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Abstract

We study the recurrence of homogeneous and oscillating random walks on the integers,

simplifying former works of Spitzer and Kemperman, respectively. We add general remarks

and discuss some links with renewal theory.

1 Introduction

A primary question in the study of the asymptotic behaviour of a discrete time Markov chain
on Z

d is that of recurrence. When the jumping law is the same everywhere (homogeneous case),
this problem concerns Birkhoff sums Sn = X1 + · · ·+Xn, where the (Xi) are Z

d-valued random
variables, independent and identically distributed (i.i.d.), with common law µ. Improving a
former result of Chung and Fuchs, Spitzer’s analytical recurrence criterion (1957, cf [13], T2)
states that transience is equivalent to the integrability of Re(1/(1 − µ̂)) on the unit cube of
R

d. Importantly, this result doesn’t require any moment condition. For a general model of
inhomogeneous random walk on Z

d, the transition law at x ∈ Z
d is given by some probability

measure µx. The question of the recurrence is very delicate, as one has to understand how the
Markov chain perceives the space (or “environment”) given by the couple (Zd, (µx)x∈Zd).

A situation where the i.i.d. case helps is the following one. Fix a general Markov chain on
Z
d, starting at 0, and begin with a discussion of a naive recursive approach of the problem.

Given subsets Z
d = F0 ⊃ · · · ⊃ FK = {0}, the random walk is recurrent at 0 if and only

if, inductively on 0 ≤ k < K, the induced random walk in Fk visits Fk+1 infinitely often,
almost-surely. A difficulty is that, quasi inevitably, the induced Markov chains are heavy-tailed.
This strategy works for instance for random walks in a stratified environment, as considered in
[3, 1, 2], as there is in this case a natural filtration. A typical example is a nearest-neighbour
Markov chain in Z

2, when the transition laws only depend on the second coordinate. In this
situation the vertical component of the random walk, in restriction to vertical movements, is a
nearest-neighbour one-dimensional Markov chain. The necessary and sufficient condition for its
recurrence is well-known, for example in the theory of birth and death processes, and therefore
corresponds to the recurrence of the initial random walk in Z × {0} (we are thus led to taking
Z
2 = F0 ⊃ F1 = Z × {0} ⊃ F2 = {0}). When the condition holds, the induced random walk

in Z × {0} is heavy-tailed, but i.i.d., due to the invariance of the environment by horizontal
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translations. The analysis is then naturally orientated into precising the jumping law of this
random walk and applying Spitzer’s recurrence criterion for Z-valued i.i.d. sums; cf [1, 2].

A point that is not a detail is that the proofs of [1, 2] would have been seriously more
delicate to handle if we had to use the Chung-Fuchs result in place of Spitzer’s criterion, and
this orientates the present work. To now make a small step outside stratified random walks in
the plane, one has to develop results around the cornerstone that constitutes Spitzer’s theorem.
As a first natural extension, it appears important to prove for Kemperman’s oscillating random
walk [8] a result in the same spirit. Kemperman’s results [8] on this model indeed correspond to
the Chung-Fuchs theorem for homogeneous random walks.

A preliminary step of clarification is necessary concerning Spitzer’s theorem. The known
proof, available in [13], is not linear and requires to enter to some extent the apparatus of
Potential Theory for discrete Markov chains. It is also disseminated in [13] and a little painful
to reconstitute (Kesten-Spitzer [9] helps). We provide here a short(er) proof of Spitzer’s result
and highlight that it consists in computing some kind of second derivative at infinity of the
Green function in two different ways, a probabilistic one and one relevant from Fourier Analysis.
Invigorating a lemma due to Chung from the Potential Theory of discrete recurrent Markov
chains, we show that the probabilistic part of the proof is in fact very general. The harmonic
part will not be discussed here. We next point out some links with renewal theory and, in the last
section, consider oscillating random walks on the integers, reproving the results of Kemperman
[8] on the recurrence of this model. A combinatorial remark allows a shortcut in the analysis.

This text is a mainly revisit, the material and the results being essentially not new. Our effort
has been concentrated on the exposition, which tries to be in straight line and self-contained.
Many questions are addressed along the way, essentially on inner products of probabilistic Green
functions and their translations in Harmonic analysis.

We fix Z as state space, except for section 4. We now recall classical facts and notations.

2 Preliminaries

1) Laws and characteristic functions. Let X be a Z-valued random variable, with law written
as L(X) = µ, and (Xn)n≥1 be i.i.d. copies. We suppose X non constant, with gcd(Supp(µ)) = 1.
Let the characteristic function µ̂(t) = E(eitX), t ∈ R, a 2π-periodic function. Defining the
integer d = gcd(Supp(L(X1 −X2))) ≥ 1, then :

µ̂(t) = 1 iff t ∈ 2πZ and |µ̂(t)| = 1 iff t ∈ (2π/d)Z.

Write Sn =
∑n

i=1 Xi, with S0 = 0. The property that |µ̂(t)| < 1 on [0, 2π], except for finitely
many t, implies that L(Sn) does not concentrate around any point, as n → +∞ :

∀y ∈ Z, P (Sn = y) =
1

2π

∫ 2π

0

e−ity(µ̂(t))n dt →n→+∞ 0.

Also, for some α > 0 and small t, Re(1− µ̂(t)) ≥ αt2. Indeed, take M > 0 so that P (0 < |X | <
M) > 0. Then for |t| ≤ π/M , Re(1− µ̂(t)) = 2E(sin2(tX/2)) ≥ 2π−2t2E(X21|X|<M ).

2) Markov chains and Green functions. For any Markov chain (Sn) on Z, Px and Ex stand
for x as starting point. The Green function is G(x, y) = Ex(

∑
n≥0 1Sn=y). Let also GN (x, y) =

Ex(
∑

0≤n<N 1Sn=y), N ≥ 1. For y ∈ Z, set Ty = min{n ≥ 1, Sn = y}. For any x 6= y :
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GN (x, y) =
∑

1≤k<N

Px(Ty = k)GN−k(y, y). (1)

Hence, GN (x, y) ≤ GN (y, y) and G(x, y) = Px(Ty < ∞)G(y, y). Also, for x ∈ Z :

G(x, x) =
∑

n≥0

Px(Tx < ∞)n = 1/(1− Px(Tx < ∞)),

so the recurrence of x, i.e. the property Px(Tx < ∞) = 1, is equivalent to G(x, x) = +∞. For
any x 6= y with Px(Ty < ∞) > 0, note that Px(Tx < Ty) < 1. Then, in the same way :

Ex




Ty−1∑

n=0

1Sn=x


 = 1 +

∑

n≥1

Px(Tx < Ty)
n =

1

1− Px(Tx < Ty)
< ∞. (2)

Still for any x 6= y, we have :

GN (x, x) = Ex




Ty∧N−1∑

n=0

1Sn=x


+ Ex


1Ty<N

N−1∑

n=Ty

1Sn=x




= Ex




Ty∧N−1∑

n=0

1Sn=x


+

N−1∑

k=1

Px(Ty = k)GN−k(y, x). (3)

Thus, 0 ≤ GN (x, x) − GN (y, x) ≤ Ex(
∑Ty∧N−1

n=x 1Sn=x). We deduce the important claim : for
x 6= y with Px(Ty < ∞) > 0, then (GN (x, x) −GN (y, x))N≥0 is bounded.

