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Abstract

This paper is concerned with the regulation control of a one-dimensional reaction-diffusion equation in the presence of a
state-delay in the reaction term. The objective is to achieve the PI regulation of the right Dirichlet trace with a command
selected as the left Dirichlet trace. The control design strategy consists of the design of a PI controller on a finite dimensional
truncated model obtained by spectral reduction. By an adequate selection of the number of modes of the original infinite-
dimensional system, we show that the proposed control design procedure achieves both the exponential stabilization of the
original infinite-dimensional system as well as the setpoint regulation of the right Dirichlet trace.

Key words: PI regulation; Reaction-diffusion equation; State-delay; Partial differential equation; Input-to-state stability.

1 Introduction

The proportional integral (PI) regulation control of
infinite-dimensional systems, and in particular of par-
tial differential equations (PDEs), has attracted much
attention in the recent years. Early works dealt with
bounded control operators [18] while the extension to
the case of unbounded control operators was reported
in [23]. The last decade has seen an intensification of the
efforts in this research direction. PI boundary control
of linear hyperbolic systems [2,6,10,24], as well as the
extension to nonlinear transport equations [3,22] have
been reported. Other types of PDEs have also been
studied. This includes reaction-diffusion equations [14],
wave equations used to model drilling systems [1,21],
as well as semilinear wave equations [13]. The possi-
ble addition of an integral action to open-loop stable
semigroups was investigated in [20].
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We study in this paper the boundary PI regulation con-
trol of a reaction-diffusion equation in the presence of a
state-delay in the reaction term. Since delays are ubiqui-
tous in practical applications, the topic of boundary sta-
bilization of PDEs in the presence of delays, either in the
control input [9,11,12,17,19] or in the state [7,8,15], has
also attracted much attention in the recent years. How-
ever, it is worth noting that none of the aforementioned
works embracing PI control design for PDEs was con-
cerned with the possible presence of state-delays. This
paper is a first step in that research direction. Specifi-
cally, the objective of this work is to extend the result
reported in [15], which solely dealt with the boundary
stabilization of a reaction-diffusion equation in the pres-
ence of a state-delay, to the PI regulation control of a
Dirichlet trace. More precisely we consider the PDE:

yt(t, x) = ayxx(t, x) + by(t, x) + cy(t− h(t), x), (1a)

y(t, 0) = u(t), (1b)

cos(θ)y(t, 1) + sin(θ)yx(t, 1) = 0, (1c)

y(τ, x) = φ(τ, x), τ ∈ [−hM , 0] (1d)

for t > 0 and x ∈ (0, 1). Here a > 0, b, c ∈ R with c 6= 0,
h : R+ → [hm, hM ] is continuous with 0 < hm < hM ,
and θ ∈ (0, π/2). The state at time t is y(t, ·) : [0, 1]→ R.
The control input is u(t) ∈ R and applies to the left
Dirichlet trace (1b). On the right-hand side of the do-
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main, we consider the Robin boundary condition (1c).
The initial condition is φ : [−hM , 0] × (0, 1) → R. The
control objective is to design a PI controller in order to
stabilize (1) while achieving the setpoint regulation con-
trol of the right Dirichlet trace z(t) = y(t, 1). In partic-
ular, denoting by r : R+ → R a continuous reference
signal, y(t, 1) must achieve the setpoint tracking of r(t).

The strategy for solving the above control design prob-
lem goes as follows. Inspired by [4], a finite dimensional-
truncated model is obtained by spectral reduction. The
order of the state-delayed truncated model is selected to
ensure the stability of the residual infinite-dimensional
dynamics. Then, inspired by [14] but with the challenge
of a state-delayed term, the truncated model is aug-
mented with an integral component to ensure the set-
point tracking of z(t). Finally, the feedback law is ob-
tained by pole shifting. We assess the exponential stabil-
ity of the closed-loop system, as well as the setpoint reg-
ulation control of the right Dirichlet trace. In the pres-
ence of an additive boundary perturbation in the control
input, we show that the closed-loop system is exponen-
tially input-to-state stable (ISS). This objective requires
to work simultaneously with the original representation
of the plant (for ISS purposes w.r.t. boundary distur-
bances) and an homogeneous version of the PDE (to an-
alyze the system output) while handling the state-delay
for both stability and setpoint regulation assessment.

The control design strategy is introduced in Section 2.
The equilibrium conditions of the closed-loop system
and the related dynamics of deviations are presented in
Section 3. The stability analysis is reported in Section 4
while the reference tracking assessment is completed in
Section 5. The robustness of the control strategy w.r.t.
delay mismatches is studied in Section 6. Finally, nu-
merical simulations are carried out in Section 7 while
concluding remarks are formulated in Section 8.

2 Control design strategy

2.1 Spectral reduction and truncated model

Let H = L2(0, 1) with the inner product 〈f, g〉 =∫ 1

0
fg dx. System (1) can be rewritten as

dX

dt
(t) = AX(t) + cX(t− h(t)), (2a)

BX(t) = u(t), (2b)

X(τ) = Φ(τ) = φ(τ, ·), τ ∈ [−hM , 0] (2c)

for t ≥ 0 with A : D(A) ⊂ H → H defined on D(A) ={
f ∈ H2(0, 1) : cos(θ)f(1) + sin(θ)f ′(1) = 0

}
, with θ ∈

(0, π/2), by Af = af ′′ + bf and the boundary opera-
tor B : D(B) ⊂ H → R defined on D(B) = H1(0, 1)
by Bf = f(0). We define the disturbance free opera-
tor A0 = A|D(A0) on D(A0) = D(A) ∩ ker(B). It is

well-known that A0 generates a C0-semigroup. We in-
troduce L ∈ L(R,H) defined for any u ∈ R by [Lu](x) =
(1 − x)2u, x ∈ [0, 1]. L has been selected such that its
range satisfies R(L) ⊂ D(A) and BL = IR. Hence, fol-
lowing the terminology of [5, Sec. 3.3], the pair (A,B)
defines a boundary control system with associated lifting
operatorL. We defineAc , A+cIH andAc,0 , A0+cIH
on D(Ac) = D(A) and D(Ac,0) = D(A0), respectively.
From the Sturm-Liouville theory, it well known that the
eigenvalues of Ac,0 are simple and form a decreasing se-
quence (λn)n≥0 ∈ RN with λn → −∞ when n → +∞.
Moreover, one can select the associated eigenvectors such
that (en)n≥0 forms a Hilbert basis ofH. Using the termi-
nology of [5, Def. 2.3.4],Ac,0 is a Riesz spectral operator:

D(Ac,0) =
{
f ∈ L2(0, 1) :

∑
n≥0 |λn|2| 〈f, en〉 |2 <∞

}
and Ac,0f =

∑
n≥0 λn 〈f, en〉 en for all f ∈ D(Ac,0).

