Hugo Lhachemi 
email: hugo.lhachemi@centralesupelec.fr
  
Ammar Malik 
email: ammar.malik@ucdconnect.ie
  
Robert Shorten 
email: r.shorten@imperial.ac.uk
  
Integral action for setpoint regulation control of a reaction-diffusion equation in the presence of a state delay

Keywords: PI regulation, Reaction-diffusion equation, State-delay, Partial differential equation, Input-to-state stability

This paper is concerned with the regulation control of a one-dimensional reaction-diffusion equation in the presence of a state-delay in the reaction term. The objective is to achieve the PI regulation of the right Dirichlet trace with a command selected as the left Dirichlet trace. The control design strategy consists of the design of a PI controller on a finite dimensional truncated model obtained by spectral reduction. By an adequate selection of the number of modes of the original infinitedimensional system, we show that the proposed control design procedure achieves both the exponential stabilization of the original infinite-dimensional system as well as the setpoint regulation of the right Dirichlet trace.

Introduction

The proportional integral (PI) regulation control of infinite-dimensional systems, and in particular of partial differential equations (PDEs), has attracted much attention in the recent years. Early works dealt with bounded control operators [START_REF] Pohjolainen | Robust multivariable PI-controller for infinite dimensional systems[END_REF] while the extension to the case of unbounded control operators was reported in [START_REF] Xu | A robust PI-controller for infinite-dimensional systems[END_REF]. The last decade has seen an intensification of the efforts in this research direction. PI boundary control of linear hyperbolic systems [START_REF] Bastin | Stability of linear density-flow hyperbolic systems under PI boundary control[END_REF][START_REF] Santos | Boundary control with integral action for hyperbolic systems of conservation laws: Stability and experiments[END_REF][START_REF] Lamare | Control of 2×2 linear hyperbolic systems: Backstepping-based trajectory generation and PI-based tracking[END_REF][START_REF] Xu | Multivariable boundary PI control and regulation of a fluid flow system[END_REF], as well as the extension to nonlinear transport equations [START_REF] Coron | PI controllers for 1-D nonlinear transport equation[END_REF][START_REF] Trinh | Design of integral controllers for nonlinear systems governed by scalar hyperbolic partial differential equations[END_REF] have been reported. Other types of PDEs have also been studied. This includes reaction-diffusion equations [START_REF] Lhachemi | PI regulation of a reaction-diffusion equation with delayed boundary control[END_REF], wave equations used to model drilling systems [START_REF] Barreau | Practical stability analysis of a drilling pipe under friction with a PI-controller[END_REF][START_REF] Terrand-Jeanne | Regulation of inhomogeneous drilling model with a PI controller[END_REF], as well as semilinear wave equations [START_REF] Lhachemi | PI regulation control of a 1-D semilinear wave equation[END_REF]. The possible addition of an integral action to open-loop stable semigroups was investigated in [START_REF] Terrand-Jeanne | Adding integral action for open-loop exponentially stable semigroups and application to boundary control of PDE systems[END_REF].

We study in this paper the boundary PI regulation control of a reaction-diffusion equation in the presence of a state-delay in the reaction term. Since delays are ubiquitous in practical applications, the topic of boundary stabilization of PDEs in the presence of delays, either in the control input [START_REF] Krstic | Control of an unstable reaction-diffusion PDE with long input delay[END_REF][START_REF] Lhachemi | Feedback stabilization of a class of diagonal infinite-dimensional systems with delay boundary control[END_REF][START_REF] Lhachemi | An LMI condition for the robustness of constant-delay linear predictor feedback with respect to uncertain time-varying input delays[END_REF][START_REF] Nicaise | Stabilization of the wave equation with boundary or internal distributed delay[END_REF][START_REF] Prieur | Feedback stabilization of a 1D linear reaction-diffusion equation with delay boundary control[END_REF] or in the state [START_REF] Hashimoto | Stabilization of reaction diffusion equations with state delay using boundary control input[END_REF][START_REF] Kang | Boundary control of delayed ODE-heat cascade under actuator saturation[END_REF][START_REF] Lhachemi | Boundary feedback stabilization of a reaction-diffusion equation with Robin boundary conditions and state-delay[END_REF], has also attracted much attention in the recent years. However, it is worth noting that none of the aforementioned works embracing PI control design for PDEs was concerned with the possible presence of state-delays. This paper is a first step in that research direction. Specifically, the objective of this work is to extend the result reported in [START_REF] Lhachemi | Boundary feedback stabilization of a reaction-diffusion equation with Robin boundary conditions and state-delay[END_REF], which solely dealt with the boundary stabilization of a reaction-diffusion equation in the presence of a state-delay, to the PI regulation control of a Dirichlet trace. More precisely we consider the PDE: y t (t, x) = ay xx (t, x) + by(t, x) + cy(t -h(t), x), (1a) y(t, 0) = u(t), (1b) cos(θ)y(t, 1) + sin(θ)y x (t, 1) = 0, (1c) y(τ, x) = φ(τ, x), τ ∈ [-h M , 0] (1d) for t > 0 and x ∈ (0, 1). Here a > 0, b, c ∈ R with c = 0, h : R + → [h m , h M ] is continuous with 0 < h m < h M , and θ ∈ (0, π/2). The state at time t is y(t, •) : [0, 1] → R.

The control input is u(t) ∈ R and applies to the left Dirichlet trace (1b). On the right-hand side of the do-main, we consider the Robin boundary condition (1c). The initial condition is φ : [-h M , 0] × (0, 1) → R. The control objective is to design a PI controller in order to stabilize [START_REF] Barreau | Practical stability analysis of a drilling pipe under friction with a PI-controller[END_REF] while achieving the setpoint regulation control of the right Dirichlet trace z(t) = y(t, 1). In particular, denoting by r : R + → R a continuous reference signal, y(t, 1) must achieve the setpoint tracking of r(t).

The strategy for solving the above control design problem goes as follows. Inspired by [START_REF] Coron | Global steadystate controllability of one-dimensional semilinear heat equations[END_REF], a finite dimensionaltruncated model is obtained by spectral reduction. The order of the state-delayed truncated model is selected to ensure the stability of the residual infinite-dimensional dynamics. Then, inspired by [START_REF] Lhachemi | PI regulation of a reaction-diffusion equation with delayed boundary control[END_REF] but with the challenge of a state-delayed term, the truncated model is augmented with an integral component to ensure the setpoint tracking of z(t). Finally, the feedback law is obtained by pole shifting. We assess the exponential stability of the closed-loop system, as well as the setpoint regulation control of the right Dirichlet trace. In the presence of an additive boundary perturbation in the control input, we show that the closed-loop system is exponentially input-to-state stable (ISS). This objective requires to work simultaneously with the original representation of the plant (for ISS purposes w.r.t. boundary disturbances) and an homogeneous version of the PDE (to analyze the system output) while handling the state-delay for both stability and setpoint regulation assessment.

The control design strategy is introduced in Section 2.

The equilibrium conditions of the closed-loop system and the related dynamics of deviations are presented in Section 3. The stability analysis is reported in Section 4 while the reference tracking assessment is completed in Section 5. The robustness of the control strategy w.r.t. delay mismatches is studied in Section 6. Finally, numerical simulations are carried out in Section 7 while concluding remarks are formulated in Section 8.