In the particular case when the chain is homogeneous, G(x, y) = G(x− y, 0) and GN (x, y) =
GN (x − y, 0). Notice also that for x 6= 0, we have P0(T0 < Tx) = P0(T0 < T−x), as :

P0(T0 < Tx) =
∑

k≥1

P0(Sk = 0, Sl 6∈ {0, x}, 0 < l < k)

=
∑

k≥1

P0(Sk = 0, Sk − Sl 6∈ {0,−x}, 0 < l < k) = P0(T0 < T−x).

Still in the homogeneous case, with a step X of law µ, we often put µ as a superscript and write
Sµ
n , G

µ(x, y), Gµ
N (x, y), as well as Eµ(f(X)) for

∫
Z
fdµ.

3 Homogeneous case : Spitzer’s analytical criterion

Let (Sn) be a homogeneous random walk on Z with step µ, not Dirac and gcd(Supp(µ)) = 1.
On (0, 2π), the function t 7−→ Re (1/(1− µ̂(t))) is > 0, continuous and symmetric under t 7−→
2π − t. It belongs to L1(0, 2π) iff it is in L1(0, ε), for some ε > 0.

Theorem 3.1. (Spitzer, 1957)

The point 0 is transient for (Sn) iff
∫ 2π

0
Re (1/(1− µ̂(t))) dt < +∞.

This will follow from the next proposition, where constants are optimal.
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Proposition 3.2. We have G(0, 0) ≤
1

π

∫ 2π

0

Re (1/(1− µ̂(t))) dt ≤ 2G(0, 0).

Proof of the proposition :
Set aN (y) = GN (0, 0)−GN(0, y) = GN (0, 0)−GN(−y, 0). We show that (aN (y))N≥0 is bounded.
Take y 6= 0. This is clear if 0 is transient and if it is recurrent, then P0(T−y < ∞) = 1, as
gcd(Supp(µ)) = 1. Thus (aN (y))N≥0 is bounded, by the claim above.

Step 1. Let x > 0. We show that ∆(x) := limN→+∞(aN (x) + aN(−x)) exists. We have :

aN (x) + aN (−x) =
1

2π

∫ 2π

0

(2− e−itx − eitx)
N−1∑

n=0

(µ̂(t))ndt =
1

π

∫ 2π

0

1− cos(tx)

1− µ̂(t)
(1− (µ̂(t))N )dt.

Since |1 − µ̂(t)| ≥ Re(1 − µ̂(t)) ≥ αt2 and x is fixed, (1 − cos(tx))/(1 − µ̂(t)) is integrable. As
|µ̂(t)| < 1 except for finitely many values of t, the required limit exists and satisfies :

∆(x) =
1

π

∫ 2π

0

1− cos(tx)

1− µ̂(t)
dt =

1

π

∫ 2π

0

(1− cos(tx))Re((1 − µ̂(t))−1)dt. (4)

Step 2. For x > 0, we give a probabilistic expression for ∆(x). First, if y 6= 0, using (1) and (3) :

aN (y) = E0




Ty∧N−1∑

n=0

1Sn=0


+

N−1∑

k=1

P0(Ty = k)(GN−k(y, 0)−GN−k(y, y)).

By homogeneity, aN (y) = E0(
∑Ty∧N−1

n=0 1Sn=0) −
∑

1≤k<N P0(Ty = k)aN−k(−y). Taking y = x
and adding aN (−x) we obtain :

aN (x)+aN (−x) = E0

(
Tx∧N−1∑

n=0

1Sn=0

)
+

N−1∑

k=1

P0(Tx = k)(aN (−x)−aN−k(−x))+P0(Tx ≥ N)aN (−x).

Consider the terms on the right, when N → +∞. The first one tends to E0(
∑Tx−1

n=0 1Sn=0). As
P0(Sn = y) →n→+∞ 0, we get limN→+∞ aN+1(y) − aN (y) = 0 and thus limN→+∞ aN (−x) −
aN−k(−x) = 0 for fixed k. By dominated convergence, the second term goes to zero, as
(aN (−x))N≥0 is bounded. The latter also implies that the third term goes to zero in case
of recurrence and to P0(Tx = ∞)G(0, 0)(1−P0(T−x < ∞)) in case of transience. Thus, if x > 0 :

∆(x) = E0

(
Tx−1∑

n=0

1Sn=0

)
+ 1TRG(0, 0)P0(Tx = ∞)P0(T−x = ∞). (5)

Step 3. By (4)=(5), for any δ > 0, π−1
∫ 2π−δ

δ (1− cos(tx))Re((1 − µ̂(t))−1)dt ≤ 2G(0, 0). When
x → +∞, we get π−1

∫
[δ,2π−δ]

Re((1 − µ̂(t))−1)dt ≤ 2G(0, 0), by the Riemann-Lebesgue lemma.

Letting δ → 0, we get the second inequality. For the other direction, by (5)=(4) :

E0

(
Tx−1∑

n=0

1Sn=0

)
≤ (1/π)

∫ 2π

0

(1− cos tx)Re((1 − µ̂(t))−1)dt.

If Re((1− µ̂(t))−1 ∈ L1(0, 2π) (if not, this is obvious), then letting x → +∞ and using again the
Riemann-Lebesgue lemma for the right-hand side, we obtain the first inequality. �
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Remark. — When transience holds, constants in Prop. 3.2 are optimal. If Supp(µ) ⊂ N
∗, then

G(0, 0) = 1 and ∆(x) = 2 − P0(Tx < ∞) → 2 − 1/E(X), as x → +∞, by renewal theory (this

is reproved later in the paper). As limx→+∞ ∆(x) = π−1
∫ 2π

0
Re((1− µ̂(t))−1)dt, the conclusion

comes from the fact that E(X) can take any value in [1,+∞].

Remark. — The idea, used by Spitzer, of approaching G(0, 0) in two steps, first by the finite
limN→+∞(2GN (0, 0) − GN (0, x) − GN (0,−x)) and next the limit as x → +∞, is classical and
profound. A similar one is developed by Riemann in the first chapters of the theory of trigono-
metric series. This kind of “second derivative at infinity” suggests some general link between
transience and a condition of positive curvature at infinity (where the terms are to be redefined).

Remark. — The weak form of the theorem, due to Chung and Fuchs (1951), can be reduced to
the following observation, where interversion is direct for 0 < s < 1 :

Gµ(0, 0) = lim
s↑1

∑

n≥0

snPµ(Sn = 0) = lim
s↑1

∑

n≥0

1

2π

∫ 2π

0

sn(µ̂(t))n dt

= lim
s↑1

1

2π

∫ 2π

0

Re

(
1

1− sµ̂(t)

)
dt. (6)

The finiteness of the right-hand side is thus a transience criterion for the random walk. Notice
that the operation s ↑ 1 is not natural in this problem, as the level sets of z 7−→ Re(1/(1− z)) in
the unit disk are horocycles (Euclidean circles). There is no monotony in the limit and indeed,

as seen above, the right-hand side may differ from (2π)−1
∫ 2π

0
Re((1− µ̂(t))−1)dt.

Remark. — The theorem has been extended to general countable discrete Abelian groups by
Kesten and Spitzer [9], to R

d by Ornstein [10] and Port and Stone [11]. Recall also that in any
case limN→+∞ aN (x) exists and is called the potential kernel; see Spitzer [13], chap. 7.

Remark. — In the second step of the proof of the proposition and in the transient case, one can
directly write ∆(x) = G(0, 0)(2− P0(Tx < ∞)− P0(T−x < ∞)), when x > 0. It is interesting to
check equality with (5) in this case, i.e. that for x 6= 0 :

G(0, 0)(2−P0(Tx < ∞)−P0(T−x < ∞)) =
1

1− P0(T0 < Tx)
+G(0, 0)P0(Tx = ∞)P0(T−x = ∞).

