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Abstract
The CONterminous United States (CONUS) presents a large range of climate  
conditions and biomes where terrestrial primary productivity and its inter-annual 
variability are controlled regionally by rainfall and/or temperature. Here, the re-
sponse of ecosystem productivity to those climate variables was investigated across 
different biomes from 2010 to 2018 using three climate datasets of precipitation, air 
temperature or drought severity, combined with several proxies of ecosystem pro-
ductivity: a remote sensing product of aboveground biomass, an net primary produc-
tivity (NPP) remote sensing product, an NPP model-based product and four gross 
primary productivity products. We used an asymmetry index (AI) where positive AI 
indicates a greater increase of ecosystem productivity in wet years compared to the 
decline in dry years, and negative AI indicates a greater decline of ecosystem pro-
ductivity in dry years compared to the increase in wet years. We found consistent 
spatial patterns of AI across the CONUS for the different products, with negative 
asymmetries over the Great Plains and positive asymmetries over the southwestern 
CONUS. Shrubs and, to a lesser extent, evergreen forests show a persistent positive 
asymmetry, whilst (natural) grasslands appear to have transitioned from positive to 
negative anomalies during the last decade. The general tendency of dominant nega-
tive asymmetry response for ecosystem productivity across the CONUS appears to 
be influenced by the negative asymmetry of precipitation anomalies. AI was found to 
be a function of mean rainfall: more positive AIs were found in dry areas where plants 
are adapted to drought and take advantage of rainfall pulses, and more negative AIs 
were found in wet areas, with a threshold delineating the two regimes corresponding 
to a mean annual rainfall of 200–400 mm/year.

K E Y W O R D S

asymmetry, biomass, ecosystem productivity, GPP, NPP

www.wileyonlinelibrary.com/journal/gcb
mailto:﻿
https://orcid.org/0000-0001-7530-6088
mailto:﻿
https://orcid.org/0000-0001-5345-3618
https://orcid.org/0000-0002-3365-8584
mailto:amen.al-yaari@sorbonne-universite.fr
mailto:jean-pierre.wigneron@inrae.fr
http://crossmark.crossref.org/dialog/?doi=10.1111%2Fgcb.15345&domain=pdf&date_stamp=2020-09-25


2  |     AL-YAARI et al.

1  | INTRODUC TION

Terrestrial ecosystems control the inter-annual variability of the 
global carbon budget (Bousquet et al., 2000; Le Quéré et al., 2018). 
Although the tropics dominate the strength and variability of the 
terrestrial carbon sink (Piao et  al.,  2020), semiarid regions are 
thought to be disproportionately important in controlling the 
inter-annual and decadal variability in the global carbon cycle 
(Ahlström et al., 2015), and in particular climate extremes (Reichstein 
et al., 2013). The global and regional pattern distribution of C sinks is 
reflected in the biomass of ecosystems and their productivity which 
is influenced by inter-annual variations in climate caused by abiotic 
factors (climate-induced disturbances and soil properties) and biotic 
ones (biodiversity, plant traits, herbivory, and pest outbreaks; Asner 
et al., 2018; Fahey & Knapp, 2007; Hsu et al., 2012).

The CONterminous United States (CONUS) is comprised of di-
verse climate conditions and ecosystems with productivity and its 
variability being mostly controlled by either precipitation or tem-
perature that varies strongly between regions (e.g., Liu et al., 2019). 
For example, during the period 1991–2012, precipitation increased 
overall in the CONUS, but trends vary regionally with strong and 
moderate drying measured in the Southwest (epicenter in Arizona) 
and Southeast, respectively (Williams et  al., 2020), whilst rainfall 
has increased in the North Great Plains and the Midwest. The re-
gional responses of ecosystem productivity to wet and dry years 
have previously been investigated over the CONUS using annual 
aboveground net primary productivity (ANPP) data from site-
based observations (Hsu et  al.,  2012; Knapp et al.,  2017; Knapp 
& Smith,  2001; Unger & Jongen,  2015; Wilcox et  al.,  2017; Wu 
et  al.,  2018; Wu et al.,  2011). Knapp and Smith (2001) were the 
first to observe a generally positive asymmetry in the ANPP in re-
sponse to rainfall anomalies across different long-term ecological 
sites, that is, a relatively greater increase in ANPP anomalies during 
wet years compared with the relative decreases in ANPP anomalies 
during dry years. Positive asymmetry was greatest in grasslands and 
Knapp and Smith (2001) have attributed this response to drought 
tolerance or resistance mechanisms at the ecosystem scale that 
buffered declines of ANPP in dry years. In contrast, a number of 
recent studies have observed negative asymmetry between ANPP 
and precipitation at other sites, mainly grasslands (Bai et al., 2008; 
Yang et al.,  2008). Thus, a lack of consistent and continuous in-
formation at large (regional or continental) scales persists regard-
ing the sign of asymmetry and consequently our understanding of 
the response of productivity to inter-annual rainfall variations. In 
addition, it is not clear whether the sign of the asymmetry is sus-
ceptible to variations over the long term in response to changes in 
environmental conditions or during extremely dry years that could 
cause vegetation stress to exceed thresholds in drought-buffering 
mechanisms.

Here, we evaluated the asymmetry response of vegetation pro-
ductivity to rainfall across different CONUS biomes (Figure S1) over 
the period 2010 to 2018. This period contained three of the hottest 
years (2012, 2016, and 2017) on record (NOAA, 2018) for the U.S. 

and a very wet year (2015). In particular, 2012 stood out as the hot-
test year during this period (Melillo et al., 2014) concurrent with a se-
vere summer mega-drought over the Great Plains and the Midwest 
Corn Belt (Hoerling et al., 2013; Wolf et al., 2016). Thus, the period 
analyzed in this study includes climate extremes of greater magni-
tude than previously observed by Knapp and Smith (2001).

