ≤ i ≤ k, j ∈ N and e (i)
j : 1 ≤ i ≤ k, j ∈ N be two normalized arrays in the Banach spaces X, and E, respectively, whose rows are normalized and basic. We say that (x

(i) j : 1 ≤ i ≤ k, j ∈ N) generates (e (i) j : 1 ≤ i ≤ k, j ∈ N)
as a joint spreading model if there exists a null sequence of positive real numbers (ε m ) ∞ m=1 so that for every m ∈ N, every plegma (s i ) k i=1 , s i = (s

(i) j : j = 1, 2, . . . , m) for 1 ≤ i ≤ k, with min(s 1 ) = s (1) 
1 ≥ m, and scalars ((a

(i) j ) m j=1 ) k i=1 in [-1, 1] we have m j=1 k i=1 a (i) j x (i) s (i) j X - m j=1 k i=1 a (i) j e (i) j E < ε m .
Remark 3.12. Note that if x (i)

j : 1 ≤ i ≤ k, j ∈ N generates e (i) j : 1 ≤ i ≤ k, j ∈ N as a joint spreading model, then (e (i) j ) ∞
j=1 is a spreading model of (x

(i) j ) ∞ j=1 , for i = 1, 2, . . . , k.
In the next remark we discuss the differences between asymptotic and sequential asymptotic properties. Remark 3.13. Assume that X is a separable reflexive space. Then, by observation (d) in Remarks 3.2, the property that X is asymptotically p , for some 1 ≤ p ≤ ∞ (as usual replace ∞ by c 0 if p = ∞), is equivalent to the property that there is a C ≥ 1, so that for every k ∈ N every weakly null tree (x n : n ∈ [N] ≤k ) of height k can be refined (as defined in subsection 2.1) to a tree (x m : m ∈ [M] ≤k ), M ∈ [N] ω , which has the property that each branch is C-equivalent to the k p unit vector basis. Secondly we consider the property of a Banach space X that every asymptotic model generated by a weakly null array is C-equivalent to the p -unit vector basis, for some 1 ≤ p < ∞, or the c 0 -unit vector basis. For a normalized weakly null array (x

(i) j : i, j ∈ N) we put x m = x (i) max( m) for m ∈ [N] i and call for k ∈ N the tree (x n : n ∈ [N] ≤k
) the tree of height k generated by the array (x (i) j : i, j ∈ N). Note that x n for n ∈ [N] ≤k only depends on max(n) and the cardinality of n, but not on the predecessors of n. Then, by a straightforward diagonalization argument, one shows that the property that every asymptotic model generated by a weakly null array is C-equivalent to the p -unit vector basis for some C ≥ 1, is equivalent with the property that every tree of height k, generated by a normalized weakly null array has a refinement all of whose branches are C-equivalent to the k p -unit vector basis, for some C ≥ 1. Thus, the property that the asymptotic models generated by normalized weakly null arrays is C-equivalent to the p -unit vector basis, is a property of specific weakly null trees. Theorem 3.8 is therefore a surprising result, and its proof relies on the fact that the c 0 -norm is somewhat extremal. Usually it is not possible to deduce from a sequentially asymptotic property of a Banach space an asymptotic property. For example, in a forthcoming paper, we build a reflexive space X, all of whose asymptotic models are isometrically equivalent to the 2 -unit vector basis, but for given 1 ≤ p ≤ ∞, p = 2, X has n p in its n-th asymptotic structure.

Proof of Theorems A and B

This section is devoted to proving Theorem B and then obtaining Theorem A as a corollary. The proof is based on the main argument of [START_REF] Baudier | The coarse geometry of Tsirelson's space and applications[END_REF] and on the above cited result in [START_REF] Freeman | On spreading sequences and asymptotic structures[END_REF] (see Thoerem 3.8 in our paper) that connects asymptotic properties with properties of arrays.

The following lemma includes a well known refinement argument which is crucial for the proof of the main result. For completeness we include a proof. H then for all m ∈ [M] ≤k \ {∅} we have y m ≤ Lip(f ). Proof. We prove the claim by induction for all k ∈ N. If k = 1, we can take a subsequence (x n ) of f ({n}) n∈N which converges to some y ∅ ∈ X. Then put y {n} = x n -y ∅ .