2 Control design strategy

Spectral reduction and truncated model

Let H = L 2 (0, 1) with the inner product f, g = 1 0 f g dx. System (1) can be rewritten as

dX dt (t) = AX(t) + cX(t -h(t)), (2a) 
BX(t) = u(t), (2b) X(τ ) = Φ(τ ) = φ(τ, •), τ ∈ [-h M , 0] (2c) for t ≥ 0 with A : D(A) ⊂ H → H defined on D(A) = f ∈ H 2 (0, 1) : cos(θ)f (1) + sin(θ)f (1) = 0 , with θ ∈ (0, π/2), by Af = af + bf and the boundary opera- tor B : D(B) ⊂ H → R defined on D(B) = H 1 (0, 1) by Bf = f (0). We define the disturbance free opera- tor A 0 = A| D(A0) on D(A 0 ) = D(A) ∩ ker(B). It is well-known that A 0 generates a C 0 -semigroup. We in- troduce L ∈ L(R, H) defined for any u ∈ R by [Lu](x) = (1 -x) 2 u, x ∈ [0, 1]
. L has been selected such that its range satisfies R(L) ⊂ D(A) and BL = I R . Hence, following the terminology of [START_REF] Frances | An introduction to infinite-dimensional linear systems theory[END_REF]Sec. 3.3], the pair (A, B) defines a boundary control system with associated lifting operator L. We define A c A+cI H and A c,0 A 0 +cI H on D(A c ) = D(A) and D(A c,0 ) = D(A 0 ), respectively. From the Sturm-Liouville theory, it well known that the eigenvalues of A c,0 are simple and form a decreasing sequence (λ n ) n≥0 ∈ R N with λ n → -∞ when n → +∞. Moreover, one can select the associated eigenvectors such that (e n ) n≥0 forms a Hilbert basis of H. Using the terminology of [START_REF] Frances | An introduction to infinite-dimensional linear systems theory[END_REF]Def. 2.3.4], A c,0 is a Riesz spectral operator:

D(A c,0 ) = f ∈ L 2 (0, 1) : n≥0 |λ n | 2 | f, e n | 2 < ∞ and A c,0 f = n≥0 λ n f, e n e n for all f ∈ D(A c,0 ). Standard computations give λ n = b + c -ar 2
n and e n = 2 rn 2rn-sin(2rn) sin(r n •) with n ∈ N where r n > 0 is the unique number r ∈ (nπ, (n + 1)π) such that r cot(r) = -cot(θ). This yields λ n ∼ -an 2 π 2 and e n (1) = O(1) as n → +∞. Introducing x n (t) = X(t), e n the coefficients of projection of the system trajectory into the Hilbert basis, we have that X(t) = n≥0 x n (t)e n and X(t

) 2 = n≥0 |x n (t)| 2 .
Assuming that1 u is continuously differentiable and Φ is continuous, the mild solution X ∈ C 0 (R + ; H) of ( 2) is such that x n is continuously differentiable and (see [START_REF] Lhachemi | Boundary feedback stabilization of a reaction-diffusion equation with Robin boundary conditions and state-delay[END_REF] for details)

ẋn (t) = λ n x n (t)+c{x n (t-h(t))-x n (t)}+(a n +λ n b n )u(t) (3) with a n = A c L1, e n , b n = -L1, e n (4) 
where 1 denotes here the unit element of R. Note that due to the presence of the state-delay, there may exist delays for which certain modes x n , hence the PDE, are unstable even if λ n -c = b -ar 2 n < 0 and c < 0 provided c is large enough [START_REF] Michiels | Continuous pole placement for delay equations[END_REF]Sec. 3.3]. For a given integer N ≥ 0 selected such that λ n < 0 for all n ≥ N +1 and which will be further constrained later, we define the followings:

Y (t) = x 0 (t) . . . x N (t) ∈ R N +1 , (5a) 
Y Φ (τ ) = Φ(τ ), e 0 . . . Φ(τ ), e N ∈ R N +1 , (5b) A = diag(λ n ) 0≤n≤N ∈ R (N +1)×(N +1) , (5c) 
B = (a n + λ n b n ) 0≤n≤N ∈ R (N +1) . ( 5d 
)
Then we obtain the truncated model:

Ẏ (t) = AY (t) + c{Y (t -h(t)) -Y (t)} + Bu(t) (6a) Y (τ ) = Y Φ (τ ), τ ∈ [-h M , 0] (6b)

Addition of an integral component

The objective is now to augment the truncated model [START_REF] Santos | Boundary control with integral action for hyperbolic systems of conservation laws: Stability and experiments[END_REF] with an integral component to achieve the setpoint regulation control of the right Dirichlet trace z(t) = y(t, 1).

We first need to express the right Dirichlet trace y(t, 1) in function of the coefficients of projection x n .

Lemma 1 Let θ ∈ (0, π/2). For all f ∈ D(A c,0 ) we have f (1) = n≥0 f, e n e n [START_REF] Barreau | Practical stability analysis of a drilling pipe under friction with a PI-controller[END_REF].

The proof of this Lemma, which is omitted, essentially relies on the Riesz-spectral property of A c,0 . We cannot directly apply the above series expansion to the trajectory X of our system because, in general, X(t) / ∈ D(A c,0 ). However, if we assume that

X ∈ C 0 (R + ; D(A)) ∩ C 1 (R + ; H) is a classical solution of (2), one has W (t) = X(t) -Lu(t) ∈ D(A 0 ) = D(A c,0 ) with in particular y(t, 1) = [X(t)](1) = [W (t)](1).
Hence, introducing w n (t) = W (t), e n = x n (t)+b n u(t), we obtain that y(t, 1) = [X(t)](1) = n≥0 w n (t)e n (1) for all t ≥ 0. Since u is of class C 1 (we will actually need u of class C 2 to ensure the existence of classical solutions), we have that w n is of class C 1 and, from (3),

ẇn (t) = λ n w n (t) + c{w n (t -h(t)) -w n (t)} + a n u(t) -cb n {u(t -h(t)) -u(t)} + b n u(t) (7) 
for t ≥ h M .

Remind that our objective is to achieve the setpoint regulation control of the system output z(t) = y(t, 1). In order to introduce in a comprehensive manner the proposed integral component ζ(t) ∈ R that will be used to augment the truncated model [START_REF] Santos | Boundary control with integral action for hyperbolic systems of conservation laws: Stability and experiments[END_REF], consider first the classical integral component given by χ(t) = y(t, 1)r(t) = n≥0 w n (t)e n (1) -r(t) for t ≥ 0. Here r(t) ∈ R stands for a reference signal. Recall that the second equality holds only when considering classical solutions for (2). As the above series expansion involves all the modes of the system, and in particular the coefficients of projection w n (t) for n ≥ N + 1, the integral component χ cannot be directly included into the dynamics of the truncated model [START_REF] Santos | Boundary control with integral action for hyperbolic systems of conservation laws: Stability and experiments[END_REF]. To solve this issue, we introduce the following preliminary change of variable

ζ p (t) = χ(t) + n≥N +1 en(1)
λn {b n u(t) -w n (t)}. Note that the convergence of the series follow from λ n ∼ -an 2 π 2 and e n (1) = O(1) as n → +∞. Based on [START_REF] Hashimoto | Stabilization of reaction diffusion equations with state delay using boundary control input[END_REF] we obtain, for

t ≥ h M , ζp (t) = N n=0 x n (t)e n (1) + αu(t) -r(t) -c n≥N +1 en(1) λn {w n (t -h(t)) -w n (t)} + c n≥N +1 en(1) λn b n {u(t -h(t)) -u(t)} where α = N n=0 b n e n (1) - n≥N +1 a n λ n e n (1). ( 8 
)
We now note that the two last terms of the above identity describing the ζ p -dynamics have a null contribution at equilibrium. This observation motivates the introduction of the below ζ-dynamics. Assuming that the delay h is known (robustness w.r.t. delay mismatches will be discussed later in Section 6), we mimic the structure of the dynamics of the truncated model ( 6) by defining for t ≥ 0 the integral component ζ(t) ∈ R as follows:

ζ(t) = N n=0 x n (t)e n (1) + c{ζ(t -h(t)) -ζ(t)} (9a) + αu(t) -r(t), ζ(τ ) = ζ 0 (τ ), τ ∈ [-h M , 0] (9b)
Remark 1 The ζ-dynamics achieves the same equilibrium condition as the ζ p -dynamics. As we will show later in Section 3, the integral component [START_REF] Krstic | Control of an unstable reaction-diffusion PDE with long input delay[END_REF] ensures that the equilibirum condition (X e , ζ e ) of the forthcoming closedloop system, associated with some constant reference signal r(t) = r e , achieves the desired reference tracking for the right Dirichlet trace, i.e., X e (1) = r e .