Standard computations give λn = b+ c− ar2
n and en =

2
√

rn
2rn−sin(2rn) sin(rn·) with n ∈ N where rn > 0 is the

unique number r ∈ (nπ, (n + 1)π) such that r cot(r) =
− cot(θ). This yields λn ∼ −an2π2 and en(1) = O(1)
as n → +∞. Introducing xn(t) = 〈X(t), en〉 the coef-
ficients of projection of the system trajectory into the
Hilbert basis, we have that X(t) =

∑
n≥0 xn(t)en and

‖X(t)‖2 =
∑
n≥0 |xn(t)|2. Assuming that 1 u is contin-

uously differentiable and Φ is continuous, the mild solu-
tionX ∈ C0(R+;H) of (2) is such that xn is continuously
differentiable and (see [15] for details)

ẋn(t) = λnxn(t)+c{xn(t−h(t))−xn(t)}+(an+λnbn)u(t)
(3)

with
an = 〈AcL1, en〉 , bn = −〈L1, en〉 (4)

where 1 denotes here the unit element of R. Note that
due to the presence of the state-delay, there may exist
delays for which certain modes xn, hence the PDE, are
unstable even if λn−c = b−ar2

n < 0 and c < 0 provided
c is large enough [16, Sec. 3.3]. For a given integer N ≥ 0
selected such that λn < 0 for all n ≥ N+1 and which will
be further constrained later, we define the followings:

Y (t) =
[
x0(t) . . . xN (t)

]>
∈ RN+1, (5a)

YΦ(τ) =
[
〈Φ(τ), e0〉 . . . 〈Φ(τ), eN 〉

]>
∈ RN+1, (5b)

A = diag(λn)0≤n≤N ∈ R(N+1)×(N+1), (5c)

B = (an + λnbn)0≤n≤N ∈ R(N+1). (5d)

Then we obtain the truncated model:

Ẏ (t) = AY (t) + c{Y (t− h(t))− Y (t)}+Bu(t) (6a)

Y (τ) = YΦ(τ), τ ∈ [−hM , 0] (6b)

1 Such a regularity for the forthcoming control law will be
assessed in the sequel.
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2.2 Addition of an integral component

The objective is now to augment the truncated model (6)
with an integral component to achieve the setpoint reg-
ulation control of the right Dirichlet trace z(t) = y(t, 1).

We first need to express the right Dirichlet trace y(t, 1)
in function of the coefficients of projection xn.

Lemma 1 Let θ ∈ (0, π/2). For all f ∈ D(Ac,0) we have
f(1) =

∑
n≥0 〈f, en〉 en(1).

The proof of this Lemma, which is omitted, essen-
tially relies on the Riesz-spectral property of Ac,0.
We cannot directly apply the above series expansion
to the trajectory X of our system because, in gen-
eral, X(t) /∈ D(Ac,0). However, if we assume that
X ∈ C0(R+;D(A))∩C1(R+;H) is a classical solution of
(2), one has W (t) = X(t) − Lu(t) ∈ D(A0) = D(Ac,0)
with in particular y(t, 1) = [X(t)](1) = [W (t)](1).
Hence, introducing wn(t) = 〈W (t), en〉 = xn(t)+bnu(t),
we obtain that y(t, 1) = [X(t)](1) =

∑
n≥0 wn(t)en(1)

for all t ≥ 0. Since u is of class C1 (we will actually
need u of class C2 to ensure the existence of classical
solutions), we have that wn is of class C1 and, from (3),

ẇn(t) = λnwn(t) + c{wn(t− h(t))− wn(t)}+ anu(t)

− cbn{u(t− h(t))− u(t)}+ bnu̇(t) (7)

for t ≥ hM .

Remind that our objective is to achieve the setpoint reg-
ulation control of the system output z(t) = y(t, 1). In
order to introduce in a comprehensive manner the pro-
posed integral component ζ(t) ∈ R that will be used
to augment the truncated model (6), consider first the
classical integral component given by χ̇(t) = y(t, 1) −
r(t) =

∑
n≥0 wn(t)en(1) − r(t) for t ≥ 0. Here r(t) ∈ R

stands for a reference signal. Recall that the second
equality holds only when considering classical solutions
for (2). As the above series expansion involves all the
modes of the system, and in particular the coefficients
of projection wn(t) for n ≥ N + 1, the integral com-
ponent χ cannot be directly included into the dynam-
ics of the truncated model (6). To solve this issue, we
introduce the following preliminary change of variable

ζp(t) = χ(t) +
∑
n≥N+1

en(1)
λn
{bnu(t) − wn(t)}. Note

that the convergence of the series follow from λn ∼
−an2π2 and en(1) = O(1) as n → +∞. Based on (7)

we obtain, for t ≥ hM , ζ̇p(t) =
∑N
n=0 xn(t)en(1) +

αu(t)− r(t)− c
∑
n≥N+1

en(1)
λn
{wn(t− h(t))−wn(t)}+

c
∑
n≥N+1

en(1)
λn

bn{u(t− h(t))− u(t)} where

α =

N∑
n=0

bnen(1)−
∑

n≥N+1

an
λn
en(1). (8)

We now note that the two last terms of the above iden-
tity describing the ζp-dynamics have a null contribution
at equilibrium. This observation motivates the introduc-
tion of the below ζ-dynamics. Assuming that the delay
h is known (robustness w.r.t. delay mismatches will be
discussed later in Section 6), we mimic the structure of
the dynamics of the truncated model (6) by defining for
t ≥ 0 the integral component ζ(t) ∈ R as follows:

ζ̇(t) =

N∑
n=0

xn(t)en(1) + c{ζ(t− h(t))− ζ(t)} (9a)

+ αu(t)− r(t),
ζ(τ) = ζ0(τ), τ ∈ [−hM , 0] (9b)

Remark 1 The ζ-dynamics achieves the same equilib-
rium condition as the ζp-dynamics. As we will show later
in Section 3, the integral component (9) ensures that the
equilibirum condition (Xe, ζe) of the forthcoming closed-
loop system, associated with some constant reference sig-
nal r(t) = re, achieves the desired reference tracking for
the right Dirichlet trace, i.e., Xe(1) = re.

Remark 2 Even if (9) has been motivated and derived
by considering classical solutions of (2), the dynamics
(9) actually makes sense for any mild solutions of (2).

Since (9) only involves the N + 1 first modes of the sys-
tem, we can now augment the dynamics of the truncated
model (6) with the ζ-dynamics as follows:

Ẏa(t) = AaYa(t) + c{Ya(t− h(t))− Ya(t)} (10a)

+Bau(t) + Γ(t),

Ya(τ) = YΦ,a(τ), τ ∈ [−hM , 0] (10b)

where C =
[
e0(1) . . . eN (1)

]
∈ R1×(N+1),

Ya(t) =

[
Y (t)

ζ(t)

]
, YΦ,a(τ) =

[
YΦ(τ)

ζ0(τ)

]
, (11a)

Aa =

[
A 0

C 0

]
, Ba =

[
B

α

]
, Γ(t) =

[
0

−r(t)

]
. (11b)

2.3 Proposed control strategy

The proposed control strategy consists of a stabilizing
state feedback of the truncated model (10). Such a pro-
cedure is allowed by the following lemma.