Furthermore, the 2010–2018 period also coincides with the 
availability of new L-band vegetation optical depth (L-VOD) data from 
the soil moisture and ocean salinity (SMOS) satellite mission in the 
SMOS-IC version (Li et al., 2020). We have recently demonstrated 
that L-VOD is an indicator of the spatial and temporal dynamics of 
aboveground biomass (AGB in Mg/ha), based on its strong linear re-
lation to biomass (Brandt et  al.,  2018; Fan et  al.,  2019; Wigneron 
et  al.,  2020). Thus, here we now establish a specific relationship 
that links mean SMOS-IC L-VOD to a spatially explicit map of AGB 
(Saatchi et  al.,  2011) across the CONUS (Figure  S2). This L-VOD-
derived AGB product was then used to estimate annual changes in 
AGB (i.e., ANPP) at a spatial resolution of 25 km.

Alongside the SMOS-derived time varying gridded AGB data-
sets, we used the MODIS-NPP product from (Zhao et al.,  2005), 
TRENDY (Trends in net land-atmosphere carbon exchange over the 
period 1980–2010) model outputs for NPP and gross primary pro-
ductivity (GPP) simulations (Le Quéré et al., 2018; Sitch et al., 2008), 
and four additional data-driven GPP products derived from eddy co-
variance flux tower measurements and satellite observations (Jiang 
& Ryu, 2016; Jung et al., 2017; Stocker et al., 2019).

We combined these datastreams to address the following ques-
tions: (a) What are the responses of primary productivity to extreme 
precipitation anomalies during the recent decades over the CONUS? 
(b) Does the positive asymmetry evidenced from the site-based ap-
proach of Knapp and Smith (2001) still hold across large spatial scales 
(CONUS) during the last decade, in light of the general increasing 
trend in warmer and dryer/wetter periods observed in 2000–2018?

2  | MATERIAL S AND METHODS

2.1 | Datasets

2.1.1 | Ecosystem productivity

Different datasets evaluating vegetation productivity in terms of 
biomass change, GPP and ANPP were aggregated to yearly values 
at a spatial resolution of 0.5° and used to compute the asymmetry 
index (AI) over the CONUS:

	 I	 The SMOS satellite was launched in 2009 to measure brightness 
temperature (TB) in the L-band frequency region (~1.4 GHz) in H 
and V polarizations with a range of incidence angles from 0° to 
60° (Al-Yaari et al., 2019; Kerr et al., 2016). The SMOS-IC vege-
tation optical depth (SMOS L-VOD) product is derived from the 
SMOS satellite observations using the L-MEB (L-band Microwave 
Emission of the Biosphere) model (Wigneron et al., 2007). More 
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details about the SMOS-IC algorithm and product can be found 
in Fernandez-Moran et  al.  (2017). SMOS-IC L-VOD data from 
both ascending and descending orbits from 2010 to 2018 were 
combined and used in this study (https://ib.remot​e-sensi​ng.in-
rae.fr/). To select high-quality data, SMOS-IC L-VOD values 
with a root mean squared difference between modeled and ob-
served TB larger than 8 K were screened out (Li et al., 2020). 
The CONUS region is ideal for SMOS L-VOD applications be-
cause the product is of high quality over this area due to the low 
negative impact of Radio Frequency Interference on the SMOS 
L-VOD retrievals (Oliva et al., 2016). The SMOS-IC L-VOD prod-
uct has been shown to be a promising tool to monitor AGB dy-
namics (Brandt et al., 2018; Rodríguez-Fernández et al., 2018). 
Here, over the CONUS, the mean SMOS-IC L-VOD (2014) and 
Saatchi AGB (Mg/ha) map (Saatchi et al., 2011) were found to 
be strongly and linearly correlated (R = .92; see Figure S2). The 
latter relationship was used to compute a proxy of AGB from 
L-VOD in this study. However, it should be noted that the un-
derlying relationship between ABG and VOD could be nonlin-
ear, with VOD saturating at high biomass and very sensitive at 
low biomass. As we are interested in the ecosystem productiv-
ity, the AGB difference (∆AGB) between the maximum (during 
the growing season) and minimum (during winter) within a year 
was computed and considered as proxy of ANPP. For vegetation 
such as grasslands and crops, ∆AGB≈ANPP, but for forests the 
contribution from changes in mortality should be included in 
theory;

	II	 annual net primary productivity (NPP) generated from the 
MODIS algorithm (MOD17), with a spatial resolution of 250 m 
was used. This algorithm is based on the Collection 4.5 MODIS 
GPP (MOD17) data, available from the University of Montana's 
Numerical Terradynamic Simulation Group on ftp site (http://
files.ntsg.umt.edu/data/NTSG_Produ​cts/MOD17/​MODIS_250/
modis​-250-npp/; Zhao et  al.,  2005) with a temporal coverage 
from 2001 to 2018 (Robinson et al., 2018). The MOD17 algo-
rithm estimates GPP using a light use efficiency (LUE) approach 
forced by MODIS fraction of photosynthetically active radiation 
and leaf area index, as well as surface air temperature, incoming 
solar radiation, and vapor pressure deficit derived from a meteo-
rology dataset from the NASA Global Modelling and Assimilation 
Office and the NCEP/NCAR Reanalysis II, and land cover classes 
from the MCD12Q1 data product. It should be noted that the 
MOD17 NPP product does not account for the soil moisture 
stress explicitly;

	III	 the GPP product from the Prentice model (i.e., P-model) sim-
ulations that have been corrected using empirical soil mois-
ture stress functions (Stocker et  al.,  2019; Prentice-GPP). The 
P-model is another LUE model, where GPP is simulated per unit 
of absorbed photosynthetically active radiation from elevation, 
latitude, temperature, fractional cloud cover and precipitation 
(Wang et al., 2017). Data are provided as NetCDF files at a spatial 
resolution of 0.5° and daily temporal resolution and can be freely 
downloaded from https://zenodo.org/recor​d/1423484. Unlike 

the MOD17 NPP, the P-model GPP accounts for soil moisture 
deficit explicitly;