Remark 2 Even if ( 9) has been motivated and derived by considering classical solutions of (2), the dynamics (9) actually makes sense for any mild solutions of (2).

Since ( 9) only involves the N + 1 first modes of the system, we can now augment the dynamics of the truncated model ( 6) with the ζ-dynamics as follows:

Ẏa (t) = A a Y a (t) + c{Y a (t -h(t)) -Y a (t)} (10a) + B a u(t) + Γ(t), Y a (τ ) = Y Φ,a (τ ), τ ∈ [-h M , 0] (10b) 
where

C = e 0 (1) . . . e N (1) ∈ R 1×(N +1) , Y a (t) = Y (t) ζ(t) , Y Φ,a (τ ) = Y Φ (τ ) ζ 0 (τ ) , (11a) 
A a = A 0 C 0 , B a = B α , Γ(t) = 0 -r(t)
. (11b)

Proposed control strategy

The proposed control strategy consists of a stabilizing state feedback of the truncated model [START_REF] Lamare | Control of 2×2 linear hyperbolic systems: Backstepping-based trajectory generation and PI-based tracking[END_REF]. Such a procedure is allowed by the following lemma.

Lemma 2 (A a , B a ) satisfies the Kalman condition.

Proof. We define the matrix

T = A B C α ∈ R (N +2)×(N +2) .
From [START_REF] Lhachemi | Feedback stabilization of a class of diagonal infinite-dimensional systems with delay boundary control[END_REF], the Hautus test shows that the pair (A a , B a ) satisfies the Kalman condition if an only if T is invertible and the pair (A, B) satisfies the Kalman condition. To show the former, let Y * =

x * ,n . . . x * ,N u * ∈ ker(T ). From ( 5) and ( 11) we deduce that λ n x * ,n + (a n + λ n b n )u * = 0 for all 0 ≤ n ≤ N and N n=0 x * ,n e n (1) + αu * = 0. Since λ n < 0 for all n ≥ N + 1, we define x * ,n = -an+λnbn λn u * for all n ≥ N + 1. Hence we have λ n x * ,n + (a n + λ n b n )u * = 0 for all n ≥ 0. We also define w * ,n = x * ,n + b n u * that gives λ n w * ,n + a n u * = 0 for all n ≥ 0. We infer that (w * ,n ) n and (λ n w * ,n ) n are in 2 (N), hence we can define w * = n≥0 w * ,n e n ∈ D(A c,0 ). Moreover, the latter equation shows that A c,0 w * + A c Lu * = 0. Using now the definition of α given by ( 8), we deduce that 0

= N n=0 x * ,n e n (1) + αu * = n≥0 w * ,n e n (1) = w * (1). Therefore, introducing x * = w * + Lu * ∈ D(A c ), we ob- tain that A c x * = 0 and x * (1) = w * (1) + [Lu * ](1) = 0. This shows that ax * + (b + c)x * = 0 with x * (1) = 0 and x * (1) = -cot(θ)x * (1) = 0. So, by Cauchy uniqueness, x * = 0. Since w * (0) = 0, we get 0 = x * (0) = [Lu * ](0) = u * .
We infer w * = 0 hence w * ,n = 0 for all n ≥ 0. This implies that x * ,n = w * ,n -b n u * = 0 for all n ≥ 0. We deduce that Y * = 0, which shows that T in invertible.

We now show that (A, B) satisfies the Kalman condition. In view of ( 5), since A is diagonal with simple eigenvalues, it is sufficient to show that a n + λ n b n = 0 for all n ≥ 0. From (4), using two integration by parts and the identity A c,0 e n = λ n e n , we obtain that a n + λ n b n = ae n (0). Since e n = 0 with e n (0) = 0, we obtain by Cauchy uniqueness that e n (0) = 0 hence a n + λ n b n = 0 for all n ≥ 0. Thus (A, B) satisfies the Kalman condition, which completes the proof. 2

Thus there exists K ∈ R 1×(N +2) such that A K = A a + B a K is Hurwitz with simple eigenvalues. We set for t ≥ 0

u(t) = KY a (t) + p(t) (12) 
where p is a boundary disturbance. The control [START_REF] Lhachemi | An LMI condition for the robustness of constant-delay linear predictor feedback with respect to uncertain time-varying input delays[END_REF] takes the form of a PI controller because composed of 1) a proportional feedback of the state, via Y (t), and 2) the integral component ζ(t) given by [START_REF] Krstic | Control of an unstable reaction-diffusion PDE with long input delay[END_REF]. We now need to select the integer N ≥ 0 such that the closed-loop system composed of ( 2), [START_REF] Krstic | Control of an unstable reaction-diffusion PDE with long input delay[END_REF], and [START_REF] Lhachemi | An LMI condition for the robustness of constant-delay linear predictor feedback with respect to uncertain time-varying input delays[END_REF], is exponentially input-to-state stable with respect to the boundary perturbation p and achieves the setpoint reference tracking of the system output z(t) = y(t, 1).

Well-posedness of the closed-loop system dynamics

The study of the well-posedness of the closed-loop system, which requires the introducing of the augmented state

X ζ = (X, ζ) belonging to H ζ = L 2 (0, 1) × R endowed with the inner product (f, ζ f ), (g, ζ g ) ζ = 1 0 f g dx + ζ f ζ g , easily leads to the following result. Lemma 3 Let 0 < h m < h M , h ∈ C 0 (R + ) with h m ≤ h(t) ≤ h M , Φ ∈ C 0 ([-h M , 0]; H), ζ 0 ∈ C 0 ([-h M , 0]), p ∈ C 1 (R + )
, and r ∈ C 0 (R + ). Then there exists a unique mild solution 2) and ( 9) with control input [START_REF] Lhachemi | An LMI condition for the robustness of constant-delay linear predictor feedback with respect to uncertain time-varying input delays[END_REF]. Moreover we have u, ζ ∈ C 1 (R + ).

X ζ = (X, ζ) ∈ C 0 (R + ; H ζ ) of (
To assess the setpoint regulation, we need to resort to the concept of classical solutions. The existence and uniqueness of such solutions is guaranteed by the following corollary whose proof is an immediate consequence of classical results, see, e.g., [START_REF] Frances | An introduction to infinite-dimensional linear systems theory[END_REF]Thm. 3.1.3].

Corollary 1 Let 0 < h m < h M , h ∈ C 1 (R + ) with h m ≤ h(t) ≤ h M and such that t → t -h(t) crosses 0 a finite number of times, Φ ∈ C 1 ([-h M , 0]; H), ζ 0 ∈ C 1 ([-h M , 0]), p ∈ C 2 (R + ), and r ∈ C 1 (R + ). Assume that Φ(0) ∈ D(A) so that the compatibility condition BΦ(0) = KY Φ,a (0) + p(0) (13) 
holds. Then there exists a unique classical solution 2) and ( 9) with control input [START_REF] Lhachemi | An LMI condition for the robustness of constant-delay linear predictor feedback with respect to uncertain time-varying input delays[END_REF]. Moreover we have u ∈ C 2 pw (R + ).