Equivalently, for fixed x 6= 0 :

G(0, 0) =
1

1− P0(T0 < Tx)
×

1

1− P0(Tx < ∞)P0(T−x < ∞)
. (7)

This relation, valid for a general Markov chain (transient or not), corresponds to the following
decomposition of G(0, 0). Let T (0) = 0 and next T (k+1) be the first time > T (k) of passage at
zero after having visited x at least once, for k ≥ 0. Then (the kth term being 0 if T (k) = +∞) :

G(0, 0) =
∑

k≥0

E0




T (k+1)−1∑

n=T (k)

1Sn=0


 .

Call Ak the generic term in the above sum. Then :
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A0 = E0




T (1)−1∑

n=0

1Sn=0


 = E0

(
Tx−1∑

n=0

1Sn=0

)
=

1

1− P0(T0 < Tx)
.

Next, for k ≥ 1, Ak = P0(T
(k) < ∞)A0 = (P0(T

(1) < ∞))kA0. Now, P0(T
(1) < ∞) = P0(Tx <

∞)P0(T−x < ∞) and this gives the announced formula when summing on k ≥ 0. Remark also
that the last product is related with loops. More precisely :

P0(Tx < ∞)P0(T−x < ∞) =
P0(Tx < T0 < ∞)

1− P0(T0 < Tx)
.

The left-hand side is P0(reach x and come back at 0). Decomposing it as the probability of
making first n ≥ 0 loops at 0 without touching x, then going directly to x and finally coming
back to 0, this equals

∑
n≥0 P0(T0 < Tx)

nP0(Tx < T0 < ∞), so the right-hand side expression.

Notice furthermore that one may readily derive from (7), convening that 1/0+ = +∞, the
following always valid form for ∆(x), x > 0 :

∆(x) = E0

(
Tx−1∑

n=0

1Sn=0

)(
1 +

(
1 +

P0(Tx < ∞)

P0(Tx = ∞)
+

P0(T−x < ∞)

P0(T−x = ∞)

)−1
)
.

4 A general probabilistic result

The proof of Proposition 3.2 consists in computing some second derivative of the Green
function in two different ways, an analytical one, giving (4), and a probabilistic one, leading to
(5). We show here that the probabilistic part is very general.

Consider a general irreducible Markov chain (Sk)k≥0 on a countable state space. Fix two
points x 6= y and set :

cN = Ex




Ty∧N−1∑

n=0

1Sn=x


 and dN = Ey

(
Tx∧N−1∑

n=0

1Sn=y

)
.

Then cN ↑ c := Ex(
∑Ty−1

n=0 1Sn=x) and dN ↑ d := Ey(
∑Tx−1

n=0 1Sn=y), finite quantities. Taking
N ≥ 3, let us develop relation (3), namely :

GN (x, x) = cN +

N−1∑

k=1

Px(Ty = k)GN−k(y, x)

= cN +

N−1∑

k=1

Px(Ty = k)

N−k−1∑

l=1

Py(Tx = l)GN−k−l(x, x)

= cN +

N−1∑

m=2

GN−m(x, x)Rm, (8)

whereRm =
∑

k,l≥1,k+l=m Px(Ty = k)Py(Tx = l), symmetric in x and y. Notice that
∑

m≥2 Rm =
Px(Ty < ∞)Py(Tx < ∞) ≤ 1, with equality iff the random walk is recurrent. In the same way :
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GN (y, y) = dN +

N−1∑

m=2

GN−m(y, y)Rm.

Let us show that (dGN (x, x)− cGN (y, y))N≥0 is bounded. Set uN = dGN (x, x)− cGN (y, y) and
εN = dcN − cdN . We shall prove that for some C > 0, ∀n ≥ 2, |εn| ≤ C

∑
m≥n Rm.

Supposing this true, fix N ≥ 3 and maybe increase C so that |un| ≤ C, for n < N . The equality
uN = εN +

∑
2≤m<N RmuN−m then furnishes :

|uN | ≤ |εN |+
∑

2≤m<N

Rm|uN−m| ≤ C
∑

m≥N

Rm +
∑

2≤m<N

RmC = C.

The property |un| ≤ C is thus transmitted by recursion on n ≥ N , giving the required bounded-
ness. To establish the missing point, write εN = d(cN − c)− c(dN − d) and note that :

c− cN = Ex


1Ty>N

Ty−1∑

k=N

1Sk=x


 = Ex


1S1 6=y,··· ,SN 6=yESN




Ty−1∑

k=0

1Sk=x






= Ex

(
1Ty>NPSN

(T ∗
x < Ty)c

)
,

with T ∗
x = min{n ≥ 0 | Sn = x}. Hence 0 ≤ c − cN ≤ cPx(Ty > N). We conclude with the

remark that
∑

m≥N Rm ≥ Px(Ty > N)Py(Tx > 0), where Py(Tx > 0) > 0.

We obtain the following Doeblin type ratio limit theorem (cf Revuz [12], chap.4, ex. 4.10).

Lemma 4.1.

For any irreducible Markov chain on a countable state space and any points x and y :

lim
N→+∞

GN (x, x)

GN (y, y)
= α(x, y), with α(x, y) :=

Ex(
∑

0≤n<Ty
1Sn=x)

Ey(
∑

0≤n<Tx
1Sn=y)

.

Moreover, α(x, y) = G(x, x)/G(y, y) in the transient case and α(x, y) = π(x)/π(y) in the recur-
rent case, where π is the unique (up to a positive multiple) invariant σ-finite measure.

Proof of the lemma :
In the transient case, directly from relation (8), GN (x, x) → G(x, x) = c/(1−

∑
m≥2 Rm). Idem,

GN (y, y) → G(y, y) = d/(1 −
∑

m≥2 Rm), giving the result. In the recurrent case, this follows
from the boundedness of (dGN (x, x) − cGN (y, y)). In this situation, as π is proportional to
z 7−→ Ey(

∑
0≤n<Ty

1Sn=z), we obtain :

π(x)

π(y)
= Ey




Ty−1∑

n=0

1Sn=x


 /1 = Py(Tx < Ty)Ex




Ty−1∑

n=0

1Sn=x


 =

1− Py(Ty < Tx)

1− Px(Tx < Ty)
.

Via (2), we recognize α(x, y) and this concludes the proof of the lemma. �

Remark. — When the regime is known (recurrence or transience), then α(x, y) has the form of
a function of x divided by the same function of y. This seems unclear a priori.
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Lemma 4.2.

Consider an irreducible and aperiodic Markov chain (Sn) on a countable state space. Define
aN (x, y) = GN (x, x)−GN (y, x) ≥ 0. Fixing two points x 6= y, we have :

lim
N→+∞

aN (x, y) + α(x, y)aN (y, x) = Ex




Ty−1∑

n=0

1Sn=x


+ 1TRG(x, x)Px(Ty = ∞)Py(Tx = ∞).

Proof of the lemma :
Let again c = Ex(

∑
0≤n<Ty

1Sn=x) and d = Ey(
∑

0≤n<Tx
1Sn=y). Using (3) and (1) :

daN (x, y) + caN (y, x) = d(GN (x, x) −GN (y, x)) + c(GN (y, y)−GN (x, y))

= d

[
cN +

N−1∑

k=1

Px(Ty = k)(GN−k(y, x) −GN (y, x))− Px(Ty ≥ N)GN (y, x)

]

+ c

[
N−1∑

k=1

Px(Ty = k)(GN (y, y)−GN−k(y, y)) + Px(Ty ≥ N)GN (y, y)

]
.

