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Wave blocking in a bistable system by local introduction of a population: application to sterile insect techniques on mosquito populations

) in this framework and extend their main result to find relations on the size of the release region and the density of the released sterile males that allow us to block the invasion. Numerical simulations are also performed to illustrate our results.

Introduction

Aedes mosquitoes are vectors for multiple infectious diseases, most notably dengue, yellow fever, chikungunya and zika. Currently, these diseases do not have an efficient cure or vaccine. Therefore, an usual method for preventing and controlling outbreaks is to reduce or eliminate the mosquito population since they are the vectors for the transmission of these diseases. The use of insecticides over a prolonged period of time is costly and has multiple adverse consequences such as environmental pollution, ecological impact on many species and the development of increased resistance to the insecticide. This shows the need to consider alternative control methods, such as the Sterile Insect Technique (SIT). The SIT was first proposed by Knipling [START_REF] Knipling | Possibilities of insect control or eradication through the use of sexually sterile males[END_REF] in the 1950s. This technique has been employed to eliminate and control different agricultural pests and disease vectors, most notably screw worms and fruit flies (see [START_REF] Dyck | Sterile Insect Technique Principles and Practice in Area-Wide Integrated Pest Management[END_REF] for a detailed list of SIT trials and programs). The classical SIT consists in the release of a large number of sterile males (often sterilized by ionizing radiation or chemically), which results in a progressive reduction of the total population. Another closely related technique is the Incompatible Insect Technique (IIT), where released mosquitoes are not sterilized but rather infected with the bacterium Wolbachia, which shortens their lifespan and reduces their vector capacity (for instance for transmitting dengue). Indeed, when only Wolbachia-bearing males are released, the IIT is equivalent to the classical SIT; when both males and females are released, the expected result is that the existing population will be replaced by the Wolbachia infected population. In particular, for mosquito control, the SIT/IIT have been employed in multiple locations, such as Italy [START_REF] Bellini | Use of the Sterile Insect Technique Against Aedes albopictus in Italy: First Results of a Pilot Trial[END_REF], Reunion Island [START_REF] Oliva | The Sterile Insect Technique for Controlling Populations of Aedes albopictus(Diptera: Culicidae) on Reunion Island: Mating Vigour of Sterilized Males[END_REF], Polynesia [START_REF] Chambers | Male mating competitiveness of a Wolbachia-introgressed Aedes polynesiensis strain under semi-field conditions[END_REF] and China [START_REF] Zheng | Incompatible and sterile insect techniques combined eliminate mosquitoes[END_REF]. Aedes mosquitoes and the arboviroses for which they are transmission vectors have been a major problem in tropical regions since long ago. However, they are also becoming a major concern for public health authorities in temperate regions (including Europe) where, due to climate change and global exchanges, Aedes mosquitoes have become a successful invasive species.. Classical SIT and IIT have been modeled and studied in a large number of papers, from diverse mathematical viewpoints, such as discrete difference equations [START_REF] Li | Modelling releases of sterile mosquitoes with different strategies[END_REF], as ODE systems by themselves [START_REF] Strugarek | On the use of the sterile insect release technique to reduce or eliminate mosquito populations[END_REF] or linked with SIR systems of ODEs [START_REF] Dumont | Mathematical studies on the sterile insect technique for the Chikungunya disease and Aedes albopictus[END_REF]. The spatial dynamics has been also studied thanks to PDE models to describe the spatial invasion of mosquitoes : for instance the recent work [START_REF] Roques | Dynamics of Aedes Albopictus invasion insights from a spatio temporal model[END_REF] proposes a study of the invasion of Aedes Albopictus in France. In [START_REF] Lewis | Waves of extinction from sterile insect release[END_REF], the authors propose a simple scalar reaction-diffusion equation to analyze the influence of releases of sterilized males on the traveling waves of invasion of mosquitoes.

In this paper, we are interested in the use of SIT/IIT locally as a way to block invasion or infestation of mosquitoes in a mosquito-free area. More precisely, we study the possibility of blocking a propagating front of mosquitoes by performing a local release of sterile mosquitoes in a band of width L. Such technique may be used as a sanitary cordon to avoid infestation of a mosquito-free area or re-infestation of a previously treated area. A numerical study of such strategy has been performed in [START_REF] Seirin Lee | Optimal barrier zones for stopping the invasion of Aedes aegypti mosquitoes via transgenic or sterile insect techniques[END_REF] and in [START_REF] Almeida | The sterile insect technique used as a barrier control against reinfestation[END_REF]. It is expected that when releasing enough sterilized mosquitoes in a wide enough area, it should be possible to block invading waves of mosquitoes. The aim of this paper is to justify rigorously these numerical results. From a mathematical point of view, it boils down to show the existence of stationary solutions for a system of reaction-diffusion equations.

More generally, let v(x, t) denote the density of a species, e.g. mosquitoes, at position x ∈ R and time t > 0. Let w(x, t) denote the density of an introduced species, e.g. sterilized males, which is released on a domain [0, L] at a constant density M 0 ; we denote µ the death rate of this species. Then, the population dynamics is governed by the following system of reaction-diffusion equations :

∂ t v -∂ xx v = g(v, w), on R × R + , (1a) ∂ t w -∂ xx w = M 0 • 1 [0,L] -µw. (1b) 
In this system, the interaction between both species is modeled thanks to the reaction term g. In the absence of the species w, i.e. when w = 0, we denote f (v) := g(v, 0) the reaction term for the first species. It is supposed to be such that f is a C 1 (R) bistable function, that is

∃ θ ∈ (0, 1), f (0) = f (1) = f (θ) = 0, f < 0 on (0, θ), f > 0 on (θ, 1). (2) 
Moreover, we assume that

1 0 f (v) dv > 0. ( 3 
)
It is well-known (see e.g. [START_REF] Aronson | Nonlinear Diffusion In Population Genetics, Combustion, And Nerve Pulse Propagation[END_REF][START_REF] Lewis | The Effects of Nonexcitable Regions on Signal Propagation in Excitable Media: Propagation and Reflection[END_REF]) that under this condition, there exist invading traveling waves for species v in absence of species w. The aim of this paper is to prove that, assuming appropriate conditions on the interaction function g, for L > 0 and M 0 large enough it is possible to block the invasion. In other words, we study the possibility to block the invasion by acting on a release function which is chosen here to be the piece-wise constant function

M 0 1 [0,L] .
Wave-blocking in reaction-diffusion equations has been studied by several authors. For instance, the influence of the geometry on the propagation of a potential along a nerve axon has been considered in [START_REF] Pauwelussen | One way traffic of pulses in a neuron[END_REF]. In the seminal paper [START_REF] Lewis | Wave-Block in Excitable Media due to Regions of Depressed Excitability[END_REF], the authors show the existence of a wave-block due to heterogeneities in the media of propagation. To obtain their result, they introduce a geometrical technique by reasoning on the phase plan. This technique will be recalled below. In the present paper, we adapt and extend their technique to the problem at hand. In [START_REF] Chapuisat | Asymptotic profiles for a traveling front solution of a biological equation[END_REF], the authors propose to study the absorption by the white matter of propagating waves in the brain. In [START_REF] Berestycki | Traveling wave solutions in a reaction-diffusion model for criminal activity[END_REF], wave-block in a model for criminality is proved. Wave-block in bistable reaction-diffusion systems with a drift term, usually called gene-flow models, has been investigated in [START_REF] Nadin | Hindrances to bistable front propagation: application to Wolbachia invasion[END_REF] and [START_REF] Eberle | Front blocking versus propagation in the presence of a drift term in the direction of propagation[END_REF]. Finally, we mention that control strategies on reaction-diffusion equations with bistable nonlinearity has been recently investigated by several authors e.g. [START_REF] Pouchol | Phase portrait control for 1D monostable and bistable reactiondiffusion equations[END_REF][START_REF] Ruiz-Balet | Control under constraints for multi-dimensional reaction-diffusion monostable and bistable equations[END_REF].

