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Abstract In the context of two-dimensional (2D) image reconstruction
from truncated projections, we describe five implementations, each
based on a different formula derived from the virtual fan-beam (VFB)
method. Three formulae are already known: (a) and (b) perform the
back-projection in the parallel-beam geometry and (c) performs the
back-projection in the virtual fan-beam geometry. Two new formulae,
(d) and (e), perform the back-projection in the acquisition geometry.
Our simulation results using the Shepp-Logan phantom suggest that
the best accuracy is obtained from the implementations of formulae
(b), (d) and (e).

1 Introduction

The reconstruction of a region-of-interest (ROI) in two-
dimensional (2D) tomography from truncated data is possible
with both iterative and analytical methods. Iterative meth-
ods are more flexible but analytical methods, based on exact
inversion formulae, are significantly faster. Many iterative
methods have been used to solve this problem, e.g. maximum-
likelihood expectation-maximization (ML-EM) [1, 2]. The
analytical solutions follow two different approaches: the vir-
tual fan-beam (VFB) method, which is the focus of this paper,
and the differentiated back-projection (DBP) method. The
VFB method was mainly introduced in [3, 4]. The DBP
method was developed simultaneously by several groups [5–
7]. Both methods are relevant as they can each solve par-
ticular ROI reconstruction problems that the other cannot
[5].
The principle of the VFB method is that, since many exact
analytical reconstruction formulae require non-truncated pro-
jections, one identifies virtual source points for which the
corresponding virtual projections are non-truncated. The
real truncated projections are then rebinned into these virtual
non-truncated projections. To do so, we define the field-of-
view (FOV), which is the region viewed by every source
position. Considering a full scan acquisition trajectory, it
follows that every line passing through the FOV is measured
so any FOV point which is also outside the convex hull of the
object is a valid virtual source point. We then use super-short-
scan formulae, which enable exact reconstruction inside the
convex hull of the super-short-scan trajectory, in case of
non-truncated projections.
In this work, we use super-short-scan formulae from [8] with
the VFB method, but many other super-short-scan formulae
have been proposed for 2D ROI reconstruction, either for a
circular trajectory [9–11] or a free-form trajectory [12].

Previous contributions in the VFB area were applied to trun-
cated parallel-beam projections. The filtered sinogram was
either computed after explicitly rebinning to the virtual fan-
beam geometry [4], or with a shift-variant “convolution” [3].
In both cases, parallel back-projection was used.
In this work, we apply these two approaches to truncated
fan-beam projections along a circular source trajectory in-
stead of a parallel-beam sinogram. For the first approach,
we rebin the acquired fan-beam projections into virtual non-
truncated fan-beam projections. These virtual projections are
suitably filtered and then rebinned into filtered projections
corresponding either to a parallel-beam geometry (formulae
(a) and (b) below) or to the fan-beam acquisition geometry
(formula (d)), also called the real geometry (as opposed to
the virtual geometry). The back-projection is computed in
the corresponding geometry. We note that the reconstruction
is also possible with a back-projection directly in the virtual
fan-beam geometry (formula (c)), thus avoiding the second
rebinning step. These four formulae assume that both virtual
and real geometries have a circular source trajectory. Follow-
ing the same approach as [3] we also derive in proposition 2
a direct formula of the filtered projections in the geometry of
the acquired truncated projections (formula (e)).

2 Theory

2.1 Notation

Let f denote the 2D object density to be reconstructed.
The parallel-beam projections of f are defined by p(φ ,s) =∫
R f (l~θφ + s~ηφ )dl where ~θφ = (cosφ ,sinφ) and ~ηφ =
(−sinφ ,cosφ). Let hF(s) =

∫
R |σ |e2iπσs dσ denote the ramp

filter. The parallel-beam ramp filtered projections are defined
by

pF(φ ,s) =
∫

R
hF(s− s′)p(φ ,s′)ds′. (1)

Let hH(s) =
∫
R−i sign(σ)e2iπσs dσ denote the Hilbert filter.