Set bN = cGN (y, y) − dGN (y, x) = cGN (y, y) − dGN (x, x) + d(GN (x, x) − GN (y, x)). By the
beginning of the section and the claim of the first section, (bN ) is bounded. Therefore :

daN (x, y) + caN(y, x) = dcN +

N−1∑

k=1

Px(Ty = k)(bN − bN−k) + Px(Ty ≥ N)bN .

Let us study the limit of each term in the right-hand side, as N → +∞. The first one tends to
cd. For the other ones, we distinguish the natural cases :

- Transience. Then bN → cG(y, y)−dG(y, x) = d(G(x, x)−G(y, x)). By dominated convergence,
the second term goes to zero. The limit thus exists and equals :

cd+ Px(Ty = ∞)d(G(x, x) −G(y, x)) = cd+ Px(Ty = ∞)Py(Tx = ∞)dG(x, x).

- Null recurrence. Then Pu(Sn = v) → 0, for any u, v. This gives bN − bN+1 → 0 and so
bN − bN−k → 0 for fixed k. By dominated convergence the second term goes to zero. As
Px(Ty ≥ N)bN → 0, the limit is thus cd in this case.

- Positive recurrence. Again the third term tends to 0. Aperiodicity implies that Pu(Sn = v) →
π(v), where π is the invariant probability measure for the chain. For fixed k, bN − bN−k →
ckπ(y)− dkπ(x) = 0, as π(x)/π(y) = c/d in this case. By dominated convergence once more the
second term goes to 0 and the limit also equals cd.

This concludes the proof of the lemma.
�

Remark. — This lemma in the recurrent case is due to Chung, see Kemeny-Snell-Knapp [7],
Theorem 9.7. Notice that the proof is somehow identical to that in Step 2 of Proposition 3.2.
Again, the right-hand side of the formula is essentially G(x, x), when y goes to infinity. The idea
now would be to understand the left-hand side with analytical tools. The quantity α(x, y) has to
be analyzed closely. For a homogeneous random walk, α(x, y) = 1, since P0(T0 < Tx) = P0(T0 <
T−x); cf for example the end of the preliminary section.
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5 Fourier transform of probability measures on N
∗

We study here 1/(1−µ̂+) when µ+ is a probability measure on N
∗. The random walk with step

µ+ is transient, hence Re(1/(1− µ̂+)) ∈ L1(0, 2π). In fact (1/(2π))
∫ 2π

0 Re(1/(1− µ̂+(t)))dt ≤ 1,
directly by relation (6) and Fatou’s lemma, as Gµ+(0, 0) = 1. The exact value would follow easily
from the considerations of Proposition 3.2 combined with renewal theory.

We instead make an Herglotz type computation, using complex analysis. This allows to derive
the renewal theorem directly from the Riemann-Lebesgue lemma. We next show that the Fourier
coefficients of Re(1/(1− µ̂+)) have an interesting probabilistic interpretation.

Lemma 5.1.

Let µ+, with Supp(µ+) ⊂ N
∗ and gcd(Supp(µ+)) = 1. Then t 7−→ Re(1/(1 − µ̂+(t)) is real,

positive, even and in L1(0, 2π), with :

1

2π

∫ 2π

0

Re

(
1

1− µ̂+(t)

)
dt = 1−

1

2Eµ+(X)
. (9)

Proof of the lemma :
Introduce f(z) = 1/(1 − E

µ+(zX)), holomorphic in ∆ = {|z| < 1}. For 0 ≤ r ≤ 1, the map
z 7−→ Re(f(rz)) is > 0 and harmonic on ∆. Thus, fixing 0 < r < 1 and using the Poisson kernel :

Re(f(rz)) =
1

2π

∫ 2π

0

Re

(
eiθ + z

eiθ − z

)
Re(f(reiθ))dθ, z ∈ ∆. (10)

By holomorphic extension (using that f(0) = 1 ∈ R) :

f(rz) =
1

2π

∫ 2π

0

eiθ + z

eiθ − z
Re(f(reiθ))dθ, z ∈ ∆. (11)

Taking z = 0 in (10), we get 1 = 1
2π

∫ 2π

0 Re(f(reiθ))dθ, so the positive measures (νr)0<r<1 on

the torus R\2πZ with density θ 7−→ Re(f(reiθ)) have constant mass 2π. Let us take a cluster
value ν of νr, as r ↑ 1, for the weak-∗ topology. We get from (11), fixing first z ∈ ∆ :

f(z) =
1

2π

∫ 2π

0

eiθ + z

eiθ − z
dν(θ) =

1

2π

∫ 2π

0


1 + 2

∑

n≥1

zne−inθ


 dν(θ).

Permuting the sum and the integral in the last expression, the Fourier coefficients of ν are
uniquely determined by the development in series of f around 0. Hence ν is unique and we
conclude that (νr) converges to ν, as r ↑ 1. We shall now determine this measure.

First, when θ ∈ R\2πZ is fixed, then µ̂+(θ) 6= 1, so limr↑1Re(f(reiθ)) = Re(1/(1− µ̂+(θ))).
Thus ν is locally Re(1/(1− µ̂+(θ)))dθ, giving ν = Re(1/(1− µ̂+(θ)))dθ + α0δ0. Hence :

1

1− Eµ+(zX)
=

1

2π

∫ 2π

0

(
eiθ + z

eiθ − z

)
Re

(
1

1− µ̂+(θ)

)
dθ +

α0

2π

(
1 + z

1− z

)
, z ∈ ∆.

To determine α0, take z = e−u, with a real u ↓ 0, and multiply both sides by 1− e−u :

1− e−u

1− Eµ+(e−uX)
=

1

2π

∫ 2π

0

(1− e−u)

(
eiθ + e−u

eiθ − e−u

)
Re

(
1

1− µ̂+(θ)

)
dθ +

α0

2π
(1 + e−u).
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The left-hand side goes to 1/Eµ+(X), monotonically. As (1 − e−u) × (eiθ + e−u)/(eiθ − e−u)
stays bounded by 2, the first term on the right-hand side tends to 0 by dominated convergence.
Finally we get α0/π = 1/Eµ+(X) and therefore the relation :

1

1− Eµ+(zX)
=

1

2π

∫ 2π

0

(
eiθ + z

eiθ − z

)
Re

(
1

1− µ̂+(θ)

)
dθ +

1

2Eµ+(X)

(
1 + z

1− z

)
, z ∈ ∆.

Expression (9) is now given by z = 0.
�

Proposition 5.2.

Let µ+, with Supp(µ+) ⊂ N
∗ and gcd(Supp(µ+)) = 1.

i) For x ≥ 1 :

1

π

∫ 2π

0

cos(tx)Re

(
1

1− µ̂+(t)

)
dt = P

µ+

0 (Tx < ∞)−
1

Eµ+(X)
.

As a result (renewal theorem, Erdös-Feller-Pollard [6]), limx→+∞ P
µ+

0 (Tx < ∞) = 1/Eµ+(X).

ii) The function t 7−→ t/|1− µ̂+(t)| belongs to L2(0, π). The function t 7−→ Im(1/(1− µ̂+(t)) is
real and odd; it does not belong to L1(0, π), whenever Eµ+(X) < ∞. Also, for x ≥ 1 :

1

π

∫ 2π

0

sin(tx)Im

(
1

1− µ̂+(t)

)
dt = P

µ+

0 (Tx < ∞).

iii) We have |1− µ̂+|
−1 ∈ Lγ(0, 2π), 0 < γ < 1. Also tε|1− µ̂+(t)|

−1 ∈ L1(0, π), ε > 0.