X ζ = (X, ζ) ∈ C 0 (R + ; D(A) × R) ∩ C 1 (R + ; H ζ ) of (
Remark 3 From (11) and because A K = A a + B a K is Hurwitz hence invertible, the last coefficient of K, that corresponds to the integral state ζ, is necessarily non zero. Hence, for any given initial condition

Φ ∈ C 1 ([-h M , 0]; H) with Φ(0) ∈ D(A) and any boundary perturbation p ∈ C 2 (R + ), one can always select the initial condition ζ 0 ∈ C 1 ([-h M , 0]
) of the integral component such that the compatibility condition (13) holds.

3 Equilibrium conditions and associated dynamics of deviations

Equilibrium conditions

Let r e , p e ∈ R be "nominal" values of the reference signal r(t) and the boundary perturbation p(t), respectively. Our first objective is to derive the equilibrium condition of the closed-loop system when setting r(t) = r e and p(t) = p e . To do so, we denote by the subscript "e" the equilibrium condition associated with the differ-

ent system signals. We define Y a,e = Y e ζ e , Y e =
x 0,e . . . x N,e , and Γ e = 0 -r e . From ( 10) and ( 12) we set Y a,e = -A -1 K (B a p e +Γ e ) and u e = KY a,e +p e which give 0 = A a Y a,e + B a u e + Γ e . From ( 5) and [START_REF] Lhachemi | Feedback stabilization of a class of diagonal infinite-dimensional systems with delay boundary control[END_REF], this implies that 0 = λ n x n,e + (a n + λ n b n )u e for all 0 ≤ n ≤ N and 0 = N n=0 x n,e e n (1) + αu e -r e . Regarding the residual dynamics given by (3) for n ≥ N + 1, we define x n,e = -an+λnbn λn u e . This yields 0 = λ n x n,e + (a n + λ n b n )u e for all n ≥ 0. We note that (x n,e ) n≥0 ∈ 2 (N) hence we can define X e = n≥0 x n,e e n ∈ H. Moreover, introducing for n ≥ 0 the quantities w n,e = x n,e + b n u e , we have for n ≥ N + 1 that w n,e = -an λn u e , showing that (w n,e ) n≥0 ∈ 2 (N) and (λ n w n,e ) n≥0 ∈ 2 (N). This allows the introduction of W e = n≥0 w n,e e n ∈ D(A 0 ) = D(A c,0 ). Moreover, from the definition of b n given by (4), we have X e = W e + Lu e ∈ D(A c ) hence BX e = u e . Furthermore, since λ n w n,e + a n u e = 0 for all n ≥ 0, we have from the definition of a n given by (4) that A c,0 W e + A c Lu e = 0 hence A c X e = 0. Using now Lemma 1, (8), and the above relations between x n,e and w n,e , we obtain from 0 = N n=0 x n,e e n (1) + αu e -r e that W e (1) = r e . Since X e ∈ D(A c ) ⊂ H 1 (0, 1), we infer that X e (1) = W e (1) + [Lu e ](1) = r e , which provides the desired reference tracking.

Dynamics of deviations

Let r e , p e ∈ R be arbitrary and consider the different equilibrium quantities defined above. We can introduce the dynamics of deviations of the system trajectory with respect to the considered equilibrium condition. These deviations are denoted by the symbol "∆". For instance, ∆X(t) stands for X(t) -X e . We obtain the following dynamics of deviation:

d(∆X) dt (t) = A∆X(t) + c∆X(t - h(t)), B∆X(t) = ∆u(t), ∆ ζ(t) = N n=0 ∆x n (t)e n (1) + c{∆ζ(t -h(t)) -∆ζ(t)} + α∆u(t) -∆r(t), ∆x n (t) = ∆X(t)
, e n and ∆w n (t) = ∆W (t), e n = ∆x n (t) + b n ∆u(t). This yields the following representation for the closed-loop system dynamics:

∆ Ẏa (t) = A K ∆Y a (t) + c{∆Y a (t -h(t)) -∆Y a (t)} + B a ∆p(t) + ∆Γ(t), (14a) ∆ ẋn (t) = λ n ∆x n (t) + c{∆x n (t -h(t)) -∆x n (t)} + (a n + λ n b n )∆u(t), n ≥ N + 1, (14b) ∆u(t) = K∆Y a (t) + ∆p(t) (14c) ∆Y a (τ ) = ∆Y Φ,a (τ ), τ ∈ [-h M , 0] (14d) ∆x n (τ ) = ∆Φ(τ ), e n , τ ∈ [-h M , 0], n ≥ 0 (14e)

Stability analysis

The main result of this section is stated as follows.

Theorem 1 Let 0 < h m < h M be arbitrarily given. Let N ≥ 0 be such that λ N +1 < -2 √ 5|c| and consider the matrices A a and B a defined by [START_REF] Lhachemi | Feedback stabilization of a class of diagonal infinite-dimensional systems with delay boundary control[END_REF]. 2) and ( 9) with control input [START_REF] Lhachemi | An LMI condition for the robustness of constant-delay linear predictor feedback with respect to uncertain time-varying input delays[END_REF] satisfies, for all t ≥ 0,

Let K ∈ R 1×(N +2) be such that A K = A a + B a K is Hurwitz with simple eigen- values µ 1 , . . . , µ N +2 ∈ C satisfying Re µ n < -3|c| for all 1 ≤ n ≤ N +2. Then, there exist constants κ, C 0 , C 1 > 0 such that, for all h ∈ C 0 (R + ) with h m ≤ h(t) ≤ h M , Φ ∈ C 0 ([-h M , 0]; H), ζ 0 ∈ C 0 ([-h M , 0]), p ∈ C 1 (R + ), and r ∈ C 0 (R + ), the mild solution X ζ = (X, ζ) ∈ C 0 (R + ; H ζ ) of (
∆X(t) + |∆ζ(t)| + |∆u(t)| ≤ C 0 e -κt sup τ ∈[-h M ,0] ( ∆Φ(τ ) + |∆ζ 0 (τ )|) (15) + C 1 sup τ ∈[0,t] e -κ(t-τ ) (|∆p(τ )| + |∆r(τ )|) .
Corollary 2 In the context of Theorem 1, assume that r(t) → r e and p(t) → p e as t → +∞. Then X(t) → X e and ζ(t) → ζ e as t → +∞ with exponential vanishing of the contribution of the initial conditions.

Remark 4

From Theorem 1, one needs to start by selecting the integer N ≥ 0 such that λ N +1 < -2 √ 5|c|. This is always possible because λ n ∼ -an 2 π 2 as n → +∞ with a > 0. Then, because of Lemma 2, the feedback gain K ∈ R 1×(N +2) can always be computed such that A K = A a + B a K is Hurwitz with arbitrary eigenvalue assignment. This allows the application of Theorem 1.

Truncated model

The design of the feedback gain K and the resulting stability properties of the truncated model (14a) rely on the following lemma whose proof is identical to [START_REF] Lhachemi | Boundary feedback stabilization of a reaction-diffusion equation with Robin boundary conditions and state-delay[END_REF]Lem. 8].

Lemma 4 Let N ≥ 1, 0 < h m < h M , A ∈ R N ×N , and c ∈ R. Assume that A is Hurwitz with simple eigenvalues µ 1 , . . . , µ N ∈ C such that Re µ n < -3|c| for all 1 ≤ n ≤ N . Then there exist σ, C 0 , C 1 > 0 such that, for any x 0 ∈ C 0 ([-h M , 0]; R N ), any h ∈ C 0 (R + ) with h m ≤ h(t) ≤ h M ,
and any q ∈ C 0 (R + ; R N ), the trajectory of

ẋ(t) = Ax(t) + c {x(t -h(t)) -x(t)} + q(t), x(τ ) = x 0 (τ ), τ ∈ [-h M , 0]
satisfies, for all t ≥ 0,

x(t) ≤ C 0 e -σt sup τ ∈[-h M ,0] x 0 (τ ) (16) 
+ C 1 sup τ ∈[0,t]
e -σ(t-τ ) q(τ ) .