	IV	 the machine learning approaches for upscaling biosphere- 
atmosphere fluxes from FLUXNET observations to global scale 
(FLUXCOM)-GPP product (F-GPP) estimated upscaled FLUXNET 
net ecosystem CO2 exchange observations using meteorologi-
cal data (CRUNCEP V6), remotely sensed data and various ma-
chine learning algorithms (Jung et al., 2017). Soil moisture in the 
FLUXCOM approach is rather a proxy for plant available water, 
and is termed here as water availability index. It is calculated with 
a two-layer cascading bucket model with precipitation, net radia-
tion, and fraction of absorbed photosynthetically active radiation 
(fPAR) as inputs. For more details, see Jung et al. (2019, 2020) as 
well as Tramontana et al. (2016). The F-GPP product is provided as 
NetCDF files at a spatial resolution of 0.5° and daily temporal res-
olution for the period 1950–2017 and can be freely downloaded 
from https://www.bgc-jena.mpg.de/geodb/​proje​cts/Home.php;

	V	 the Breathing Earth System Simulator (BESS) GPP (B-GPP) prod-
uct that is produced from a process-based model that couples 
radiative transfer between the canopy and atmosphere by simu-
lating evapotranspiration and photosynthesis using multiple sat-
ellite remote sensing datasets (Jiang & Ryu, 2016). For BESS, soil 
moisture is not directly considered as it is not forcing the model. 
Soil moisture effects on the stomatal conductance were consid-
ered via the Ball-Berry formulation (Ryu et al., 2011). The BESS-
GPP product is provided as NetCDF files at a spatial resolution of 
0.5° and monthly temporal resolution for the period 2001–2015 
(http://envir​onment.snu.ac.kr/bess/);

	VI	 the latest available version (Trendy-v7) of the ensemble of 
eight Trendy ecosystem models and land surface models over 
2010–2017 was used in this study (Le Quéré et al., 2018; Sitch 
et  al.,  2015). We used the S3 simulations where variable CO2, 
climate and land use (using updated annual land use and land 
cover change maps to 2017) were prescribed to all models. The 
TRENDY model simulations presented here thus represent car-
bon cycle responses of the biophysical land surface to climate 
and CO2 change, including emissions caused by land use change. 
Simulations are forced with climate information from CRU-
JRA-55. We have used the CABLE-POP, ISAM, LPJ, LPX-Bern, 
ORCHIDEE, O-CN, DLEM, and LPJ-GUESS models, which can be 
freely downloaded from trendy-v7@trendy.ex.ac.uk; and

	VII	 the in situ FLUXNET2015 GPP from multiple sites, which is the 
latest release of the international network FLUXNET (Baldocchi 
et al., 2001) of ecosystem net CO2 exchange data measured with 
eddy covariance techniques. This product consists of a harmo-
nized dataset from international projects, regional networks and 
field-sites of research institutes, including postprocessed GPP 
estimates from the direct measurements of net ecosystem CO2 
exchange. The FLUXNET2015 daily GPP estimates were ob-
tained from http://fluxn​et.fluxd​ata.org/data/fluxn​et201​5-datas​
et/. We considered all GPP data based on both night-time and 
day-time partitioning methods of the net ecosystem CO2 ex-
change: GPP_NT_VUT_REF, GPP_NT_VUT_25, GPP_NT_VUT_50 

https://ib.remote-sensing.inrae.fr/
https://ib.remote-sensing.inrae.fr/
http://files.ntsg.umt.edu/data/NTSG_Products/MOD17/MODIS_250/modis-250-npp/
http://files.ntsg.umt.edu/data/NTSG_Products/MOD17/MODIS_250/modis-250-npp/
http://files.ntsg.umt.edu/data/NTSG_Products/MOD17/MODIS_250/modis-250-npp/
https://zenodo.org/record/1423484
https://www.bgc-jena.mpg.de/geodb/projects/Home.php
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/satellite-remote-sensing
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/satellite-remote-sensing
http://environment.snu.ac.kr/bess/
http://fluxnet.fluxdata.org/data/fluxnet2015-dataset/
http://fluxnet.fluxdata.org/data/fluxnet2015-dataset/
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and GPP_NT_VUT_75 in the FLUXNET 2015 dataset. Negative 
GPP values were filtered out.

2.1.2 | Climate variables

Different climate datasets, aggregated to the annual time step, 
were used to make the results more robust and to examine the 
uncertainties:

	 I	 the Climate Prediction Centre (CPC) Global Unified Gauge-Based 
Analysis of Daily Precipitation that is produced by NOAA and is a 
global land-only product obtained based on a gauge-based anal-
ysis (gauge reports from over 30,000 stations) with a daily time 
step (Chen et al., 2008; Xie et al., 2007). The quality of CPC data 
has been evaluated against historical records and measurements 
at nearby stations, concurrent radar/satellite observations, as 
well as numerical model forecasts. The global CPC daily product 
is constructed at a spatial resolution of 0.125° but is released at 
a spatial resolution of 0.5°, with a temporal coverage of 1979–
present (see https://www.esrl.noaa.gov/psd/data/gridd​ed/data.
cpc.globa​lprec​ip.html for data and more details). The CPC daily 
product is free and made available online by the NOAA/OAR/
ESRL PSD, Boulder, Colorado, USA (https://www.esrl.noaa.gov/
psd/). In this study, the daily observed gauge-derived CPC pre-
cipitation over 2010–2018 was summed for the period Jan–Dec 
for each year;

	II	 the Gridded surface meteorological dataset (GRIDMET) surface 
meteorological data of daily maximum temperature, minimum 
temperature, precipitation accumulation, and 10-day Palmer 
Drought Severity Index (PDSI) with a spatial resolution of ~4 km 
covering the CONUS over the period 1979–2018. PDSI is a widely 
used index of integrated water supply and demand anomalies 
estimated using precipitation and potential evapotranspiration 
(PET). The GRIDMET data combines gridded climate data from 
the Parameter elevation Regressions on Independent Slopes 
Model (Abatzoglou, 2013), which can be freely downloaded from 
http://www.clima​tolog​ylab.org/gridm​et.html; and

	III	 the CRU TS Version 4 (Climatic Research Unit gridded Time 
Series) monthly precipitation and PET dataset. The CRU datasets 
are provided at a spatial resolution of 0.5° in NetCDF format that 
cover the period 1901–2018 (Harris et al., 2020) and comprise 
over 10,000 meteorological stations worldwide; they can be 
downloaded from http://www.cru.uea.ac.uk/data.

