N

N

Antenna/Human Body Coupling in 5G Millimeter-Wave
Bands: Do Age and Clothing Matter?

Giulia Sacco, Denys Nikolayev, Ronan Sauleau, Maxim Zhadobov

» To cite this version:

Giulia Sacco, Denys Nikolayev, Ronan Sauleau, Maxim Zhadobov. Antenna/Human Body Coupling
in 5G Millimeter-Wave Bands: Do Age and Clothing Matter?. IEEE Journal of Microwaves, 2021, 1
(2), pp-593-600. 10.1109/JMW.2021.3063256 . hal-03376843

HAL Id: hal-03376843
https://hal.science/hal-03376843

Submitted on 18 Oct 2021

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://hal.science/hal-03376843
https://hal.archives-ouvertes.fr

©

IEE!:' Journal of
Microwaves

MHz to THz Community

GIULIA SACCO

Received 24 January 2021; revised 19 February 2021; accepted 21 February 2021. Date of publication 2 April 2021; date of current version
7 April 2021.

Digital Object Identifier 10.1109/JMW.2021.3063256

Antenna/Human Body Coupling in 5G
Millimeter-Wave Bands: Do Age and
Clothing Matter?

(Member, IEEE), DENYS NIKOLAYEV “ (Member, IEEE), RONAN SAULEAU
AND MAXIM ZHADOBOV “ (Senior Member, IEEE)

(Invited Paper)
CNRS, IETR (Institut d'électmnique et des Technologies du numéRique), UMR 6164, Univ Rennes, F-35000 Rennes, France
CORRESPONDING AUTHOR: Giulia Sacco (e-mail: giulia.sacco.it@gmail.com).

This work was supported by the French National Research Program for Environmental and Occupational Health of ANSES under Grant 2018/2 RF/07 through the
NEAR 5G Project.

ABSTRACT With the fast development of 5th generation (5G) mobile networks and prominence of the
personal area networks and human-centered communications, people of all ages are increasingly exposed
in the upper part of the microwave spectrum. In some exposure scenarios, presence of a textile between the
radiating source and skin can affect the power absorption. This study investigates, for the first time, the effect
of ageing and impact of textile on the power deposition in a skin-equivalent model under near-field exposure
induced by multi-beam radiating structures at 26 GHz and 60 GHz. An array of four Yagi antennas has been
used as a representative example of 5G reconfigurable antennas. The maximum increase of the averaged
absorbed power density with respect to the averaged value for adults is observed at 70 year (8.8% at 26 GHz
and 6.9% at 60 GHz). The strongest decrease is for 5-years-old children (—4.5% at 26 GHz and -3.7% at
60 GHz). In presence of a textile, the absorbed power density can increase or decrease depending on the
textile properties (thickness and permittivity) and on the thickness of the air gap between textile and skin.
With cotton and wool (considered as representative textile materials) the maximum increase of the averaged

(Fellow, IEEE),

absorbed power density is about 40% compared to the bare skin.

INDEX TERMS 5G, ageing, electromagnetic dosimetry, millimeter waves (MMW), textile.

I. INTRODUCTION

The increasing need for exchanging high amounts of data
and more secured communications has resulted in the shift of
operating frequencies towards millimeter waves (MMW) [1],
[2]. At these frequencies, channel capacity is enhanced com-
pared to sub-6 GHz bands, and larger bandwidths are available
for high data rate communications.