The parallel-beam Hilbert filtered projections are defined by

pH(φ ,s) =
∫

R
hH(s− s′)p(φ ,s′)ds′. (2)

The fan-beam projections of f for a circular source tra-
jectory of radius R are defined by gR(λ ,γ) =

∫ ∞
0 f (R~θλ +

t~θλ+π+γ)dt where λ ∈ Λ ⊂ [0,2π) and R~θΛ is the set of
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vertices (fan-beam source locations) of the trajectory. The
fan-beam Hilbert filtered projections are defined by

gR
H(λ ,γ) =

∫ π

−π
hH(sin(γ− γ ′)) gR(λ ,γ ′)dγ ′. (3)

The fan-beam ‘differentiated and Hilbert filtered’ projections
are defined by

gR
F(λ ,γ)=

∫ π

−π
hH(sin(γ−γ ′))

(
∂

∂λ
− ∂

∂γ ′

)
gR(λ ,γ ′)dγ ′.

(4)

2.2 Use of the VFB method

In our formulae, the key step is the computation of gR
H(λ ,γ)

or gR
F(λ ,γ). Equations (3) and (4) require non-truncated fan-

beam projections. Therefore, we determine a virtual source
trajectory for which the associated fan-beam projections are
non-truncated, we rebin the initial data into this virtual ge-
ometry and we compute gR

H or gR
F for this trajectory.

The fan-beam ray parameters (λ1,γ1) and (λ2,γ2) (for circu-
lar source trajectories of radius R1 and R2, respectively) are
linked by G1 : {R1 sinγ1 = R2 sinγ2 and λ1 + γ1 = λ2 + γ2}
(see figure 1). To apply this, we assume that the virtual

Figure 1: A ray of parameters (φ , s) in parallel geometry and the
ray parameters (λi, γi) at the point Si for a circular trajectory of
radius Ri with i ∈ 1,2. The angles (λi, γi), measured counterclock-
wise, verify s =−Ri sinγi and φ = λi + γi.

source trajectory is an arc of circle of radius R1. We use
gR1(λ1,γ1) = gR2(λ2,γ2) where G1 is satisfied to rebin the
truncated projections acquired with a source trajectory of
radius R2 (with R2 ≥ R1) into the virtual source trajectory.

2.3 Formulae with parallel-beam back-projection

The parallel-beam parameters (φ ,s) and the fan-beam param-
eters for a virtual source trajectory of radius R1 (λ1,γ1) of a
ray are linked by either P1 : {s =−Rsinγ and φ = λ + γ} or
P2 : {s = Rsinγ and φ = λ + γ +π}..
A first reconstruction formula (a), derived from [8, eq. (8),
(10)], is

f (~x) =
1

4π

∫ 2π

0

[
∂
∂ s

pH(φ ,s)
]∣∣∣∣

s=~x·~ηφ

dφ (5)

where the available values of pH are obtained through the
virtual filtered projections gR1

H using:
{

P1 =⇒ pH(φ ,s) = −gR1
H (λ1,γ1),

P2 =⇒ pH(φ ,s) = gR1
H (λ1,γ1).

(6)

A second reconstruction formula (b), derived from [8, eq.
(2), (14)], is

f (~x) =
1
2

∫ 2π

0

[
pF(φ ,s)

]∣∣
s=~x·~ηφ

dφ (7)

where the available values of pF are obtained through the
virtual filtered projections gR1

F using:

P1 or P2 =⇒ pF(φ ,s) =−
1

2πR1 cos(γ1)
gR1

F (λ1,γ1). (8)

In both formulae, we replace the half rotation over [0,π) by a
full rotation over [0,2π) since it reduces numerical artefacts.

