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Introduction

The reconstruction of a region-of-interest (ROI) in twodimensional (2D) tomography from truncated data is possible with both iterative and analytical methods. Iterative methods are more flexible but analytical methods, based on exact inversion formulae, are significantly faster. Many iterative methods have been used to solve this problem, e.g. maximumlikelihood expectation-maximization (ML-EM) [START_REF] Zhang | Two-dimensional iterative regionof-interest (ROI) reconstruction from truncated projection data[END_REF][START_REF] Fu | Evaluation of 2D ROI Image Reconstruction Using ML-EM Method from Truncated Projections[END_REF]. The analytical solutions follow two different approaches: the virtual fan-beam (VFB) method, which is the focus of this paper, and the differentiated back-projection (DBP) method. The VFB method was mainly introduced in [START_REF] Clackdoyle | A large class of inversion formulae for the 2D Radon transform of functions of compact support[END_REF][START_REF] Clackdoyle | Quantitative reconstruction from truncated projections in classical tomography[END_REF]. The DBP method was developed simultaneously by several groups [START_REF] Noo | A two-step Hilbert transform method for 2D image reconstruction[END_REF][START_REF] Zhuang | Fan-beam and cone-beam image reconstruction via filtering the backprojection image of differentiated projection data[END_REF][START_REF] Zou | Exact image reconstruction on PI-lines from minimum data in helical cone-beam CT[END_REF]. Both methods are relevant as they can each solve particular ROI reconstruction problems that the other cannot [START_REF] Noo | A two-step Hilbert transform method for 2D image reconstruction[END_REF]. The principle of the VFB method is that, since many exact analytical reconstruction formulae require non-truncated projections, one identifies virtual source points for which the corresponding virtual projections are non-truncated. The real truncated projections are then rebinned into these virtual non-truncated projections. To do so, we define the field-ofview (FOV), which is the region viewed by every source position. Considering a full scan acquisition trajectory, it follows that every line passing through the FOV is measured so any FOV point which is also outside the convex hull of the object is a valid virtual source point. We then use super-shortscan formulae, which enable exact reconstruction inside the convex hull of the super-short-scan trajectory, in case of non-truncated projections. In this work, we use super-short-scan formulae from [START_REF] Noo | Image reconstruction from fan-beam projections on less than a short scan[END_REF] with the VFB method, but many other super-short-scan formulae have been proposed for 2D ROI reconstruction, either for a circular trajectory [START_REF] Kudo | New supershort-scan algorithms for fan-beam and cone-beam reconstruction[END_REF][START_REF] Chen | A new framework of image reconstruction from fan beam projections[END_REF][START_REF] Pan | A unified analysis of FBPbased algorithms in helical cone-beam and circular cone-and fan-beam scans[END_REF] or a free-form trajectory [START_REF] Li | General fan-beam and cone-beam reconstruction algorithms formula for free-form trajectories[END_REF].

Previous contributions in the VFB area were applied to truncated parallel-beam projections. The filtered sinogram was either computed after explicitly rebinning to the virtual fanbeam geometry [START_REF] Clackdoyle | Quantitative reconstruction from truncated projections in classical tomography[END_REF], or with a shift-variant "convolution" [START_REF] Clackdoyle | A large class of inversion formulae for the 2D Radon transform of functions of compact support[END_REF]. In both cases, parallel back-projection was used. In this work, we apply these two approaches to truncated fan-beam projections along a circular source trajectory instead of a parallel-beam sinogram. For the first approach, we rebin the acquired fan-beam projections into virtual nontruncated fan-beam projections. These virtual projections are suitably filtered and then rebinned into filtered projections corresponding either to a parallel-beam geometry (formulae (a) and (b) below) or to the fan-beam acquisition geometry (formula (d)), also called the real geometry (as opposed to the virtual geometry). The back-projection is computed in the corresponding geometry. We note that the reconstruction is also possible with a back-projection directly in the virtual fan-beam geometry (formula (c)), thus avoiding the second rebinning step. These four formulae assume that both virtual and real geometries have a circular source trajectory. Following the same approach as [START_REF] Clackdoyle | A large class of inversion formulae for the 2D Radon transform of functions of compact support[END_REF] we also derive in proposition 2 a direct formula of the filtered projections in the geometry of the acquired truncated projections (formula (e)).