Nowadays, with the wide spread of mobile devices, more
and more children and seniors are exposed to radiofrequency
radiation sources. At microwave frequencies, the difference
in exposure levels between children and adults was investi-
gated [3]-[5]. It was demonstrated that, up to 5.6 GHz, the
whole-body-average specific absorption rate (SAR) in chil-
dren can go beyond the exposure limits [6], [7] by 40%—
45% whereas remaining below these limits for adults (given

the same incident field) [5], [8]. A more recent study [9]
investigated the whole-body average SAR using the child
models specified by the Commission on Radiological Pro-
tection (ICRP) instead of the scaled adult phantoms. In this
case, the SAR increase in children was of the same order
of magnitude as the numerical calculation uncertainties. At
MMV, the interaction between human tissues and anten-
nas was discussed in [10]-[13]. Refs. [10], [11] mainly fo-
cused on the antenna performance rather than on the expo-
sure assessment. In [12], [13], a dosimetric study in pres-
ence of a radiating device is described. The age effect on
exposure at MMW was analyzed in [14] considering a plane
wave as source. However, age-dependent variations of the
absorbed power density have never been studied for MMW
antennas.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

VOLUME 1, NO. 2, APRIL 2021

593


https://orcid.org/0000-0002-3663-9784
https://orcid.org/0000-0002-5168-3759
https://orcid.org/0000-0001-7510-9762
https://orcid.org/0000-0002-3809-110X

SACCO ET AL.: ANTENNA/HUMAN BODY COUPLING IN 5G MILLIMETER-WAVE BANDS: DO AGE AND CLOTHING MATTER?

The exposure is typically assessed considering bare skin.
In practice, several exposure scenarios involve the presence of
textile interposed between a radiating source and skin (e.g.,
browsing when using gloves or making a phone call when
wearing a hat). Under these conditions, the textile could act
as a matching layer affecting the power absorption in the
tissues [14]-[16]. The effect of clothing at MMW was previ-
ously investigated for a plane wave illumination. To the best of
our knowledge, no data related to exposure to realistic sources
in presence of textiles have been reported.

With the 5G of mobile networks new frequency ranges
are explored. In Europe, the bands allocated for 5G are
n257 (26.5-29.5 GHz), n258 (24.25-27.5 GHz), n260 (3740
GHz), and 1261 (27.5-28.35 GHz) [17]. The 60 GHz band
(57-66 GHz in Europe [18]) is also identified as promising,
in particular for small cells. This shift towards the upper part
of the microwave spectrum impacts the antenna design for
emerging wireless devices. Due to the elevated path losses
at MMW, a high antenna gain is required. For this reason,
directive multibeam phased arrays are increasingly used [19]—
[30]. At these frequencies, end-fire antennas are usually pre-
ferred to broadside ones for user terminals [21], [27], [31],
[32]. Indeed, if the antenna is positioned at the edge of a
wireless device, the user shadowing affects less the antenna
performance.

This study deals with the electromagnetic exposure under
near-field conditions considering typical reconfigurable anten-
nas at 26 GHz and 60 GHz. For the first time, the analysis is
performed taking into account biological tissue permittivity
variations with age and presence of a textile in proximity or
in contact with skin. Since the power dissipation in the human
body at 26 GHz is similar to the one in the lower part of the
MMW band, in the rest of the paper we refer to this frequency
as MMW for the sake of simplicity.

Il. MATERIALS AND METHODS

To simulate the exposure scenario of a phone call—i.e., when
the phone is placed close to the head—the configuration rep-
resented in Fig. 1 was considered.

A. GENERIC MULTIBEAM ANTENNA

Two Yagi antennas with parallel polarization are considered
as representative radiating structures at 26 GHz and 60 GHz.
The design is inspired by recently reported antennas for 5G
applications [22], [23]. The antenna topology and dimensions
are reported in Fig. 2. Each radiating element is composed on
the top layer by a driven element and two directors used to
enhance the gain. The currents on the directors are induced
by mutual coupling. These currents are almost equal in mag-
nitude to the ones of the driven element but, according to the
directors length and spacing, they introduce progressive phase
shifts that reinforce the field in the directors direction. On the
contrary, the truncated ground plane, acts as a reflector and
impacts the front-to-back ratio without almost no modification
of the antenna gain [33]. The antennas are designed on a
Rogers RO4350B substrate (&, = 3.48, tan§ = 0.0037) [34]
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FIGURE 1. Exposure scenario: (a) front view and (b) lateral view. The
dimensions are not to scale.
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FIGURE 2. Yagi antenna geometry: (a) top and (b) bottom. The dimensions
are in mm; those in bold refer to 26 GHz and the ones in regular font to
60 GHz.