From the assumptions of Thm. 1, Lemma 4 applies to the truncated model (14a) with initial condition (14d).

Residual infinite-dimensional dynamics

We now need to investigate the selection of the integer N ≥ 0 such that the residual dynamics composed of (14b) and (14e) is exponentially stable.

Lemma 5 Let 0 < h m < h M and σ, C 2 , C 3 > 0 be arbitrarily given. Let N ≥ 0 be such that λ N +1 < -2 √ 5|c|. Then, there exist constants κ ∈ (0, σ) and C 4 , C 5 > 0 such that, for all h

∈ C 0 (R + ) with h m ≤ h(t) ≤ h M , Φ ∈ C 0 ([-h M , 0]; H), ζ 0 ∈ C 0 ([-h M , 0]), p ∈ C 1 (R + ), r ∈ C 0 (R + ), and u ∈ C 1 (R + ) such that |∆u(t)| ≤ C 2 e -σt sup τ ∈[-h M ,0] ( ∆Φ(τ ) + |∆ζ 0 (τ )|) + C 3 sup τ ∈[0,t] e -σ(t-τ ) (|∆p(τ )| + |∆r(τ )|) (17)
for all t ≥ 0, the mild solution 2) and ( 9) satisfies for all t ≥ 0

X ζ = (X, ζ) ∈ C 0 (R + ; H ζ ) of (
n≥N +1 |∆x n (t)| 2 ≤ C 4 e -2κt sup τ ∈[-h M ,0] ( ∆Φ(τ ) + |∆ζ 0 (τ )|) 2 + C 5 sup τ ∈[0,t] e -2κ(t-τ ) (|∆p(τ )| + |∆r(τ )|) 2 . ( 18 
)
Remark 5 The design constraint λ N +1 < -2 √ 5|c| is the same as in [START_REF] Lhachemi | Boundary feedback stabilization of a reaction-diffusion equation with Robin boundary conditions and state-delay[END_REF]Lem. 10]. However, the proof reported therein does not apply in the presence of the boundary perturbation p. Indeed, following the lines of [15, Lem. 10], one gets an estimate similar to [START_REF] Pohjolainen | Robust multivariable PI-controller for infinite dimensional systems[END_REF] but with the occurrence of the extra term |∆ ṗ(τ )| in the term evaluating the contribution of ∆p and ∆r. We refine here the stability analysis in order to obtain the claimed estimate [START_REF] Pohjolainen | Robust multivariable PI-controller for infinite dimensional systems[END_REF] involving only ∆p, and not ∆ ṗ.

Proof. Let N ≥ 0 be such that λ N +1 < -2 √ 5|c|. We define η = -λ N +1 /2 > √ 5|c| ≥ 0, which is such that λ n ≤ λ N +1 = -2η < 0 for all n ≥ N + 1. Note that, in this proof, we always consider integers n ≥ N + 1. Let κ ∈ (0, min(η, σ)) be arbitrarily given and to be specified later. We introduce, for t ≥ 0, ∆v n (t) = ∆x n (t) -∆x n (t -h(t)), yielding ∆ ẋn (t) = λ n ∆x n (t)-c∆v n (t)+(a n +λ n b n )∆u(t) [START_REF] Prieur | Feedback stabilization of a 1D linear reaction-diffusion equation with delay boundary control[END_REF] for all t ≥ 0. We also consider the series

S x (t) = n≥N +1 |∆x n (t)| 2 , t ≥ -h M ; S v (t) = n≥N +1 |∆v n (t)| 2 , t ≥ 0 which are finite because S x (t) ≤ ∆X(t) 2 and S v (t) ≤ 2S x (t)+2S x (t -h(t))
. Finally, we introduce for any t 1 < t 2 and any real-valued and continuous function ψ the notation

I(ψ, t 1 , t 2 ) = t2 t1 e -2η(t2-τ ) |ψ(τ )| dτ . We have I(ψ, t 1 , t 2 ) ≤ 1-e -2(η-κ)(t 2 -t 1 ) 2(η-κ) sup τ ∈[t1,t2] e -2κ(t2-τ ) |ψ(τ )| and I(ψ, t 1 , t 2 ) 2 ≤ 1-e -2η(t 2 -t 1 )
2η I(ψ 2 , t 1 , t 2 ). By integrating [START_REF] Prieur | Feedback stabilization of a 1D linear reaction-diffusion equation with delay boundary control[END_REF], we obtain for t ≥ h M ∆v n (t) = e λnh(t) -1 ∆x n (t -h(t))

+ t t-h(t) e λn(t-τ ) {-c∆v n (τ ) + (a n + λ n b n )∆u(τ )} dτ hence, using λ n ≤ -2η, |∆v n (t)| ≤ |∆x n (t -h(t))| + |c|I(∆v n , t -h(t), t) + |a n |I(∆u, t -h(t), t) + |b n | λ n t t-h(t)
e λn(t-τ ) ∆u(τ ) dτ .

Since κ < η we have λ n t t-h(t) e λn(t-τ ) ∆u(τ

) dτ ≤ 2η 2η -κ sup τ ∈[t-h(t),t] e -κ(t-τ ) |∆u(τ )| because λ n ≤ -2η < -η < -κ < 0.
Combining the two latter estimates and using Young's inequality we obtain

|∆v n (t)| 2 ≤ 4|∆x n (t -h(t))| 2 + γ 1 |c| 2 I(∆v 2 n , t -h(t), t) + γ 1 |a n | 2 I(∆u 2 , t -h(t), t) + 16η 2 (2η -κ) 2 |b n | 2 sup τ ∈[t-h(t),t] e -2κ(t-τ ) |∆u(τ )| 2 for all t ≥ h M where γ 1 = 2 η (1 -e -2ηh M ). Summing for n ≥ N + 1, we obtain for t ≥ h M S v (t) ≤ 4S x (t -h(t)) + γ 2 (κ)|c| 2 sup τ ∈[t-h(t),t] e -2κ(t-τ ) S v (τ ) + γ 3 (κ) sup τ ∈[t-h(t),t] e -2κ(t-τ ) |∆u(τ )| 2 where a = A c L1, b = -L1, γ 2 (κ) = 1 η(η-κ) (1 - e -2ηh M )(1 -e -2(η-κ)h M ) and γ 3 (κ) = γ 2 (κ) a 2 + 16η 2 (2η-κ) 2 b 2 . This implies that, for all t ≥ h M , sup τ ∈[h M ,t] e 2κτ S v (τ ) ≤ 4e 2κh M sup τ ∈[0,t-hm] e 2κτ S x (τ ) (20) + γ 2 (κ)|c| 2 sup τ ∈[0,t] e 2κτ S v (τ ) + γ 3 (κ) sup τ ∈[0,t] e 2κτ |∆u(τ )| 2 .
Integrating now ( 19) on [0, t] for t ≥ 0, using again λ n ≤ -2η, and proceeding as in the previous paragraph, we infer that, for all t ≥ 0,

S x (t) ≤ 4e -2κt S x (0) + γ 4 (κ)|c| 2 sup τ ∈[0,t] e -2κ(t-τ ) S v (τ ) + γ 5 (κ) sup τ ∈[0,t] e -2κ(t-τ ) |∆u(τ )| 2 (21) 
where