The outline of the paper is as follows. In section 2, we state our main results and we describe our mathematical model. Section 3 is devoted to the proof of our main result for general bistable systems, i.e. the existence of a barrier when acting on a wide enough region with large enough intensity. We use a geometric method based on a phase plane analysis to construct such barrier. In section 4 we apply this technique and result to our practical problem : the use of the sterile insect technique to avoid invasion of a species like mosquitoes. Then, we illustrate our results with some numerical applications in section 5. We end this article with some conclusion in section 6.

Modelling and main results

In this section we state the main results of this paper for system [START_REF] Almeida | The sterile insect technique used as a barrier control against reinfestation[END_REF], that is the blocking of the propagation under appropriate conditions. Then, we explain how to use such results to obtain in the application we have in mind, that is the local use of the sterile insect technique to control invasion by mosquito populations.

Main results for general bistable systems

We first start by defining a barrier for system (1): Definition 1. Let L ≥ 0 and M 0 ≥ 0. We call barrier (of width L and height M 0 ) for system (1), any couple (v, w) ∈ (C 2 (R)) 2 which is a nonnegative solution of the following differential inequalities :

     v + g(v, w) ≤ 0, on R, w + M 0 • 1 [0,L] -µ w ≥ 0, v(-∞) = 0, v(+∞) = 1, w(±∞) = 0. ( 4 
)
We say that there exists a barrier to system (1) for L ≥ 0 and M 0 ≥ 0 if system (4) admits a nonnegative solution.

Let us consider system (1) with initial conditions, v(x, 0) = v 0 (x) and w(x, 0) = w 0 (x), with v 0 , w 0 ∈ L 1 ∩ L ∞ (R), 0 ≤ v 0 (x) ≤ 1. The following Lemma explains why we call solutions to (4) a barrier : indeed, the existence of such solutions may block the propagation. Lemma 1. Let g be Lipschitz-continuous and such that ∂ w g(v, w) ≤ 0 for all v, w. Let us assume that there exists a barrier for system (1) (as in Definition 1). If the initial data (v 0 , w 0 ) is such that v 0 ≤ v and w 0 ≥ w, then the solution to (1) is such that for all t > 0, v(•, t) ≤ v.

Proof. It is straightforward to obtain this result using a comparison principle. Indeed, from (1) and (4), we deduce that

∂ t (v -v) -∂ xx (v -v) ≤ g(v, w) -g(v, w) ∂ t ( w -w) -∂ xx ( w -w) ≤ µ(w -w).
We multiply the first equation by (vv) + and the second equation by ( ww) + and integrate over R, where (•) + denotes the positive part. Summing the resulting equalities, we get 1 2

d dt R Ä (v -v) 2 + + ( w -w) 2 + ä dx ≤ R (g(v, w) -g(v, w)(v -v) + dx - R µ( w -w) 2 + dx.
From the assumptions on g, we deduce

(g(v, w) -g(v, w))(v -v) + = (g(v, w) -g(v, w))(v -v) + + (g(v, w) -g(v, w))(v -v) + ≤ C g (v -v) 2 + + C g ( w -w) + (v -v) +
, where C g is a Lipschitz constant for g. We conclude as usual by using a Gronwall type inequality and the fact that (v 0v) + = 0 = ( ww 0 ) + .

As a consequence of Lemma 1, if the species w is present in the environment in such a way that w(0, •) ≥ w, then any invasion front is blocked by the barrier, provided such a barrier exists. Under assumption (2) and (3), there exists a traveling wave with positive velocity for the equation for the species v alone, i.e. there exist a constant c > 0 and a solution v c of the system

cv c -v c = f (v c ), v c (-∞) = 0, v c (+∞) = 1.
Hence, when L = 0, there is no barrier. The following Theorem gives conditions for existence of barriers : Theorem 1. Let us assume that g satisfies the following properties :

• g ∈ C 1 (R × R)
, and f (v) := g(v, 0) is bistable, i.e. verifies (2) and (3);

• g(0, w) = 0 and ∂g ∂w (v, w) < 0, for all w > 0;

• There exist w * > 0 and α 2 > 0 such that g(v, w) ≤ -α 2 v for all w > w * and v > 0.

Then for any L > 0 there exists M * (L) such that for all M 0 ≥ M * (L), there exists a barrier for system [START_REF] Almeida | The sterile insect technique used as a barrier control against reinfestation[END_REF]. Moreover, we have

(i) L → M * (L) is decreasing and continuous; (ii) lim L→0 + M * (L) = +∞; (iii) lim L→+∞ M * (L) = M ∞ where M ∞ is such that the function v → g Ä v, M ∞ µ ä admits three nonnegative roots 0 < v -< v + and v + 0 g Ä v, M ∞ µ ä dv = 0.
Remark 1. Let us mention that, from an experimental point of view, it is not difficult to guarantee the condition w 0 ≥ w to build a barrier. Indeed, it is enough to make the release with M ≥ M 0 or on a domain large enough.

Modelling for the sterile insect technique

The situation to be modeled is the effect that a release of sterilized males in a limited region in space will have on a mosquito population that is already present in part of the domain. For the sake of simplicity, we will also consider only one dimension in space and consider all biological parameters to be constant over time, thus disregarding the effects of field heterogeneity and seasonal variations. Following ideas in e.g. [START_REF] Strugarek | On the use of the sterile insect release technique to reduce or eliminate mosquito populations[END_REF][START_REF] Bliman | Implementation of Control Strategies for Sterile Insect Techniques[END_REF], we model the population of mosquitoes with four compartements : eggs, adult males, adult females, and sterilized mosquitoes. The dynamics is governed by the following system for t > 0 and x ∈ R :

           dE dt = b Å 1 - E K ã F 1 -e -β(M+γM s ) M M + γM s -(ν E + µ E )E ∂ t M -∂ xx M = (1 -r)ν E E -µ M M ∂ t F -∂ xx F = rν E E -µ F F ∂ t M s -∂ xx M s = u -µ S M s (5) 
The variables and parameters included in our model are listed below:

