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Abstract

It is possible to levitate a mass by vibrating a flat
disk located under the mass. This near-field acoustic
levitation is particularly useful for eliminating fric-
tion between moving objects. This paper presents an
experimental and theoretical study of the dynamic
behavior of a levitating mass for different magnitudes
of oscillation of the flat disk. The magnitude of the
vibration of the mass appears to be independent of
the amplitude of the vibration of the disk over a range
of two orders of magnitude. This unusual behavior is
due to the simultaneous changes of the stiffness of the
air film and the natural frequency of the system as
the plate vibration is changed. As the plate oscilla-
tion is reduced, the distance to resonance decreases,
allowing an increase of the ratio of the output to in-
put signals in such a way that the output remains
constant. This result can be useful for improving the
energy efficiency of the levitation.

1 Introduction

The non-linear dynamic behavior of mechanical sys-
tems can lead to complex and unpredictable long
term behavior. This has led to the emergence of
a dedicated research topic, non-linear dynamics, in-
cluding chaos theory [1]. In this paper it will be
shown that on the other hand, non-linear dynamic
behavior can lead to very simple behavior character-
ized by an invariant parameter. This particular be-
havior has been observed in a near field acoustic lev-
itation system composed of a horizontal plate having
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an oscillating vertical motion generating a force able
to levitate a mass.

Levitation has attracted the attention of physicists
for a long time because of the number of its applica-
tions, including containerless processing and manip-
ulation, frictionless bearings, and high-speed ground
transportation [2]. The use of acoustic waves is one
of the physical means to achieve levitation. There
are two types of acoustic levitation, depending on
the ratio of the levitated distance h0 to the wave
length of the sound waves [3]: A ratio higher than
unity corresponds to standing waves, but when this
ratio is much smaller than unity, it is near-field acous-
tic levitation, the topic of the present paper. Even
if standing waves allow the manipulation of solids of
any shape and even liquids [4], near-field acoustic lev-
itation allows attaining a levitation force as high as
70 kN per square meter [5].

To save energy during acoustic levitation, it is
usual to operate the actuator at its resonance fre-
quency [6]. The dynamic operating condition is thus
imposed by the structure of the actuator itself [7].
As a consequence, there have been very few studies
focused on the dynamics of the levitated mass, ex-
cept a recent paper [8]. However, this topic has been
more deeply analyzed in MEMS applications where
the damping due to the air film is a strong limiter
of the displacement of the moving parts [9]. In this
case, the mass is not levitated but elastically linked
to a support. It was found by experiments [10] and
theory [11, 12] that the dynamic behavior depends
on the squeeze number Λ, Eq. 3. At low squeeze
numbers, the damping effect is dominant, whereas at
high squeeze numbers, the air film mainly behaves
as a spring. As Λ is a function of the average air
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film thickness h0, the dynamic properties of the air
film change with its thickness, making the behavior
of the system non-linear. An additional non-linearity
is observed at high oscillation amplitudes, due to the
inertia of the air [13].

In this paper, the dynamic behavior of a levitated
mass, when the vibration amplitude of the actuator
is varied, is studied experimentally, numerically, and
analytically.

2 Materials and methods

The experimental equipment is presented in Figure
1. A flat disk is vertically moved by a piezo-actuator
(Piezomechanik PSt 150/5/7/VS10) attached to a
massive frame. The oscillation frequency f = ω

2π and
amplitude e of the plate are controlled. A circular
mass of radius R = 15 mm and mass m = 17.76 g is
placed above the plate. The surfaces of the plate and
disk were polished and have a flatness defect lower
than 1 µm. Two optical sensors were used to mea-
sure the vertical position, h1, of the plate and of the
disk, h2. Two thin wires were used to avoid any par-
asitic lateral movement of the disk during levitation.