Assume our claim to be true for k -1, with k ∈ N, and let f : [N] k → X have a bounded image. We put l i = i, for i = 1, 2, . . . , k -1, and choose L k-1 ∈ [{k, k + 1, . . .}] ω so that x {1,2,...,k-1} = w -lim l→∞,l∈L k-1 f ({1, 2, . . . , k -1} ∪ {l}) exists. Then we can recursively choose for each n ≥ k, l n ∈ N, L n ∈ [L n-1 ] ω , with l n ∈ L n-1 and l n < min(L n ), so that for each m ⊂ {l 1 , l 2 , . . . , l n }, with # m = k -1, x m = w -lim l→∞,l∈Ln f ( m ∪ {l}) exists. Let L = {l j : j ∈ N} and put

y m = f ( m) -x {m 1 ,m 2 ,...,m k-1 } for m = {m 1 , m 2 , . . . , m k } ∈ [L] k .
Finally we apply the induction hypothesis to f : [L] k-1 → X, m → x m, which provides us with an infinite M ⊂ L and a weakly null tree (y m : m

∈ [M] k-1 ) so that x m = k i=0 y {m 1 ,m 2 ,...,m i } for all m = {m 1 , m 2 , . . . , m k-1 } ∈ [M] k-1 and thus, f ( m) = y m + x {m 1 ,m 2 ,...,m k-1 } = k i=0 y {m 1 ,m 2 ,...,m i } for all m = {m 1 , m 2 , . . . , m k } ∈ [M] k .
To prove the second part of the statement let m = {m 1 , m 2 , . . . , m i } in [M] k \ {∅} and put m = {m 1 , m 2 , . . . , m i-1 }. It follows from the lower semicontinuity of the norm with respect to the weak topology that

y m = w -lim n i →∞ lim n i+1 →∞ • • • lim n k →∞ f ( m ∪ {n i+1 , . . . , n k }) -f ( m ∪ {n i , n i+1 , . . . , n k }) ≤ lim sup n i →∞ lim sup n i+1 →∞ • • • lim sup n k →∞ f ( m ∪ {n i+1 , . . . , n k }) -f ( m ∪ {n i , n i+1 , . . . , n k }) ≤ lim sup n i →∞ lim sup n i+1 →∞ • • • lim sup n k →∞ Lip(f )d (k) H ( m ∪ {n i+1 , . . . , n k }, m ∪ {n i , n i+1 , . . . , n k }) = Lip(f ).
For the proof of Theorem B a slightly weaker version of the next result would be sufficient, but its proof would not be significantly easier. Lemma 4.2. Let X be a C-asymptotic-c 0 Banach space for some C ≥ 1, k ∈ N, and let also (x n : n ∈ [N] ≤k ) be a bounded weakly null tree. Then for every ε > 0 there exists L ∈ [N] ω so that for every m = {m 1 , . . . , m k } ∈ [L] k and every F ⊂ {1, . . . , k} we have

i∈F x {m 1 ,...,m i } ≤ (C + 1 + ε) max i∈F x {m 1 ,...,m i } .
Proof. We will just find one such m. This is sufficient by Ramsey's theorem, since such a set m could be found in each infinite subset of N. Let us play a k-round vector game in which the subspace player follows a winning strategy to force the vector player to choose a sequence (C + ε)-equivalent to the unit vector basis of k ∞ . In each step i the subspace player picks a subspace Y i of finite codimension according to his or her winning strategy. The vector player picks y i ∈ Y i according to the following scheme: recursively pick m 1 < • • • < m k so that one of the following holds:

(a) If lim sup n x {m 1 ,...,m i-1 ,n} > 0 pick m i (with m i > m i-1 if i > 1) and y i in the unit sphere of Y i so that

y i - x {m 1 ,...,m i } x {m 1 ,...,m i } < ε2 -i .
In the above argument we have used the following corollary of the Hahn-Banach Theorem. If Y ∈ cof(X) and (z i ) ∞ i=1 is a weakly null sequence then lim

i dist(z i , Y ) = 0. If in particular (z i ) i is normalized then lim i dist(z i , S Y ) = 0. (b) If lim n x {m 1 ,...,m i-1
,n} = 0 we distinguish between the following subcases:

