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Some results related to the fractional Dunkl Laplacian
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Introduction

The Dunkl Laplacian ∆ k is a deformation of the usual Laplace operator with a differential-difference additional terms which involve the action of a finite Euclidean reflection group (see below). In recent years, there have been increasing interests in the study of problems involving the Dunkl Laplacian and have received a lot of attention. For instance, some potential theory problems of the Dunkl Laplacian was studied in [START_REF] Gallardo | A new mean value property for harmonic functions relative to the Dunkl-Laplacian operator and applications[END_REF][START_REF] Gallardo | Support properties of the intertwining and the mean value operators in Dunkl's analysis[END_REF][START_REF] Gallardo | Radial mollifiers, mean value operators and harmonic functions in Dunkl theory[END_REF][START_REF] Gallardo | Newtonian Potentials and subharmonic functions associated to root systems[END_REF][START_REF] Gallardo | Riesz potentials of Radon measures associated to reflection groups[END_REF][START_REF] Graczyk | On the Green Function and Poisson Integrals of the Dunkl Laplacian[END_REF][START_REF] Mejjaoli | On a mean value property associated with the Dunkl Laplacian operator and applications[END_REF][START_REF] Rejeb | Green function and Poisson kernel associated to root systems for annular regions[END_REF]. The purpose of this paper is to introduce, via semigroup theory, the α-fractional Dunkl Laplacian (-∆ k ) α , with α ∈ (0, 1) and to study some of its properties. In particular, we prove a Caffarelli-Silvestre characterization for the fractional Dunkl Laplacian via an extension problem. Moreover, we will establish two-sided bounds for the fractional Dunkl heat kernel. In particular, our lowerupper bounds extend the well known heat kernel estimates for the usual fractional Laplacian ( [START_REF] Blumenthal | Some Theorems on Stable Processes[END_REF]). Let us proceed to presenting our setting. Consider a Coxeter root system Φ in R d i.e. Φ is a finite subset of R d \ {0} such that for every β ∈ Φ, Φ ∩ Rβ = {±β} and σ β (Φ) = Φ where σ β is the Euclidean reflection w.r.t. the hyperplane H β orthogonal to β. Let us denote by W = W (Φ) the finite Coxeter-Weyl group generated by the reflections σ β , β ∈ Φ. For more detailed treatment on the topics of root systems and their reflection groups, we refer to ( [START_REF] Humphreys | Reflection groups and Coxeter groups[END_REF][START_REF] Kane | Reflection Groups and Invaraint Theory[END_REF]). The root system Φ can be partitioned by the disjoint orbits of the roots under the action of the group W. One may then assign a parameter, called a multiplicity, to each disjoint orbit, defining what is called a multiplicity function k on Φ. Throughout this paper, the function k is assumed to be nonnegative. We also introduce the sum of multiplicities 2γ := β∈Φ k(β) (1.1) and the weight function

ω k (x) := β∈Φ | β, x | k(β) . (1.2)
Note that the function ω k is W -invariant and homogeneous of degree 2γ.

The Dunkl Laplacian ∆ k associated with the pair (Φ, k) is defined by (see [START_REF] Dunkl | Differential-difference operators associated to reflection groups[END_REF][START_REF] Dunkl | Orthogonal Polynomials of Several variables[END_REF])

∆ k f (x) = ∆f (x) + β∈Φ k(β) ∇f (x), β β, x - β 2 2 . f (x) -f (σ β (x)) β, x 2 , f ∈ C 2 (R d ), (1.3) 
where ∇ is the usual gradient operator.