Lemma 2 (Aa, Ba) satisfies the Kalman condition.

Proof.We define the matrix T =

[
A B

C α

]
∈ R(N+2)×(N+2).

From (11), the Hautus test shows that the pair
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(Aa, Ba) satisfies the Kalman condition if an only
if T is invertible and the pair (A,B) satisfies the
Kalman condition. To show the former, let Y∗ =[
x∗,n . . . x∗,N u∗

]>
∈ ker(T ). From (5) and (11) we de-

duce that λnx∗,n + (an +λnbn)u∗ = 0 for all 0 ≤ n ≤ N
and

∑N
n=0 x∗,nen(1) + αu∗ = 0. Since λn < 0 for

all n ≥ N + 1, we define x∗,n = −an+λnbn
λn

u∗ for all

n ≥ N + 1. Hence we have λnx∗,n + (an + λnbn)u∗ = 0
for all n ≥ 0. We also define w∗,n = x∗,n + bnu∗ that
gives λnw∗,n + anu∗ = 0 for all n ≥ 0. We infer that
(w∗,n)n and (λnw∗,n)n are in `2(N), hence we can de-
fine w∗ =

∑
n≥0 w∗,nen ∈ D(Ac,0). Moreover, the lat-

ter equation shows that Ac,0w∗ + AcLu∗ = 0. Using
now the definition of α given by (8), we deduce that

0 =
∑N
n=0 x∗,nen(1) + αu∗ =

∑
n≥0 w∗,nen(1) = w∗(1).

Therefore, introducing x∗ = w∗ + Lu∗ ∈ D(Ac), we ob-
tain that Acx∗ = 0 and x∗(1) = w∗(1) + [Lu∗](1) = 0.
This shows that ax′′∗ + (b+ c)x∗ = 0 with x∗(1) = 0 and
x′∗(1) = − cot(θ)x∗(1) = 0. So, by Cauchy uniqueness,
x∗ = 0. Since w∗(0) = 0, we get 0 = x∗(0) = [Lu∗](0) =
u∗. We infer w∗ = 0 hence w∗,n = 0 for all n ≥ 0. This
implies that x∗,n = w∗,n − bnu∗ = 0 for all n ≥ 0. We
deduce that Y∗ = 0, which shows that T in invertible.

We now show that (A,B) satisfies the Kalman condition.
In view of (5), since A is diagonal with simple eigenval-
ues, it is sufficient to show that an + λnbn 6= 0 for all
n ≥ 0. From (4), using two integration by parts and the
identity Ac,0en = λnen, we obtain that an + λnbn =
ae′n(0). Since en 6= 0 with en(0) = 0, we obtain by
Cauchy uniqueness that e′n(0) 6= 0 hence an + λnbn 6= 0
for all n ≥ 0. Thus (A,B) satisfies the Kalman condi-
tion, which completes the proof. 2

Thus there exists K ∈ R1×(N+2) such that AK = Aa +
BaK is Hurwitz with simple eigenvalues. We set for t ≥ 0

u(t) = KYa(t) + p(t) (12)

where p is a boundary disturbance. The control (12)
takes the form of a PI controller because composed of
1) a proportional feedback of the state, via Y (t), and 2)
the integral component ζ(t) given by (9). We now need
to select the integer N ≥ 0 such that the closed-loop
system composed of (2), (9), and (12), is exponentially
input-to-state stable with respect to the boundary per-
turbation p and achieves the setpoint reference tracking
of the system output z(t) = y(t, 1).

2.4 Well-posedness of the closed-loop system dynamics

The study of the well-posedness of the closed-loop sys-
tem, which requires the introducing of the augmented
state Xζ = (X, ζ) belonging to Hζ = L2(0, 1) × R
endowed with the inner product 〈(f, ζf ), (g, ζg)〉ζ =∫ 1

0
fg dx+ ζfζg, easily leads to the following result.

Lemma 3 Let 0 < hm < hM , h ∈ C0(R+) with hm ≤
h(t) ≤ hM , Φ ∈ C0([−hM , 0];H), ζ0 ∈ C0([−hM , 0]),
p ∈ C1(R+), and r ∈ C0(R+). Then there exists a unique
mild solution Xζ = (X, ζ) ∈ C0(R+;Hζ) of (2) and (9)
with control input (12). Moreover we have u, ζ ∈ C1(R+).

To assess the setpoint regulation, we need to resort to the
concept of classical solutions. The existence and unique-
ness of such solutions is guaranteed by the following
corollary whose proof is an immediate consequence of
classical results, see, e.g., [5, Thm. 3.1.3].

Corollary 1 Let 0 < hm < hM , h ∈ C1(R+) with
hm ≤ h(t) ≤ hM and such that t 7→ t − h(t) crosses
0 a finite number of times, Φ ∈ C1([−hM , 0];H), ζ0 ∈
C1([−hM , 0]), p ∈ C2(R+), and r ∈ C1(R+). Assume that
Φ(0) ∈ D(A) so that the compatibility condition

BΦ(0) = KYΦ,a(0) + p(0) (13)

holds. Then there exists a unique classical solution Xζ =
(X, ζ) ∈ C0(R+;D(A)×R)∩ C1(R+;Hζ) of (2) and (9)
with control input (12). Moreover we have u ∈ C2

pw(R+).

Remark 3 From (11) and because AK = Aa + BaK
is Hurwitz hence invertible, the last coefficient of K,
that corresponds to the integral state ζ, is necessarily
non zero. Hence, for any given initial condition Φ ∈
C1([−hM , 0];H) with Φ(0) ∈ D(A) and any boundary
perturbation p ∈ C2(R+), one can always select the initial
condition ζ0 ∈ C1([−hM , 0]) of the integral component
such that the compatibility condition (13) holds.

3 Equilibrium conditions and associated dy-
namics of deviations

3.1 Equilibrium conditions

Let re, pe ∈ R be “nominal” values of the reference signal
r(t) and the boundary perturbation p(t), respectively.
Our first objective is to derive the equilibrium condi-
tion of the closed-loop system when setting r(t) = re
and p(t) = pe. To do so, we denote by the subscript
“e” the equilibrium condition associated with the differ-

ent system signals. We define Ya,e =
[
Y >e ζe

]>
, Ye =[

x0,e . . . xN,e

]>
, and Γe =

[
0 −re

]>
. From (10) and

(12) we set Ya,e = −A−1
K (Bape+Γe) and ue = KYa,e+pe

which give 0 = AaYa,e +Baue + Γe. From (5) and (11),
this implies that 0 = λnxn,e + (an + λnbn)ue for all 0 ≤
n ≤ N and 0 =

∑N
n=0 xn,een(1) + αue − re. Regarding

the residual dynamics given by (3) for n ≥ N+1, we de-
fine xn,e = −an+λnbn

λn
ue. This yields 0 = λnxn,e + (an +

λnbn)ue for all n ≥ 0. We note that (xn,e)n≥0 ∈ `2(N)
hence we can define Xe =

∑
n≥0 xn,een ∈ H. Moreover,
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introducing for n ≥ 0 the quantities wn,e = xn,e + bnue,
we have for n ≥ N + 1 that wn,e = − an