2.1.3 | Other datasets

Land cover map
We used the USGS National Land Cover Dataset (NLCD) 2011 
(Wickham et  al.,  2014) which is based on Landsat and ancillary 
data sources (e.g., topography, census and agricultural statistics, 
soil characteristics, wetlands, etc.). The NLCD map is provided at 

a spatial resolution of 30 m and can be downloaded from https://
catal​og.data.gov/datas​et/nlcd-2011-land-cover​-2011-editi​on-
amend​ed-2014-natio​nal-geosp​atial​-data-asset​-ngda-land-use-la. 
The CONUS vegetation is stratified into six land cover classes: 
deciduous forest, evergreen forest, shrubs, grasslands, pasture, 
and crops, corresponding with different climate regimes (see 
Figure S1).

Vegetation health index
The vegetation health index (VHI) has been widely used for 
drought and vegetation activity monitoring (Bento et al., 2018; Pei 
et  al.,  2018). VHI represents the overall vegetation health that is 
computed as follows (Kogan, 2001):

where VCI is the Vegetative Condition Index, which is related to the 
long-term minimum and maximum Normalized Difference Vegetation 
Index (NDVI):

where TCI is the Temperature Condition Index, which represents the 
relative change in thermal condition and is computed from the mini-
mum and maximum of TB values that are obtained from the thermal 
band of NOAA–AVHRR:

VCI characterizes vegetation moisture stress and TCI charac-
terizes the thermal condition of vegetation. VHI datasets were 
provided at a spatial resolution of 16 km and can be freely down-
loaded from https://www.star.nesdis.noaa.gov/smcd/emb/vci/
VH/vh_ftp.php.

Maximum rooting depth
Ecosystem resilience to drought is affected by plant rooting depth 
(Fan et al., 2017). Therefore, we used the modeled maximum depth 
of root uptake averaged over 10 years (2004–2013) reported in Fan 
et al. (2017) to help interpret the obtained results. It was estimated 
based on inverse modeling of observed productivity and water 
availability atmosphere at 30″ (1 km) and can be downloaded from 
https://wci.earth​2obse​rve.eu/thred​ds/catal​og/usc/root-depth/​catal​
og.html.

2.2 | Methods

2.2.1 | Asymmetry index

The relative positive pulses (or gains) and negative pulses (or de-
clines), widely used as asymmetric indices, were computed as follows 
(Knapp & Smith, 2001):

(1)VHI=0.5∗VCI+0.5∗TCI,

(2)VCI=100∗
NDVImax−NDVI

NDVImax−NDVImin

,

(3)TCI=100∗
BTmax−BT

BTmax−BTmin

.

https://www.esrl.noaa.gov/psd/data/gridded/data.cpc.globalprecip.html
https://www.esrl.noaa.gov/psd/data/gridded/data.cpc.globalprecip.html
https://www.esrl.noaa.gov/psd/
https://www.esrl.noaa.gov/psd/
http://www.climatologylab.org/gridmet.html
http://www.cru.uea.ac.uk/data
https://catalog.data.gov/dataset/nlcd-2011-land-cover-2011-edition-amended-2014-national-geospatial-data-asset-ngda-land-use-la
https://catalog.data.gov/dataset/nlcd-2011-land-cover-2011-edition-amended-2014-national-geospatial-data-asset-ngda-land-use-la
https://catalog.data.gov/dataset/nlcd-2011-land-cover-2011-edition-amended-2014-national-geospatial-data-asset-ngda-land-use-la
https://www.star.nesdis.noaa.gov/smcd/emb/vci/VH/vh_ftp.php
https://www.star.nesdis.noaa.gov/smcd/emb/vci/VH/vh_ftp.php
https://wci.earth2observe.eu/thredds/catalog/usc/root-depth/catalog.html
https://wci.earth2observe.eu/thredds/catalog/usc/root-depth/catalog.html
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where var is the yearly value of SMOS L-VOD, GPP, NPP, or precipi-
tation; max and min are the maximum and minimum values over the 
whole data record, and the overbar represents the overall mean of the 
yearly values. Positive pulses and negative declines represent, respec-
tively, the relative productivity gains and declines in wet and dry years, 
namely increase or decrease in productivity relative to the mean an-
nual value of productivity. In this study, positive pulses will be referred 
simply to as pulses and negative declines to as declines.

In order to study the asymmetry of the inter-annual biomass pro-
ductivity response to precipitation, we computed the AI following 
(Wu et al., 2018):

AI greater than 0 indicates a positive asymmetry (i.e., a greater 
gain of productivity in wet years than decline in dry years) and AI 
lower than 0 indicates a negative asymmetry (i.e., there is a greater 
decline of productivity in dry years than gain in wet years). Running 
means of the AI of inter-annual products at the biome scale using a 
temporal window of 9, 11, 13, 15 years, etc. up to the entire datasets 
were computed.

2.2.2 | Skewness

We also computed the skewness of the different datasets according 
to Joanes and Gill (1998):

where m2 and m3 are the second and third central moments (or mo-
ment about the mean). While a positive skewness indicates that the 
data distribution is skewed to right, negative skewness indicates that 
the data distribution is skewed to the left. Skewness is related to AI, 
that is a positive value should broadly correspond to positive AI and 
vice versa.