The operator ∆ k can be expressed as the sum of the square of Dunkl operators ( [START_REF] Dunkl | Differential-difference operators associated to reflection groups[END_REF]) corresponding to the canonical basis (e j ) 1≤j≤d of R d . Namely, ∆ k = d j=1 D 2 ej , where for ξ ∈ R d , D ξ is the ξ-directional Dunkl operator acting on C 1 -functions by

D ξ f (x) := ∂ ξ f (x) + β∈Φ k(β) β, ξ 2 . f (x) -f (σ β .x) β, x .
On the other hand, it is well known that the Dunkl Laplacian is related to the usual one via the intertwining relation ( [START_REF] Dunkl | Integral kernels with reflection group invariance[END_REF][START_REF] Dunkl | Orthogonal Polynomials of Several variables[END_REF])

∆ k V k = V k ∆, (1.4) 
where V k is the so-called Dunkl intertwining operator. It is characterized as the unique linear isomorphism on the space P(R d ) of polynomial functions on R d which preserves the degree of homogeneity and satisfies V k (1) = 1 and D ξ V k = V k ∂ ξ , for all ξ ∈ R d . In ( [START_REF] Trimèche | The Dunkl intertwining operator on spaces of functions and distributions and integral representation of its dual[END_REF]), the operator V k has been extended to a topological isomorphism from C ∞ (R d ) onto itself. Moreover, according to [START_REF] Rösler | Positivity of Dunkl's intertwining operator[END_REF], the Dunkl intertwining operator admits an integral representation. Precisely, for each x ∈ R d , there exists a probability measure µ x with compact support such that

V k (f )(x) = R d f (y)dµ x (y), ∀ f ∈ C ∞ (R d ).
(1.5)

The support of the measure µ x is contained in C(x), the convex hull of the W -orbit of x ( [START_REF] De Jeu | The Dunkl transform[END_REF]) and contains the point x ( [START_REF] Gallardo | Support properties of the intertwining and the mean value operators in Dunkl's analysis[END_REF]). In addition, it is shown in [START_REF] Gallardo | Support properties of the intertwining and the mean value operators in Dunkl's analysis[END_REF] that if the multiplicity function k is positive, then the support of µ x is invariant under the W -action.

In passing, it is important to note that, at present, there is no known general explicit form for the representing measures µ x , except in a few particular cases of root systems.

In addition, from ( [START_REF] Rösler | Generalized Hermite polynomials and the heat equation for Dunkl operators[END_REF][START_REF] Rösler | Markov processes related with Dunkl operators[END_REF]) we know that the Dunkl Laplacian ∆ k generates a Markovian C 0semigroup {e t∆ k , t ≥ 0}, called the Dunkl heat semigroup, which generalizes the usual Brownian motion in R d . This fact together with the standard Bochner subordination principle ( [START_REF] Bochner | Diffusion equation and stochastic processes[END_REF][START_REF] Yosida | Fractional powers of infinitesimal generators and the analyticity of the semi-groups generated by them[END_REF]) allow us to construct, for α ∈ (0, 1), the α-fractional Dunkl heat semigroup e -t(-∆ k ) α , t ≥ 0 which has the operator -(-∆ k ) α as infinitesimal generator. We start this paper by studying some properties of the fractional Dunkl Laplacian using the semigroup approach. The study includes a semigroup formula, an intertwining relation

(-∆ k ) α V k = V k (-∆) α in S(R d )
and the fundamental solution of (-∆ k ) α . By following ( [START_REF] Caffarelli | An extension problem related to the fractional Laplacian[END_REF][START_REF] Stinga | User's guide to the fractional Laplacian and the method of semigroups[END_REF]), we will introduce an α-fractional Poisson kernel such that the corresponding α-Poisson integral P k,α [f ](t, .) will be a solution of the ∆ k -extension problem (see Theorem 2.2). Moreover, a Caffarelli-Silvestre type relation for the fractional Dunkl Laplacian is obtained:

(-∆ k ) α f = C lim t→0 t -2α P k,α [f ](t, .) -f .
Our second purpose of this paper is to obtain upper and lower estimates of the fractional Dunkl heat kernel p k,α (t, x, y). The obtained estimates involve the representing probability measure µ x of the Dunkl intertwining operator. Precisely, we will establish that the fractional Dunkl heat kernel satisfies p k,α (t, x, y) min t -d+2γ 2α , t