γ 4 (κ) = 1 η(η-κ) and γ 5 (κ) = γ 4 (κ) a 2 + 16η 2 (2η-κ) 2 b 2 .
Combining [START_REF] Terrand-Jeanne | Adding integral action for open-loop exponentially stable semigroups and application to boundary control of PDE systems[END_REF][START_REF] Terrand-Jeanne | Regulation of inhomogeneous drilling model with a PI controller[END_REF] and noting that S x (0) ≤ ∆Φ(0) 2 , we obtain for

t ≥ h M sup τ ∈[h M ,t] e 2κτ S v (τ ) ≤ 16e 2κh M ∆Φ(0) 2 + ξ(κ) sup τ ∈[0,t] e 2κτ S v (τ ) + γ 6 (κ) sup τ ∈[0,t] e 2κτ |∆u(τ )| 2
with γ 6 (κ) = γ 3 (κ) + 4e 2κh M γ 5 (κ) and

ξ(κ) = γ 2 (κ)|c| 2 + 4e 2κh M γ 4 (κ)|c| 2 = |c| 2 η(η -κ) 4e 2κh M + (1 -e -2ηh M )(1 -e -2(η-κ)h M ) .
Recalling from the design constraint λ N +1 < -2 √ 5|c| that η > √ 5|c|, we have 5|c| 2 /η 2 < 1. Hence, a continuity argument at κ = 0 shows the existence of κ ∈ (0, min(η, σ)) such that 0 ≤ ξ(κ) < 1. We fix such a κ ∈ (0, min(η, σ)) for the rest of the proof. Since all the considered supremums are finite, we deduce from the latter estimate that, for all t ≥ h M ,

sup τ ∈[h M ,t] e 2κτ S v (τ ) ≤ 16e 2κh M 1 -ξ ∆Φ(0) 2 (22) 
+ ξ 1 -ξ sup τ ∈[0,h M ] e 2κτ S v (τ ) + γ 6 1 -ξ sup τ ∈[0,t] e 2κτ |∆u(τ )| 2
where we dropped the dependency of γ 6 , ξ on the parameter κ which is now fixed. To conclude the proof, we need to estimate the term sup

τ ∈[0,t] e 2κτ S v (τ ) for t ∈ [0, h M ].
From the definition of S v we have, for any t

∈ [0, h M ], sup τ ∈[0,t] e 2κτ S v (τ ) ≤ 4e 2κh M sup τ ∈[-h M ,t] S x (τ ). From (14b) and recalling that n ≥ N + 1 with λ n ≤ -2η < -2 √ 5|c|, we have λ n -c ≤ λ n + |c| < -(2 √ 5 -1)|c| ≤ 0 hence |∆x n (t)| ≤ |∆x n (0)| + |c| h M t 0 |∆x n (τ -h(τ ))| 2 dτ + (|a n |h M + |b n |e |c|h M ) sup τ ∈[0,t] |∆u(τ )| for all t ∈ [0, h M ]
. Using Young's inequality and summing for n ≥ N + 1, we obtain

S x (t) ≤ 3S x (0) + 3|c| 2 h 2 M sup τ ∈[-h M ,t-hm] S x (τ ) + 6( a 2 h 2 M + b 2 e 2|c|h M ) sup τ ∈[0,t] |∆u(τ )| 2 for all t ∈ [0, h M ]. This implies, for all t ∈ [0, h M ], sup τ ∈[0,t] S x (τ ) ≤ 3(1 + |c| 2 h 2 M ) sup τ ∈[-h M ,0] ∆Φ(τ ) 2 + 3|c| 2 h 2 M sup τ ∈[0,max(t-hm,0)] S x (τ ) + 6( a 2 h 2 M + b 2 e 2|c|h M ) sup τ ∈[0,t] |∆u(τ )| 2 .
By a simple induction argument (since h m > 0), we obtain the existence of a constant γ 7 > 0 such that, for all

t ∈ [0, h M ], sup τ ∈[0,t] S x (τ ) ≤ γ 7 sup τ ∈[-h M ,0] ∆Φ(τ ) 2 + γ 7 sup τ ∈[0,t] |∆u(τ )| 2 .
We deduce (see beginning of this paragraph) the existence of a constant γ 8 > 0 such that, for all t ∈ [0,

h M ], sup τ ∈[0,t] e 2κτ S v (τ ) ≤ γ 8 sup τ ∈[-h M ,0] ∆Φ(τ ) 2 + γ 8 sup τ ∈[0,t] e 2κτ |∆u(τ )| 2 .
Combining this latter estimate with [START_REF] Trinh | Design of integral controllers for nonlinear systems governed by scalar hyperbolic partial differential equations[END_REF], we infer the existence of a constant γ 9 > 0 such that, for all t ≥ 0,

sup τ ∈[0,t] e 2κτ S v (τ ) ≤ γ 9 sup τ ∈[-h M ,0] ∆Φ(τ ) 2 (23) 
+ γ 9 sup τ ∈[0,t] e 2κτ |∆u(τ )| 2 .
Substituting this estimate into [START_REF] Terrand-Jeanne | Regulation of inhomogeneous drilling model with a PI controller[END_REF], we obtain the existence of a constant γ 10 > 0 such that, for all

t ≥ 0, S x (t) ≤ γ 10 e -2κt sup τ ∈[-h M ,0] ∆Φ(τ ) 2 + γ 10 sup τ ∈[0,t] e -2κ(t-τ ) |∆u(τ )| 2 .
The claimed estimate [START_REF] Pohjolainen | Robust multivariable PI-controller for infinite dimensional systems[END_REF] now directly follows from the assumption that u satisfies ( 17) and the fact that 0 < κ < σ. 2

Completion of the proof of Theorem 1

By applying first the result of Subsection 4.1 and then the result of Subsection 4.2, the claimed estimate [START_REF] Lhachemi | Boundary feedback stabilization of a reaction-diffusion equation with Robin boundary conditions and state-delay[END_REF] 

follows from |∆ζ(t)| ≤ ∆Y a (t) , ∆X(t) ≤ ∆Y a (t) + n≥N +1 |∆x n (t)| 2 , and (14c) 
. This completes the proof of Theorem 1.

Setpoint regulation assessment

We now address the setpoint regulation of the closedloop system for classical solutions.

Theorem 2 Under the assumptions of Theorem 1, and for the same constant κ > 0, there exist constants C 2 , C 3 > 0 such that, for all h ∈ C 1 (R + ) with h m ≤ h(t) ≤ h M and so that t → t -h(t) crosses 0 a finite number of times,

Φ ∈ C 1 ([-h M , 0]; H) with Φ(0) ∈ D(A), ζ 0 ∈ C 1 ([-h M , 0]), p ∈ C 2 (R + )
, and r ∈ C 1 (R + ), all such that the compatibility condition (13) holds, we have, for all t ≥ 0,

|[X(t)](1) -r(t)| ≤ (24) 
C 2 e -κt sup

τ ∈[-h M ,0] ( ∆Φ(τ ) + |∆ζ 0 (τ )|) + A c ∆Φ(0) + C 3 sup τ ∈[0,t] e -κ(t-τ ) (|∆p(τ )| + |∆ ṗ(τ )| + |∆r(τ )|)
Corollary 3 In the context of Theorem 2, assume that r(t) → r e , p(t) → p e , and ṗ(t) → 0 as t → +∞. Then [X(t)](1) → r e as t → +∞ with exponential vanishing of the contribution of the initial conditions.