2.2.3 | Variable importance

The asymmetry of productivity may reflect either asymmetry of 
precipitation anomalies, asymmetry of the biotic response, or both. 
Large-scale spatial gradients of annual precipitation control the dis-
tribution of biomes and life zones around the globe (Holdridge, 1947). 
Annual precipitation also limits plant productivity over most of the 
globe and controls biomass (Ahlström et al., 2015; Huxman, Smith, 

et al., 2004; Huxman, Snyder, et al., 2004). Precipitation is a sim-
ple measure of ecosystem water availability that is accurately esti-
mated across the CONUS (e.g., the NOAA CPC unified gauge-based 
data; Chen et al., 2008), and there are several lines of evidence for 
strong relationships of precipitation with ecosystem production in 
this region (Knapp et al., 2017; Knapp & Smith, 2001). We, there-
fore, considered some precipitation-related variables and a biotic 
variable (Knapp & Smith,  2001) to explain the spatial patterns of 
AI. These variables are the asymmetry of rainfall anomalies (AiPR), 
the annual precipitation variability (CVPR; computed as the ratio of 
the SD to the mean), the annual precipitation to PET ratio (RATio) 
which is the inverse of the Budyko aridity index) and the mean an-
nual precipitation (MeanPR). In addition, we considered one biotic 
variable, the ecosystem productivity potential (MaxNPP; defined by 
the maximum values of NPP). We used a Random Forest (RF) model 
(Breiman, 2001; Liaw & Wiener, 2002) to determine the most impor-
tant variables, with the highest explanatory power of AI, that may be 
considered as drivers of the AI. For this purpose, we created maps 
of AiPR, MaxNPP, CVPR, MeanPR, and RATio and we applied the RF 
algorithm to explain the spatial patterns of the AI with these predic-
tors. More specifically, RF was first applied using all pixels of the 
created maps (i.e., across the whole CONUS) and then applied only 
per each biome.

3  | RESULTS

3.1 | Spatial patterns of the productivity asymmetry

We evaluated the asymmetry of productivity over the CONUS using 
the AI and skewness. The spatial distribution of the AI response 
is broadly coherent among the different GPP proxies (observa-
tions and simulations), with more pronounced negative AI values 
observed over the central plains, a transitional zone between arid 
and mesic eastern regions (Figure 1). Conversely, positive AI of GPP 
values were found over the Western and Southwestern CONUS in 
all proxies, with no clear asymmetry in the East. We also observed 
that SMOS-VOD and both NPP products exhibited a larger area of 
negative AI than any of the GPP datasets. The spatial patterns of the 
AI values were similar to those of the skewness patterns (Figure S3) 
except in the East, and thus we will focus on the AI results in the 
subsequent analysis.

3.2 | Biome specific asymmetry

Across six biomes, deciduous forest, evergreen forest, shrubs, grass-
lands, pasture, and crops (classified according to the U. S. Geological 
Survey, 2011), the mean AI values of productivity and AGB were 
mainly negative (i.e., maximum decline was greater than maximum 
pulse) as seen in Figure 2. The SMOS L-VOD, that accounts for mor-
tality, AI values were negative on average over all biomes while the 
AI indices of MODIS and TRENDY NPP were positive for evergreen 

(4)Positivepulse =
max (var)−var

|
|var

|
|

,

(5)Negativedecline =
var−min (var)

|
|var

|
|

,

(6)AI=Pulse−Decline.

(7)S=
m3

(m2)
3∕2

,
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forest and shrubs, respectively. The TRENDY models NPP shows 
similar results to SMOS-VOD (except over shrubs) and MODIS-NPP 
(except over evergreen forest). Asymmetry indices based on the 
GPP products were also similar across different products and mostly 
negative except over shrubs and evergreen forest. The main finding 

is that most datasets point to a large area of negative AI, with the 
exception of the dry southwest CONUS. These results thus indicate 
that the decline in terrestrial productivity during dry years was in 
general greater than the pulse of terrestrial productivity in wet years 
for most of the biomes during the last decade (i.e.; 2010–2018). The 

F I G U R E  1   Asymmetry responses (pulse − decline) of inter-annual ecosystem productivity at the biome scale computed from SMOS-IC 
L-band vegetation optical depth (SMOS-VOD), BESS-gross primary production (BESS-GPP), MODIS net primary productivity (MODIS-NPP), 
soil moisture corrected-Prentice model GPP (Prentice-GPP), machine learning approaches for upscaling biosphere-atmosphere fluxes from 
FLUXNET observations to global scale (FlUXCOM)-GPP and TRENDY models GPP and NPP within the 2010–2018 period (average of all the 
models)
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extent of this dominant negative asymmetry differs from the results 
obtained from the Long-Term Ecological Research sites studied by 
Knapp and Smith (2001) and that led them to conclude a dominant 
positive asymmetry across CONUS biomes.

The observed negative asymmetries of GPP and NPP shown 
in Figure 2 over grasslands and crops and the positive asymmetry 
over shrubs were also observed in the in situ flux tower data sets 
from Fluxnet2015 (Figure  3), irrespective of whether GPP was 

F I G U R E  2   Mean of asymmetry index (AI) responses of inter-annual ecosystem productivity at the biome scale estimated from SMOS-IC 
L-band vegetation optical depth (SMOS-VOD), BESS-Gross primary production (BESS-GPP), MODIS net primary productivity (MODIS-
NPP), soil moisture corrected-P-model GPP (Prentice-GPP), machine learning approaches for upscaling biosphere-atmosphere fluxes from 
FLUXNET observations to global scale (Fluxcom)-GPP, and Trendy GPP and NPP within the 2010–2018 period. Error bars represent SEM
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calculated from net ecosystem exchange using the night-time par-
titioning method (Reichstein et al., 2005) or the day-time partition-
ing method (Lasslop et al., 2010). Moreover, asymmetry responses 
of inter-annual ecosystem productivity at the site scale are not de-
pendent on the GPP quantile (see Figure S4 for GPP versions with 
model efficiency [MEF] using the 25th, 50th, and 75th percentile 
of friction velocity [USTAR] thresholds from bootstrapping).