Proof of the proposition :
i) Start as in Prop. 3.2. Fixing x ≥ 1, we first have, for N ≥ 1 :

2G
µ+

N (0, 0)−G
µ+

N (0, x)−G
µ+

N (0,−x) =
1

π

∫ 2π

0

1− cos(tx)

1− µ̂+(t)
(1− (µ̂+(t))

N ) dt.

We can again take the limit as N → +∞ in the right-hand side and next the real part. The
limit of the left-hand side is trivial, so for any x ≥ 1 :

2− P
µ+

0 (Tx < ∞) =
1

π

∫ 2π

0

(1 − cos(tx))Re

(
1

1− µ̂+(t)

)
dt. (12)

The fact that Re(1/(1− µ̂+)) ∈ L1(0, 2π) can be recovered when minoring the right-hand side

by π−1
∫ 2π−δ

δ
, δ > 0, letting x → +∞ with the Riemann-Lebesgue lemma and finally δ → 0.

Subtracting (12) to twice (9), we obtain the desired relation for x ≥ 1. Then the renewal
theorem is a consequence of the Riemann-Lebesgue lemma. Mention in passing another proof,
even simpler. By (12) and the Riemann-Lebesgue lemma, limx→+∞ P0(Tx < ∞) exists; then in
Spitzer [13], P3, the limit is identified as 1/Eµ+(X).

ii) Let us place on (0, π). As 1−Re(µ̂+(t)) ≥ αt2, we have :

αt2

|1− µ̂+(t)|2
≤

1−Re(µ̂+(t))

|1− µ̂+(t)|2
= Re

(
1

1− µ̂+(t)

)
∈ L1(0, π).

For the imaginary part, let us write, fixing x ≥ 1 and taking N ≥ 1 :
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G
µ+

N (0, x)−G
µ+

N (0,−x) =
1

2π

∫ 2π

0

(e−itx − eitx)

N−1∑

n=0

(µ̂+(t))
ndt

= −
i

π

∫ 2π

0

sin(tx)

(
1− (µ̂+(t))

N

1− µ̂+(t)

)
dt. (13)

As sin(tx)Im(1/(1 − µ̂+(t))) is integrable, we can let N → +∞ and then take the imaginary
part inside the integral. The left-hand side limit being obvious, we obtain for x ≥ 1 :

P
µ+

0 (Tx < ∞) =
1

π

∫ 2π

0

sin(tx)Im

(
1

1− µ̂+(t)

)
dt.

Whenever Eµ+(X) < ∞, the left-hand side goes to 1/Eµ+(X) > 0, hence the Riemann-Lebesgue
lemma is not verified, giving Im(1/(1− µ̂+(t))) 6∈ L1(0, 2π).

iii) The holomorphic function f(z) = 1/(1−E
µ+(zX)), z ∈ ∆, has a positive and harmonic real

part. The latter thus is in h1(∆). By Duren [5], Theorem 4.2, f ∈ Hγ(∆), 0 < γ < 1, i.e. :

sup
0<r<1

∫ 2π

0

|f(reiθ)|γ dθ < ∞.

By Fatou’s lemma, as r ↑ 1, we get
∫ 2π

0
|1− µ̂+(θ)|

−γ dθ < ∞. For the last point, write :

tε

|1− µ̂+(t)|
=

tε

|1− µ̂+(t)|ε/2
×

1

|1− µ̂+(t)|1−ε/2
∈ L1(0, π),

as the first term on the right-hand side is bounded. This ends the proof of the proposition.
�

Corollary 5.3.

i) Re((1− µ̂+)
−1) ∈ L2(0, 2π) iff (Gµ+(0, x)− 1/Eµ+(X))x≥0 ∈ l2.

ii) Im((1 − µ̂+)
−1) ∈ L2(0, 2π) iff (Gµ+(0, x))x≥0 ∈ l2. In this case |1− µ̂+|

−1 ∈ L2(0, 2π).

Proof of the corollary :
Point i) is clear as Re((1 − µ̂+)

−1) ∈ L1(0, 2π), so the (Gµ+(0, x) − 1/Eµ+(X)) are its Fourier
coefficients. Idem, when Im((1−µ̂+)

−1) ∈ L2(0, 2π) then the (Gµ+(0, x))x≥0 are the correspond-
ing Fourier coefficients and thus belong to l2. Reciprocally, if (Gµ+(0, x))x≥0 is l2, define the L2

odd function f(t) =
∑

x≥1 G
µ+(0, x) sin(xt). For all x ∈ Z, we thus have :

∫ 2π

0

sin(tx)

sin t

[
sin t

(
Im((1 − µ̂+(t))

−1)− f(t)
)]

dt = 0.

The function inside the brackets belongs to L2 and is even. Writing sin(t(1+x)+ sin(t(1−x)) =
2 sin(t) cos(tx), for x ≥ 0, the latter is thus orthogonal to all cos(tx), x ≥ 0, hence equals zero
a.-e.. Hence Im((1− µ̂+)

−1) = f , a.-e., and thus belongs to L2.

Finally, when Im((1 − µ̂+)
−1) ∈ L2(0, 2π) ⊂ L1(0, 2π), then E

µ+(X) = ∞ by Proposition
5.2. The conditions on Fourier coefficients in order to belong to L2(0, 2π), for Re((1 − µ̂+)

−1)
and Im((1− µ̂+)

−1), are now identical.
�
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Remark. — Using Re(1− µ̂+(t)) = 2Eµ+(sin2(tX/2)) ≥ (2/π2)t2Eµ+(X21X<π/t), we get :

∫ ε

0

t2Eµ+(X21X<π/t)

|1− µ̂+(t)|2
dt < ∞.

This is a little improvement of Prop. 5.2 ii) when X 6∈ L2. In Proposition 5.2 the Fourier
coefficients of Re((1− µ̂+)

−1) and Im((1− µ̂+)
−1) are probabilistic quantities. Those of Re((1−

µ̂+)
−1) exactly measure the error in the renewal theorem. Another question is whether t1/2+ε/|1−

µ̂+(t)| ∈ L2(0, π), for ε > 0. Also,
∑

x≥0 G
µ+(0, x) = +∞, hence (Gµ+(0, x))x≥0 is never l1. As

detailed in the next section, it is l2 iff some symmetric oscillating random walk on Z is transient.

Remark. — For complex numbers a and b, write 〈a, b〉 = Re(ab̄) for the real inner product of
the vectors in R

2 with affixes a and b. As a corollary of Prop. 5.2, although 1/|1− µ̂+| may not
belong to L1(0, 2π), we have 〈(1− µ̂+(t))

−1, eitx〉 ∈ L1(0, 2π), for all x ∈ Z, with :





1
π

∫ 2π

0
〈(1 − µ̂+(t))

−1, eitx〉 dt = 2Gµ+(0, x)− 1/Eµ+(X), x ≥ 0,

1
π

∫ 2π

0 〈(1 − µ̂+(t))
−1, e−itx〉 dt = −1/Eµ+(X), x ≥ 1.

Let x ≥ 1. Even if this is not always true, in general Im(µ̂+(t)) ≥ 0 for small t > 0, so in this
case 1/(1− µ̂+(t)) is in the first quadrant, as well as eitx and contrary to e−itx. Hence it seems
natural that the first integral above is larger than the second one.