λn
ue, show-

ing that (wn,e)n≥0 ∈ `2(N) and (λnwn,e)n≥0 ∈ `2(N).
This allows the introduction of We =

∑
n≥0 wn,een ∈

D(A0) = D(Ac,0). Moreover, from the definition of bn
given by (4), we have Xe = We + Lue ∈ D(Ac) hence
BXe = ue. Furthermore, since λnwn,e + anue = 0 for
all n ≥ 0, we have from the definition of an given by (4)
that Ac,0We +AcLue = 0 hence AcXe = 0. Using now
Lemma 1, (8), and the above relations between xn,e and

wn,e, we obtain from 0 =
∑N
n=0 xn,een(1) + αue − re

that We(1) = re. Since Xe ∈ D(Ac) ⊂ H1(0, 1), we in-
fer that Xe(1) = We(1) + [Lue](1) = re, which provides
the desired reference tracking.

3.2 Dynamics of deviations

Let re, pe ∈ R be arbitrary and consider the different
equilibrium quantities defined above. We can introduce
the dynamics of deviations of the system trajectory with
respect to the considered equilibrium condition. These
deviations are denoted by the symbol “∆”. For instance,
∆X(t) stands for X(t) − Xe. We obtain the following

dynamics of deviation: d(∆X)
dt (t) = A∆X(t) + c∆X(t−

h(t)), B∆X(t) = ∆u(t), ∆ζ̇(t) =
∑N
n=0 ∆xn(t)en(1) +

c{∆ζ(t − h(t)) − ∆ζ(t)} + α∆u(t) − ∆r(t), ∆xn(t) =
〈∆X(t), en〉 and ∆wn(t) = 〈∆W (t), en〉 = ∆xn(t) +
bn∆u(t). This yields the following representation for the
closed-loop system dynamics:

∆Ẏa(t) = AK∆Ya(t) + c{∆Ya(t− h(t))−∆Ya(t)}
+Ba∆p(t) + ∆Γ(t), (14a)

∆ẋn(t) = λn∆xn(t) + c{∆xn(t− h(t))−∆xn(t)}
+ (an + λnbn)∆u(t), n ≥ N + 1, (14b)

∆u(t) = K∆Ya(t) + ∆p(t) (14c)

∆Ya(τ) = ∆YΦ,a(τ), τ ∈ [−hM , 0] (14d)

∆xn(τ) = 〈∆Φ(τ), en〉, τ ∈ [−hM , 0], n ≥ 0 (14e)

4 Stability analysis

The main result of this section is stated as follows.

Theorem 1 Let 0 < hm < hM be arbitrarily given. Let
N ≥ 0 be such that λN+1 < −2

√
5|c| and consider the

matricesAa andBa defined by (11). LetK ∈ R1×(N+2) be
such that AK = Aa+BaK is Hurwitz with simple eigen-
values µ1, . . . , µN+2 ∈ C satisfying Reµn < −3|c| for all
1 ≤ n ≤ N+2. Then, there exist constants κ,C0, C1 > 0
such that, for all h ∈ C0(R+) with hm ≤ h(t) ≤ hM , Φ ∈
C0([−hM , 0];H), ζ0 ∈ C0([−hM , 0]), p ∈ C1(R+), and
r ∈ C0(R+), the mild solutionXζ = (X, ζ) ∈ C0(R+;Hζ)
of (2) and (9) with control input (12) satisfies, for all
t ≥ 0,

‖∆X(t)‖+ |∆ζ(t)|+ |∆u(t)|

≤ C0e
−κt sup

τ∈[−hM ,0]

(‖∆Φ(τ)‖+ |∆ζ0(τ)|) (15)

+ C1 sup
τ∈[0,t]

e−κ(t−τ) (|∆p(τ)|+ |∆r(τ)|) .

Corollary 2 In the context of Theorem 1, assume that
r(t) → re and p(t) → pe as t → +∞. Then X(t) → Xe

and ζ(t)→ ζe as t→ +∞ with exponential vanishing of
the contribution of the initial conditions.

Remark 4 From Theorem 1, one needs to start by se-
lecting the integer N ≥ 0 such that λN+1 < −2

√
5|c|.

This is always possible because λn ∼ −an2π2 as n→ +∞
with a > 0. Then, because of Lemma 2, the feedback
gain K ∈ R1×(N+2) can always be computed such that
AK = Aa + BaK is Hurwitz with arbitrary eigenvalue
assignment. This allows the application of Theorem 1.

4.1 Truncated model

The design of the feedback gain K and the resulting
stability properties of the truncated model (14a) rely
on the following lemma whose proof is identical to [15,
Lem. 8].

Lemma 4 Let N ≥ 1, 0 < hm < hM , A ∈ RN×N , and
c ∈ R. Assume that A is Hurwitz with simple eigenvalues
µ1, . . . , µN ∈ C such that Reµn < −3|c| for all 1 ≤
n ≤ N . Then there exist σ,C0, C1 > 0 such that, for
any x0 ∈ C0([−hM , 0];RN ), any h ∈ C0(R+) with hm ≤
h(t) ≤ hM , and any q ∈ C0(R+;RN ), the trajectory of

ẋ(t) = Ax(t) + c {x(t− h(t))− x(t)}+ q(t),

x(τ) = x0(τ), τ ∈ [−hM , 0]

satisfies, for all t ≥ 0,

‖x(t)‖ ≤ C0e
−σt sup

τ∈[−hM ,0]

‖x0(τ)‖ (16)

+ C1 sup
τ∈[0,t]

e−σ(t−τ)‖q(τ)‖.

From the assumptions of Thm. 1, Lemma 4 applies to
the truncated model (14a) with initial condition (14d).

4.2 Residual infinite-dimensional dynamics

We now need to investigate the selection of the integer
N ≥ 0 such that the residual dynamics composed of
(14b) and (14e) is exponentially stable.

Lemma 5 Let 0 < hm < hM and σ,C2, C3 > 0 be arbi-
trarily given. Let N ≥ 0 be such that λN+1 < −2

√
5|c|.