(b1) if i = 1 or x {m 1 ,...,m j } = 0, for all 1 ≤ j < i, pick arbitrary m i , so that m i > m i-1 if i > 1, and arbitrary y i in the unit sphere of Y i , and (b2) if i > 1 and x {m 1 ,...,m j } = 0, for some 1 ≤ j < i, pick m i > m i-1 so that x {m 1 ,...,m i } < (ε2 -i ) min x {m 1 ,...,m j } : 1 ≤ j < i with x {m 1 ,...,m j } = 0 and pick an arbitrary y i in the unit sphere of Y i . It follows that the sequence (y i ) k i=1 is (C + ε)-equivalent to the unit vector basis of k ∞ . Let now F ⊂ {1, 2, . . . , k}. Set

F 1 = {i ∈ F : (a) is satisfied} and F2 = {i ∈ F : (b) is satisfied and x {m 1 ,...,m i } = 0}. Set i 0 = min( F2 ) and F 2 = F2 \ {i 0 }, if F2 is non-empty, otherwise let F 2 = ∅. We now calculate i∈F x {m 1 ,...,m i } ≤ i∈F 1 x {m 1 ,...,m i } + x {m 1 ,...,m i 0 } + i∈F 2 x {m 1 ,...,m i } ≤ i∈F 1 x {m 1 ,...,m i } y i + i∈F 1 x {m 1 ,...,m i } -x {m 1 ,...,m i } y i + x {m 1 ,...,m i 0 } + i∈F 2 ε 2 i x {m 1 ,...,m i 0 } ≤ (C +ε) max i∈F 1 x {m 1 ,...,m i } + i∈F 1 ε 2 i x {m 1 ,...,m i } + (1+ε) x {m 1 ,...,m i 0 } ≤ (C + 1 + 3ε) max i∈F x {m 1 ,...,m i } .
An adjustment of ε yields the desired estimate.

The following is one of the main statements presented in this paper.

Theorem 4.3 (Theorem B).

A Banach space X is reflexive and asymptotic-c 0 if and only if there exists C ≥ 1 satisfying the following: for every k ∈ N and Lipschitz map f : (

[N] k , d (k) H ) → X there exists L ∈ [N] ω so that (7) diam f ([L] k ) ≤ CLip(f ).
Proof. We first assume that X is reflexive and B-asymptotically c 0 . Let k ∈ N and let f : 

([N] k , d (k) 
f ( m) -f (n) = ū m y ū - v n y v ≤ ∅≺ū m y ū + ∅≺v n y v ≤ 2(B + 2)Lip(f )
and so for C = 2(B + 2) the conclusion is satisfied.

To prove the converse, we show that if either X is not reflexive or X is reflexive and not asymptotic-c 0 , then there exists a sequence (f k ),

f k : ([N] k , d (k) H ) → X, Lip(f k ) ≤ 1, for k ∈ N, and (8) 
inf

M∈[N] ω diam f k ([M] k ) ∞, if k ∞.
Assume first that X is non-reflexive. By James' characterization of reflexive spaces [START_REF]Some self-dual properties of normed linear spaces[END_REF], there exists a sequence (x n ) ⊂ B X such that for all k ≥ 1 and m = {m H and ( 9) implies [START_REF] Freeman | On spreading sequences and asymptotic structures[END_REF]. Secondly assume X is reflexive and not asymptotically-c 0 . By Proposition 3.3 there is a separable subspace of X that is not asymptoptically-c 0 , so we can assume that X is separable. By Theorem 3.8 there exists a 1-suppression unconditional sequence (e i ) i that is not equivalent to the unit vector basis of c 0 , and hence λ k = k i=1 e i ∞, if k ∞, and that is generated as an asymptotic model of a normalized weakly null array (x (i) j : i, j ∈ N) in X. Fixing k ∈ N and δ > 0 and after passing to appropriate subsequences of the array, we may assume that for any k ≤ j 1 < • • • < j k and any a 1 , . . . , a k in [-1, 1] we have [START_REF] Godefroy | The non-linear geometry of Banach spaces after Nigel Kalton[END_REF] 