• E, M and F denote respectively the spatial density of mosquitoes in aquatic phase, adult males, and adult females;

• M s (x, t) is the density of sterile mosquitoes which are released at point x and time t, the release function is denoted u; from now on, we will consider that the release function is u

(x) = M 0 • 1 [0,L] (x); • the term (1 -e -β(M+γM s )
) is an Allee effect to model the fact that it may be difficult for a female to find a partner when the density of mosquitoes is small, similar terms have been introduced in [START_REF] Strugarek | On the use of the sterile insect release technique to reduce or eliminate mosquito populations[END_REF];

• the fraction M M+γM s corresponds to the probability that a female mate with a noninfected mosquito; • b > 0 is a birth rate; µ E > 0, µ M > 0, µ F > 0, and µ s > 0 denote the death rates for the mosquitoes in the aquatic phase, for adult males, for adult females, and for sterile males respectively;

• K is an environmental capacity for the aquatic phase, accounting also for the intraspecific competition;

• ν E > 0 is the rate of emergence;

• r ∈ (0, 1) is the probability that a female emerges, then (1r) is the probability that a male emerges.

Since mathematical analysis for systems like ( 5) is quite complicated to handle, we will make some modelling assumptions to reduce (5) to a system such as (1) for which we will perform a full analysis. To do so, we assume that r = 1 2 , µ F < µ M , and M(x, 0) ≤ F(x, 0), so that the system rewrites

                 dE dt = b Å 1 - E K ã F 1 -e -β(M+γM s ) M M + γM s -(ν E + µ E )E ∂ t M -∂ xx M = 1 2 ν E E -µ M M ∂ t F -∂ xx F = 1 2 ν E E -µ F F ∂ t M s -∂ xx M s = M 0 • 1 [0,L] -µ S M s . (6) 
Notice that the above assumptions are reasonable since the sex ratio is indeed expected to be close to 1 2 and the male mortality is higher than the female mortality (see e.g. [START_REF] Strugarek | On the use of the sterile insect release technique to reduce or eliminate mosquito populations[END_REF]). Our second assumption is to consider that the dynamics of the egg compartment is fast, which boils down to assume that the first equation is at equilibrium :

0 = b Å 1 - E K ã F 1 -e -β(M+γM s ) M M + γM s -(ν E + µ E )E.
From here we can determine E:

E = E(F, M) = KbMF 1 -e -β(M+γM s ) bMF 1 -e -β(M+γM s ) + K(ν E + µ E )(M + γM s ) .
We may verify easily that ∂ ∂M E(F, M) ≥ 0 and ∂ ∂F E(F, M) ≥ 0. The second and third equations of ( 6) simplify into

∂ t M -∂ xx M = ν E 2 E(F, M) -µ M M, (7a) 
∂ t F -∂ xx F = ν E 2 E(F, M) -µ F F. (7b) 
We mention that a similar minimalist model for the sterile insect technique, without the space dependency, has been introduced and studied in [START_REF] Bliman | Implementation of Control Strategies for Sterile Insect Techniques[END_REF]. Notice that the main difference is that the system in [START_REF] Bliman | Implementation of Control Strategies for Sterile Insect Techniques[END_REF] is not cooperative, whereas E being increasing with respect to F and M, system (7) is cooperative. Moreover, since µ F < µ M , we get

∂ t M -∂ xx M + µ F M ≤ ν E 2 E = ∂ t F -∂ xx F + µ F F.
Hence we deduce that, if initially we have M(0, x) ≤ F(0, x), then by the comparison principle for reactiondiffusion equations, we have M ≤ F. Then, from (7b) and the fact that ∂ ∂M E(F, M) ≥ 0, we have

∂ t F -∂ xx F ≤ ν E 2 E(F, F) -µ F F.
Finally, we will consider the following system

∂ t F -∂ xx F = ν E 2 E(F, F) -µ F F =: g(F, M s ), (8) 
∂ t M s -∂ xx M s = M 0 • 1 [0,L] -µ s M s . (9) 
This latter system has the same form as system (1), and any solution to ( 8)-( 9) is a super-solution to ( 7)-( 9). Hence, it is enough to prove the existence of a barrier for ( 8)-( 9) to show that a blocking exists. We will show that we may apply Theorem 1 and obtain the existence of a barrier for L and M 0 large enough. Moreover, with the particular form of the reaction term g in this setting, we may obtain more information. More precisely, the main results are summarized in the following

Theorem 2. Let us assume that exp Å Kβrν E µ F -δ ã > 1 + δ, with δ = βK(µ E + ν E ) 2b Ç 1 + 1 + 4b βK(µ E + ν E ) å .
Then, for all L > 0, there exists M * (L) such that for all M 0 > M * (L), there exists a barrier for system (8)-( 9). And the function L → M * (L) has the properties (i), (ii), and (iii) in Theorem 1.

Remark 2. We will see in Lemma 4 that the condition on the coefficients in the statement of this Theorem guarantees that the function F → g(F, 0) is bistable and verifies [START_REF] Aronson | Nonlinear Diffusion In Population Genetics, Combustion, And Nerve Pulse Propagation[END_REF]. If this condition is not satisfied then there is no invasion by the population of mosquitoes and thus there is no need to perform a sterile insect technique.

Existence of barrier 3.1 A geometric construction of steady states

In order to build a barrier we will use the geometrical construction method which has been proposed by Lewis and Keener in [START_REF] Lewis | Wave-Block in Excitable Media due to Regions of Depressed Excitability[END_REF]. Let us consider the system, for x ∈ R,

0 = u + h(x, u), where h(x, u) = ß k(x, u), x ∈ [0, L], f (u), x [0, L], (10) 
and f (u) is bistable (2) and verifies (3

), k ∈ C 0,1 ([0, L] × [0, +∞)).
The idea is to work on the phase plane (u, u x ). We know (see e.g. [START_REF] Lewis | The Effects of Nonexcitable Regions on Signal Propagation in Excitable Media: Propagation and Reflection[END_REF]) that the equation

u xx + f (u) = 0 has a family of translated solutions u(x) = U(x -ξ) with lim x→±∞ u(x) = lim x→±∞ u (x)
= 0 and u (x) < 0 (resp. > 0) when x > ξ (resp. x < ξ) for any ξ ∈ R. This family traces out a homoclinic orbit associated with (u, u x ) = (0, 0), which we call curve A. In u xx + f (u) = 0, the steady state u ≡ 1 is stable, so there also exists a curve B which is its stable manifold, with points on it tending to (u, u x ) = (1, 0) when x → +∞.