R d d(x, y, z) -d-2γ-2α dµ y (z) and p k,α (t, x, y) R d min t -d+2γ 2α , t. d(x, y, z) -d-2γ-2α dµ y (z),
where d(x, y, z) is the function

d(x, y, z) := x 2 + y 2 -2 x, z , z ≤ y . (1.6)
Here and throughout the paper we will use the notation X Y (resp. X Y ) to indicate that X ≤ CY (resp X = CY ) with a positive constant C independent of significant quantities. We shall write X Y when simultaneously X Y and Y X. Note that when k = 0, the fractional Dunkl Laplacian is nothing else than the usual fractional Laplacian, the measure µ y is the Dirac measure at y and hence the above estimates can be rewritten as follows: p 0,α (t, x, y) min(t -d 2α , t x -y d+2α . So, we obtain the well known heat kernel estimates for the usual fractional Laplacian ( [START_REF] Blumenthal | Some Theorems on Stable Processes[END_REF][START_REF] Chen | Heat kernel estimates for stable-like processes on d-sets[END_REF]). Furthermore, the previous bounds allows us to obtain the following Poissonian type bounds

p k,α (t, x, y) t R d t 1 α + d(x, y, z) 2 -d 2 -γ-α dµ y (z).
We point out that in order to get the desired estimates we follow the idea of [START_REF] Huang | Fractional heat semigroups on metric measure spaces with finitedensities and applications to fractional dissipative equations[END_REF][START_REF] Grigoryan | Heat kernels and function theory on metric measure spaces[END_REF] which uses the subordinative formula (2.8).

This paper is organized as follows. In Section 2, we study some properties of the fractional Dunkl Laplacian. Our study includes the fundamental solution and the Caffarelli-Silvestre extension problem. The Section 3 is devoted two obtain two-sided bounds for the fractional Dunkl heat kernel. Finally, the Annex discusses about some basics from Dunkl analysis that will be used throughout the paper. This includes Dunkl transform, Dunkl translation and convolution and the heat kernel associated with the Dunkl Laplacian. In this Section we focus on some properties of the fractional Dunkl Laplacian. The starting point is to define the operator -(-∆ k ) α , 0 < α < 1, as the infinitesimal generator of a precise semigroup obtained by subordination. Bochner's subordination for bounded strongly continuous semigroups on Banach spaces describes a technique to associate a new semigroup to a given one by using a convolution semigroup of subprobability measures ([2, 24, 31]). As a reference for the theory of strongly continuous semigroups on Banach spaces we mention the monograph ( [START_REF] Davies | One-Parameter Semigroups[END_REF]). It is well known that every family µ t t≥0 of vaguely continuous semigroup of sub-probability measures on [0, +∞) is naturally associated (via Laplace transform) to a unique Bernstein function and vice versa ( [START_REF] Schilling | Bernstein Functions, theory and applications[END_REF], Theorem 5.2). The fractional powers λ -→ λ α , λ > 0, α ∈ (0, 1), are among the most prominent (complete) Bernstein functions. They have the following Lévy-Kintchine representation

Notations:

• L p k (R d ), 1 ≤ p < +∞ the space of measurable functions f : R d -→ C such that f p L p k (R d ) := R d |f (x)| p ω k (x)dx < +∞. • L ∞ k (R d )
λ α = 1 Γ(-α) ∞ 0 e -tλ -1 dt t α+1 , λ > 0, (2.1) with Γ(-α) := -α -1 Γ(1 -α).
For fixed α ∈ (0, 1), let η α,t (s)ds, t ≥ 0 be the unique vaguely continuous semigroup of absolutely continuous probability measures on (0, +∞), called the subordinator of index α, such that e -tλ α = ∞ 0 e -sλ η α,t (s)ds.

(2.