2.4 Formulae with fan-beam back-projection

A third reconstruction formula (c), derived from [8, eq. (33),
(34)], is

f (~x)=− 1
2π

∫

ΛR1

1

||R1~θλ1−~x||
wR1(λ1,γ~x,λ1)g

R1
F (λ1,γ~x,λ1)dλ1

(9)
where ΛR1 ⊂ [0,2π) is the angle extent of the virtual source
trajectory, γ~x,λ1 = arctan(−~x ·~ηλ1/(R1−~x ·~θλ1)), wR(λ ,γ) =
cR(λ )/(cR(λ ) + cR(λ + π + 2γ)) and cR is a smooth 2π-
periodic function such that λ /∈ ΛR =⇒ cR(λ ) = 0 (see
[8, eq. (46)] for more details).
In formula (c), the back-projection is done along the virtual
source trajectory. To apply the same formula along the real
source trajectory, we need to determine gR2

F . Since the real
projections are truncated, we cannot compute it directly with
(4). However, one can show the following:

Proposition 1.

G1 =⇒ gR1
F (λ1,γ1)

R1 cos(γ1)
=

gR2
F (λ2,γ2)

R2 cos(γ2)
(10)

This proposition yields the fourth reconstruction formula
(d):

f (~x)=− 1
2π

∫ 2π

0

1

||R2~θλ2−~x||
wR2(λ2,γ~x,λ2)g

R2
F (λ2,γ~x,λ2)dλ2

(11)
where gR2

F (λ2,γ2) = R2 cos(γ2)g
R1
F (λ1,γ1)/(R1 cos(γ1)),

γ~x,λ2 = arctan(−~x · ~ηλ2/(R2 −~x · ~θλ2)) and wR1(λ1,γ1) =
wR2(λ2,γ2) (to preserve the redundancy weight w associated
to each ray).
Proposition 1 enables computation of the values of gR2

F by
rebinning the real truncated projections gR2 into virtual non-
truncated projections gR1 , computing the virtual filtered pro-
jections gR1

F , and then rebinning back these virtual filtered
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projections into the real filtered projections gR2
F . However,

it is also possible to directly compute gR2
F from its truncated

projections:

Proposition 2.

gR2
F (λ2,γ2) =

R2 cos(γ2)√
R2

1−R2
2 sin2(γ2)

∫ γm

−γm

hH(sin(∆R2
R1
(γ2,γ2

′)))

(∂1−∂2)gR2(λ2 + γ2− γ2
′−∆R2

R1
(γ2,γ2

′),γ2
′)dγ2

′

(12)

provided that R1~θλ2+γ2−arcsin((R2/R1)sinγ2) (which corresponds

to R1~θλ1 when G1 is satisfied) is outside the convex hull
of the object and that the tangent to the circle of ra-
dius R1 at this point does not intersect the object, where
R2 ≥ R1, γm = arcsin(R1/R2), |γ2| ≤ γm, ∆R2

R1
(γ2,γ2

′) =

arcsin
(
(R2/R1)sinγ2

)
−arcsin

(
(R2/R1)sinγ2

′) and ∂i is the
derivative according to the i-th variable.
So this yields the fifth reconstruction formula (e), using
the same back-projection as (d) but with gR2

F computed by
proposition 2.

2.5 Simulations

For numerical experiments, we used the geometry defined in
figure 2. All values are in arbitrary units (a.u). The object to

Figure 2: The real source trajectory is a circle of radius R2 = 4.
The detector measures rays from the source S with an equal angular
spacing. The FOV is a disk of radius R1 = 0.8. The virtual source
trajectory (in bold dashed line) is the arc at the FOV border outside
the object.

reconstruct is the classical 2D Shepp-Logan phantom. The
center of the phantom was at (0, 0.15) with (0,0) the center
of rotation. The reconstructed images were computed on a
square grid of dimensions [−1,1]2 with ∆x = 1/200 (i.e. a

square grid of 401 x 401 pixels). The real source trajectory
along [0,2π) was sampled with an angular spacing ∆α2 of 0.5
degree (i.e. with 720 vertices) and each fan-beam truncated
projection was sampled with an angular spacing ∆γ2 =∆x/R2
for γ2 in [−γm,γm] (i.e. with 325 rays). Similarly, the virtual
source trajectory along [0°, 36°)∪[144°, 360°) was sampled
with an angular spacing ∆α1 of 0.5 degree (i.e. with 505
vertices) and each fan-beam projection was sampled with an
angular spacing ∆γ1 = ∆x/R1 (∆γ2 and ∆γ1 were chosen so
that the spacing between two rays at the center of rotation is
equal to ∆x for both real and virtual rays) for γ1 in [−π,π]
(i.e. with 1005 rays). For formulae (a) and (b), the parallel
projections along [0,2π) were sampled with an angular spac-
ing ∆φ of 0.5 degree (i.e. with 720 projections) and each
parallel projection was sampled over [−1,1] with ∆s = ∆x
(so each projection consists of 401 parallel rays).