We can derive an analytical expression for these two curves: Multiplying u xx + f (u) = 0 by u x and integrating we get

1 2 u 2 x + u 0 f (s)ds = C,
where C is a suitable constant. Taking u = 1, u x = 0 gives us C = 2 1 0 f (s)ds and thus the expression for curve B is

u x = 2 1 u f (s)ds, 0 ≤ u ≤ 1.
Likewise taking u = u x = 0 gives us the expression for curve A:

u x = -2 u 0 f (s)ds.
To summarize, we have

A := ®Ç u, -2 u 0 f (s) ds å , 0 ≤ u ≤ θ c ´, B := u, 2 1 u f (s) ds , 0 ≤ u ≤ 1 , (11) 
where θ c is such that θ c 0 f (s) ds = 0 and from (3) we have 0 < θ c < 1. We take a point on curve A which lies on the first quadrant and consider it as an initial condition (u(0), u x (0)), with u(0) > 0 and u x (0) > 0 (we can choose x = 0 as the starting point because ξ is arbitrary). We solve the second-order differential equation u (x) = -k(x, u) on (0, L) with this initial condition (u(0), u x (0)) to get (u(L), u x (L)) (assuming u does not blow up before x = L). If (u(L), u x (L)) falls on curve B, then for x > L we follow curve B. By doing so, we have constructed a stationary solution of [START_REF] Dumont | Mathematical studies on the sterile insect technique for the Chikungunya disease and Aedes albopictus[END_REF] such that u(-∞) = 0 and u(+∞) = 1 (see Figure 1). In order to determine when this happens, for a given L > 0, we define the following mapping ψ L by

u 0 • u x 1 • θ c • B A (u(0), u x (0)) • (u(L), u x (L)) •
ψ L : (a, b) → (u(L), u (L)), where u is solution on [0, L] of the Cauchy problem u (x) = -k(x, u(x)), (u(0), u (0)) = (a, b). (12) 
Therefore, for a given L > 0, we can construct the required steady state if and only if ψ L (A) intersects curve B, since then we can choose (u(0), u x (0)) as the preimage ψ -1 L of the intersection point. Thanks to this approach, we may prove the existence of solutions to (10) : Proposition 1. Consider the system (10) where f is bistable, i.e. satisfies (2), and verifies (3), and k ∈ C 0,1 ([0, L] × [0, +∞)). Let us assume that there exists α > 0 such that k(x, u) ≤ -αu, for all x ∈ [0, L]. Then, there exists L * such that for any L ≥ L * , there exist a solution ū for [START_REF] Dumont | Mathematical studies on the sterile insect technique for the Chikungunya disease and Aedes albopictus[END_REF] such that ū(-∞) = 0 and ū(+∞) = 1.

Proof. The idea of the proof is to show that for L large enough the curves ψ L (A) and B will intersect. We first notice that for any L > 0, we have ψ L (0, 0) = (0, 0).

On [0, L], we have k(x, u) ≤ -αu. Then, solving u (x) -αu(x) = ν(x) with nonnegative initial data (u(0), u (0)), we get on [0, L],

u(x) = c 1 e √ αx + c 2 e - √ αx + 1 √ α x 0 sinh √ α(x -y) ν(y) dy,
where

c 1 := u(0) 2 + u (0) 2 √ α and c 2 := u(0) 2 -u (0) 2 √ α . We have c 1 > |c 2 | ≥ 0.
Then, since ν ≥ 0, the last term of the right hand side is clearly nonnegative. We deduce

u(L) -u(0) > u(0) 2 
Ä e √ αL + e - √ αL -2 ä + u (0) 2 √ α Ä e √ αL -e - √ αL ä 
Then, since u (0) > 0, we have

u(L) -u(0) > u(0) 2 Ä e √ αL/2 -e - √ αL/2 ä 2 = 2u(0) sinh Å √ αL 2 ã 2 .
We also have

u (x) = √ α Ä c 1 e √ αx -c 2 e - √ αx ä + x 0 cosh √ α(x -y) v(y) dy. Therefore, u (x) ≥ √ α Ä c 1 e √ αx -c 2 e - √ αx ä and for x = L, u (L) > e √ αL Å √ αu(0) + u (0) 2 ã -e - √ αL Å √ αu(0) -u (0) 2 ã > u (0).
Moreover, as above, we have

u (L) -u (0) > u (0) 2 Ä e √ αL/2 -e - √ αL/2 ä 2 = 2u (0) sinh Å √ αL 2 ã 2 .
Since u(0), u (0) > 0 and

√ αL → sinh √ αL 2 2
is increasing and tends to +∞ when √ αL → +∞, then not only does the mapping ψ L increase both coordinates, but u(L), u (L) → +∞ when L → +∞ for any u(0), u (0) > 0. This guarantees that there exists L * large enough such that, for any L ≥ L * , the curves ψ L (A) and B intersect, and we have existence of a solution of [START_REF] Dumont | Mathematical studies on the sterile insect technique for the Chikungunya disease and Aedes albopictus[END_REF] with limit 0 at -∞ and with limit 1 at +∞.

Proof of Theorem 1

Before proving our first main result, we provide some useful informations.

Lemma 2. Let L ≥ 0 and L * ≥ 0. Let w be the solution of

w + M 0 • 1 [0,L] -µw = 0, w(±∞) = 0.
Then, under the assumptions of Theorem 1 on g, there exists M * > 0 large enough such that, for all M 0 ≥ M * , we have g(v, w(x)) < -α 2 v for all x ∈ [ L-L * 2 , L+L * 2 ] and v > 0.

Proof. The unique solution of -w

+ µw = M 0 • 1 [0,L] that satisfies lim x→±∞ w(x) = 0 is given by w(x) = M 0 2 √ µ L 0
e -√ µ|x-y| dy.

After straightforward computations, we see that

w(x) = M 0 µ      e √ µ( L 2 -x) sinh √ µ L 2 , x > L; e √ µ(x-L 2 ) sinh √ µ L 2 , x < 0; 1 -e -√ µ L 2 cosh √ µ( L 2 -x) , 0 ≤ x ≤ L. (13) 
Note that w is positive, maximal at x = L 2 , and symmetric with respect to x = L 2 . It is increasing on (-∞, L 2 ] and decreasing on [ L 2 , +∞). Then, on [ L-L * 2 , L+L * 2 ], we have

w(x) ≥ w( L -L * 2 ) = w( L + L * 2 ). If L * ≤ L, it gives w(x) ≥ M 0 √ µ Å 1 -e -√ µ L 2 cosh( √ µ L * 2 )
ã .

If L < L * , we obtain

w(x) ≥ M 0 √ µ e -√ µ L * 2 sinh( √ µ L 2 ).
Thus, in both situations, we get that for M 0 large enough, w(x

) > w * , for x ∈ [ L-L * 2 , L+L * 2 ]
, where w * is defined in the assumptions of Theorem 1. Therefore, for M 0 large enough, g(v, w(x)) < -α 2 v for all x ∈ [ L-L * 2 , L+L * 2 ] and v > 0.

We are now in position to prove our first main result. Proof of Theorem 1. We split the proof into several steps.

Step 1. Existence of a barrier.