Then, there exist constants κ ∈ (0, σ) and C4, C5 > 0
such that, for all h ∈ C0(R+) with hm ≤ h(t) ≤ hM ,
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Φ ∈ C0([−hM , 0];H), ζ0 ∈ C0([−hM , 0]), p ∈ C1(R+),
r ∈ C0(R+), and u ∈ C1(R+) such that

|∆u(t)| ≤ C2e
−σt sup

τ∈[−hM ,0]

(‖∆Φ(τ)‖+ |∆ζ0(τ)|)

+ C3 sup
τ∈[0,t]

e−σ(t−τ) (|∆p(τ)|+ |∆r(τ)|)

(17)

for all t ≥ 0, the mild solutionXζ = (X, ζ) ∈ C0(R+;Hζ)
of (2) and (9) satisfies for all t ≥ 0∑

n≥N+1

|∆xn(t)|2

≤ C4e
−2κt sup

τ∈[−hM ,0]

(‖∆Φ(τ)‖+ |∆ζ0(τ)|)2

+ C5 sup
τ∈[0,t]

e−2κ(t−τ) (|∆p(τ)|+ |∆r(τ)|)2
. (18)

Remark 5 The design constraint λN+1 < −2
√

5|c| is
the same as in [15, Lem. 10]. However, the proof reported
therein does not apply in the presence of the boundary per-
turbation p. Indeed, following the lines of [15, Lem. 10],
one gets an estimate similar to (18) but with the occur-
rence of the extra term |∆ṗ(τ)| in the term evaluating
the contribution of ∆p and ∆r. We refine here the stabil-
ity analysis in order to obtain the claimed estimate (18)
involving only ∆p, and not ∆ṗ.

Proof. Let N ≥ 0 be such that λN+1 < −2
√

5|c|. We

define η = −λN+1/2 >
√

5|c| ≥ 0, which is such that
λn ≤ λN+1 = −2η < 0 for all n ≥ N + 1. Note that, in
this proof, we always consider integers n ≥ N + 1. Let
κ ∈ (0,min(η, σ)) be arbitrarily given and to be speci-
fied later. We introduce, for t ≥ 0, ∆vn(t) = ∆xn(t) −
∆xn(t− h(t)), yielding

∆ẋn(t) = λn∆xn(t)−c∆vn(t)+(an+λnbn)∆u(t) (19)

for all t ≥ 0. We also consider the series

Sx(t) =
∑

n≥N+1

|∆xn(t)|2, t ≥ −hM ;

Sv(t) =
∑

n≥N+1

|∆vn(t)|2, t ≥ 0

which are finite because Sx(t) ≤ ‖∆X(t)‖2 and Sv(t) ≤
2Sx(t)+2Sx(t−h(t)). Finally, we introduce for any t1 <
t2 and any real-valued and continuous function ψ the

notation I(ψ, t1, t2) =
∫ t2
t1
e−2η(t2−τ)|ψ(τ)|dτ . We have

I(ψ, t1, t2) ≤ 1−e−2(η−κ)(t2−t1)

2(η−κ) sup
τ∈[t1,t2]

e−2κ(t2−τ)|ψ(τ)|

and I(ψ, t1, t2)2 ≤ 1−e−2η(t2−t1)

2η I(ψ2, t1, t2). By inte-

grating (19), we obtain for t ≥ hM

∆vn(t) =
{
eλnh(t) − 1

}
∆xn(t− h(t))

+

∫ t

t−h(t)

eλn(t−τ){−c∆vn(τ) + (an + λnbn)∆u(τ)} dτ

hence, using λn ≤ −2η,

|∆vn(t)| ≤ |∆xn(t− h(t))|+ |c|I(∆vn, t− h(t), t)

+ |an|I(∆u, t− h(t), t)

+ |bn|

∣∣∣∣∣λn
∫ t

t−h(t)

eλn(t−τ)∆u(τ) dτ

∣∣∣∣∣ .
Since κ < η we have

∣∣∣λn ∫ tt−h(t)
eλn(t−τ)∆u(τ) dτ

∣∣∣ ≤
2η

2η − κ
supτ∈[t−h(t),t] e

−κ(t−τ)|∆u(τ)| because λn ≤
−2η < −η < −κ < 0. Combining the two latter esti-
mates and using Young’s inequality we obtain

|∆vn(t)|2 ≤ 4|∆xn(t− h(t))|2 + γ1|c|2I(∆v2
n, t− h(t), t)

+ γ1|an|2I(∆u2, t− h(t), t)

+
16η2

(2η − κ)2
|bn|2 sup

τ∈[t−h(t),t]

e−2κ(t−τ)|∆u(τ)|2

for all t ≥ hM where γ1 = 2
η (1− e−2ηhM ). Summing for

n ≥ N + 1, we obtain for t ≥ hM

Sv(t) ≤ 4Sx(t− h(t)) + γ2(κ)|c|2 sup
τ∈[t−h(t),t]

e−2κ(t−τ)Sv(τ)

+ γ3(κ) sup
τ∈[t−h(t),t]

e−2κ(t−τ)|∆u(τ)|2

where a = AcL1, b = −L1, γ2(κ) = 1
η(η−κ) (1 −

e−2ηhM )(1 − e−2(η−κ)hM ) and γ3(κ) = γ2(κ)‖a‖2 +
16η2

(2η−κ)2 ‖b‖
2. This implies that, for all t ≥ hM ,

sup
τ∈[hM ,t]

e2κτSv(τ) ≤ 4e2κhM sup
τ∈[0,t−hm]

e2κτSx(τ) (20)

+ γ2(κ)|c|2 sup
τ∈[0,t]

e2κτSv(τ) + γ3(κ) sup
τ∈[0,t]

e2κτ |∆u(τ)|2.

Integrating now (19) on [0, t] for t ≥ 0, using again λn ≤
−2η, and proceeding as in the previous paragraph, we
infer that, for all t ≥ 0,

Sx(t) ≤ 4e−2κtSx(0) + γ4(κ)|c|2 sup
τ∈[0,t]

e−2κ(t−τ)Sv(τ)

+ γ5(κ) sup
τ∈[0,t]

e−2κ(t−τ)|∆u(τ)|2 (21)

where γ4(κ) = 1
η(η−κ) and γ5(κ) = γ4(κ)‖a‖2 +

16η2

(2η−κ)2 ‖b‖
2. Combining (20-21) and noting that

Sx(0) ≤ ‖∆Φ(0)‖2, we obtain for t ≥ hM

sup
τ∈[hM ,t]

e2κτSv(τ) ≤ 16e2κhM ‖∆Φ(0)‖2
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+ ξ(κ) sup
τ∈[0,t]

e2κτSv(τ) + γ6(κ) sup
τ∈[0,t]

e2κτ |∆u(τ)|2

with γ6(κ) = γ3(κ) + 4e2κhMγ5(κ) and

ξ(κ) = γ2(κ)|c|2 + 4e2κhMγ4(κ)|c|2

=
|c|2

η(η − κ)

{
4e2κhM + (1− e−2ηhM )(1− e−2(η−κ)hM )

}
.

Recalling from the design constraint λN+1 < −2
√

5|c|
that η >

√
5|c|, we have 5|c|2/η2 < 1. Hence, a con-

tinuity argument at κ = 0 shows the existence of κ ∈
(0,min(η, σ)) such that 0 ≤ ξ(κ) < 1. We fix such a
κ ∈ (0,min(η, σ)) for the rest of the proof. Since all the
considered supremums are finite, we deduce from the
latter estimate that, for all t ≥ hM ,

sup
τ∈[hM ,t]

e2κτSv(τ) ≤ 16e2κhM

1− ξ
‖∆Φ(0)‖2 (22)

+
ξ

1− ξ
sup

τ∈[0,hM ]

e2κτSv(τ) +
γ6

1− ξ
sup
τ∈[0,t]

e2κτ |∆u(τ)|2

where we dropped the dependency of γ6, ξ on the param-
eter κ which is now fixed. To conclude the proof, we need
to estimate the term supτ∈[0,t] e

2κτSv(τ) for t ∈ [0, hM ].