2)

The density functions η α,t , t ≥ 0 satisfy the following properties ( [START_REF] Grigoryan | Heat kernels and function theory on metric measure spaces[END_REF]):

1. For all s, t > 0, η α,t (s) = t -1 α η α,1 (t -1 α s).

(2.3)

2. For all s, t > 0, η α,t (s) ≤ t s α+1 .

(2.4)

3. For all θ > 0, ∞ 0 s -θ η α,1 (s)ds < +∞. (2.5)
4. For all s, t > 0,

s ≥ t 1 α =⇒ η α,t (s) t s α+1 .
(2.6)

According to [START_REF] Rösler | Generalized Hermite polynomials and the heat equation for Dunkl operators[END_REF][START_REF] Rösler | Dunkl Operators: Theory and Applications[END_REF], we know that the Dunkl heat semigroup e t∆ k , t ≥ 0 is a strongly continuous contraction semigroup on X, where X is one of the Banach spaces

L p k (R d ), 1 ≤ p < +∞, C 0 (R d ) or C b (R d ).
Therefore, from the subordination principle, the formula (2.2) leads to construct a new strongly continuous contraction semigroup H k,α := H k,α (t), t ≥ 0 on the same Banach spaces X as follows:

H k,α (t)f := ∞ 0 e s∆ k f η α,t (s)ds, H k,α (0)f = f, f ∈ X.
(2.7)

We call it the α-fractional Dunkl heat semigroup. When k ≡ 0, this semigroup coincides with the usual fractional heat semigroup.

On the other hand, the kernel of the semigroup H k,α (t), t ≥ 0 , called the fractional Dunkl heat kernel, is given by

p k,α (t, x, y) := ∞ 0 p k (s, x, y)η α,t (s)ds, x, y ∈ R d , t > 0.
(2.8)

Here p k (t, x, y) is the Dunkl heat kernel (see [START_REF] Rösler | Generalized Hermite polynomials and the heat equation for Dunkl operators[END_REF][START_REF] Rösler | Dunkl Operators: Theory and Applications[END_REF] and Annex A.3 for more details)

p k (t, x, y) := 1 (2t) d/2+γ c k R d e -1 4t (d(x,y,z)) 2 dµ y (z), (2.9) 
d(x, y, z) is the function (1.6) and c k is the Macdonald-Mehta constant given by

c k := R d e -x 2 2 ω k (x)dx. (2.10)
Analogously to the classical case, the α-fractional Dunkl heat kernel inherits some properties from the ∆ k -heat kernel.

Proposition 2.1

1. The kernel p k,α is positive, symmetric in x and y. Moreover, we have

p k,α (t, x, .) L 1 k (R d ) = 1, ∀ t > 0, ∀ x ∈ R d .
2. For every t > 0 and every x ∈ R d , the Dunkl transform of p k,α (t, x, .) is given by

F k p k,α (t, x, .) (ξ) = e -t ξ 2α E k (-ix, ξ), (2.11) 
where E k is the Dunkl kernel (A.1). In particular, p k,α (t, 0, .) is a radial function.

The function

(t, x, y) -→ p k,α (t, x, y) is of class C ∞ on (0, +∞) × R d × R d .
4. Scaling property: for all t > 0 and all x, y ∈ R d

p k,α (t, x, y) = t -d+2γ 2α p k,α (1, t -1 2α x, t -1 2α y).
(2.12)

5. Chapman-Kolmogorov property: for every t, s > 0 and every x, y ∈ R d

R d p k,α (t, x, z)p k,α (s, z, y)ω k (z)dz = p k,α (t + s, x, y). (2.

13)

Proof: The first item follows immediately from the properties of the ∆ k -heat kernel (see Annex A.3). Using respectively Fubini's theorem, the equality

F k p k (t, x, .) (ξ) = e -t ξ 2 E k (-ix, ξ) and (2.
2), we obtain the relation (2.11).