Theory

Notation

Let f denote the 2D object density to be reconstructed. The parallel-beam projections of f are defined by p(φ , s) = R f (l θ φ + s η φ ) dl where θ φ = (cos φ , sin φ ) and η φ = (-sin φ , cos φ ). Let h F (s) = R |σ |e 2iπσ s dσ denote the ramp filter. The parallel-beam ramp filtered projections are defined by

p F (φ , s) = R h F (s -s )p(φ , s ) ds . (1) 
Let h H (s) = R -i sign(σ )e 2iπσ s dσ denote the Hilbert filter. The parallel-beam Hilbert filtered projections are defined by

p H (φ , s) = R h H (s -s )p(φ , s ) ds . (2) 
The fan-beam projections of f for a circular source trajectory of radius R are defined by g

R (λ , γ) = ∞ 0 f (R θ λ + t θ λ +π+γ ) dt where λ ∈ Λ ⊂ [0, 2π
) and R θ Λ is the set of vertices (fan-beam source locations) of the trajectory. The fan-beam Hilbert filtered projections are defined by

g R H (λ , γ) = π -π h H (sin(γ -γ )) g R (λ , γ ) dγ . (3) 
The fan-beam 'differentiated and Hilbert filtered' projections are defined by

g R F (λ , γ) = π -π h H (sin(γ -γ )) ∂ ∂ λ - ∂ ∂ γ g R (λ , γ ) dγ . (4) 

Use of the VFB method

In our formulae, the key step is the computation of g R H (λ , γ) or g R F (λ , γ). Equations ( 3) and ( 4) require non-truncated fanbeam projections. Therefore, we determine a virtual source trajectory for which the associated fan-beam projections are non-truncated, we rebin the initial data into this virtual geometry and we compute g R H or g R F for this trajectory. The fan-beam ray parameters (λ 1 , γ 1 ) and (λ 2 , γ 2 ) (for circular source trajectories of radius R 1 and R 2 , respectively) are linked by G 1 : 1). To apply this, we assume that the virtual Figure 1: A ray of parameters (φ , s) in parallel geometry and the ray parameters (λ i , γ i ) at the point S i for a circular trajectory of radius R i with i ∈ 1, 2. The angles (λ i , γ i ), measured counterclockwise, verify s = -R i sin γ i and φ = λ i + γ i . source trajectory is an arc of circle of radius R 1 . We use

{R 1 sin γ 1 = R 2 sin γ 2 and λ 1 + γ 1 = λ 2 + γ 2 } (see figure
g R 1 (λ 1 , γ 1 ) = g R 2 (λ 2 , γ 2 )
where G 1 is satisfied to rebin the truncated projections acquired with a source trajectory of radius R 2 (with R 2 ≥ R 1 ) into the virtual source trajectory.

Formulae with parallel-beam back-projection

The parallel-beam parameters (φ , s) and the fan-beam parameters for a virtual source trajectory of radius R 1 (λ 1 , γ 1 ) of a ray are linked by either P 1 : {s = -R sin γ and φ = λ + γ} or P 2 : {s = R sin γ and φ = λ + γ + π}.. A first reconstruction formula (a), derived from [8, eq. ( 8), [START_REF] Chen | A new framework of image reconstruction from fan beam projections[END_REF]], is

f ( x) = 1 4π 2π 0 ∂ ∂ s p H (φ , s) s= x• η φ dφ (5)
where the available values of p H are obtained through the virtual filtered projections g R 1 H using:

P 1 =⇒ p H (φ , s) = -g R 1 H (λ 1 , γ 1 ), P 2 =⇒ p H (φ , s) = g R 1 H (λ 1 , γ 1 ). (6) 
A second reconstruction formula (b), derived from [8, eq. ( 2), ( 14)], is

f ( x) = 1 2 2π 0 p F (φ , s) s= x• η φ dφ ( 7 
)
where the available values of p F are obtained through the virtual filtered projections g R 1 F using:

P 1 or P2 =⇒ p F (φ , s) = - 1 2πR 1 cos(γ 1 ) g R 1 F (λ 1 , γ 1 ). ( 8 
)
In both formulae, we replace the half rotation over [0, π) by a full rotation over [0, 2π) since it reduces numerical artefacts.