f k ( m) -f k (n) = 1 2 i∈F x (i) m i - 1 2 i∈F x (i) n i .
Using the fact that the array is weakly null and the Hahn-Banach theorem, for all M ∈ [N] ω , all m in [M] k , we can find x * ∈ S X * and n ∈ [M] k such that

x * i∈F x (i) m i - i∈F x (i) n i ≥ i∈F x (i) m i -δ.
Using equation [START_REF] Godefroy | The non-linear geometry of Banach spaces after Nigel Kalton[END_REF], we deduce that

f k ( m) -f k (n) ≥ 1 2 λ k -δ.
If δ was chosen small enough, we obtain that for all M ∈ [N] ω diam f k ([M] k ) ≥ λ k 4 , which proves our claim. ≤ 2Lip(f ) + η C + 1 + 16k 2 η Lip(f ) .

Note that, since f takes values in X, we also have that f ( m) -f (n) = k i=1 u i . Then, combining the above estimates with an initial choice of a small enough η, we get that f ( m) -f (n) ≤ 3(C + 1)Lip(f ).

We deduce the following.

Corollary 5.2. There exists a Banach space X which is not reflexive, but such that the family

([N] k , d (k) 
H ) k∈N does not equi-coarsely embed into X. Proof. We only need to give an example of a quasi-reflexive, but not reflexive, asymptotic-c 0 Banach space. It is based on a construction due to Bellenot, Haydon and Odell [START_REF] Bellenot | Quasi-reflexive and tree spaces constructed in the spirit of R.C. James[END_REF]. For a given Schauder basis (u i ) of a Banach space X, the space J[(u i )] is defined to be the completion of c 00 (the space of finitely supported sequences (a i ) ∞ i=1 of real numbers) under the norm

a i e i = sup n i=1 j∈s i a j u p i X , n ∈ N, s 1 < • • • < s n , min s i = p i ,
where s 1 , . . . , s n are intervals in N and (e i ) ∞ i=1 is the canonical basis of c 00 . It is proved in [START_REF] Bellenot | Quasi-reflexive and tree spaces constructed in the spirit of R.C. James[END_REF] that, if (u i ) is the basis of a reflexive space, then J[(u i )] is quasi-reflexive of order one. Let now (u i ) be the unit vector basis of T * (see the description of T * in section 3). Since T * is reflexive, J[(u i )] is quasi-reflexive of order one and therefore not reflexive. This particular space was first considered in [START_REF] Freeman | On spreading sequences and asymptotic structures[END_REF] and estimates similar to those given in the proof of Proposition 3.2 in [START_REF] Freeman | On spreading sequences and asymptotic structures[END_REF] show that J[(u i )] is asymptotic-c 0 .

2 . Preliminaries 2 . 1 .

 221 Trees. For k ∈ N we put [N] ≤k = {S ⊂ N : |S| ≤ k}, [N] k = {S ⊂ N : |S| = k}, [N] <ω = k∈N [N] ≤k , [N] ω = {S ⊂ N : S infinite}, and [N] = {S : S ⊂ N}. We always list the elements of some m ∈ [N] <ω or in [N] ω in increasing order, i.e., if we write m = {m 1 , m 2 , . . . , m l } or m = {m 1 , m 2 , m 3 , . . .}, we tacitly assume that m 1 < m 2 < . . .. For m = {m 1 , m 2 , . . . , m r } ∈ [N] ≤k and n = {n 1 , n 2 , . . . , n s } ∈ [N] ≤k we write m ≺ n, if r < s ≤ k and m i = n i , for i = 1, 2, . . . , r, and we write m n if m ≺ n or m = n. Note that [N] ≤k , k ∈ N with ≺, are rooted trees, i.e., partial orders with a unique minimal element, namely ∅, and the property that for each n ∈ [N] ≤k , the set of predecessors of n { m : m ≺ n} is finite and linearly ordered.

2. 2 .