From the definition of Sv we have, for any t ∈ [0, hM ],
supτ∈[0,t] e

2κτSv(τ) ≤ 4e2κhM supτ∈[−hM ,t] Sx(τ). From

(14b) and recalling that n ≥ N + 1 with λn ≤ −2η <

−2
√

5|c|, we have λn− c ≤ λn+ |c| < −(2
√

5−1)|c| ≤ 0
hence

|∆xn(t)| ≤ |∆xn(0)|+ |c|
√
hM

√∫ t

0

|∆xn(τ − h(τ))|2 dτ

+ (|an|hM + |bn|e|c|hM ) sup
τ∈[0,t]

|∆u(τ)|

for all t ∈ [0, hM ]. Using Young’s inequality and sum-
ming for n ≥ N + 1, we obtain

Sx(t) ≤ 3Sx(0) + 3|c|2h2
M sup
τ∈[−hM ,t−hm]

Sx(τ)

+ 6(‖a‖2h2
M + ‖b‖2e2|c|hM ) sup

τ∈[0,t]

|∆u(τ)|2

for all t ∈ [0, hM ]. This implies, for all t ∈ [0, hM ],

sup
τ∈[0,t]

Sx(τ) ≤ 3(1 + |c|2h2
M ) sup

τ∈[−hM ,0]

‖∆Φ(τ)‖2

+ 3|c|2h2
M sup
τ∈[0,max(t−hm,0)]

Sx(τ)

+ 6(‖a‖2h2
M + ‖b‖2e2|c|hM ) sup

τ∈[0,t]

|∆u(τ)|2.

By a simple induction argument (since hm > 0), we ob-
tain the existence of a constant γ7 > 0 such that, for all

t ∈ [0, hM ], supτ∈[0,t] Sx(τ) ≤ γ7 supτ∈[−hM ,0] ‖∆Φ(τ)‖2+

γ7 supτ∈[0,t] |∆u(τ)|2. We deduce (see beginning of

this paragraph) the existence of a constant γ8 > 0
such that, for all t ∈ [0, hM ], supτ∈[0,t] e

2κτSv(τ) ≤
γ8 supτ∈[−hM ,0] ‖∆Φ(τ)‖2 + γ8 supτ∈[0,t] e

2κτ |∆u(τ)|2.

Combining this latter estimate with (22), we infer the
existence of a constant γ9 > 0 such that, for all t ≥ 0,

sup
τ∈[0,t]

e2κτSv(τ) ≤ γ9 sup
τ∈[−hM ,0]

‖∆Φ(τ)‖2 (23)

+ γ9 sup
τ∈[0,t]

e2κτ |∆u(τ)|2.

Substituting this estimate into (21), we obtain the
existence of a constant γ10 > 0 such that, for all
t ≥ 0, Sx(t) ≤ γ10e

−2κt supτ∈[−hM ,0] ‖∆Φ(τ)‖2 +

γ10 supτ∈[0,t] e
−2κ(t−τ)|∆u(τ)|2. The claimed estimate

(18) now directly follows from the assumption that u
satisfies (17) and the fact that 0 < κ < σ. 2

4.3 Completion of the proof of Theorem 1

By applying first the result of Subsection 4.1 and
then the result of Subsection 4.2, the claimed estimate
(15) follows from |∆ζ(t)| ≤ ‖∆Ya(t)‖, ‖∆X(t)‖ ≤
‖∆Ya(t)‖+

√∑
n≥N+1 |∆xn(t)|2, and (14c). This com-

pletes the proof of Theorem 1.

5 Setpoint regulation assessment

We now address the setpoint regulation of the closed-
loop system for classical solutions.

Theorem 2 Under the assumptions of Theorem 1,
and for the same constant κ > 0, there exist con-
stants C2, C3 > 0 such that, for all h ∈ C1(R+) with
hm ≤ h(t) ≤ hM and so that t 7→ t − h(t) crosses
0 a finite number of times, Φ ∈ C1([−hM , 0];H) with
Φ(0) ∈ D(A), ζ0 ∈ C1([−hM , 0]), p ∈ C2(R+), and
r ∈ C1(R+), all such that the compatibility condition
(13) holds, we have, for all t ≥ 0,

|[X(t)](1)− r(t)| ≤ (24)

C2e
−κt

{
sup

τ∈[−hM ,0]

(‖∆Φ(τ)‖+ |∆ζ0(τ)|) + ‖Ac∆Φ(0)‖

}
+ C3 sup

τ∈[0,t]

e−κ(t−τ) (|∆p(τ)|+ |∆ṗ(τ)|+ |∆r(τ)|)

Corollary 3 In the context of Theorem 2, assume that
r(t) → re, p(t) → pe, and ṗ(t) → 0 as t → +∞. Then
[X(t)](1) → re as t → +∞ with exponential vanishing
of the contribution of the initial conditions.

Proof of Theorem 2. Recalling that, for classical so-
lutions, W (t) = X(t) − Lu(t) ∈ D(Ac,0), and since
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We = Xe − Lue ∈ D(Ac,0) with Xe(1) = We(1) = re,
we have |[X(t)](1)− r(t)| ≤ |[W (t)](1)− re|+ |∆r(t)| ≤
|[∆W (t)](1)| + |∆r(t)|. To obtain (24), we only need
to investigate the term |[∆W (t)](1)|. To do so, since
λn ∼ −an2π2 as n → +∞, let δ > 0 and an integer
M ≥ N be such that λn ≤ −(2κ + δ) < 0 and |λn| ≤
|λn|2 for all n ≥ M + 1. Then we have |[∆W (t)](1)| =∣∣∣∑n≥0 ∆wn(t)en(1)

∣∣∣ ≤ √∑M
n=0 |en(1)|2‖∆W (t)‖ +√∑

n≥M+1
|en(1)|2
|λn|

√∑
n≥M+1 |λn||∆wn(t)|2 where it

can be seen from λn ∼ −an2π2 and en(1) = O(1) as n→
+∞ that

∑
n≥M+1

|en(1)|2
|λn| < ∞. From Theorem 1 and

since ‖∆W (t)‖ ≤ ‖∆X(t)‖+ ‖L‖|∆u(t)|, we only need
to study the term

∑
n≥M+1 |λn||∆wn(t)|2 to conclude

that (24) holds. In the sequel we always consider integers
n ≥ M + 1. From (14b) and recalling that ∆wn(t) =
∆xn(t) + bn∆u(t), we have for t ≥ 0 that ∆ẇn(t) =
λn∆wn(t)−c∆vn(t)+an∆u(t)+bn∆u̇(t) with ∆vn(t) =
∆xn(t)−∆xn(t−h(t)). Then we obtain after integration