with a thickness of 0.508 mm at 26 GHz and of 0.254 mm at
60 GHz. The input reflection coefficients of these two anten-
nas are represented in Fig. 3. An array of 4 elements at each
frequency is considered to further increase the gain and allow
for the reorientation of the main beam. The inter-element
spacing equals 5.77 mm at 26 GHz and 2.34 mm at 60 GHz.
By changing the phases at the ports of the array elements,
the beamstearing performance can be evaluated. Fig. 4 shows
the antenna gain for linear phase shifts o equal to 0° (beam
pointing broadside), 50° (beam pointing at 15°), 100° (beam
pointing at 30°), and 142.5° (beam pointing at 45°).

B. SKIN-EQUIVALENT MODEL

As at MMW the penetration depth is mainly limited to skin,
the tissue model is represented by a homogeneous planar skin
layer (Fig. 1; 6cm x 6cm x 2mm at 26 GHz and 4 cm X
4cm x lmm at 60 GHz). For local near-field exposure, the
planar approximation is justified by the fact that the typical
radius of the body curvature exceeds by about five times
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FIGURE 3. Reflection coefficients of 26 GHz and 60 GHz antennas.

the penetration depth at these frequencies avoiding the wave
interference inside the body [35]. The typical permittivity of
adultdry skinis 17.71 — j16.87 at 26 GHz and 7.98 — j10.90
at 60 GHz [36]. Age-dependent permittivity model was in-
troduced in [14] and expresses the complex permittivity of
tissues as a function of the TBW, representing the ratio be-
tween the amount of water in the human body and the person
weight [37], [38]. The age-dependent complex permittivity is
calculated as

— — "
e = efy Tt e}, T (1 —ji—‘,‘), (M
A

where a ¢y, is the real part of the water permittivity [39], &),
and ¢/{ are the real and imaginary parts of the adult skin per-
mittivity [36], a(age) = TBW (age) - p and oy = TBWj - p,
where TBW (age) and T BW, are the TBW as a function of
age and an average value for an adult [37], [38], respectively,
and p = 1109 kg/m? is the skin density [40]. Cotton and
wool have been considered as representative commonly used
textiles. Their permittivity, measured at 60 GHz [41], is of
2 — j0.04 for cotton and 1.22 — j0.036 for wool. The permit-
tivity of textile materials is assumed to be constant inside the

frequency range considered in this study.

C. NUMERICAL MODELLING

The exposure scenario was simulated with the time-domain
solver of CST Microwave Studio using the finite integration
technique (FIT). Perfectly matched layers (PML) were used as
exterior boundary conditions. The antenna was simulated sep-
arately and replaced by an equivalent source in the final model
to speed-up the computation. The currents flowing on this
equivalent source were computed in free space on the closed
box surrounding the antenna (27.33 x 14.02 x 2.93 mm? at
26 GHz and 17.05 x 12.36 x 1.39mm? at 60 GHz). The
equivalent source is then placed in proximity of the phantom
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FIGURE 4. Radiation pattern (a) at 26 GHz and (b) 60 GHz for different
phase shifts « between the elements.

to assess the exposure. Analysis of the exposure variation due
to the near-field antenna/body coupling at MMW is out of the
scope of this study and was presented previously [13]. For the
sake of simplicity, we will refer to the equivalent source as the
antenna in the paper. The total number of mesh cells reaches
about 200000000 at 26 GHz and 300000000 at 60 GHz.
The smallest mesh cell dimension is 46.5 pm at 26 GHz and
28.6 um at 60 GHz, respectively. It is further reduced in the z
direction at the interface between skin and air/textile, and its
value is set to 2.5 um for a total thickness of 5 pm.