Since the distance h between the mass and the
plate is several orders of magnitude smaller than the
radius R of the disk and the oscillation period is
small compared to the time needed for sound waves
to travel across the film, the air flow in the gap can
be described by the Reynolds equation used for a
viscous thin isothermal gas, written here in dimen-
sionless form [14, 15]:

∂

∂r̄

(
p̄r̄h̄3

∂p̄

∂r̄

)
= Λr̄

∂p̄h̄

∂t̄
(1)

Here, the dimensionless variables are

h̄ =
h

h0
, r̄ =

r

R
, p̄ =

p

pa
, t̄ = ωt (2)

where p is the air pressure, pa the ambient pressure
and h0 the average distance between the two surfaces.
The ratio between the two terms of the equation is
controlled by the squeeze number:

Λ =
12µω

pa

R2

h20
. (3)

By numerically solving the Reynolds equation, it
is possible to find the distribution of the air pressure
in the gap and the resulting force. It is then possible
to determine the vertical position of the mass using
Newton’s law.

When Λ � 1, the right hand side of the equation
is dominant and the product of the thickness h of the
air film and the pressure is constant. This means that
there is no more viscous flow of the air trapped be-
tween the surfaces. It behaves as a gas submitted to
the motion of an oscillating piston. It is thus possible
to derive an analytical solution (see the Appendix).
The average film thickness is thus

h0 =
e√
L

+
g (L+ 1)

ω2L
(4)

where L = mg
πR2pa is the load parameter and e the

plate vibration amplitude. The vibration amplitude
a of the levitated mass is found to be

a =
g

ω2

L+ 1√
L

(5)

In addition to the condition on Λ, this relation is ver-
ified if (a+ e) � h0 (see the Appendix). According
to this equation, the amplitude of vibration of the
levitated mass is independent of the amplitude e of
the input vibration, which is unusual for a dynamic
system.

3 Results

To analyze the influence of e, that is the vibration
amplitude of the plate, some tests were conducted at
a frequency f = 3500 Hz and for e varying from 0.027
µm to 2.8 µm. These values correspond to the low-
est value allowing levitation during the tests and the
maximum amplitude reachable by the piezo-actuator.
The frequency was chosen to be far enough away from
the natural vibrating frequencies of the frame of the
system. The experiments were repeated four times.

Figure 2 presents the position of the vibrating plate
h1 and of the levitated mass h2 for six different am-
plitudes e of the plate vibration distributed over two
orders of magnitude. Note that the h2 signal is a lit-
tle noisier than h1 due to the lower sensitivity of the
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Figure 1: a) Picture of the test rig. The optical sensors are fiber optic sensors (Philtec D125 for the plate
and D170 for the mass). The target has a controlled roughness to adapt range and sensitivity of the sensors
- b) configuration of the problem showing the different parameters
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sensor used for the mass, which has a higher working
range. As expected, the average thickness of the air
film increases with e. However, the amplitude of the
vibration of the mass appears to be almost constant
even if e is multiplied by 100. A similar finding has
been obtained by Ilssar and Butcher by numerical
simulation but over a much smaller range [8].

It is then possible to calculate the average air film
thickness h0, the phase shift between the two signals,
and the standard deviation σ of the position of the
levitated mass. They are presented in Figures 3, 4
and 5, respectively, as a function of the plate vibra-
tion amplitude e. The four test results are presented
as well as the results of the numerical simulations and
analytical solutions.

The average film thickness obviously increases with
the magnitude of the plate oscillation e. The lowest
recorded film thickness was about 3 µm, when the
plate vibration amplitude was 0.027 µm. This am-
plitude e is one-third that of the one predicted with
the empirical relation for lift-off of Brunetière et al.
[14]. The film thickness first evolves linearly with e
and then the slope slightly decreases with increas-
ing plate amplitude. The maximum film thickness
reached is about 40 µm. The linear evolution of h0
is captured by both the numerical and analytical ap-
proaches with a vertical shift of respectively 4 µm and
5 µm. The difference between the numerical simula-
tion and the experiments decreases and tends to a
perfect correlation when h0 is higher than 20 µm.
Below this value, the Knudsen number (ratio of the
free mean path of the gas to the film thickness) Kn
is lower than 0.0033, indicating that there could oc-
cur a transition to a slip flow due to gas rarefaction.
This effect is not considered in the model. The an-
alytical model predicts a linear increase of the film,
which is not in agreement with experimental obser-
vation. Indeed, when the film thickness is increased,
the squeeze number Λ is strongly decreased, render-
ing invalid the assumption used to build the model.
The deviation from the linear evolution is due to the
viscous flow of the gas in the gap between the plate
and the mass.