3 Results

3.1 Simulations with noiseless projections

Figure 3 shows the reconstructed images and the correspond-
ing profiles for the five formulae using the same noiseless
sinogram. All reconstructions were satisfactory with minor
differences. The reconstructed image obtained with formula
(a) showed some artefacts (ripples close to the external white
envelope) which were avoided with formula (b). The back-
projection along the virtual source trajectory (formula (c))
produced more artefacts than the back-projection along the
real source trajectory (formula (d)). The reason is proba-
bly due to the virtual trajectory being closer to the object
than the real trajectory, as the lines contributing to the back-
projection must all go through the vertices along the virtual
trajectory, so these lines are irregularly sampled in case of a
point close to the virtual trajectory (this caused the artefacts
inside the object at the middle bottom and top left and right).
Concerning the arc of circle of white artefacts at the vicinity
of the virtual trajectory, it seems to be caused by the factor
1/||R~θλ −~x|| applied to this irregular sampling. We note that
(b) and (d) seemed to have a similar accuracy. Finally the
reconstruction obtained with formula (e) had a smaller exact
reconstruction area because the filtering step in proposition 2
was only accurate for rays which cross the virtual source tra-
jectory at a point where its tangent did not intersect the object.
Moreover, the discretization of hH(sin(∆R2

R1
(γ2,γ2

′))) required
finer sampling so, for formula (e), we chose ∆γ2

′ = ∆γ2/3
(i.e. with 969 rays) instead of ∆γ2

′ = ∆γ2. The computation
time was similar in all formulae except formula (e) for which
it was much longer (about 10 times longer for the whole
computation or 40 times longer for the part not involving
the back-projection) due to the shift-variant “convolution”
(which is not a true convolution so we cannot use the Fourier
convolution theorem) and the finer sampling of γ2

′.
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Figure 3: Top row: image reconstructed with, from left to right, formulae (a), (b) , (c), (d) and (e) when the data are measured with a
source trajectory of radius R = 4. The plotting scale is [1.015 (black), 1.025 (white)]. The vertical and horizontal white lines correspond
to the profiles plotted respectively in the middle row with scale [1.015, 1.045] and in the bottom row with scale [1.01, 1.04]. The ideal
profiles are plotted in green dashed line and the real ones in red. The vertical black dashed line defines the boundary of the possible
reconstruction area.

3.2 Simulations with noisy projections and variance
study

Figure 4 shows the pixel-wise variance computed for n = 100
realizations in the case of Poisson noise simulated before
taking the logarithm of the projections to obtain line integrals.
Following [13], the Shepp-Logan densities were weighted by
1.879 a.u−1 , i.e., the linear attenuation coefficient of water
at 75 keV with 1 a.u. = 100 mm. The number of photons
received per detector pixel without object in the beam was
constant for all pixels and equal to 107. Striking differences
were observed in the spatial maps of the variance between the
different formulae, with formula (c) the least homogeneous.

4 Conclusion

In this work, we compared five different implementations
for ROI reconstruction from truncated fan-beam projections
measured along a circular source trajectory. The first three
formulae (a), (b) and (c) were already established in [8] and
formulae (d) and (e) are, to our knowledge, new formulae.
All reconstructions gave satisfactory results. Image quality
was slightly better with formulae (b), (d) and (e) but the
computation time was longer for method (e). Method (c)
presented the worst satisfactory variance results, but we have

not yet performed a control study of image resolution in the
reconstructions.
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