 2 Hamming graph on [N] k . For k ∈ N and m = {m 1 , m 2 , . . . , m k } and n = {n 1 , n 2 , . . . , n k } in [N] k we define the Hamming distance, by

  and whose branches approximate (e j ) k j=1 up to (1 + ε)-equivalence (see Remarks 3.2 (c)). By reflexivity the set {x(Y ) : Y ∈ cof(X)} (the first level of the tree) is relatively weakly compact. Also, 0 ∈ {x(Y ) : Y ∈ cof(X)} w .

  define Y k to be the closed linear span of {x(r) n : r ∈ N, n ∈ [N] ≤k }. Since {Y k } k and {X} k are compact (see (b) in Section 3) it follows that {Y k } k = {X} k .Finally we conclude our proof by setting Y to be the closed linear span of ∪ k∈N Y k and deduce our claim.

Proposition 3 . 7 .

 37 [11, Proposition 4.1 and Remark 4.7.5] Assume that x (i)

Definition 3 .

 3 10. [2, Definition 3] Let k, m ∈ N and s i = (s

Lemma 4 . 1 .

 41 Let X be a reflexive Banach space, k ∈ N, and f : [N] k → X have a bounded image. Then there exist M ∈ [N] ω and a weakly null tree (y m : m∈ [M] ≤k ), so that f ( m) = y ∅ + k i=1 y {m 1 ,...,m i } , for all m ∈ [M] k .Moreover, if we equip [N] k with d (k)

H

  ) → X be a Lipschitz map. By Lemma 4.1 there exist M ∈ [N] ω and a weakly null tree (y m : m ∈ [M] ≤k ) so that f ( m) = l m yl, for all m ∈ [M] k , and y m ≤ Lip(f ), for all m ∈ [M] ≤k \ {∅}. By Lemma 4.2 we find L ∈ [M] ω , so that i∈F y {m 1 ,...,m i } ≤ (B + 2) max i∈F y {m 1 ,...,m i } . for all m = {m 1 , m 2 , . . . , m k } ∈ [L] k and F ⊂ {1, . . . , k}.Thus, for m, n in [L] k we have

x m i ≥ k 2 . 2 k

 22 1 , m 2 , . . . , m 2k } ∈ [N] 2k , Define f k ( m) = 1 i=1 x m i , for m = {m 1 , . . . , m k } in [N] k . This map is 1-Lipschitz with respect to d (k)

  m i for m = {m 1 , . . . , m k } ∈ [N] k . Note that f is 1-Lipschitz for the metric d (k) H . Then, if m = {m 1 , . . . , m k }, n = {n 1 , . . . , n k } and F = {i : m i = n i } we have
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Corollary 4.4 (Theorem A). Let Y be a reflexive asymptotic-c 0 Banach space. If X is a Banach space that coarsely embeds into Y , then X is also reflexive and asymptotic-c 0 .

Proof. Let g : X → Y be a coarse embedding with moduli ρ g , ω g : [0, ∞) → [0, ∞). By Theorem 4.3 the space Y satisfies [START_REF] Figiel | A uniformly convex Banach space which contains no lp[END_REF], for some constant C ≥ 1. It is enough to show that the same is true for X and some D ≥ 1 such that ρ g (D) > Cω g [START_REF] Argyros | Joint spreading models and uniform approximation of bounded operators[END_REF].

Let f : [N] k → X be a non-constant Lipschitz map. Take h : [START_REF] Argyros | Joint spreading models and uniform approximation of bounded operators[END_REF]. On the other hand,

A simple re-scaling argument (see the end of section 4 in [START_REF] Baudier | The coarse geometry of Tsirelson's space and applications[END_REF]) allows us to adapt the above proofs in order to show the following. Corollary 4.5. Let Y be a reflexive asymptotic-c 0 Banach space. If X is a Banach space such that B X uniformly embeds into Y , then X is also reflexive and asymptotic-c 0 . Remark 4.6. For k ∈ N, the Johnson graph of height k is the set [N] k equipped with the metric defined by d

It is proved in [START_REF] Baudier | The coarse geometry of Tsirelson's space and applications[END_REF] that there is a constant C ≥ 1 such that for any k ∈ N and f : (

It is easily seen that the same is true if T * is replaced by any reflexive asymptotic-c 0 space. It is also clear that this concentration property for Lipschitz maps from the Johnson graphs implies the reflexivity of the target space. We do not know if it implies that it is asymptotic-c 0 . We do not know either whether the equi-coarse embedabbility of the Johnson graphs and of the Hamming graphs are equivalent conditions for a Banach space. The reason is that canonical embeddings of the Johnson graphs are built on sequences and not arrays. This confirms the qualitative difference between asymptotic models and spreading models.