From the inversion formula for the Dunkl transform and (2.11), we can write

p k,α (t, x, y) = c -2 k R d e -t ξ 2α E k (-ix, ξ)E k (iy, ξ)ω k (ξ)dξ. (2.14)
Thanks to the relation (A.3), we see that we can apply the differentiation theorem under the integral sign in (2.14) to obtain the third assertion. The scaling property follows by using the change of variables y = t 1 α ξ in the relation (2.14). As in the classical case, the Chapman-Kolmogorov property can be proven by using the properties of the measures η α,t (s)ds, t ≥ 0 . Alternatively, it can be deduced from Plancherel's formula for the Dunkl transform and the relations (2.11) and (2.14):

R d p k,α (t, x, z)p k,α (s, z, y)ω k (z)dz = c -2 k R d e -(t+s) ξ 2α E k (-ix, ξ)E k (iy, ξ)ω k (ξ)dξ = p k,α (t + s, x, y). Proposition 2.2 For all f ∈ L 2 k (R d ) and all t > 0, H k,α (t)f (x) = p k,α (t, 0, .) * k f (x) = c -2 k R d e -t ξ 2α F k (f )(ξ)E k (ix, ξ)ω k (ξ)dξ, (2.15) 
where * k is the Dunkl convolution product (see Annex A.2).

Proof: Observing that p k,α (t, 0, .) and

F k p k,α (t, 0, .) are in L 1 k (R d
) and using the relations (A.10) and (2.11), we deduce that

p k,α (t, x, .) = τ -x p k,α (t, 0, .) ∈ L 2 k (R d ).
Therefore the first equality in (2.15) holds. By (A.11), the second equality is obvious. Definition 2.1 Let α ∈ (0, 1). We define the α-power of the Dunkl Laplacian, denoted by (-∆ k ) α , to be the operator

(-∆ k ) α f := lim t→0 1 t f -H k,α (t)f , f ∈ X (2.16)
whenever the limit exists in the Banach space X (where X is as above). That is, -(-∆ k ) α is the infinitesimal generator of the semigroup (H k,α (t)) t≥0 on X.

Let us give some properties of the fractional Dunkl Laplacian acting on the Schwartz space:

Proposition 2.3 For all f ∈ S(R d ), we have (-∆ k ) α f (x) = c -2 k R d ξ 2α F k (f )(ξ)E k (ix, ξ)ω k (ξ)dξ.
(2.17)

In particular, i) (-∆ k ) α f is a C ∞ -bounded function on R d . ii) lim α→0 (-∆ k ) α f = f and lim α→1 (-∆ k ) α f = -∆ k f .
iii) The operator (-∆ k ) α commutes with the W -action i.e.

∀ g ∈ W, (-∆ k ) α f (g.) = (-∆ k ) α f (g.).
iv) Homogeneity: for every λ ∈ R \ {0},

(-∆ k ) α [f (λ.)] = λ 2α [(-∆ k ) α f ](λ.). (2.18) v) For every ξ ∈ R d , we have (-∆ k ) α D ξ = D ξ (-∆ k ) α in S(R d ). vi) If f ∈ S(R d ) is radial, then (-∆ k ) α f is also radial.
Proof: Using (2.15) and the inversion formula, we see that for all t > 0 and all x ∈ R d ,

f (x) -H k,α (t)f (x) = c -2 k R d 1 -e -t ξ 2α F k (f )(ξ)E k (ix, ξ)ω k (ξ)dξ.
Using the inequalities |E k (ix, ξ)| ≤ 1 and

∀ t > 0, ∀ ξ ∈ R d , 0 ≤ t -1 (1 -e -t ξ 2α ) ≤ ξ 2α , (2.19) 
we conclude that the sequence

t -1 (f -H k,α (t)f ), t > 0 ⊂ C 0 (R d
) converges uniformly to the right hand side of (2.17).

We get the items i) to v) by using the formula (2.17) and the properties of the Dunkl transform (they are listed in the Annex A.1).