Proof of Theorem 2. Recalling that, for classical solutions, W (t) = X(t) -Lu(t) ∈ D(A c,0 ), and since < ∞. From Theorem 1 and since ∆W (t) ≤ ∆X(t) + L |∆u(t)|, we only need to study the term n≥M +1 |λ n ||∆w n (t)| 2 to conclude that (24) holds. In the sequel we always consider integers n ≥ M + 1. From (14b) and recalling that ∆w n (t) = ∆x n (t) + b n ∆u(t), we have for t ≥ 0 that ∆ ẇn (t) = λ n ∆w n (t)-c∆v n (t)+a n ∆u(t)+b n ∆ u(t) with ∆v n (t) = ∆x n (t)-∆x n (t-h(t)). Then we obtain after integration on [0, t] that

|λ n ||∆w n (t)| ≤ e λnt |λ n ||∆w n (0)| + |c|J 1,n (t) + |a n |J 2,n (t) + |b n |J 3,n (t) for all t ≥ 0 and n ≥ M +1 with J 1,n (t) = |λ n | t 0 e λn(t-τ ) |∆v n (τ )| dτ , J 2,n (t) = |λ n | t 0 e λn(t-τ ) |∆u(τ )| dτ , and J 3,n (t) = |λ n | t 0 e λn(t-τ ) |∆ u(τ )| dτ . Using λ n ≤ -(2κ + δ) and |λ n | ≤ |λ n | 2 for all n ≥ M + 1, we ob- tain that J 1,n (t) ≤ t 0 e -(2κ+δ)(t-τ ) |∆v n (τ )| 2 dτ , J 2,n (t) ≤ 2 sup τ ∈[0,t] e -κ(t-τ ) |∆u(τ )|, and J 3,n (t) ≤ 2 sup τ ∈[0,t] e -κ(t-τ ) |∆ u(τ )|.
Combining the four latter inequalities, using next Young's inequality, and finally summing for n ≥ M + 1, we obtain that

n≥M +1 |λ n ||∆w n (t)| 2 ≤ 4e -2κt n≥M +1 |λ n ||∆w n (0)| 2 + 4|c| 2 t 0 e -(2κ+δ)(t-τ ) n≥M +1 |∆v n (τ )| 2 dτ + 16 a 2 sup τ ∈[0,t] e -2κ(t-τ ) |∆u(τ )| 2 + 16 b 2 sup τ ∈[0,t] e -2κ(t-τ ) |∆ u(τ )| 2 for all t ≥ 0. Since M ≥ N , we have n≥M +1 |∆v n (τ )| 2 ≤ S v (τ )
. Hence, we obtain from [START_REF] Xu | A robust PI-controller for infinite-dimensional systems[END_REF] 

that t 0 e -(2κ+δ)(t-τ ) n≥M +1 |∆v n (τ )| 2 dτ ≤ γ 9 δ e -2κt sup τ ∈[-h M ,0] ∆Φ(τ ) 2 + γ 9 δ sup τ ∈[0,t] e -2κ(t-τ ) |∆u(τ )| 2
The two latter inequalities imply the existence of a con-stant γ 11 > 0 such that

1 γ 11 n≥M +1 |λ n ||∆w n (t)| 2 ≤ (25) e -2κt n≥M +1 |λ n ||∆w n (0)| 2 + e -2κt sup τ ∈[-h M ,0] ∆Φ(τ ) 2 + sup τ ∈[0,t] e -2κ(t-τ ) |∆u(τ )| 2 + sup τ ∈[0,t] e -2κ(t-τ ) |∆ u(τ )| 2
for all t ≥ 0. Since ∆W (0) ∈ D(A c,0 ) and

|λ n | ≤ |λ n | 2 for all n ≥ M +1, we note that n≥M +1 |λ n ||∆w n (0)| 2 ≤ A c,0 ∆W (0) 2 ≤ 2 A c ∆X(0) 2 + 2 A c L 2 |∆u(0)| 2 with ∆X(0) = ∆Φ(0) and |∆u(0)| ≤ K ∆Y a (0) + |∆p(0)| ≤ K ( ∆Φ(0) + |∆ζ 0 (0)|) + |∆p(0)|.
To conclude the proof, it is sufficient to study the two last terms of (25). The estimation of the term involving ∆u immediately follows from [START_REF] Lhachemi | Boundary feedback stabilization of a reaction-diffusion equation with Robin boundary conditions and state-delay[END_REF]. Hence, only the term involving ∆ u needs to be investigated. From (14a) and (14c), we have, for all t ≥ 0, |∆ u(t

)| ≤ K ∆ Ẏa (t) + |∆ ṗ(t)| with ∆ Ẏa (t) ≤ A K -cI ∆Y a (t) + |c| ∆Y a (t - h(t)) + B a |∆p(t)| + |∆r(t)|.
The claimed conclusion now follows from ∆Y a (τ ) ≤ ∆X(τ ) + |∆ζ(τ )| for τ ≥ -h M and ( 15). 2 Remark 6 In the context of Theorem 2 dealing with classical solutions, the stability result stated by Theorem 1 can be strengthen as follows. First, it can be shown similarly to [START_REF] Prieur | Feedback stabilization of a 1D linear reaction-diffusion equation with delay boundary control[END_REF]Eq. 42 , and hence ∆X(t) H 1 (0,1) , is upper bounded by a term similar (i.e., with different constants C i ) to the righthand side of [START_REF] Xu | Multivariable boundary PI control and regulation of a fluid flow system[END_REF]. If we further make the assumptions of Corollary 3, we obtain that X(t) converges in H 1 (0, 1) norm and hence, by the continuous embedding H 1 (0, 1) ⊂ C 0 ([0, 1]), in L ∞ norm to X e when t → +∞.

] that f 2 = -cot(θ)|f (1)| 2 + b + c a f 2 - 1 a n≥0 λ n | f,

Robustness with respect to delay mismatches

In the previous sections, we have assumed the perfect knowledge of the state-delay h. This was used to build the dynamics of the integral component ζ given by [START_REF] Krstic | Control of an unstable reaction-diffusion PDE with long input delay[END_REF]. In this section, we discuss the robustness of the proposed control strategy with respect to delay mismatches. Assume that we dispose of an estimate ĥ of the actual delay h such that | ĥ -h| ≤ δ for some constant δ > 0. In this case, we replace the integral component ζ, originally defined by [START_REF] Krstic | Control of an unstable reaction-diffusion PDE with long input delay[END_REF], by the following dynamics:

ζ(t) = N n=0
x n (t)e n (1) + c{ζ(t -ĥ(t)) -ζ(t)} (26a)

+ αu(t) -r(t), (26b) ζ(τ ) = ζ 0 (τ ), τ ∈ [-h M , 0] (26c) 
Assuming that ĥ satisfies the same assumptions as h, the only difference comparing to the previous developments occurs in the study of the truncated model. More precisely, the closed-loop truncated model, originally given by (14a) and (14d), becomes:

∆ Ẏa (t) = A K ∆Y a (t) + c{∆Y a (t -h(t)) -∆Y a (t)} + E c {∆Y a (t -ĥ(t)) -∆Y a (t -h(t))} + B a ∆p(t) + ∆Γ(t) (27a) ∆Y a (τ ) = ∆Y Φ,a (τ ), τ ∈ [-h M , 0] (27b) 
with E c = diag(0, . . . , 0, c) ∈ R (N +2)×(N +2) . Provided a suitable choice of the feeback gain K, the existence of a maximal delay mismatch δ > 0 such that ( 27) is exponentially ISS with respect to the exogenous signals ∆p and ∆r follows from the following lemma.

Lemma 6 Let N ≥ 1, 0 < h m < h M , A, E ∈ R N ×N and c ∈ R. Assume that A is Hurwitz with simple eigen- values µ 1 , . . . , µ N ∈ C such that Re µ n < -3|c| for all 1 ≤ n ≤ N . Then there exist constants δ, σ, C 6 , C 7 > 0 such that, for any x 0 ∈ C 0 ([-h M , 0]; R N ), any h i ∈ C 0 (R + ) with i ∈ {1, 2, 3}, h m ≤ h i (t) ≤ h M ,
and |h 2h 3 | ≤ δ, and any q ∈ C 0 (R + ; R N ), the trajectory of

ẋ(t) = Ax(t) + c {x(t -h 1 (t)) -x(t)} (28a) + E {x(t -h 2 (t)) -x(t -h 3 (t))} + q(t), x(τ ) = x 0 (τ ), τ ∈ [-h M , 0] (28b) satisfies the estimate x(t) ≤ C 6 e -σt sup τ ∈[-h M ,0] x 0 (τ ) + C 7 τ ∈[0,t]
e -σ(t-τ ) q(τ ) for all t ≥ 0.