3.3 | Decadal trends of asymmetry for each biome

We then investigated the change in the asymmetry responses 
of ecosystem productivity from 1985 to 2016 (includes the pe-
riod observed by Knapp & Smith, 2001) with the period covered 
by the F-GPP (Figure 4) and soil moisture corrected-P-model GPP 
(Prentice-GPP) datasets (Figure S5) as a function of biomes, latitude 

F I G U R E  3   Asymmetry responses of 
inter-annual ecosystem productivity at 
the site scale from Fluxnet2015 during 
the 2007–2014 period. Gross Primary 
Production, from day-time and night-
time partitioning method, using Variable 
friction velocity (USTAR) Threshold (VUT) 
reference (GPP-REF) selected from GPP 
versions using model efficiency of USTAR 
thresholds from bootstrapping
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and longitude. While the shrubs biome exhibited a persistent posi-
tive asymmetry during the entire period, the (natural) grasslands 
biome that represents 26% of CONUS appeared to have switched 
from positive to negative asymmetry over the last decade. This shift 
in the asymmetry of the GPP of natural grasslands was also found 
in the F-GPP products (both the day-time and night-time partition-
ing) over a longer period starting in the 1950s (Figure S6). For the 
grasslands biome, we calculated the AI for multiple lengths of the 
temporal windows (9, 11, 13, 15 years, etc. up to the entire data set 
of 33  years; Figure  S7). For all temporal windows, even the long-
est one (33  years), a decrease in the AI was observed, leading to 
negative AI during the last decade. The pasture biome exhibited a 
smaller asymmetry than (natural) grasslands, but this biome also 
became negative. Crops have a negative asymmetry during the last 
years (i.e., 2010–2016) but this biome did not show a clear long-term 
trend in AI.

3.4 | Spatial patterns of decadal 
trends of asymmetry

The temporal trends of AI shown in Figure 4a varied with latitude 
(Figure 4b) and longitude (Figure 4c). The AI values tended to de-
crease over time at all latitudes (except ≈35°) from the year 2012 
onwards (although earlier at ≈45°). For longitude, two regions can be 
distinguished with AI remaining positive across all years in the West 
between −120° and −100°W and AI becoming negative in the East 
between −100° and −70°W.

3.5 | Drivers of asymmetry

At the CONUS scale, amongst the five variables (see Section 2.2) 
used to predict the annual asymmetry of ecosystem productivity 
with the RF models, AiPR was the most important predictor variable 
(Figure 5) followed by RATio (annual precipitation/PET ratio). At the 
biome scale, CVPR (precipitation variability) and MeanPR (mean an-
nual precipitation) were the most important indicators over pasture 
and grasslands, respectively. RATio was the most important predic-
tor variable over forests and crops. MaxNPP ranked third for grass-
lands and fourth for the other biomes except crops where it was the 
least important variable.

At the CONUS scale, precipitation asymmetry was the most im-
portant variable and, therefore, evaluated here as a key potential 
driver of the asymmetry patterns of productivity. Annual precipita-
tion does present consistent negative asymmetry over grasslands, 
evergreen forest and crops during the last decade for both GRIDMET 
(Figure  6a), and CPC precipitation products (Figure  S8; only for 
grasslands). We also calculated the AI for multiple lengths of the 
temporal windows (9 years, 11, 13, 15, etc., up to the entire data set) 
to explore the maximum cases of asymmetry possible over grass-
lands (including the Climate Hazards Group InfraRed Precipitation 
with Station data (CHIRPS) and Global Precipitation Climatology 
Centre (GPCC) precipitation datasets described in the Supporting 
Information). We found that the three CPC, GPCC and CHIRPS pre-
cipitation datasets are consistent: the longest the period, the highest 
the positive AI in productivity (Figure S9). These trends in precipita-
tion also translated well into GPP trends (Figure S7). Conversely, the 

F I G U R E  5   Variable importance of the five predictors used to predict asymmetry index of ecosystem productivity using all pixels of the 
created maps (i.e., across the whole CONUS) and per biome. High values of percent indicate more important variables in the Random Forests 
models. The five predictor variables were asymmetry of rainfall anomalies (AiPR), ecosystem productivity potential (MaxNPP), precipitation 
variability (CVPR), annual precipitation/potential evapotranspiration ratio (RATio), and mean annual precipitation (MeanPR)

CVPR

MaxNPP

MeanPR

RATio

AiPR

0 5 10 15 20
Variable importance %

Al
l

CVPR
MaxNPP
MeanPR

RATio
AiPR

0 10 20
Variable importance %

Sh
ru

bs

CVPR
RATio

MaxNPP
AiPR

MeanPR

0 5 10 15 20 25
Variable importance %

G
ra

ss
la

nd
s

AiPR
MaxNPP
MeanPR

RATio
CVPR

0 10 20 30
Variable importance %

Pa
st

ur
e

MaxNPP
CVPR

MeanPR
AiPR

RATio

0 5 10 15 20
Variable importance %

C
ro

ps

AiPR
MaxNPP
MeanPR

CVPR
RATio

0 5 10 15 20
Variable importance %

D
ec

id
uo

us
 F

or
es

t

CVPR
MaxNPP
MeanPR

AiPR
RATio

0 5 10 15 20 25
Variable importance %

Ev
er

gr
ee

n 
Fo

re
st



10  |     AL-YAARI et al.

AI of precipitation is positive for shrubs and does not present clear 
trends for either GRIDMET or CPC products.