11l. RESULTS
The averaged absorbed power density is used as dosimetric
quantity in the 6-300 GHz range [6], [7]. It is expressed as

1 [1
PD,, = _f —Re[E x H*] - ds, (2)
AJy2
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FIGURE 5. PD at 26 GHz (top) and at 60 GHz (bottom) as a function of distance d between the tissue model and antenna: (a) d = 0.5cm, (b) d = 1.5cm,

(c)d =3cm.

where E and H are the electric and magnetic fields, respec-
tively, A is the averaging area (A = 4cm* [6]) and ds is the
normal to the surface. The perpendicular to the surface A
component of the time averaged Poynting vector, hereafter
referred to as local power density (PD), is expressed as
PD = %Re [E x H*] -ds. (3)
Figure 5 represents the PD distribution as a function of the
distance between the antenna and the skin phantom (0.5 cm,
1.5 cm, and 3 cm) when the main beam is pointing at broad-
side. A distance of 0.5 cm is considered as a typical spac-
ing between the antenna and skin representing the case of a
wireless device in contact with skin (e.g., smartphone during
a phone call or browsing). In simulations, the antenna input
power is set to 10 mW. The distributions are nearly symmet-
ric with respect to the y axis (the origin of the coordinate
system is located in the center of the bottom edge of the
source box). As expected, at d = 0.5 cm the exposure is more
localized at 60 GHz, and the peak value is higher compared to
26 GHz. The peak value decreases more rapidly with distance
at 60 GHz, and at d = 3 cm the maximal values at the two
frequencies are approaching.
Figure 6 shows the PD distribution for the antenna beam
pointing at 45° from broadside when d = 0.5 cm. At 45°, the
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exposure is less localized than at 0°, and the spot produced by
the exposure has almost the same extension in the y direction
but is double in the x one. In addition, at 45° the antenna side
lobes contribute separately from the main beam producing
some additional spots in the PD distribution.

A. EFFECT OF AGEING

Figure 7 represents the variations of the PDy, in respect
to the value for a 35 year old adult [36] for d = 0.5cm.
The data for Yagi antennas are compared to the plane-wave
illumination [14].

For all exposure conditions, the maximum PD,, variations
are observed for seniors and are the lowest for youth with a
plateau between roughly 20 and 50 year. These variations are
mainly due to the fact that the water concentration of skin
decreases with age resulting in a decrease of the complex
permittivity. This in turn leads to a reduction of the contrast
at the skin/air interface and therefore to an increase with age
of the power transmission coefficient at this interface.

At 26 GHz, for a 5 year old model the variations are —4.5%
(Yagi antenna) and —2.8% (plane wave). For a 70 year old
model, PD,, increases by 8.8% (Yagi antenna) and 6.4%
(plane wave). Note that the plane-wave approximation results
in an underestimation of the PD,, variations. At 60 GHz, the
variations are almost identical for the antennas and the plane
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FIGURE 8. Variations of PD,, as a function of the textile thickness with respect to the case of bare skin, when the textile is in contact with skin at: (a)

26 GHz, (b) 60 GHz.

wave [—3% to —4% (5 year) and 5.7% to 6.9% (70 year)]
Note that these PD,, changes are of within the typical inter-
individual variations.

B. EFFECT OF CLOTHING

In contact with skin: Fig. 8 represents the variations of the
PD,, as a function of textile thickness (/exile) for the anten-
nas pointing at broadside and at a distance of 0.5 cm. The data
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are compared to the results for plane wave illumination [14].
At both frequencies, presence of a textile material modifies
PD,,. In most of the considered scenarios (Yagi antenna/wool,
plane wave/cotton, plane wave/wool) PD,, increases with
respect to the case of bare skin, except Yagi antenna/wool
scenario. The order of magnitude of variations for Yagi an-
tennas is the same as for plane wave. However, the behavior
of the curves is different. For a plane wave, the highest PD,,
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FIGURE 9. Variations of PD,, as a function of the thickness of an air gap between the textile and skin with respect to the case of bare skin at: (a) 26 GHz,