Formulae with fan-beam back-projection

A third reconstruction formula (c), derived from [8, eq. ( 33), (34)], is [8, eq. (46)] for more details). In formula (c), the back-projection is done along the virtual source trajectory. To apply the same formula along the real source trajectory, we need to determine g R 2 F . Since the real projections are truncated, we cannot compute it directly with (4). However, one can show the following:

f ( x) = - 1 2π Λ R 1 1 ||R 1 θ λ 1 -x|| w R 1 (λ 1 , γ x,λ 1 )g R 1 F (λ 1 , γ x,λ 1 ) dλ 1 (9) where Λ R 1 ⊂ [0, 2π) is the angle extent of the virtual source trajectory, γ x,λ 1 = arctan(-x • η λ 1 /(R 1 -x • θ λ 1 )), w R (λ , γ) = c R (λ )/(c R (λ ) + c R (λ + π + 2γ)) and c R is a smooth 2π- periodic function such that λ / ∈ Λ R =⇒ c R (λ ) = 0 (see
Proposition 1. G 1 =⇒ g R 1 F (λ 1 , γ 1 ) R 1 cos(γ 1 ) = g R 2 F (λ 2 , γ 2 ) R 2 cos(γ 2 ) ( 10 
)
This proposition yields the fourth reconstruction formula (d): F by rebinning the real truncated projections g R 2 into virtual nontruncated projections g R 1 , computing the virtual filtered projections g R 1 F , and then rebinning back these virtual filtered projections into the real filtered projections g R 2 F . However, it is also possible to directly compute g R 2 F from its truncated projections:

f ( x) = - 1 2π 2π 0 1 ||R 2 θ λ 2 -x|| w R 2 (λ 2 , γ x,λ 2 )g R 2 F (λ 2 , γ x,λ 2 ) dλ 2 (11) where g R 2 F (λ 2 , γ 2 ) = R 2 cos(γ 2 )g R 1 F (λ 1 , γ 1 )/(R 1 cos(γ 1 )), γ x,λ 2 = arctan(-x • η λ 2 /(R 2 -x • θ λ 2 )) and w R 1 (λ 1 , γ 1 ) = w R 2 (λ 2 ,
Proposition 2. g R 2 F (λ 2 , γ 2 ) = R 2 cos(γ 2 ) R 2 1 -R 2 2 sin 2 (γ 2 ) γ m -γ m h H (sin(∆ R 2 R 1 (γ 2 , γ 2 ))) (∂ 1 -∂ 2 )g R 2 (λ 2 + γ 2 -γ 2 -∆ R 2 R 1 (γ 2 , γ 2 ), γ 2 ) dγ 2 (12) 
provided that R 1 θ λ 2 +γ 2 -arcsin((R 2 /R 1 ) sin γ 2) (which corresponds to R 1 θ λ 1 when G 1 is satisfied) is outside the convex hull of the object and that the tangent to the circle of radius R 1 at this point does not intersect the object, where

R 2 ≥ R 1 , γ m = arcsin(R 1 /R 2 ), |γ 2 | ≤ γ m , ∆ R 2 R 1 (γ 2 , γ 2 ) = arcsin (R 2 /R 1 ) sin γ 2 -arcsin (R 2 /R 1 )
sin γ 2 and ∂ i is the derivative according to the i-th variable. So this yields the fifth reconstruction formula (e), using the same back-projection as (d) but with g R 2 F computed by proposition 2.

Simulations

For numerical experiments, we used the geometry defined in figure 2. All values are in arbitrary units (a.u). The object to reconstruct is the classical 2D Shepp-Logan phantom. The center of the phantom was at (0, 0.15) with (0,0) the center of rotation. The reconstructed images were computed on a square grid of dimensions [-1, 1] 2 with ∆x = 1/200 (i.e. a square grid of 401 x 401 pixels). The real source trajectory along [0, 2π) was sampled with an angular spacing ∆α 2 of 0.5 degree (i.e. with 720 vertices) and each fan-beam truncated projection was sampled with an angular spacing ∆γ 2 = ∆x/R 2 for γ 2 in [-γ m , γ m ] (i.e. with 325 rays). Similarly, the virtual source trajectory along [0°, 36°)∪[144°, 360°) was sampled with an angular spacing ∆α 1 of 0.5 degree (i.e. with 505 vertices) and each fan-beam projection was sampled with an angular spacing ∆γ 1 = ∆x/R 1 (∆γ 2 and ∆γ 1 were chosen so that the spacing between two rays at the center of rotation is equal to ∆x for both real and virtual rays) for γ 1 in [-π, π] (i.e. with 1005 rays). For formulae (a) and (b), the parallel projections along [0, 2π) were sampled with an angular spacing ∆φ of 0.5 degree (i.e. with 720 projections) and each parallel projection was sampled over [-1, 1] with ∆s = ∆x (so each projection consists of 401 parallel rays).