The phase shift ϕ between the plate and the mass
oscillation is presented in Figure 4 as a function of e.
Except for a few experimental results obtained at the

lowest values of e, the phase shift is less than −π/2,
indicating that the air-film–mass system is working
at a frequency above its natural frequency. The few
outliers could be due to uncertainty in the phase cal-
culation of the input signal due to the large ratio
between the noise and the signal obtained at low e
(see Figure 2). The experimental and numerical re-
sults are very consistent with a decrease from about
−π/2 at low e before reaching a minimum for e '
0.3 µm. The phase shift then rises slightly to about
−3π/2. The analytical model does not consider any
damping, and thus leads to a constant phase −π over
the entire range.

The standard deviation σ of the displacement of
the mass is presented in Figure 5 as a function of
e. Two sets of experimental results are presented.
The shaded one corresponds to the standard devia-
tion calculated on the raw signal and in the second
set the noise of the sensor, equal to 0.125 µm RMS,
was subtracted. As previously seen in Figure 2, the
amplitude of the vibration of the mass is impressively
insensitive to the input signal e, even when varying
over a range of two orders of magnitude. For e lower
than 0.5 µm, there is a discrepancy on the test results
due to occurrence of condensation drops between the
surfaces due to the very low distance between the sur-
faces. The numerical simulations highlight a slight
decrease of σ with e and a quite good agreement
with the tests. The analytical model (Eq. 5) gives
a constant value about 30% higher than the test av-
erage results. The almost constant value of the mass
amplitude vibration is obtained experimentally and
theoretically.

4 Discussion

Assuming that the air film can be described by a stiff-
ness coefficient and a damping coefficient, it is possi-
ble to identify the natural frequency or pulsation ω0

of the system that is thus reduced to a mass-spring-
damper system:

(ω0

ω

)2
=

1

1− cosϕ e
σ
√
2

(6)
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Figure 2: Motion of the vibrating plate (dotted) at six different amplitudes e and corresponding levitated
mass motion (solid) as a function of time. The vibration frequency is f = 3500 Hz and the mass of the
levitated object is m = 17.76 g
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Figure 3: Average film thickness h0 over one period as
a function of the plate vibration amplitude e: Results
of four different test series, simulation results and
analytical solution (Eq. 4).
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Figure 4: Phase shift between the position h2 of the
levitated mass and the position h1 of the plate as a
function of the amplitude e of the vibration of the
plate: Results of four different test series, simulation
results, and analytical solution.

Figure 5: Standard deviation σ of the levitated mass
position h2 as a function of the plate vibration am-
plitude e: Results of four different test series (shaded
points correspond to raw results σr and solid points to
results after noise removal: σ =

√
σ2
r − 0.125(µm)2,

simulation results and analytical solution (Eq. 5).

The square of the ratio of the natural frequency to
the operating frequency is presented as a function of
e. This ratio is linked to the stiffness k of the air film(
ω0

ω

)2
= k

mω2 . The three approaches give very simi-
lar results with a ratio that decreases from about 1 to
0.1 when e is varied from 0.027 to 2.8 µm (see Figure
6). Even if the analytical solution leads to a higher
value of σ and cosϕ, their ratio is propably close to
the experimental and numerical values. The varia-

tion of
(
ω0

ω

)2
means that when the amplitude of the

vibration of the plate is decreased, the stiffness of the
film is increased due to the lower film thickness. In
the case of the entrapped air assumption (analytical
approach), it can be shown that k ∝ h−20 . This in-
crease in stiffness makes the natural pulsation closer
to the operating pulsation. As the system is working
closer to its resonance, it is possible to maintain the
vibration amplitude of the mass at a constant value
by amplifying the input signal, thanks to the reso-
nance. The reason why the natural frequency varies
in such a way that the amplitude of the vibration of
the mass is kept almost constant is difficult to explain
based on the experimental results and numerical sim-
ulations. The analytical model, even if not accurate
for a description of the problem over the entire range,
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can provide a simple explanation of this phenomenon
(see the Appendix). The oscillating part of the force
generated in the air film is proportional to b