To conclude this section, we present a variation on Lemma 5.1.

Lemma 5.4.

Let µ+, with Supp(µ+) ⊂ N
∗ and gcd(Supp(µ+)) = 1. Then :

1

2π

∫ 2π

0

Re

(
1

1− µ̂+(t)

)
1

1 +
[

sin(t/2)
sinh(1/2)

]2 dt =
tanh(1/2)

1− Eµ+(e−X)
−

1

2Eµ+(X)
.

Proof of the lemma :
Introduce the homography ρ(z) = (1− z)/(1+ z), exchanging the open unit disk ∆ and the half
plane Re > 0. Let f(z) = 1/(1 − E

µ+(e−ρ(z)X)), z ∈ ∆. It is holomorphic in ∆ and Re(f) is
> 0 and harmonic on ∆. By harmonicity at z = 0, for 0 < r < 1 :

1/(1− E
µ+(e−X)) =

1

2π

∫ 2π

0

Re(f(reiθ)dθ.

Proceeding as in Lemma 5.1, we get :

f(z) =
1

2π

∫ 2π

0

eiθ + z

eiθ − z
dν(θ), z ∈ ∆,

where ν is the limit as r ↑ 1 of the positive measures νr on R\2πZ with density Re(f(reiθ)). In
order to detail ν, note first that when θ ∈ (−π, π) is fixed, then :

lim
r↑1

ρ(reiθ) =
1− eiθ

1 + eiθ
= −i tan(θ/2).

When also θ 6∈ {2 arctan(2kπ), k ∈ Z}, then E
µ+(ei tan(θ/2)X) 6= 1 and ν is locally g(θ)dθ, with

g(θ) = Re(1/(1− E
µ+(ei tan(θ/2)X))). Hence ν decomposes as :
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ν = Re(1/(1− E
µ+(ei tan(t/2)X)))dt + απδπ +

∑

k∈Z

αkδθk ,

where θk = 2 arctan(2πk), for non-negative απ and (αk). In order to determine these coefficients,
start from the relation, for z ∈ ∆ :

1

1− Eµ+(e−ρ(z)X)
=

1

2π

∫ π

−π

(
eiθ + z

eiθ − z

)
g(θ)dθ +

απ

2π

(
1− z

1 + z

)
+
∑

k∈Z

αk

2π

(
eiθk + z

eiθk − z

)
.

Recall that g is integrable and
∑

k αk < ∞ (the mass of ν is 2π/(1− E
µ+(e−X))). Take z = −r

above, as r ↑ 1, and multiply first both sides by 1−r. Notice that for θ ∈ (−π, π), (1−r)× (eiθ−
r)/(eiθ + r) stays bounded by 2 and converges to 0. Hence as r ↑ 1, by dominated convergence,
the right-hand side converges to απ

2π (1 + 1), whereas the left-hand side is equivalent to (1 − r)
and therefore goes to 0. We obtain απ = 0.

Fixing k ∈ Z, take now z = reiθk and let r ↑ 1, after multiplying both sides by (1 − r). Idem,
for θ ∈ (−π, π)\{θk}, (1− r)× (eiθ + reiθk)/(eiθ − reiθk) stays bounded by 2 and converges to 0.
By dominated convergence the right-hand side converges to αk/π, and this equals :

lim
r↑1

1− r

1− Eµ+(e−ρ(reiθk )X)
.

To determine the limit, note first that limu↓0+ u/(1−E
µ+(e−uX)) = 1/Eµ+(X), by monotone

convergence. Next, ρ(eiθk) = −i tan(θk/2) = −2ikπ, so the denominator is :

1− E
µ+(e−(ρ(reiθk )−ρ(eiθk ))X).

We next have, decomposing in real and imaginary parts :

ρ(reiθk)− ρ(eiθk) =
2(1− r)eiθk

(1 + reiθk)(1 + eiθk)
=

1− r

cos(θk/2)

(1 + r) cos(θk/2) + i(1− r) sin(θk/2)

(1 + r)2 cos2(θk/2) + (1 − r)2 sin2(θk/2)

= A(r) + iB(r).

- Case 1 : Eµ+(X) = +∞. Then, as A(r)/(1 − r) →r↑1 1/(2 cos2(θk/2)) > 0 :

∣∣∣∣
1− r

1− Eµ+(e−ρ(reiθk )X)

∣∣∣∣ ≤
1− r

1− Eµ+(e−A(r)X)
→r↑1 0.

- Case 2 : Eµ+(X) < +∞. Then :

1− E
µ+(e−(ρ(reiθk )−ρ(eiθk ))X)

1− r
=

1− E
µ+(e−A(r)X)

1− r
+ E

µ+(e−A(r)X(1− e−iB(r)X)/(1− r)).

As r ↑ 1, the first term on the right-hand side tends to E
µ+(X)/(2 cos2(θk/2)). Since t 7−→ eit is

1-Lipschitz on R, |1− e−iB(r)X)|/(1− r) ≤ |B(r)|X/(1− r). As |B(r)| ≤ C(1− r)2, the previous
quantity is both bounded by C′X and tends to 0 as r ↑ 1. Since E

µ+(X) < ∞, by dominated
convergence the second term goes to 0 as r ↑ 1. Finally, αk/π = 2 cos2(θk/2)/E

µ+(X). As
cos2(θk/2) = 1/(1 + 4π2k2), this leads to :
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1

1− Eµ+(e−ρ(z)X)
=

1

2π

∫ π

−π

(
eiθ + z

eiθ − z

)
Re

(
1

1− Eµ+(ei tan(θ/2)X)

)
dθ

+
1

Eµ+(X)

∑

k∈Z

(
eiθk + z

eiθk − z

)
1

1 + 4π2k2
, z ∈ ∆.

Taking z = 0 and making the change of variable θ = 2 arctan t in the first integral :

1

1− Eµ+(e−X)
=

1

π

∫ ∞

−∞

Re

(
1

1− µ̂+(t)

)
1

1 + t2
dt+

1

Eµ+(X)

∑

k∈Z

1

1 + 4π2k2

=
1

π

∫ 2π

0

Re

(
1

1− µ̂+(t)

)∑

k∈Z

1

1 + (t+ 2kπ)2
dt+

1

Eµ+(X)

∑

k∈Z

1

1 + 4π2k2
.

Finally, for a real a and a complex number z, we have (cf Cartan [4], ex. 4, p172) :

π

a

sinh(2πa)

cosh(2πa)− cos(2πz)
=
∑

k∈Z

1

a2 + (z + k)2
.

Taking z = t/(2π) and a = 1/(2π), we get
∑

k∈Z
1/(1 + (t + 2kπ)2) = (1/2) sinh(1)

cosh(1)−cos t and we

arrive at the announced formula.
�

Remark. — In the definition of z 7−→ 1/(1−E
µ+(e−ρ(z)X)), z ∈ ∆, the term E

µ+(e−ρ(z)X) could
be replaced by E

µ+(h(z)X) or Eµ+(h(zX)), for any h holomorphic in ∆ with |h| < 1 in ∆, for ex-
ample an automorphism of ∆. One would get new relations, but concretely limr↑1 E

µ+(h(reiθ)X)
is often delicate to determine.

6 Kemperman’s oscillating random walk

Taking Z as state space and considering an inhomogeneous model, we now focus on oscillating
random walks, as introduced by Kemperman in [8]. Fix a Markov chain, written as (Sn), which
jumps according to probability measures µ on (−∞, 0] and ν on [1,+∞), respectively. In view
of later applications, no moment assumption is made on either µ or ν.