Let L > 0, M 0 > 0, and w be a solution of the equation

w + M 0 1 [0,L] -µw = 0, w(±∞) = 0.
Let L * > 0 which will be fixed later. As a consequence of Lemma 2, we have that for

M 0 ≥ M * large enough, g(v, w(x)) ≤ -α 2 v for all x ∈ [ L-L * 2 , L+L * 2 ] and v ≥ 0. On R \ [ L-L * 2 , L+L * 2 ]
, we clearly have w ≥ 0, and thus, g(v, w) ≤ g(v, 0) since, from the assumptions on g in the statement of Theorem 1, the function g is decreasing with respect to its second variable. Let us introduce ‹ v 2 solution of the problem

‹ v 2 + g(‹ v 2 , 0) = 0, x [ L-L * 2 , L+L * 2 ], ‹ v 2 -α 2 ‹ v 2 = 0, x ∈ [ L-L * 2 , L+L * 2 ]. (14) 
We clearly have from above remarks that ‹ v 2 + g(‹ v 2 , w) ≤ 0 on R. Since f := g(•, 0) is bistable, we may apply Proposition 1 for system (14) : There exists L * > 0 such that system (14) admits a solution with ‹ v 2 (-∞) = 0 and ‹ v 2 (+∞) = 1. Then, the couple (‹ v 2 , w) verifies (4). Hence, we have constructed a barrier for any L > 0 and for M 0 large enough. Let us recall that for L = 0 or M 0 = 0, we have w = 0 and we know that, due to (3), there exist invading traveling wave solutions. Hence, there is no barrier when L = 0 or M 0 = 0. We mention that if there is a barrier (v, w) for L, M > 0, then if we denote w the solution of w + M1 [0,L] -µ w = 0, by the comparison principle, we have w ≤ w. Thus, g(v, w) ≥ g(v, w). Hence, 0 ≥ v + g(v, w) ≥ v + g(v, w), and (v, w) is a barrier. Then, if there exists a barrier for L, M > 0, we can always choose w as

w L,M (x) = M 2 √ µ L 0 e -√ µ|x-y| dy. (15) 
Notice that for any L ≥ L and M 0 ≥ M 0 , we have

M 0 1 [0,L ] ≥ M 0 1 [0,L] .
Hence, if we have a barrier (v, w) for M 0 and L, then for any M 0 ≥ M 0 and any L ≥ L, (v, w) is also a barrier, i.e. verifies (4) with M 0 and L instead of M 0 and L. For L > 0, we denote M * (L) the infimum of all M 0 ≥ 0 such that there exists a barrier with M 0 and L. By definition, for any L > 0, there exists M * (L) such that for any M 0 > M * (L) there exists a barrier. Therefore, by continuity of g and of the function w with respect to M, we deduce that there exists a barrier also for M 0 = M * (L).

Step 2. L → M * (L) is decreasing and continuous. It is clear from above computations that if L > L 0 , we have M * (L) ≤ M * (L 0 ). Let us suppose, by contradiction, that M * (L) = M * (L 0 ), and denote (v L 0 ,M * (L 0 ) , w L 0 ,M * (L 0 ) ) a barrier for L 0 , M * (L 0 ). Then we have from ( 15) that w L,M * (L) > w L 0 ,M * (L 0 ) . We deduce that we may find

M < M * (L) = M * (L 0 ) such that w L,M ≥ w L 0 ,M * (L 0 ) (for instance by taking M = M * (L) max R w L 0 ,M * (L 0 )
w L,M * (L) which is clearly well-defined from the expression ( 13)). Then,

g(v L 0 ,M * (L 0 ) , w L,M ) ≤ g(v L 0 ,M * (L 0 ) , w L 0 ,M * (L 0 ) ) ≤ -v L 0 ,M * (L 0 ) . It implies that (v L 0 ,M * (L 0 ) , w L,M ) is a barrier for L, M with M < M * (L), it is a contradiction with the definition of M * (L). Hence the mapping L → M * (L) is decreasing.
Moreover, let ε > 0 and L 0 > 0. Using [START_REF] Lewis | Wave-Block in Excitable Media due to Regions of Depressed Excitability[END_REF], we have

w L 0 ,M * (L 0 )-ε < w L 0 ,M * (L 0 )-ε 2 .
Then, there exists η > 0 such that for all L < L 0 + η, we have w L,M * (L 0 )-ε ≤ w L 0 ,M * (L 0 )-ε 2 . Hence, if there exists a barrier for L, M * (L 0 ) -ε, there will be a solution to

-v ≥ g(v, w L,M * (L 0 )-ε ) ≥ g(v, w L 0 ,M * (L 0 )-ε 2 ).
It will imply that there is a barrier for L 0 , M * (L 0 ) -ε 2 . However, it is a contradiction with the definition of M * (L 0 ) as the minimum of values M for which a barrier exists. Thus, we have M * (L 0 ) -ε < M * (L) < M * (L 0 ) for any L 0 < L < L 0 + η. Hence, L → M * (L) is continuous. It concludes the proof of the point (i).

Step 3. Proof of (ii). As a consequence of (i), the limits lim L→0 + M * (L) and lim L→+∞ M * (L) exist. Let us assume by contradiction that the point (ii) does not hold, that is lim

L→0 + M * (L) = M < +∞.
Then, for all ε > 0, we may find a barrier solution to (4) with M 0 = M and L = ε; we call (v ε , w ε ) this barrier solution. By comparison principle and from the expression in ( 13), we deduce that for all x ∈ R

w ε (x) ≤ M µ Ä 1 -e -√ µ ε 2 ä → 0, when ε → 0. ( 16 
)
From the first two assumptions on g in the statement of Theorem 1, there exists η > 0 small enough such that v → g(v, η) is bistable, admits 3 roots 0 < v 1,η < v 2,η and verifies v 2,η 0 g(v, η) dv > 0. Hence there exists a traveling wave solution to the parabolic equation

∂ t v -∂ xx v = g(v, η). ( 17 
)

Application to the sterile insect technique

In this section, we will apply previous results to system (8)-( 9) which has been introduced to model the sterile insect technique. We first show that the reaction term fulfills the hypotheses of Theorem 1. Then, we describe the barriers.

Bistability

Let us denote g the right hand side of ( 8), we have

g(F, M s ) = F • (Krν E -µ F F)bF 1 -e -β(F+γM s ) -Kµ F (ν E + µ E )(F + γM s ) bF 2 1 -e -β(F+γM s ) + K(ν E + µ E )(F + γM s ) . ( 20 
)
We display in Figure 2 the function F → g(F, M s ) for some values 0 < M 1 s < M 2 s . In this case, it is bistable for 0 and M 1 s 1 and mono-stable for M 2 s . The parameter values we will use in this work are given in Table 1 below and are extracted from [START_REF] Strugarek | On the use of the sterile insect release technique to reduce or eliminate mosquito populations[END_REF]. Clearly, with these parameters values, the function g(•, 0) is bistable. Lemma 3. Let g be defined by [START_REF] Pouchol | Phase portrait control for 1D monostable and bistable reactiondiffusion equations[END_REF] for F > 0 and M s ≥ 0.