h0
, where

b is the amplitude of the air gap vibration (including
e and a). This force component must balance the ac-
celeration of the mass that is proportional to a or σ.
Thus a ∝ b

h0
. To ensure a mass balance over one pe-

riod of the oscillation of the gas entering and exiting
the gap, it can be shown that an average overpressure

proportional to
(
b
h0

)2
is needed. Since this average

overpressure must balance the load due to the mass
of the levitated disk, it is independent of e. Thus, as
the mass is kept constant, b

h0
and then a are invari-

ant and independent of e. In the real problem, the
explanation is more complex, as there is a contribu-
tion of the viscous flow to the levitation force as well
as rarefaction effects at low Knudsen numbers.

0.1 1
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1

e (µm)

( ω
0 ω

) 2

Test 1
Test 2
Test 3
Test 4

Numerical
Analytical

Figure 6: Square of the ratio of the critical pulsation
ω0 to operating pulsation ω as a function of the plate
vibration amplitude e: Results of four different test
series, simulation results and analytical solution. The
results were calculated with Eq. (6).

5 Conclusion

The dynamics of a metallic disk maintained in levita-
tion by near-field acoustic waves has been experimen-
tally studied when the amplitude of vibration of the
actuated plate is varied over a range of two orders

of magnitude. That study has been complemented
with numerical simulations and an analytical model.
It has been found both experimentally and theoreti-
cally that the amplitude of vibration of the levitated
mass is almost independent of the magnitude of the
oscillation of the plate due to the simultaneous vari-
ation of the stiffness of the film and the natural fre-
quency of the system. This is an illustration of how
non-linear dynamics can lead to a simple behavior.
In addition, these findings indicate that it is possible
to operate the levitation process with a very low en-
ergy input as the amplitude e of the plate vibration
can be a few tens of nanometers due to the proximity
with the resonance of the system. This is however
accompanied by a decrease in film thickness h0.
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Appendix A: Analytical model

Geometrical configuration

The configuration of the problem is presented in Fig-
ure 1. A circular plate is oscillating vertically at a
frequency f = ω

2π and an amplitude e thanks to an
actuator. The vertical position of the top surface of
the oscillating plate is given by:

h1 = e sin (ωt+ φ) (7)

A cylindrical mass of radiusR and massm is placed
on the top of the vibrating plate. If the oscillating fre-
quency and amplitude of the plate are high enough,
the mass will be in levitation above the plate. The
mass is assumed to vibrate at the same frequency as
the plate. The vertical position of the bottom sur-
face of the levitated mass can thus be described in
this way:

h2 = h0 + a sin (ωt+ ψ) (8)

The thickness of the air film is thus:

h = h2 − h1 (9)

The phase φ of the plate is chosen so that :

a sinψ − e sinφ = 0 (10)

a cosψ − e cosφ = b > 0 (11)

The film thickness is then:

h = h0 + b sin (ωt) (12)

Pressure in the fluid film

It is assumed that h� R and the lubrication assump-
tion are verified. The pressure in the air film is thus
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governed by the Reynolds equation. The pressure
is thus independant of the vertical coordinate and
just varies with time and radial position p = p (r, t).
The relative magnitude of the transient term of the
Reynolds equation is controlled by the squeeze num-
ber:

Λ =
12µωR2

pah20
(13)

where µ is the viscosity of air and pa the atmospheric
pressure. If we assume that Λ� 1 then the pressure
is given by the following equation:

∂ph

∂t
= 0 (14)

This equation can be time integrated:

p =
C

h
(15)

where C is an unknown constant. This pressure evo-
lution is known as the Boyle’s law. In this case
p = p (t). It is like if an amount of air is compressed
and stretched when the film thickness varies without
escaping from the air gap. The air film is equivalent
to a pure spring. In the general case where the air
can flow and escape (Λ 6� 1), there is a dissipation
due to viscosity and the film is equivalent to a spring
and a damper.

It is sometimes assumed that the pressure is equal
to pa when h = h0, giving C = pah0. In the present
work we will use a more general case C = αpah0
where α has to be determined.

Determination of α

The Boyle’s law pressure distribution is not realis-
tic close to the edge of the air film. Indeed the real
pressure profile in the air film must connect to the
ambient pressure at the outer radius R. An illustra-
tion of the pressure profile is given in Figure 7.