Associate to each µ and ν one-sided sub-probability measures µ+ and ν−, respectively, with
Supp(µ+) ⊂ N

∗ and Supp(ν−) ⊂ −N
∗, in the following way. For any k ≥ 1 :

µ+(k) = P
µ
0 (Sn enters N∗ at k) and ν−(−k) = P

ν
0(Sn enters − N

∗ at − k). (14)

The question of the recurrence of 0 for (Sn) will appear as a property of the sole couple (µ+, ν−).
We first discuss the relation between µ and µ+ (or ν and ν−). Classically, µ+ is related to the
right Wiener-Hopf factor of µ. The recurrence problem involves some inner product of the right
Wiener-Hopf factor of µ with the left Wiener-Hopf factor of ν.
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6.1 Link between µ and µ+

For a measure w on Z, define the restrictions w− = w1≤0 and w+ = w1≥1. We place in the
commutative Banach algebra of signed measures on Z, with convolution as product, written as
w1w2. Recall the fundamental property of the exponential, exp(w1 +w2) = exp(w1) exp(w2), as
well as the following identity for a non-negative measure w with mass < 1 :

δ0 − w = exp(−Lw), where Lw =
∑

n≥1

wn

n
.

Given a probability measure w on Z, write (Sw
n ) for the i.i.d. random walk with step w, with

Sw
0 = 0. When several (Sw

n ) appear, corresponding to different probability measures, they are
supposed to be independent.

Proposition 6.1.

Let µ be a probability measure on Z and µ+ defined as in (14). Then µ+ is a probability measure
iff
∑

n≥1 µ
n(N∗)/n = +∞. When µ̂+(t) 6= 1 :

1

1− µ̂+(t)
= lim

s↑1
e
∑

n≥1 sn (̂µn)+(t)/n.

Proof of the proposition :
Let 0 < s < 1 and define L±

µ =
∑

n≥1 s
n(µn)±/n. Then δ0 − sµ = exp(−L+

µ ) exp(−L−
µ ). Set

N = min{n ≥ 1, Sµ
n ≥ 1}, η0 = δ0 and ηn(A) = Pµ(N ≥ n, Sn ∈ A), n ≥ 1. Let η =

∑
n≥0 s

nηn.

By definition, ηn+1 = (ηn)
−µ. Summing on n ≥ 0 with coefficients sn+1, we get η − δ0 = η−sµ.

This gives η−(δ0−sµ) = δ0−η+ and therefore η− exp(−L−
µ ) = (δ0−η+) exp(L+

µ ). The left-hand
side is a measure on (−∞, 0] and the right-hand side on [0,+∞), with mass at 0 equal to one.

Hence η− exp(−L−
µ ) = (δ0 − η+) exp(L+

µ ) = δ0. This gives δ0 − η+ = exp(−L+
µ ) or equivalently∑

n≥0(η
+)n = exp(L+

µ ), from which the assertions follow (observing that µ+ = lims↑1 η
+).

�

Remark. — Can we write the limit as e
∑

n≥1 (̂µn)+(t)/n for 0 < t < 2π, when µ+ is a probability
and |µ̂| < 1 on (0, 2π), hence suppressing the disgracious lims↑1 ?

6.2 The concentrated Markov chain

Lemma 6.2.

i) If either µ+(N
∗) < 1 or ν−(−N

∗) < 1, then (Sn) is transient.

ii) Let µ+(N
∗) = ν−(−N

∗) = 1 and call (Zn) the Markov chain jumping with µ+ on (−∞, 0] and
ν− on [1,+∞). Then 0 is recurrent for (Sn) is recurrent if and only if 0 is recurrent for (Zn).

Proof of the lemma :
i) If µ+(N) < 1, then (Sµ

n) a.-s. makes only finitely many records in the right direction, giving
Sµ
n → −∞, a.-s.. Thus P0(S

µ
n → −∞, with Sµ

k ≤ 0, ∀k ≥ 0) > 0 and so P0(Sn → −∞ and Sk ≤
0, ∀k ≥ 0) > 0. Hence (Sn) is transient. The situation ν−(−N

∗) < 1 is treated similarly.

ii) Let µ+(N
∗) = ν−(−N

∗) = 1. Then (Sn) visits both (−∞, 0] and [1,+∞) infinitely often,
a.-s.. Start (Zn) at 0. Idem, start (Sn) at 0 and let τ be its a.-s. finite entrance time in [1,+∞).
Then Sτ has the law of Z1. Looking now at (Sτ+n)n≥0 at left record times on [1,+∞) and right
record times on (−∞, 0], then (Sτ+n)n≥0 a.-s. comes back to 0 iff (Zn)n≥1 does. �
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We now suppose that µ+(N
∗) = ν−(−N

∗) = 1. This property may not be sufficient for recur-
rence (rarely, very large jumps across 0 may occur, ensuring |Sn| → +∞). Using the previous
lemma, we focus on (Zn). The latter random walk is rather particular as it can essentially be
reduced to the two sequences of positive and negative jumps (written in the order they appear).

Lemma 6.3.

i) Let 0 ≤ k ≤ n and x, y ∈ Z. The sequences (l+i )1≤i≤k and (−l−j )1≤j≤n−k are respectively
the ordered sequences of positive and negative jumps of a trajectory (which is then unique) of
(Zm)0≤m≤n, with Z0 = x and Zn = y, if and only if

∑
1≤i≤k l

+
i −

∑
1≤j≤n−k l

−
j = y − x and

(l+k ≥ y, if k ≥ 1 & y > 1) and (−l−n−k ≤ y − 1, if n− k ≥ 1 & y ≤ −1).

ii) We have Px(Zn = y) =
∑n

k=0 P
(
S
µ+

k + S
ν−
n−k = y − x, X

µ+

k ≥ y, X
ν−
n−k ≤ y − 1

)
, for any

n ≥ 0 and x, y ∈ Z. The second and third conditions disappear if k = 0 or n− k = 0.

Proof of the lemma :
i) Starting from a trajectory of (Zm)0≤m≤n, denote by (l+i )1≤i≤k and (−l−j )1≤j≤n−k, for some
0 ≤ k ≤ n, the ordered sequences of positive and negative jumps. From these two sequences we
recover the trajectory, simply noting that the current position of the walker gives the direction of
the next jump. Hence, starting for example from x ≤ 0, use first the (l+i ) until reaching [1,+∞),
next the (l−j ) until coming back to (−∞, 0], etc, until exhausting the two lists.

Starting from x and arriving at y, we have
∑

i l
+
i −

∑
j l

−
j = y − x. Suppose that k ≥ 1 and

y > 1 (the cases n− k ≥ 1 and y ≤ −1 would be treated in the same way). When running the
exhaustion process of the lists, two cases may occur :
- the (l+i ) are finished first. When this happens, the position is > y and the last positive jump
must have been > y. The path to y is ended with the remaining negative jumps.
- the list (l−i ) is ended first. The trajectory terminates with positive jumps (each with a starting
point in (−∞, 0]) and the last one has to be ≥ y.