1. We have ∂g ∂M s (F, M s ) < 0.

2. There exists M > 0 such that g(F, M s ) < 0 for all M s > M and F > 0.

We have

-µ F F ≤ g(F, M s ) < -µ F F + Krν E . Furthermore, for every fixed M s ≥ 0, g(F, M s ) ∼ -µ F F when F → 0 + and g(F, M s ) ∼ -µ F F + Krν E when F → +∞.
4. For any fixed M s ≥ 0, ∂g ∂F (F, M s ) is bounded for F ≥ 0.

Proof.

1. Differentiating [START_REF] Pouchol | Phase portrait control for 1D monostable and bistable reactiondiffusion equations[END_REF] with respect to M s and disregarding all positive factors, we have that the sign of ∂g ∂M s depends on the sign of (β(F + γM s ) + 1)e -β(F+γM s ) -1. Putting x = β(F + γM s ), h(x) = (x + 1)e -x -1, we have that h(x) < 0 for all x > 0, which proves that ∂g ∂M s (F, M s ) < 0 for all F > 0, M s ≥ 0.

2. The sign of g(F, M s ) depends on the numerator 2 , the numerator is negative for all F > 0.

(Krν E -µ F F)bF 1 -e -β(F+γM s ) -Kµ F (ν E + µ E )(F + γM s ) This numerator is negative for all M s ≥ 0, F > Krν E µ F . For 0 ≤ F < Krν E µ F , note that (Krν E -µ F F)bF 1 -e -β(F+γM s ) -Kµ F (ν E + µ E )(F + γM s ) < (Kbrν E -Kµ F (ν E + µ E ) -bµ F F)F -Kµ F (ν E + µ E )γM s ≤ K 2 (brν E -µ F (ν E + µ E )) 2 4bµ F -Kµ F (ν E + µ E )γM s , because 0 ≤ 1 -e -β(F+γM s ) < 1 and (Kbrν E -Kµ F (ν E + µ E ) -bµ F F)F is a downward parabola in F. Therefore if M s > M = K 4bγµ 2 F (ν E +µ E ) (brν E -µ F (ν E + µ E ))
3. Let h(F, M s ) = g(F,M s ) F , so h(F, M s ) = (Krν E -µ F F)bF 1 -e -β(F+γM s ) -Kµ F (ν E + µ E )(F + γM s ) bF 2 1 -e -β(F+γM s ) + K(ν E + µ E )(F + γM s ) > -µ F bF 2 1 -e -β(F+γM s ) -Kµ F (ν E + µ E )(F + γM s ) bF 2 1 -e -β(F+γM s ) + K(ν E + µ E )(F + γM s ) = -µ F .
We compute also

0 < g(F, M s ) + µ F F = Krν E bF 2 1 -e -β(F+γM s ) bF 2 1 -e -β(F+γM s ) + K(ν E + µ E )(F + γM s ) < Krν E .
Since for all M s ≥ 0, lim F→+∞ g(F, M s ) + µ F F = Krν E and lim F→0 + h(F, M s ) = -µ F , this proves the asymptotic behavior of g(F, M s ) when F → 0 + , F → +∞ respectively. 4. By L'Hôpital's rule, we have for all M s ≥ 0,

∂g ∂F (0, M s ) = lim F→0 + h(F, M s ) = -µ F , lim F→+∞ ∂g ∂F (F, M s ) = lim F→+∞ h(F, M s ) = -µ F .
Since ∂g ∂F is continuous and has finite limit when F → 0 + and F → +∞, then ∂g ∂F is bounded for every F ≥ 0 and M s ≥ 0.

The following lemma provides the equilibria for the dynamical system when there are no sterile mosquitoes. Lemma 4. Let g be defined by [START_REF] Pouchol | Phase portrait control for 1D monostable and bistable reactiondiffusion equations[END_REF].

Let us denote δ = βK(µ E + ν E ) 2b Ç 1 + 1 + 4b βK(µ E + ν E ) å . Then, when M s = 0 , the equation g(F, 0) = 0 admits (i) three nonnegative roots 0 < F -< F + if exp Å Kβrν E µ F -δ ã > 1 + δ; (21) 
in this case, g(F, 0) < 0 on (0, F -) ∪ (F + , +∞) and g(F, 0) > 0 on (F -, F + );

(ii) two nonnegative roots if we replace the inequality in (21) by an equality;

(iii) only 0 as a root if we have the reverse inequality in [START_REF] Roques | Dynamics of Aedes Albopictus invasion insights from a spatio temporal model[END_REF].

Proof. From (20),

g(F, 0) = F (Krν E -µ F F)b(1 -e -βF ) -Kµ F (µ E + ν E ) bF(1 -e -βF ) + K(µ E + ν E ) . ( 22 
)
The denominator is positive for F ≥ 0, so we concentrate on the numerator. Let us denote

a = Kbrν E , c = bµ F , d = Kµ F (µ E + ν E ). Then, g(F, 0) = 0 iff F = 0 or (a -cF)(1 -e -βF ) = d. This latter equation is equivalent to g 1 (F) = g 2 (F), where g 1 (F) = a -d -cF, g 2 (F) = (a -cF)e -βF . (23) 
We have g 2 (F) = (-c -βa + cβF)e -βF , g 2 (F) = (aβ + 2c -βcF)βe -βF and g 1 is an affine function. On (-∞, 0], g 2 is convex, g 2 (0) = a > ab = g 1 (0), and g 2 (0) = -c -βa < -c = g 1 (0). Therefore, there is no root of ( 23) on (-∞, 0]. On [ a c + 1 β , +∞), g 2 is nondecreasing and g 2 ( a c + 1 β ) > g 1 ( a c + 1 β ). Thus, there is no root of ( 23) on [ a c + 1 β , +∞). On (0, a c + 1 β ), g 2 is decreasing and convex, whereas g 1 is affine and decreasing with a slope -c. Thus, there are 0, 1, or 2 roots of ( 23) on (0, a c + 1 β ); and when there are two roots F -< F + , we have g 2 (F) < g 1 (F) on (F -, F + ) and g 2 (F) ≥ g 1 (F) anywhere else.

In order to find a necessary and sufficient condition for having two positive roots, we first notice that since g 2 is increasing, g 2 (0) = -c -βa, and g 2 ( a c + 1 β ) = 0, there exists an unique ξ ∈ (0, a c + 1 β ) such that g 2 (ξ) = -c. It is equivalent to

ce βξ = c + βa -cβξ. (24) 
Then, there are two solutions for (23) iff g 2 (ξ) < g 1 (ξ); there is one solution for (23) iff g 2 (ξ) = g 1 (ξ); there are no roots iff g 2 (ξ) > g 1 (ξ). The condition g 2 (ξ) < g 1 (ξ) reads (acξ)e -βξ < adcξ.