on [0, t] that
√
|λn||∆wn(t)| ≤ eλnt

√
|λn||∆wn(0)| +

|c|J1,n(t) + |an|J2,n(t) + |bn|J3,n(t) for all t ≥ 0 and

n ≥M+1 with J1,n(t) =
√
|λn|

∫ t
0
eλn(t−τ)|∆vn(τ)|dτ ,

J2,n(t) =
√
|λn|

∫ t
0
eλn(t−τ)|∆u(τ)|dτ , and J3,n(t) =√

|λn|
∫ t

0
eλn(t−τ)|∆u̇(τ)|dτ . Using λn ≤ −(2κ +

δ) and |λn| ≤ |λn|2 for all n ≥ M + 1, we ob-

tain that J1,n(t) ≤
√∫ t

0
e−(2κ+δ)(t−τ)|∆vn(τ)|2 dτ ,

J2,n(t) ≤ 2 supτ∈[0,t] e
−κ(t−τ)|∆u(τ)|, and J3,n(t) ≤

2 supτ∈[0,t] e
−κ(t−τ)|∆u̇(τ)|. Combining the four latter

inequalities, using next Young’s inequality, and finally
summing for n ≥M + 1, we obtain that

∑
n≥M+1

|λn||∆wn(t)|2 ≤ 4e−2κt
∑

n≥M+1

|λn||∆wn(0)|2

+ 4|c|2
∫ t

0

e−(2κ+δ)(t−τ)
∑

n≥M+1

|∆vn(τ)|2 dτ

+ 16‖a‖2 sup
τ∈[0,t]

e−2κ(t−τ)|∆u(τ)|2

+ 16‖b‖2 sup
τ∈[0,t]

e−2κ(t−τ)|∆u̇(τ)|2

for all t ≥ 0. SinceM ≥ N , we have
∑
n≥M+1 |∆vn(τ)|2 ≤

Sv(τ). Hence, we obtain from (23) that

∫ t

0

e−(2κ+δ)(t−τ)
∑

n≥M+1

|∆vn(τ)|2 dτ ≤

γ9

δ
e−2κt sup

τ∈[−hM ,0]

‖∆Φ(τ)‖2 +
γ9

δ
sup
τ∈[0,t]

e−2κ(t−τ)|∆u(τ)|2

The two latter inequalities imply the existence of a con-

stant γ11 > 0 such that

1

γ11

∑
n≥M+1

|λn||∆wn(t)|2 ≤ (25)

e−2κt
∑

n≥M+1

|λn||∆wn(0)|2 + e−2κt sup
τ∈[−hM ,0]

‖∆Φ(τ)‖2

+ sup
τ∈[0,t]

e−2κ(t−τ)|∆u(τ)|2 + sup
τ∈[0,t]

e−2κ(t−τ)|∆u̇(τ)|2

for all t ≥ 0. Since ∆W (0) ∈ D(Ac,0) and |λn| ≤ |λn|2
for alln ≥M+1, we note that

∑
n≥M+1 |λn||∆wn(0)|2 ≤

‖Ac,0∆W (0)‖2 ≤ 2‖Ac∆X(0)‖2 + 2‖AcL‖2|∆u(0)|2
with ∆X(0) = ∆Φ(0) and |∆u(0)| ≤ ‖K‖‖∆Ya(0)‖ +
|∆p(0)| ≤ ‖K‖(‖∆Φ(0)‖+ |∆ζ0(0)|) + |∆p(0)|. To con-
clude the proof, it is sufficient to study the two last terms
of (25). The estimation of the term involving ∆u imme-
diately follows from (15). Hence, only the term involving
∆u̇ needs to be investigated. From (14a) and (14c), we

have, for all t ≥ 0, |∆u̇(t)| ≤ ‖K‖‖∆Ẏa(t)‖ + |∆ṗ(t)|
with ‖∆Ẏa(t)‖ ≤ ‖AK − cI‖‖∆Ya(t)‖ + |c|‖∆Ya(t −
h(t))‖+ ‖Ba‖|∆p(t)|+ |∆r(t)|. The claimed conclusion
now follows from ‖∆Ya(τ)‖ ≤ ‖∆X(τ)‖ + |∆ζ(τ)| for
τ ≥ −hM and (15). 2

Remark 6 In the context of Theorem 2 dealing with
classical solutions, the stability result stated by The-
orem 1 can be strengthen as follows. First, it can
be shown similarly to [19, Eq. 42] that ‖f ′‖2 =

− cot(θ)|f(1)|2 +
b+ c

a
‖f‖2 − 1

a

∑
n≥0 λn|〈f, en〉|2 for

any f ∈ D(Ac,0). Considering classical solutions, we
can apply this identity to ∆W (t) ∈ D(Ac,0) where
we note that estimates of ‖∆W (t)‖ and |[∆W (t)](1)|
are provided by Theorem 1 and Theorem 2, re-
spectively, while the series

∑
n≥0 |λn||∆wn(t)|2 has

been evaluated in the proof of Theorem 2. Since
∆X(t) = ∆W (t) + L∆u(t) ∈ D(Ac) ⊂ H2(0, 1) with
‖[L∆u(t)]′‖ = 2√

3
|∆u(t)|, we infer that ‖[∆X(t)]′‖,

and hence ‖∆X(t)‖H1(0,1), is upper bounded by a term

similar (i.e., with different constants Ci) to the right-
hand side of (24). If we further make the assump-
tions of Corollary 3, we obtain that X(t) converges in
H1(0, 1) norm and hence, by the continuous embedding
H1(0, 1) ⊂ C0([0, 1]), in L∞ norm to Xe when t→ +∞.

6 Robustness with respect to delay mismatches

In the previous sections, we have assumed the perfect
knowledge of the state-delay h. This was used to build
the dynamics of the integral component ζ given by (9).
In this section, we discuss the robustness of the proposed
control strategy with respect to delay mismatches. As-

sume that we dispose of an estimate ĥ of the actual de-

lay h such that |ĥ − h| ≤ δ for some constant δ > 0. In
this case, we replace the integral component ζ, originally

8



defined by (9), by the following dynamics:

ζ̇(t) =

N∑
n=0

xn(t)en(1) + c{ζ(t− ĥ(t))− ζ(t)} (26a)

+ αu(t)− r(t), (26b)

ζ(τ) = ζ0(τ), τ ∈ [−hM , 0] (26c)

Assuming that ĥ satisfies the same assumptions as h, the
only difference comparing to the previous developments
occurs in the study of the truncated model. More pre-
cisely, the closed-loop truncated model, originally given
by (14a) and (14d), becomes:

∆Ẏa(t) = AK∆Ya(t) + c{∆Ya(t− h(t))−∆Ya(t)}
+ Ec{∆Ya(t− ĥ(t))−∆Ya(t− h(t))}
+Ba∆p(t) + ∆Γ(t) (27a)

∆Ya(τ) = ∆YΦ,a(τ), τ ∈ [−hM , 0] (27b)

with Ec = diag(0, . . . , 0, c) ∈ R(N+2)×(N+2). Provided
a suitable choice of the feeback gain K, the existence
of a maximal delay mismatch δ > 0 such that (27) is
exponentially ISS with respect to the exogenous signals
∆p and ∆r follows from the following lemma.