(b) 60 GHz.

variations are with a 1.84 mm thick cotton layer at 26 GHz
(41.5%) and 0.74 mm thick at 60 GHz (34.4%). The expo-
sure scenario with the antenna was simulated considering a
textile thickness varying from 0.25 mm to 3 mm with a step
of 0.25 mm. Under these conditions, the maximal variation
compared to the bare skin at 26 GHz is 42.2% (2.25 mm thick
cotton). At 60 GHz, the increment of the PD,, is the highest
for 1 mm thick cotton and corresponds to 41.1%.

With an air gap: To account for the presence of an air
gap between the textile and skin, we added an air layer with
the thickness ranging from 0.25 mm to 3 mm with a step
of 0.25 mm. The antenna was placed at 0.5 mm from the
textile, the main beam pointing towards broadside. The textile
thickness was set to a typical value, i.e. 2 mm for wool and
0.2 mm for cotton.

Figure 9 represents the variations of the PD,, compared
to the case of bare skin for the antenna and plane wave. At
26 GHz for both textiles, PD,, monotonically decreases with
hgap Tor Yagi antenna compared to the bare skin or textile in
contact with skin (hgap, = 0 mm). Note that for the plane wave
exposure, PD,, can both increase or decrease depending on
the value of hgap. PDyy reaches the maximum at 0.05 mm
(4+8.57%) and 1.11 mm (4+6.86%) for wool and cotton, re-
spectively. Overall, the plane wave model results in an over-
estimation of the PD,, variations.

At 60 GHz, and for a 0.2-mm-thick cotton, PD,, can exceed
the value for bare skin both for plane wave and antenna source
cases. For the plane wave, the highest variation of 13.87%
is for hgap = 0.34mm or hg,, = 2.84 mm. For the antenna,
the maximal increase of 8.5% occurs for hg,, = 0.25 mm.
For the 2-mm-thick wool, PD,, is lower than the one for the
bare skin, and the plane wave model results in a significant
overestimation of the PD,, variations.

IV. DISCUSSION AND CONCLUSION
This study analyses the effect of ageing and textile on the
power deposition in a skin-equivalent model due to near-field
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exposure by a representative multi-beam radiating structure at
26 GHz and 60 GHz.

The PD,, increases with age. The highest value is observed
for seniors (+8.8% at 26 GHz and +6.9% at 60 GHz with
respect to the reference value at 35 year) and the lowest
for youth (—4.5% at 26 GHz and —3.7% at 60 GHz) with
a plateau between roughly 20 and 50 year. The plane-wave
approximation results in an underestimation of the PD,,, varia-
tions at 26 GHz. At 60 GHz, the variations are almost identical
for the antennas and plane wave. These variations are within
the typical interindividual differences and below the safety
margins used in guidelines and standards (factor of 10 for
occupational exposure and 50 for general public).

When considering the presence of a textile, PD,, can in-
crease or decrease depending on the textile thickness and
permittivity as well as on the thickness of the air gap between
the textile and skin. For the two considered in this study
textiles (i.e. cotton and wool), the maximum increase of the
PD,, compared to the bare skin is about 40%. The use of a
plane-wave model results in an overestimation of the PDg,
variations but the order of magnitude remains the same as for
near-field exposure.

Experimental validation of the numerical results would re-
quire high-resolution near-field measurements in presence of a
tissue-equivalent model. Conventional methods of free-space
measurement at MMW are not suited to estimate the power
density on the phantom surface [42]. Use of the infrared
imaging successfully employed for near-field dosimetry at
MMW [43]-[45] is complicated by the presence of textiles.
Adaptation of measurement techniques for validation of the
numerical results constitutes one of the perspectives of this
study.
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