Using [START_REF] Strugarek | On the use of the sterile insect release technique to reduce or eliminate mosquito populations[END_REF], we obtain

a c -ξ < (a -d -cξ)(c + βa -cβξ),
which is equivalent to

0 < c 2 βξ 2 -cβ(2a -d)ξ + a 2 β -cd -aβd = c 2 β(ξ -ξ 1 )(ξ -ξ 2 ), (25) 
where

ξ 1 = a c - δ β , ξ 2 = a -d c + δ β ,
and δ has been defined in the statement of the Lemma: with our notation we have δ =

β 2c Ä d + » d 2 + 4cd β ä .
Clearly, we have δ > βd c . Hence, condition ( 25) is satisfied iff ξ [ξ 1 , ξ 2 ]. Since ξ → e βξ is increasing and ξ → c + βacβξ is decreasing, we deduce from (24) that ξ < ξ 1 if and only if ce βξ 1 > c + βacβξ 1 ; and ξ > ξ 2 if and only if ce βξ 2 < c + βacβξ 2 . However, recalling that δ > βd c , we have ce βξ 2 = e βa/c ce δ-βd/c ≥ e βa/c c(1

+ δ -βd/c) > c ≥ c + βd -cδ = c + βa -cβξ 2 .
As a consequence, we always have ξ < ξ 2 . Hence, we have g 2 (ξ) < g 1 (ξ) iff ξ < ξ 1 and ce βξ 1 > c + βacβξ 1 . Replacing a, c, and ξ 1 by their respective expressions, we obtain [START_REF] Roques | Dynamics of Aedes Albopictus invasion insights from a spatio temporal model[END_REF]. By the same token, g 2 (ξ) = g 1 (ξ) iff ce βξ 1 = c + βacβξ 1 . And g 2 (ξ) > g 1 (ξ) iff ce βξ 1 < c + βacβξ 1 .

Corollary 1. Under assumption [START_REF] Roques | Dynamics of Aedes Albopictus invasion insights from a spatio temporal model[END_REF], the function F → g( F F + , 0) is bistable in the sense of (2).

Proof. Clearly, we see from [START_REF] Ruiz-Balet | Control under constraints for multi-dimensional reaction-diffusion monostable and bistable equations[END_REF] that F → g(F, 0) belongs to C 1 (R). From Lemma 3, we have seen that we have g(F, 0) ∼ -µ F F in a neighborhood of zero. Moreover, with Lemma 4 (i) the equation g(F, 0) = 0 has three simple roots 0 < F -< F + , and g(F, 0) is negative on (0, F -) ∪ (F + , +∞) and positive on (F -, F + ).

Lemma 5. Let g be defined as in [START_REF] Pouchol | Phase portrait control for 1D monostable and bistable reactiondiffusion equations[END_REF]. For any M s > M, we define

α(M s ) = -max F>0 g(F, M s ) F .
Then, α(M s ) ∈ (0, µ F ), M s → α(M s ) is increasing, and g(F, M s ) ≤ -α(M s )F, for all F > 0.

Proof. Recall that we have proved in Lemma 3 that for M s > M we have g(F, M s ) < 0, for all F > 0 and that h(F, M s ) = g(F,M s ) F is bounded, continuous, h(F, M s ) > -µ F , and lim

F→0 + h(F, M s ) = lim F→+∞ h(F, M s ) = -µ F .
Therefore, h(F, M s ) has a maximum for F ∈ (0, +∞), and α(M s ) is well-defined. By definition g(F, M s ) ≤ -α(M s )F. Moreover, since 0 > g(F, M s ) > -µ F F for F ∈ (0, +∞) (see Lemma 3), then α(M s ) ∈ (0, µ F ). Also, since g(F, M s ) is decreasing in M s , α(M s ) is increasing.

Wave-blocking region

This part is devoted to the proof of Theorem 2.

Proof of Theorem 2. Under assumption [START_REF] Roques | Dynamics of Aedes Albopictus invasion insights from a spatio temporal model[END_REF] the function F → g(F, 0) is bistable (see Lemma 4) and thus, it admits three nonnegative roots 0 < F -< F + . If F + 0 g(F, 0) dF ≤ 0, then there exists a traveling waves v with negative velocity c ≤ 0 which is a solution of the system : cvv = g(v, 0), v(-∞) = 0, v(+∞) = F + , and v is increasing. Therefore, -v = g(v, 0)cv ≥ g(v, 0), so v verifies the barrier equation in [START_REF] Bellini | Use of the Sterile Insect Technique Against Aedes albopictus in Italy: First Results of a Pilot Trial[END_REF]. Thus, we have a blocking for any L ≥ 0 or M ≥ 0.

Let us assume now that (21) holds and that F + 0 g(F, 0) dF > 0. From Lemma 3, Corollary 1, and Lemma 5, we have that assumptions in Theorem 1 are satisfied for the function g defined in [START_REF] Pouchol | Phase portrait control for 1D monostable and bistable reactiondiffusion equations[END_REF]. Hence, we may apply Theorem 1 and deduce that for any L > 0 there exists M * (L) such that for any M 0 ≥ M * (L) system (8)-( 9) admits a barrier. Remark 3. Since we always have the lower bound g(F, M s ) ≥ -µ F F, which means that F is bounded from below by the solution of ∂ t F 0 -∂ xx F 0 + µ F F 0 = 0, the solution is O(e -µ F t ) in [0, L]. This means that no matter how many sterile males we introduce in this interval, we cannot make F tend to zero asymptotically faster than e -µ F t . This result can be seen as a consequence of the fact that introducing the sterile males only perturbs the reproduction and does not impact the mortality of the females. Therefore, the females cannot decrease with a mortality rate larger than µ F which is, in this simple model, the mortality rate they would have in isolation. However, when we introduce a large number of sterile males, we can choose our linear bound α ≈ µ F , which reflects that the probability of females mating with fertile males, and laying viable eggs, decreases, and therefore the female population decreases at a rate close to µ F .

Numerical simulations

To illustrate our theoretical results, we provide some numerical simulations for the mathematical model used for the sterile insect technique (8)- [START_REF] Dyck | Sterile Insect Technique Principles and Practice in Area-Wide Integrated Pest Management[END_REF]. The function g defining the right hand side is given in [START_REF] Pouchol | Phase portrait control for 1D monostable and bistable reactiondiffusion equations[END_REF]. The values of the numerical parameters are taken from [START_REF] Strugarek | On the use of the sterile insect release technique to reduce or eliminate mosquito populations[END_REF] and are given in Table 1. The carrying capacity is computed similarly as in [START_REF] Strugarek | On the use of the sterile insect release technique to reduce or eliminate mosquito populations[END_REF] by taking the value of the number of males at equilibrium (without performing the SIT). We may assume that when no control technique is performed, the system (5) is at equilibrium with value (E, M, F) which verifies (see system ( 5))

E = µ M (1 -r)ν E M, F = rν E µ F E.
Once the value of the equilibrium is determined. It is easy to compute the carrying capacity since it should be such that g(F, 0) = 0. Therefore, with the expression of g in ( 20) we get

K = bµ F F(1 -e -βF ) rν E b(1 -e -βF ) -µ F (ν E + µ E )
.

For instance, for a value M = 5106 km -2 (see [START_REF] Strugarek | On the use of the sterile insect release technique to reduce or eliminate mosquito populations[END_REF]) we find K = 20793 km -2 .