Quasi-reflexive asymptotic-c 0 spaces

Let us first recall that a Banach space is said to be quasi-reflexive if the image of its canonical embedding into its bidual is of finite codimension in this bidual. For an infinite subset M of N, we denote I k (M) the set of strictly interlaced pairs in [M] k , namely :

H ( m, n) = k. Our next result mixes arguments from Lemma 4.2 of this paper and of Theorem 2.2 in [START_REF] Lancien | Asymptotic and coarse Lipschitz structures of quasi-reflexive Banach spaces[END_REF].

Theorem 5.1. Let C ≥ 1 and X be a quasi-reflexive C-asymptotic-c 0 Banach space. Then, for any Lipschitz map f : (

In particular, the family

H ) k∈N does not equi-coarsely embed into X.

Proof. Let us write X * * = X⊕E, where E is a finite dimensional space. Let f : (

H ) → X be a Lipschitz map. Since f is countably valued and X is quasi-reflexive, we may as well assume that X and therefore all its iterated duals are separable. We may also assume that Lip(f ) > 0. Then mimicking the proof of Lemma 4.1 and using weak * -compactness instead of weak-compactness we infer the existence of M ∈ [N] ω and of a weak * -null tree (z m : m

Fix now η > 0. Since E is finite dimensional, using Ramsey's theorem, we may assume after further extractions that [START_REF] Halbeisen | On asymptotic models in Banach spaces[END_REF] ∀i ∈ {1, . . . , k} ∀ m, n ∈ [M] i , e m -e n ≤ η.

It follows from another Ramsey argument that it is enough to construct one pair ( m, n

inductively, as follows. Since X is C-asymptotic c 0 , we shall play our usual k-round game. At each step i, the subspace player follows, as she may, a winning strategy to force the vector player to build a sequence which is (C + 1)-equivalent to the canonical basis of k ∞ . So she picks X i in cof(X) according to her winning strategy. Then the vector player picks x i ∈ S X i and "we" choose m i < n i in M according to the following scheme. The subspace player picks X 1 according to her strategy, the vector player picks x 1 ∈ S X 1 and we just pick

For n > n i-1 , denote y n = x {m 1 ,...,m i-1 ,n} -x {n 1 ,...,n i-1 ,n+1} and v n = z {m 1 ,...,m i-1 ,n} -z {n 1 ,...,n i-1 ,n+1} . The space player picks X i ∈ cof(X) according to her strategy. Note that X ⊥ i is a finite dimensional weak * closed subspace of X * . (a) Assume first that lim inf n→∞ y n ≤ 1 4k Lip(f ). Then we pick n > n i-1 such that y n ≤ 1 2k Lip(f ), the vector player picks any x i ∈ S X i and we set m i = n and n i = n + 1.

(b) Assume now that lim inf n→∞ y n > 1 4k Lip(f ). Since (v n ) is weak * -null, we have that (v n ) tends uniformly to 0 on bounded subsets of X ⊥ i . It follows from [START_REF] Halbeisen | On asymptotic models in Banach spaces[END_REF] and the standard identification of (X/X i ) * with X ⊥ i that lim sup n→∞ d(y n , X i ) ≤ η. So we can pick n > n i-1 such that y n > 1 4k Lip(f ) and d(y n , X i ) ≤ 2η, which implies the existence of x i ∈ S X i so that yn yn -x i ≤ 16kη Lip(f ) . We set m i = n and n i = n + 1.

This concludes the description of our procedure and we recall that it ensures that (x i ) k i=1 is (C + 1)-equivalent to the canonical basis of k ∞ . We now denote A the set of i's such that procedure (a) has been followed and B the complement of A. For simplicity, denote u i = x {m 1 ,...,m i } -x {n 1 ,...,n i } . We clearly have i∈A u i ≤ 1 2 Lip(f ).

On the other hand, we have