Confining integro-differential equations originating from evolutionary biology: ground states and long time dynamics - Archive ouverte HAL
Article Dans Une Revue Discrete and Continuous Dynamical Systems - Series B Année : 2023

Confining integro-differential equations originating from evolutionary biology: ground states and long time dynamics

Résumé

We consider nonlinear mutation selection models, known as replicator-mutator equations in evolutionary biology. They involve a nonlocal mutation kernel and a confining fitness potential. We prove that the long time behaviour of the Cauchy problem is determined by the principal eigenelement of the underlying linear operator. The novelties compared to the literature on these models are about the case of symmetric mutations: we propose a new milder sufficient condition for the existence of a principal eigenfunction, and we provide what is to our knowledge the first quantification of the spectral gap. We also recover existing results in the non-symmetric case, through a new approach.
Fichier principal
Vignette du fichier
0-ground-state-Vfinal.pdf (389.9 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03376957 , version 1 (13-10-2021)
hal-03376957 , version 2 (12-12-2022)

Identifiants

Citer

Matthieu Alfaro, Pierre Gabriel, Otared Kavian. Confining integro-differential equations originating from evolutionary biology: ground states and long time dynamics. Discrete and Continuous Dynamical Systems - Series B, 2023, Special issue in memory of Masayasu Mimura, 28 (12), pp.5905--5933. ⟨10.3934/dcdsb.2022120⟩. ⟨hal-03376957v2⟩
77 Consultations
55 Téléchargements

Altmetric

Partager

More