Parameter

β b r µ E ν E µ F µ M γ µ s D u K Value
10 -4 10 0.5 0.03 0.05 0.04 0.1 1 0.12 0.0125 20688.8 With these parameter values, we first verify easily that the conditions on the parameters in Theorem 2 are satisfied. Then, we perform numerical simulations of system ( 8)-( 9) in one space dimension. More precisely, we consider a domain of width 50 km discretized by 1000 points. We discretize this system with a finite difference scheme where the right hand side is treated explicitly. Since, for numerical purposes we are in a bounded domain, we impose Neumann boundary conditions at the boundary of the numerical domain.

We show in Figure 3 the density of the females mosquitoes F computed by this discetization of system ( 8)-( 9) for L = 10 km, and for the two values M 0 = 10 000 km -2 (fig. 3-left) and M 0 = 30 000 km -2 (fig. 3right). We observe that there is an invading wave of mosquitoes coming from the left of the domain. When performing the SIT with the value M 0 = 10 000 km -2 in the domain [0, L], the wave is slowing down but can cross this region and continue to invade the whole domain. Increasing M 0 sufficiently, we notice that the invasion seems to be blocked, as illustrated in fig. 3-right for M 0 = 30 000 km -2 . In order to illustrate Theorems 1 and 2, we display in Figure 4 the curve L → M * (L) obtained for the function g used to model the sterile insect technique (see [START_REF] Pouchol | Phase portrait control for 1D monostable and bistable reactiondiffusion equations[END_REF]) with the values of Table 1. To obtain this curve, we test numerically, for a given value of the width L of the band, for which value of M 0 the invading wave is blocked at least numerically. We consider that the invading wave is blocked when the difference between two consecutive time iterations is smaller than a given threshold (here we choose 10 -6 ). We observe that this curve L → M * (L) verifies the properties stated in Theorem 1.

Moreover, we also compute the limit value M ∞ , defined in Theorem 1, by a dichotomy method. More precisely, for a given value of M 0 , we compute the maximal root F + of the function g(•, M 0 µ s ) thanks to a Newton method. Then we compute the integral F + 0 g(F, M 0 µ s ) dF by a trapezoidal rule. By dichotomy, we obtain an approximation of M ∞ such that this latter integral vanishes. With the numerical values at hand, we find M ∞ = 25083, 58 km -2 . We verify in Figure 4-left that the curve seems to converge to this asymptotic value M ∞ . 1.

Conclusion

We provide in this paper a rigorous study of the feasability to block an invading species by performing a sterile insect technique in a band, which may be seen as a saniraty cordon to protect an area. The main result of this paper may be summarized as follows : for any width of the band, there exists a minimal value of the number of sterile insect to release continuously in this band to block the invasion of the species. We provide some numerical simulations for this strategy for the case of mosquito invasion.

This study raises several questions. One question is directly related to our observation from numerical experiments. Indeed it will be interesting to study the slowing down of the wave since for practical situations it may be interesting to only slow down the invasion to protect an area for several years. Another extension of this work is the so-called "rolling carpet" strategy which consists in moving the band where the blocking occurs in the opposite direction of the wave to eradicate the insect species in a whole area. Such a study has been performed in [START_REF] Almeida | Analysis of the "Rolling carpet" strategy to eradicate an invasive species[END_REF]. Moreover, we have assumed in this study that all biological parameters are constant in space and time. Obviously, this is a rough approximation and a more precise study should take into account the variation due to the spatial heterogeneity and due to the seasonality.
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 1 Figure 1: Schematic representation of the technique based on the phase portrait. We construct a stationary solution by following the curve in bold which belongs to A on (-∞, 0) and to B on (L, +∞).
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 2 Figure 2: Plot of the functions F → g(F, M i s ) for 0 < M 1 s < M 2 s .
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 3 Figure 3: Numerical simulations of system (8)-(9) with L = 10 km and M 0 = 10 000 km -2 (left), and M 0 = 30 000 km -2 (right).
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 4 Figure 4: Left : Curve L → M * (L) in the case of the sterile insect technique with the values of Table1.
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 1 Table of the numerical values used in the numerical simulations. These values are taken from[START_REF] Strugarek | On the use of the sterile insect release technique to reduce or eliminate mosquito populations[END_REF] 

,3L 4 ) and g is decreasing with respect to its second variable. Finally, ( v, W) is a barrier and we have constructed a barrier for any M > M ∞ .

However, from [START_REF] Li | Modelling releases of sterile mosquitoes with different strategies[END_REF], we deduce that for ε small enough, we have g(v, w ε ) ≥ g(v, η). Hence v ε is a supersolution for the parabolic equation [START_REF] Nadin | Hindrances to bistable front propagation: application to Wolbachia invasion[END_REF] (provided the initial conditions are chosen correctly). This is not possible since it is a stationary solution and (17) admits traveling waves solutions with positive velocity. Thus, we obtain a contradiction. We deduce that lim L→L * M * (L) = +∞.

Step 4. Proof of (iii).

For point (iii), let us consider M ∞ as defined in the statement of Theorem 1. Then, for any L > 0, the solution, denoted w ∞ , of the second equation in (4) with M ∞ verifies (see [START_REF] Lewis | Waves of extinction from sterile insect release[END_REF]

Thus, since g is decreasing with respect to its second variable, for any v, g

It is well-known that there exists an invading traveling wave solution, denoted v ∞ , of the equation

Since, by the comparison principle, for any M ≤ M ∞ and any L > 0, the solution of (1), with the same initial data, is such that v ∞ ≤ v, we deduce that there does not exist a barrier for any M ≤ M ∞ . Thus for any L > 0, we have

We have seen in Lemma 2 (see [START_REF] Lewis | Waves of extinction from sterile insect release[END_REF]) that, on (0, L), W(x) = M 2µ (2e -√ µxe -√ µ(L-x) ). Then, on the interval 4 ). As a consequence, for L large enough, we have

By conservation of energy, the solutions of this system are such that

g(s, 0) ds = 0, for x ∈ ( 3L 4 , +∞),

Hence, there exists a solution to [START_REF] Oliva | The Sterile Insect Technique for Controlling Populations of Aedes albopictus(Diptera: Culicidae) on Reunion Island: Mating Vigour of Sterilized Males[END_REF] if there exists

), and

However, we have from (3) that 1 0 g(s, 0) ds > 0. Moreover, g(s, M ∞ µ ) < g(s, 0), and by definition of M ∞ , 1 0 g(s, M ∞ µ ) ds < 0. Hence, we may always find ν 1 < θ c < ν 2 such that (19) is satisfied. Thus, there exists a solution to [START_REF] Oliva | The Sterile Insect Technique for Controlling Populations of Aedes albopictus(Diptera: Culicidae) on Reunion Island: Mating Vigour of Sterilized Males[END_REF]. It satisfies for L large enough v + g( v, W) ≤ 0, since W ≥ 1 ( L