Lemma 6 Let N ≥ 1, 0 < hm < hM , A,E ∈ RN×N
and c ∈ R. Assume that A is Hurwitz with simple eigen-
values µ1, . . . , µN ∈ C such that Reµn < −3|c| for all
1 ≤ n ≤ N . Then there exist constants δ, σ, C6, C7 > 0
such that, for any x0 ∈ C0([−hM , 0];RN ), any hi ∈
C0(R+) with i ∈ {1, 2, 3}, hm ≤ hi(t) ≤ hM , and |h2 −
h3| ≤ δ, and any q̃ ∈ C0(R+;RN ), the trajectory of

ẋ(t) = Ax(t) + c {x(t− h1(t))− x(t)} (28a)

+ E {x(t− h2(t))− x(t− h3(t))}+ q̃(t),

x(τ) = x0(τ), τ ∈ [−hM , 0] (28b)

satisfies the estimate ‖x(t)‖ ≤ C6e
−σt sup

τ∈[−hM ,0]

‖x0(τ)‖+

C7 sup
τ∈[0,t]

e−σ(t−τ)‖q̃(τ)‖ for all t ≥ 0.

Hence, proceeding exactly as in the previous sections, we
obtain the existence of a constant δ > 0 such that, when
replacing the definition (9) of the integral component ζ
by (26), the conclusions of Theorems 1 and 2 still hold

true 2 for any estimated state-delay ĥ satisfying the same

assumptions as h and with |ĥ− h| ≤ δ.

Proof. Introducing v1(t) = x(t)− x(t− h1(t)), v2(t) =
x(t − h2(t)) − x(t − h3(t)), and q(t) = Ev2(t) + q̃(t),
we obtain from Lemma 4 that (16) holds. Since A is
Hurwitz, we can assume that the constant σ > 0 involved

2 With constants Ci of the estimates (15) and (24) that are

independent of a particularly selected ĥ.

in the latter equation (16) is further selected such that
‖eAt‖ ≤ Me−σt for all t ≥ 0 and for some constant
M ≥ 1. Integrating (28) over either [t− h3(t), t− h2(t)]
if h3(t) ≥ h2(t) or [t−h2(t), t−h3(t)] if h2(t) ≥ h3(t) for
t ≥ hM , and combining these estimates, we obtain that

sup
τ∈[hM ,t]

eστ‖v2(τ)‖ ≤ {eδ‖A‖ − 1}eσhM sup
τ∈[0,t]

eστ‖x(τ)‖

+ δM |c|eσhM sup
τ∈[0,t]

eστ‖v1(τ)‖

+ δM‖E‖eσhM sup
τ∈[0,t]

eστ‖v2(τ)‖

+ δMeσhM sup
τ∈[0,t]

eστ‖q̃(τ)‖

for all t ≥ hM . From (16), the identity v1(t) =
x(t) − x(t − h1(t)), and based on a small gain argu-
ment, we can fix δ > 0 small enough (independently
of x0, hi, and q̃) to obtain the existence of a con-
stant γ12 > 0 such that supτ∈[hM ,t] e

στ‖v2(τ)‖ ≤
γ12 supτ∈[−hM ,0] ‖x0(τ)‖+ γ12 supτ∈[0,hM ] e

στ‖v2(τ)‖+

γ12 supτ∈[0,t] e
στ‖q̃(τ)‖ for all t ≥ hM . Recalling that

v2(t) = x(t − h2(t)) − x(t − h3(t)), one can estimate
for t ∈ [0, hM ] the term supτ∈[0,t] e

στ‖v2(τ)‖ from

(28) and the use of Grönwall’s inequality. Combining
with the latter estimate, we obtain the existence of
a constant γ13 > 0 such that supτ∈[0,t] e

στ‖v2(τ)‖ ≤
γ13 supτ∈[−hM ,0] ‖x0(τ)‖ + γ13 supτ∈[0,t] e

στ‖q̃(τ)‖ for

all t ≥ 0. Since q(t) = Ev2(t) + q̃(t), the substitution of
the latter estimate into (16) completes the proof. 2

7 Simulation results

We set a = 0.2, b = 2, c = 1, and θ = π/3. The
first eigenvalues of Ac,0 are approximately given by

λ0 ≈ 2.301, λ1 ≈ −1.668 > −2
√

5|c|, and λ2 ≈
−9.567 < −2

√
5|c|. Hence we set N = 1. The feedback

gain K ∈ R1×3 is computed such that AK = Aa +BaK
is Hurwitz with simple eigenvalues µ1 = −4, µ2 = −5,
µ3 = −6, selected so that µn < −3|c|. The initial condi-
tions of the plant and the integral component are set as
φ(τ, x) = 10 cos(3πτ)x(1 − x)2 and ζ0(τ) = cos(3πτ)ζa
where ζa ∈ R is selected such that (13) holds. The nu-
merical scheme consists of the modal approximation of
the reaction–diffusion equation using its first 40 modes.

The behavior of the closed-loop system composed of (2),
(9), and (12) is illustrated for the time varying delay
h(t) = 1 + 1

2 sin(5πt+π/4) and the boundary perturba-
tion p(t) as shown in Fig. 1(d). The results are depicted
in Fig. 1. During the 10 first seconds we observe that the
control law achieves the stabilization of the closed-loop
system: both the state and the regulated output con-
verge to zero in spite of a constant perturbation p(t) = 1.
Then, in order to evaluate the setpoint tracking capa-
bilities of the system ouput (see Thm. 2), the reference
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Fig. 1. Time evolution of the closed-loop system

signal is set as r(t) = 5 for t > 20 s after an oscillatory
transient. In conformity with the tracking estimate (24),
we observe that the control strategy ensures the setpoint
tracking of the reference signal r(t) by the right Dirich-
let trace y(t, 1). Around t = 30 s, the boundary pertur-
bation p(t) increases to reach (approximately) the value
of 25 and then decreases to converge to the value of 6.
It is seen that the impact of this perturbation on both
the state trajectory and the regulated output are suc-
cessfully eliminated due to the presence of the integral
component.

Finally, Fig. 2 illustrates the impact of delay mismatches

on the closed-loop system performance. Here we set ĥ =
1 while considering increasing values for the actual delay
h ∈ {1, 2, 3, 4}. The boundary perturbation is set as
p = 1. As expected, we observe a smooth degradation of
the performances of the resulting closed-loop system.

8 Conclusion

This paper has investigated the boundary PI regulation
control of a reaction-diffusion equation in the presence
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Fig. 2. Impact of delay mismatches

of a state-delay in the reaction term. Our modal-based
approach ensures the stability of the resulting closed-
loop system as well as the setpoint regulation of the
right Dirichlet trace. Future research directions may be
concerned with extensions to the PI regulation control of
either linear wave equations or semilinear heat equations
in the presence of a state-delay.
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