Hence, proceeding exactly as in the previous sections, we obtain the existence of a constant δ > 0 such that, when replacing the definition (9) of the integral component ζ by ( 26), the conclusions of Theorems 1 and 2 still hold true 2 for any estimated state-delay ĥ satisfying the same assumptions as h and with | ĥ -h| ≤ δ.

Proof. Introducing v 1 (t) = x(t) -x(t -h 1 (t)), v 2 (t) = x(t -h 2 (t)) -x(t -h 3 (t))
, and q(t) = Ev 2 (t) + q(t), we obtain from Lemma 4 that (16) holds. Since A is Hurwitz, we can assume that the constant σ > 0 involved

2 With constants Ci of the estimates ( 15) and ( 24) that are independent of a particularly selected ĥ.

in the latter equation ( 16) is further selected such that e At ≤ M e -σt for all t ≥ 0 and for some constant e στ q(τ ) for all t ≥ h M . From ( 16), the identity v 1 (t) = x(t) -x(t -h 1 (t)), and based on a small gain argument, we can fix δ > 0 small enough (independently of x 0 , h i , and q) to obtain the existence of a constant

γ 12 > 0 such that sup τ ∈[h M ,t] e στ v 2 (τ ) ≤ γ 12 sup τ ∈[-h M ,0] x 0 (τ ) + γ 12 sup τ ∈[0,h M ] e στ v 2 (τ ) + γ 12 sup τ ∈[0,t] e στ q(τ ) for all t ≥ h M . Recalling that v 2 (t) = x(t -h 2 (t)) -x(t -h 3 (t)), one can estimate for t ∈ [0, h M ] the term sup τ ∈[0,t] e στ v 2 ( 
τ ) from (28) and the use of Grönwall's inequality. Combining with the latter estimate, we obtain the existence of a constant γ 13 > 0 such that sup τ ∈[0,t] e στ v 2 (τ ) ≤ γ 13 sup τ ∈[-h M ,0] x 0 (τ ) + γ 13 sup τ ∈[0,t] e στ q(τ ) for all t ≥ 0. Since q(t) = Ev 2 (t) + q(t), the substitution of the latter estimate into (16) completes the proof. 2

Simulation results

We set a = 0.2, b = 2, c = 1, and θ = π/3. The first eigenvalues of A c,0 are approximately given by λ 0 ≈ 2.301, λ 1 ≈ -1.668 > -2 √ 5|c|, and λ 2 ≈ -9.567 < -2 √ 5|c|. Hence we set N = 1. The feedback gain K ∈ R 1×3 is computed such that A K = A a + B a K is Hurwitz with simple eigenvalues µ 1 = -4, µ 2 = -5, µ 3 = -6, selected so that µ n < -3|c|. The initial conditions of the plant and the integral component are set as φ(τ, x) = 10 cos(3πτ )x(1 -x) 2 and ζ 0 (τ ) = cos(3πτ )ζ a where ζ a ∈ R is selected such that (13) holds. The numerical scheme consists of the modal approximation of the reaction-diffusion equation using its first 40 modes.

The behavior of the closed-loop system composed of (2), [START_REF] Krstic | Control of an unstable reaction-diffusion PDE with long input delay[END_REF], and ( 12) is illustrated for the time varying delay h(t) = 1 + 1 2 sin(5πt + π/4) and the boundary perturbation p(t) as shown in Fig. 1(d). The results are depicted in Fig. 1. During the 10 first seconds we observe that the control law achieves the stabilization of the closed-loop system: both the state and the regulated output converge to zero in spite of a constant perturbation p(t) = 1. Then, in order to evaluate the setpoint tracking capabilities of the system ouput (see Thm. 2), the reference signal is set as r(t) = 5 for t > 20 s after an oscillatory transient. In conformity with the tracking estimate [START_REF] Xu | Multivariable boundary PI control and regulation of a fluid flow system[END_REF], we observe that the control strategy ensures the setpoint tracking of the reference signal r(t) by the right Dirichlet trace y(t, 1). Around t = 30 s, the boundary perturbation p(t) increases to reach (approximately) the value of 25 and then decreases to converge to the value of 6. It is seen that the impact of this perturbation on both the state trajectory and the regulated output are successfully eliminated due to the presence of the integral component.

Finally, Fig. 2 illustrates the impact of delay mismatches on the closed-loop system performance. Here we set ĥ = 1 while considering increasing values for the actual delay h ∈ {1, 2, 3, 4}. The boundary perturbation is set as p = 1. As expected, we observe a smooth degradation of the performances of the resulting closed-loop system.

Conclusion

This paper has investigated the boundary PI regulation control of a reaction-diffusion equation in the presence of a state-delay in the reaction term. Our modal-based approach ensures the stability of the resulting closedloop system as well as the setpoint regulation of the right Dirichlet trace. Future research directions may be concerned with extensions to the PI regulation control of either linear wave equations or semilinear heat equations in the presence of a state-delay.
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  e = X e -Lu e ∈ D(A c,0 ) with X e (1) = W e (1) = r e , we have |[X(t)](1) -r(t)| ≤ |[W (t)](1) -r e | + |∆r(t)| ≤ |[∆W (t)](1)| + |∆r(t)|. To obtain (24), we only need to investigate the term |[∆W (t)](1)|. To do so, since λ n ∼ -an 2 π 2 as n → +∞, let δ > 0 and an integer M ≥ N be such that λ n ≤ -(2κ + δ) < 0 and |λ n | ≤ |λ n | 2 for all n ≥ M + 1. Then we have |[∆W (t)](1)| = n≥0 ∆w n (t)e n (1) ≤ M n=0 |e n (1)| 2 ∆W (t) + n≥M +1 |en(1)| 2 |λn| n≥M +1 |λ n ||∆w n (t)| 2 where it can be seen from λ n ∼ -an 2 π 2 and e n (1) = O(1) as n → +∞ that n≥M +1 |en(1)| 2 |λn|
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 1 Fig. 1. Time evolution of the closed-loop system
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 2 Fig. 2. Impact of delay mismatches

  e n | 2 for any f ∈ D(A c,0 ).

	Considering classical solutions, we
	can apply this identity to ∆W (t) ∈ D(A c,0 ) where
	we note that estimates of ∆W (t) and |[∆W (t)](1)|
	are provided by Theorem 1 and Theorem 2, re-
	spectively, while the series	n≥0 |λ n ||∆w n (t)| 2 has
	been evaluated in the proof of Theorem 2. Since
	∆X(t) = ∆W (t) + L∆u(t) ∈ D(A c ) ⊂ H 2 (0, 1) with [L∆u(t)] = 2 √ 3 |∆u(t)|, we infer that [∆X(t)]

  M ≥ 1. Integrating (28) over either [t -h 3 (t), t -h 2 (t)] if h 3 (t) ≥ h 2 (t) or [t -h 2 (t), t -h 3 (t)] if h 2 (t) ≥ h 3 (t) for t ≥ h M ,and combining these estimates, we obtain thatsup τ ∈[h M ,t] e στ v 2 (τ ) ≤ {e δ A -1}e σh M sup

			e στ x(τ )
	τ ∈[0,t]
	+ δM |c|e σh M sup	e στ v 1 (τ )
	τ ∈[0,t]	
	+ δM E e σh M sup	e στ v 2 (τ )
	τ ∈[0,t]
	+ δM e σh M sup	
	τ ∈[0,t]	

Such a regularity for the forthcoming control law will be assessed in the sequel.
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