The following assumptions are used. The width `
of the pressure variation zone is small compared to
the outer radius: ` � R. In addition, there is no
flow between this zone and the central zone where
the pressure is given by the Boyle’s law. Thus the
pressure derivative is zero at this boundary. Using a

R

p = C

h

p = pa

�x0 ℓ

Pressure profile

Figure 7: Air pressure at the edge of the film

local coordinate x defined in Figure 7, the pressure
profile is:

p (x) =
pa − C

h

`2
x2 +

C

h
(16)

This equation verifies p (`) = pa and ∂p
∂x (0) = 0.

The radial mass flow rate of air is given by:

ṁ =
πrh3

12µ
ρ
∂p

∂x
(17)

To ensure a constant mass of air in the central zone,
the integral of the mass flow at the outer radius over
a period must be zero:

∫ T

0

ṁ (`) dt = 0 (18)

Considering only the time varying terms and the
pressure profile expression, the following relation
must be verified:

∫ T

0

h3
∂p

∂x
(`) dt =

2

`2

∫ T

0

(
pah

3 − Ch2
)
dt = 0 (19)

When integrating power function of h, only con-
stant term and square of sine function give non-zero
values after integration. The following relation is ob-
tained:
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pa

(
h30 +

3

2
b2h0

)
− C

(
h20 +

b2

2

)
= 0 (20)

The pressure constant C is thus:

C =
pah0

(
1 + 3b2

2h2
0

)

1 + b2

2h2
0

(21)

A new assumption can be useful. It is assumed that
the average film thickness h0 is much higher than the
amplitude of vibration b. Thus a Taylor development
of the numerator can be done:

C = pah0

(
1 +

3b2

2h20

)(
1 +

b2

2h20
+O

(
b4

h40

))
(22)

If only second order terms are considered, the pres-
sure constant is finally:

C = pah0

(
1 +

b2

h20

)
(23)

Using C to get α:

α =
C

pah0
= 1 +

b2

h20
(24)

Equation of motion of the levitated
mass

The levitated mass is subjected to the following
forces:

• The weight −mg
• The air pressure on the top surface −πR2pa

• The air pressure in the film Ff = πR2pah0
α
h

The film force can be expressed as:

Ff = πR2pa
α

1 + b
h0

sin (ωt)
(25)

Remembering that b
h0
� 1, the force equation can

be simplified using a Taylor expansion at the first
order:

Ff = −πR2paα

[
1− b

h0
sin (ωt)

]
(26)

The Newton’s law applied to the levitated mass
gives:

πR2paα

[
1− b

h0
sin (ωt)

]
−πR2pa−mg = −maω2sin sin (ωt+ ψ)

(27)
By identification and using that b > 0 and a > 0

the following equations are obtained:

α− 1 =
mg

πR2pa
= L (28)

ψ = 0 (29)

α
b

h0
= La

ω2

g
(30)

where L is the load parameter. Using equations 28
and 24, the ratio of the vibration amplitude and av-
erage film thickness is obtained:

b

h0
=
√
L (31)

From equations 29 and 10, it is found that φ = 0
or φ = π.

Finally, the magnitude of the levitated mass can be
expressed by replacing α and b

h0
by their expressions:

a =
g

ω2

L+ 1√
L

(32)

It is now possible to express the average film thick-
ness:

h0 =
b√
L

=
a− e cosφ√

L
(33)

If φ = 0, it is necessary that a > e to have a
positive film thickness. If φ = π there is no specific
condition. The following relations are obtained:

h0 = − e√
L

+
g (L+ 1)

ω2L
for φ = 0 (34)

h0 =
e√
L

+
g (L+ 1)

ω2L
for φ = π (35)

The first solution (Eq. 34) corresponds to a phase
shift of 0 and thus to an operating frequency lower
than the natural frequency of the system. In this
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case the film thickness decreases when the amplitude
of the input vibration is increased. This solution is
not experimentally observed (see experiments in the
paper). The second solution (Eq. 35) corresponds
to an operating frequency higher than the natural
frequency of the system (φ = π). In this case, the
levitation height increases with e as experimentally
observed. This second solution will be used.
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