Similar to the temporal trends of the AI of ecosystem productiv-
ity, the temporal trends for precipitation, in Figure 6a, vary with lati-
tude (Figure 6b) and longitude (Figure 6c). The AI values decrease for 
all latitudes (except for latitude ≈35°) starting from the year 2010. In 
addition, a band of negative asymmetry between the latitudes 20° 
and 30° throughout the whole period was observed. For longitude, 
there is a general decrease in the AI of precipitation over the 2000–
2014 period.

To further relate the vegetation proxies to precipitation anom-
alies directly, the average pulses and declines were grouped by bi-
omes for both productivity and precipitation (Figures S10 and S11). 
The magnitude of the relative productivity pulses or declines were 
positively correlated to precipitation pulses and declines. Biomes 
clearly differed in their sensitivity to drought and wetter years, with 
grasslands being the most responsive (Vicente-Serrano et al., 2013). 
Confirming the findings of Knapp and Smith (2001), grasslands 
and shrubs demonstrated more plasticity than the other biomes 
to adapt production in response to experiencing high precipitation 
anomalies.

4  | DISCUSSION

Similar spatial patterns in the asymmetry response (AI) were found 
among the different GPP productivity metrics but varied consider-
ably with the MODIS-NPP and SMOS-VOD proxies. SMOS-VOD, 

which is a proxy of AGB, corresponding roughly to ANPP for annual 
vegetation, indicated a more widespread negative asymmetry. This 
may reflect the fact that drought decreases the amount of carbon 
and water allocated to AGB in dry years, thus reducing the SMOS-
VOD signal and eventually negating the positive GPP asymmetry 
(e.g., shorter turnover time of aboveground plant tissues). Moreover, 
for grasslands, shrubs and forests, covariance between mortality 
and ANPP may lead to a more negative AI of AGB values compared 
to the AI of GPP. The wider spread of negative asymmetry found 
with SMOS-VOD compared to the GPP products may reflect an in-
crease in plant mortality in dry years, causing more relative AGB de-
clines than GPP declines during dry years. SMOS-VOD is probably a 
much more sensitive metric to water stress than vegetation indices 
in forests of western US where “evergreen” trees still appear green 
even though they may be transpiring very little water.

The aggregated productivity trends of each biome (Figure  4) 
in the last decade were in relatively good agreement with the ag-
gregated trends of precipitation (Figure 6). This can be related to 
the fact that inter-annual anomalies of precipitation have a strong 
impact on variations of soil moisture (Humphrey et al.,  2017), 
plant productivity (Ahlström et al., 2015; Stocker et al., 2019) with 
lagged effects on vegetation (Papagiannopoulou et al., 2017), and 
mortality (Wang et al., 2018). The impact of rainfall on the AI of 
productivity was even more evident when results were binned by 
mean annual precipitation (Figure 7). In general, a decrease of the 
AI with spatially increasing rainfall was evident for all products 
(Figure  7a). The relative magnitude of the negative and positive 
pulses decreases with increasing mean annual precipitation and 

F I G U R E  6   Changes in the asymmetry index (AI) of precipitation from Gridded surface meteorological dataset (GRIDMET) over 1990–
2014 as a function of biomes (a), latitude (b) and longitude (c). The AI was calculated from biome-mean precipitation inter-annual variations 
using a running window of 10 years centered on each year of the x-axis. For instance, the value of the AI in the year 2000 was computed 
over the period from 1995 to 2005
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both pulses decrease to 0 for very wet regions (Figure  7b). The 
AI is found to be a function of mean rainfall: more positive asym-
metry is found in dry areas and more negative asymmetry in wet 
areas, but neutral AI (values close to 0) are found in very wet con-
ditions. Therefore, functional asymmetry is greatest in dry areas 
and least in wet regions. Considering negative pulses, declines in 
GPP become smaller in dry regions in five of the seven products. 
The AI becomes negative for most of the GPP and NPP products 
with mean precipitation in the range 200–400  mm/year. This 
threshold of precipitation is in relative agreement with previous 
results (Gherardi & Sala, 2019). This may be because ecosystems 
in these dry areas reached such low levels of GPP that there is 
not much capacity for further reductions. In wet regions, negative 
precipitation pulses (declines) are generally weak. The worst case 
of negative asymmetry appears to be in intermediate conditions 
where vegetation is not adapted to very dry conditions and to 
strong negative precipitation anomalies that may happen abruptly. 
Note that the AI values become negative earlier for SMOS-VOD 
suggesting that it may be a more sensitive indicator of drought 
stress.

We also examined historical inter-annual spatio-temporal vari-
ations (1990–2018) of different drought indices to better under-
stand why there is a temporal trend from positive asymmetry 
towards neutral or negative asymmetry over the last decade. The 

period from 2010 to 2018 was warmer than the previous decade 
from 2000 to 2009 and the decade from 1990 to 1999 over the 
CONUS (Figure  S12). The PDSI was negative during 2000–2018 
indicating greater drought than during 1990–1999. Similarly, there 
was an overall low VHI (Kogan,  2001) indicating that plants were 
under more stress during the decade of 2010–2018 than during the 
previous decades. The severe droughts in 2012, 2016 and 2017 are 
suspected to have had a major impact on the asymmetry patterns 
of Grasslands that became negative (Figure  S13) while VHI and 
PDSI were lowest and temperature was higher than the long-term 
average (1981–2018). The period before the year 2000 seems to 
be wetter than the two recent decades, thus providing better envi-
ronmental conditions for ecosystem productivity and perhaps also 
contributing to the positive asymmetry found by previous studies 
(Knapp & Smith, 2001). For the recent decade, despite the variety 
in the different ecological characteristics of the biomes over the 
CONUS, productivity for non-forest biomes over the CONUS was 
more impacted during drought years than during wet years, namely 
productivity pulse gains during extreme wet years were lower than 
drought-induced productivity reductions. Impacts of droughts, 
mainly the 2012 drought, on terrestrial carbon fluxes (i.e., GPP) have 
been investigated by Wolf et al. (2016) who have found too that the 
decrease in GPP during summer was much larger than the increase 
of spring GPP for 2012 and greater respiration losses in summer and 

F I G U R E  7   (a) Median and range of the asymmetry index (AI) as a function of increasing mean annual precipitation across the 
CONterminous United States (CONUS) for a proxy of biomass (SMOS_IC L-VOD) and different proxies of primary productivity and (b) 
magnitudes of relative pulses and relative declines of biomass and productivity for increasing mean annual precipitation across the CONUS. 
The AI is the difference between relative pulse and decline, which was grouped into mean annual rainfall bins. The shaded areas represent 
the standard deviation of the AI
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fall, resulting in a moderate loss of annual GPP (−0.38 pg C) over the 
CONUS in 2012.