Reciprocally, suppose the conditions satisfied and for instance k ≥ 1 & y ≥ 1. Starting from
x, run the exhaustion process of the lists. If the (l−j ) finish first, only positive jumps remain.
As the last one is ≥ y, this last sequence of jumps will have non-positive starting points, so the
trajectory will be “admissible”. If the (l+i ) are ended first, we are > y when this happens. Only
remain negative jumps for going to y, hence the trajectory is also “admissible”.

ii) Let independent (X
µ+

k , X
ν−
l )k,l≥0, with L(X

µ+

k ) = µ+, L(X
ν−
l ) = ν−. When running from

some fixed x the exhaustion process with the two lists (X
µ+

k )k≥0 and (X
ν−
l )l≥0, we obtain a

realization of (Zn)n≥0, with Z0 = x. By i), {Zn = y, with k positive jumps} = {S
µ+

k + S
ν−
n−k =

y − x, X
µ+

k ≥ y, X
ν−
n−k ≤ y − 1}. Take the probability and sum on 0 ≤ k ≤ n to get the result.

�

The Green function of (Zn) is related to some l2-inner product of the Green functions Gµ+

and Gν− . See Theorems 4.6 and 4.8 of Kemperman [8].

Proposition 6.4.

i) The Green function GZ of (Zn) verifies GZ(0, 0) =
∑

m≥0 G
µ+(0,m)Gν−(0,−m) and :

GZ(0, 0) = lim
s↑1

1

2π

∫ 2π

0

Re
(
(1− sµ̂+(t))

−1(1− sν̂−(t))
−1
)
dt.

ii) When ν−(A) = µ+(−A), for A ⊂ Z, then GZ(0, 0) = (2π)−1
∫ 2π

0 |1− µ̂+(t)|
−2dt.
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Proof of the proposition :
i) By Lemma 6.3, P0(Zn = 0) =

∑n
k=0 P

(
S
µ+

k + S
ν−
n−k = 0

)
=
∑n

k=0(µ
k
+ν

n−k
− )(0). Thus :

GZ(0, 0) =
∑

k,l≥0

(µk
+ν

l
−)(0) =

∑

m≥0

∑

k,l≥0

µk
+(m)νl−(−m) =

∑

m≥0

Gµ+(0,m)Gν−(0,−m).

Taking now 0 < s < 1 :

∑

k,l≥0

sk+l(µk
+ν

l
−)(0) =

1

2π

∫ 2π

0

∑

k,l≥0

(skµ̂k
+s

lν̂l−)(t)dt =
1

2π

∫ 2π

0

Re

(
1

1− sµ̂+(t)

1

1− sν̂−(t)

)
dt.

As GZ(0, 0) = lims↑1

∑
k,l≥0 s

k+l(µk
+ν

l
−)(0), we get the desired expression.

ii) In this case, µ̂+(t) is the conjugate of ν̂−(t), t ∈ R. By i), 2πGZ(0, 0) equals :

lim
s↑1

∫ 2π

0

|1− sµ̂+(t)|
−2dt = lim

s↑1
s−2

∫ 2π

0

|s−1 − µ̂+(t)|
−2dt =

∫ 2π

0

|1− µ̂+(t)|
−2dt,

where monotone convergence is used at the end (this does not work in general).
�

Remark. — The proof of i) also gives the following interesting relation, interpreting of the
recurrence criterion in terms of intersections of two independent random walks :

GZ(0, 0) = E



∑

k,l≥0

1
S

µ+
k

=−S
ν−
l


 = E(card({S

µ+

k , k ≥ 0} ∩ {−S
ν−
l , l ≥ 0})).

In fact (Zn) admits a natural invariant measure and this provides a characterization of pos-
itive recurrence. This was independently shown by Vo in [14], which also exhibits an invariant
measures for a related process, leading to an interesting recurrence condition.

Proposition 6.5.

Let µ+(N
∗) = ν−(−N

∗) = 1. Suppose that (Zn) is irreducible.

i) The measure π(y) = µ+(≥ y)1y≥1 + ν−(≤ y − 1)1y≤0 is invariant for (Zn). Hence (Zn) is
positive recurrent iff E

µ+(X) < ∞ and E
ν−(X) > −∞.

ii) If among E
µ+(X) and E

ν−(X) exactly one is finite, then (Zn) is null recurrent.

iii) If
∫ 2π

0
|1− µ̂+(t)|

−2dt < ∞ and
∫ 2π

0
|1− ν̂−(t)|

−2dt < ∞, then (Zn) is transient, hence (Sn).

Proof of the proposition :
Let the measure π(y) = µ+(≥ y)1y≥1 + ν−(≤ y − 1)1y≤0. Taking y0 ≥ 1, we have :

∑

y>y0

µ+(≥ y)ν−(y0 − y) +
∑

y≤0

ν−(≤ y − 1)µ+(y0 − y)

=
∑

z>y0

µ+(z)
∑

y0<y≤z

ν−(y0 − y) +
∑

z≥y0

µ+(z)ν−(≤ y0 − z − 1)

=
∑

z>y0

µ+(z)(ν−([y0 − z,−1]) + ν−(≤ y0 − z − 1)) + µ+(y0)ν−(≤ −1) = µ+(≥ y0).
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The case y0 ≤ 0 would be treated similarly. For ii), if Eµ+(X) < ∞, then limm→+∞ Gµ+(0,m) =
1/Eµ+(X) > 0, by the renewal theorem. By Prop. 6.4, (Zn) is recurrent iff

∑
m≥0 G

ν−(0,−m) =
+∞, which is true. The case E

ν−(X) > −∞ is similar.

Concerning ii), Prop. 6.4 gives that (Gµ+(0,m))m≥0 and (Gν− (0,−m))m≥0 are in l2, hence
(Gµ+(0,m)Gν−(0,−m))m≥0 is l1, by the Cauchy-Schwarz inequality. Prop. 6.4 i) then gives
transience. This concludes the proof of the proposition. �

6.3 Discussion

1) A natural question now is whether
∫ 2π

0 Re((1 − µ̂+(t))
−1(1 − ν̂−(t))

−1)dt always has a
meaning, in the sense that (Re((1− µ̂+)

−1(1− ν̂−)
−1))− ∈ L1(0, 2π). Conditioned by a positive

answer, the problem next is whether GZ(0, 0) has the same order as
∫ 2π

0
Re((1 − µ̂+(t))

−1(1 −
ν̂−(t))

−1)dt. A natural way seems to use Lemma 4.2.

2) Starting from Prop. 6.5, the remaining case is E
µ+(X) = E

ν−(−X) = +∞, with either
|1− µ̂+(t)|

−1 or |1− ν̂−(t)|
−1 not in L2(0, 2π). By Prop. 5.2, Re((1− µ̂+)

−1) and Re((1− ν̂−)
−1)

have non-negative real cosine coefficients. Taking real functions f > 0 and g > 0 in L1(0, 2π),

even and with real non-negative Fourier coefficients f̂(n), ĝ(n), n ≥ 0, a general question is

whether
∫ 2π

0 f(t)g(t)dt and
∑

n≥0 f̂(n)ĝ(n) are infinite at the same time. We show the direction
“ ≤ ”, making a standard computations with the Fejer kernel Kn. We have :

(Kn ∗ f)(t) =
n∑

j=−n

(
1−

|j|

n+ 1

)
f̂(j)eijt.

For M > 0, (1/2π)
∫ 2π

0
(Kn ∗ f)(g ∧M)dt ≤ 1

2π

∫ 2π

0
(Kn ∗ f)gdt =

∑n
j=−n(1−

|j|
n+1 )f̂(j)ĝ(j). For

the left-hand side use that Kn ∗ f → f in L1. Using monotone convergence for the right-hand

side, we obtain (1/2π)
∫ 2π

0
f(g ∧M)dt ≤

∑
n≥0 f̂(n)ĝ(n). Letting M → +∞, we get the result.
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