Results

Simulations with noiseless projections

Figure 3 shows the reconstructed images and the corresponding profiles for the five formulae using the same noiseless sinogram. All reconstructions were satisfactory with minor differences. The reconstructed image obtained with formula (a) showed some artefacts (ripples close to the external white envelope) which were avoided with formula (b). The backprojection along the virtual source trajectory (formula (c)) produced more artefacts than the back-projection along the real source trajectory (formula (d)). The reason is probably due to the virtual trajectory being closer to the object than the real trajectory, as the lines contributing to the backprojection must all go through the vertices along the virtual trajectory, so these lines are irregularly sampled in case of a point close to the virtual trajectory (this caused the artefacts inside the object at the middle bottom and top left and right). Concerning the arc of circle of white artefacts at the vicinity of the virtual trajectory, it seems to be caused by the factor 1/||R θ λ -x|| applied to this irregular sampling. We note that (b) and (d) seemed to have a similar accuracy. Finally the reconstruction obtained with formula (e) had a smaller exact reconstruction area because the filtering step in proposition 2 was only accurate for rays which cross the virtual source trajectory at a point where its tangent did not intersect the object. Moreover, the discretization of h H (sin(∆ R 2 R 1 (γ 2 , γ 2 ))) required finer sampling so, for formula (e), we chose ∆γ 2 = ∆γ 2 /3 (i.e. with 969 rays) instead of ∆γ 2 = ∆γ 2 . The computation time was similar in all formulae except formula (e) for which it was much longer (about 10 times longer for the whole computation or 40 times longer for the part not involving the back-projection) due to the shift-variant "convolution" (which is not a true convolution so we cannot use the Fourier convolution theorem) and the finer sampling of γ 2 . 

Simulations with noisy projections and variance study

Figure 4 shows the pixel-wise variance computed for n = 100 realizations in the case of Poisson noise simulated before taking the logarithm of the projections to obtain line integrals. Following [START_REF] Rit | Filteredbackprojection reconstruction for a cone-beam computed tomography scanner with independent source and detector rotations[END_REF], the Shepp-Logan densities were weighted by 1.879 a.u -1 , i.e., the linear attenuation coefficient of water at 75 keV with 1 a.u. = 100 mm. The number of photons received per detector pixel without object in the beam was constant for all pixels and equal to 10 7 . Striking differences were observed in the spatial maps of the variance between the different formulae, with formula (c) the least homogeneous.

Conclusion

In this work, we compared five different implementations for ROI reconstruction from truncated fan-beam projections measured along a circular source trajectory. The first three formulae (a), (b) and (c) were already established in [START_REF] Noo | Image reconstruction from fan-beam projections on less than a short scan[END_REF] and formulae (d) and (e) are, to our knowledge, new formulae. All reconstructions gave satisfactory results. Image quality was slightly better with formulae (b), (d) and (e) but the computation time was longer for method (e). Method (c) presented the worst satisfactory variance results, but we have not yet performed a control study of image resolution in the reconstructions. 
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 2 (to preserve the redundancy weight w associated to each ray). Proposition 1 enables computation of the values of g R 2
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 2 Figure 2: The real source trajectory is a circle of radius R 2 = 4. The detector measures rays from the source S with an equal angular spacing. The FOV is a disk of radius R 1 = 0.8. The virtual source trajectory (in bold dashed line) is the arc at the FOV border outside the object.
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 3 Figure 3: Top row: image reconstructed with, from left to right, formulae (a), (b) , (c), (d) and (e) when the data are measured with a source trajectory of radius R = 4. The plotting scale is [1.015 (black), 1.025 (white)]. The vertical and horizontal white lines correspond to the profiles plotted respectively in the middle row with scale [1.015, 1.045] and in the bottom row with scale [1.01, 1.04]. The ideal profiles are plotted in green dashed line and the real ones in red. The vertical black dashed line defines the boundary of the possible reconstruction area.
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 4 Figure 4: Top row: pixel-wise variance of the images reconstructed with, from left to right, formulae (a), (b) , (c), (d) and (e) when the data are measured with a source trajectory of radius R = 4. The plotting scale is [0 (black), 10 -5 (white)]. The vertical and horizontal white lines correspond to the profiles plotted respectively in the middle row and in the bottom row with scale [0, 10 -5 ].
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