Persistent positive asymmetries of ecosystem productivity were 
observed over shrubs (Figures 2 and 3) for all proxies except SMOS-
VOD and MODIS-NPP. The shrubs biome positive AI values were 
associated with positive asymmetries in precipitation (Figure  6a). 
Winkler et al. (2019) have evaluated meteorological drought-induced 
events and the influence of abiotic and biotic site factors in driving 
mortality responses of some plant species in the Colorado Plateau 
Desert. Shrubs species were generally found to be resistant to me-
teorological drought (attributed to their ability to access deeper 
soil water). The positive asymmetry responses for shrubs and other 
biomes may be linked with a relatively strong resilience to drought 
stress that is possibly related to their ability to grow and maintain 
extensive lateral and/or deep roots, as illustrated in Figures S14 and 
S15 where pulses and declines generally increase for increasing max-
imum rooting depths (Fan et al., 2017).

The negative asymmetry patterns of productivity (GPP and 
NPP) for non-shrub short-stature vegetation: grasslands and crops 
(Figure 3) in the last decade were in good agreement with the neg-
ative asymmetry of precipitation (Figure 6a). The trends in precipi-
tation over grasslands (Figure S9) corresponded well to GPP trends 
(Figure S7) over a longer period indicating that grasslands respond 
instantly to drought with negative asymmetry. This means that the 
sign and magnitude of precipitation changes have large effects on 
the grasslands ecosystem productivity (Gherardi & Sala, 2015; Sala 
et al., 2012). This is expected as grasslands with small pools of car-
bon (lower biomass) and shallow rooting depths, often exhibit great 
declines in greenness with water stress (Sims et al., 2014).

Besides AiPR, RATio was the second most important predictor 
variable at the CONUS scale and the most important predictor vari-
able over forests and crops (Figure 5). This means that the produc-
tivity asymmetry over forests and crops can be explained by both 
precipitation and evapotranspiration. Forests have often sufficient 
water surplus to meet the evapotranspiration demand even during 
dry years (Knapp & Smith, 2001) while a water deficit in crops can be 
mediated by irrigation reducing the dependence of crops on rainfall 
(Leng et al., 2016).

Other studies have shown that the sensitivity of the NDVI to 
drought was also greatest across the Great Plains (Sims et al., 2014) 
and that changes in grasslands NDVI were also more sensitive to 
drought in that region where grasslands appear to be more aniso-
hydric (Konings et al.,  2017). This is consistent too with a recent 
study of model results by Wu et  al.  (2018) who found a negative 
asymmetry for the mean resulting from an ensemble of models (15 
ecosystem models) predicting ANPP productivity under normal 
inter-annual precipitation variability across three grasslands sites 
over the CONUS. Such a prevalent negative asymmetry for inter-
mediate ecozones between mesic and semiarid is, however, not in 
line with previous investigations that used data collected about 
thirty years ago at the ecosystem scale (Knapp & Smith, 2001). The 
latter study found that NPP productivity in the mesic ecozone of 
Kansas responded more strongly in wet versus dry years, having 

positive asymmetry due to drought tolerance/resistance mecha-
nisms at the ecosystem scale. The inclusion of much more extreme 
dry years in our analysis than observed by Knapp and Smith (2001) 
may explain this discrepancy. Responses to climate extremes are ex-
pected to vary significantly from nominal wet and dry years (Knapp 
et al., 2017; Smith, 2011). This temporal analysis also suggests that 
the AI of grasslands has shifted over time.

In addition, recent studies have reported significant impacts of 
other climatic factors on different crops over the CONUS such as 
thermal time (growing degree-days or GDD), first and last annual 
frost, climatological growing season (CGS) and growing season 
length. For instance, Kukal and Irmak (2018), have suggested that 
long-term thermal trends have also impacted the US crop systems 
with a positive response to CGS and a negative response to increase 
in GDD. Furthermore, long-term land use changes (8% of the land-
scape experienced a land cover change between 2001 and 2016) in 
the CONUS alter biophysical surface characteristics and can there-
fore lead to changes of ecosystem productivity (Homer et al., 2020).

5  | CONCLUSION

Overall, a negative asymmetry resulting from a greater decline of bi-
omass in dry years than a positive pulse of biomass in wet years was 
observed over the CONUS from 2010 to 2018, particularly for grass-
lands. This negative signature was revealed for both ecosystem pro-
ductivity and precipitation, the former being possibly a consequence 
of the latter. The shift in asymmetries from positive to negative was 
observed for most biomes possibly caused by warm and dry climate 
conditions prevailing over 2010–2018 and notably the severity of 
the recent droughts in 2012. For GPP, evergreen forest and shrubs 
ecosystems generally showed positive asymmetry, consistent with 
previous studies by Knapp and Smith (2001), whereas drought led 
to negative asymmetries for the other ecosystems. Importantly, this 
result was robust across the different types of GPP products used 
in this analysis as well as across biomass and NPP, suggesting that as 
drought severity increases, shifts in asymmetric responses to rainfall 
anomalies are occurring. This evaluation of AI should be extended to 
other regions by examining directly rain use efficiency changes as a 
function of mean annual rainfall with attention to specific effects of 
fire, high temperatures, mortality, and their impacts on AGB.
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