Remark 2.1 For all α ≥ 0, obviously we can define the power (-∆ k ) α on S(R d ) by setting

(-∆ k ) α := (-∆ k ) α • (-∆ k ) α-α = (-∆ k ) α-α • (-∆ k ) α .
The next result gives a Phillips type semigroup formula ( [START_REF] Schilling | Bernstein Functions, theory and applications[END_REF]) for the fractional Dunkl Laplacian:

Proposition 2.4 Let f ∈ S(R d ) and 0 < α < 1.
Then, we have

(-∆ k ) α f (x) = 1 Γ(-α) ∞ 0 e t∆ k f (x) -f (x) dt t α+1 .
(2.20)

Proof: Since e t∆ k f ∈ S(R d ), by the inversion formula for the Dunkl transform and the properties of the Dunkl heat semigroup (see Annex 3.1) we have

e t∆ k f (x) -f (x) = c -2 k R d e -t ξ 2 -1 F k (f )(ξ)E k (ix, ξ)ω k (ξ)dξ.
This equality together with the relation (2.1) imply that

∞ 0 f (x) -e t∆ k f (x) dt t α+1 R d ξ 2α |F k (f )(ξ)|ω k (ξ)dξ < +∞.
Therefore, Fubini's theorem can be applied to obtain

1 Γ(-α) ∞ 0 e t∆ k f (x) -f (x) dt t α+1 = c -2 k R d ξ 2α F k (f )(ξ)E k (ix, ξ)ω k (ξ)dξ = (-∆ k ) α f (x).
As application, we want to show the following result:

Proposition 2.5
The following intertwining relation holds in

S(R d ) (-∆ k ) α V k = V k (-∆) α .
Proof: From the inversion formula for the usual Fourier transform F and Fubini's theorem, it follows that

V k (e t∆ f )(x) = c -1 0 R d e -t ξ 2 F(f )(ξ)V k e i .,ξ (x)dξ = c -1 0 R d e -t ξ 2 F(f )(ξ)E k (ix, ξ)dξ.
Hence if we use this equality, the intertwining relation ∆ k V k = V k ∆ and the differentiation theorem under the integral sign, then we see that

∆ k V k (e t∆ f ) = V k ∆(e t∆ f ) = V k (∂ t e t∆ f ) = ∂ t V k (e t∆ f ).
Moreover, the dominated convergence theorem implies that lim

t→0 V k (e t∆ f ) = V k (f ). So, the function V k (e t∆ f ) is a solution of the ∆ k -Cauchy problem    ∆ k u(t, x) -∂ t u(t, x) = 0, u(0, x) = V k (f ) ∈ C b (R d ).
Since V k (f ) is bounded, the solution of this problem is unique ( [START_REF] Rösler | Generalized Hermite polynomials and the heat equation for Dunkl operators[END_REF], Corollary 4.4) and thus, we obtain

e t∆ k V k (f ) = V k (e t∆ f ).
Finally, this relation, (2.20) and Fubini's theorem give us the desired intertwining relation.

Remark 2.2 By meaning of the Fourier and the Dunkl transforms, we can obtain another intertwining relation

(F -1 • F k )(-∆ k ) α = (-∆) α (F -1 • F k ) in S(R d ).
Proposition 2.6 The domain of

(-∆ k ) α in L 2 k (R d ) is the generalized Sobolev space H 2α k (R d ) := f ∈ L 2 k (R d ) . 2α F k (f ) ∈ L 2 k (R d ) .
In addition, for every f ∈ H 2α k (R d ) we have 

F k (-∆ k ) α f = . 2α F k (f ) in L 2 k (R d ). ( 2 
(-∆ k ) α f L 2 k (R d ) = c -1 k . 2α F k (f ) L 2 k (R d ) , f ∈ H 2α k (R d ). (2.22) Proof: Let D α,2 be the domain of (-∆ k ) α in L 2 k (R d ) and f ∈ D α,2
. Using Plancherel's theorem and (2.15), we deduce that for a.e. ξ ∈ R d

F k (-∆ k ) α f (ξ) = lim t→0 t -1 F k (f )(ξ) -F k H k,α (t)f (ξ) = lim t→0 t -1 1 -e -t ξ 2α F k (f )(ξ) = ξ 2α F k (f )(ξ). So, the function . 2α F k (f ) is in L 2 k (R d ) and D α,2 ⊂ H 2α k (R d ). Conversely, let f ∈ H 2α k (R d ).
The inequality (2.19) yields that the dominated convergence theorem is applied to obtain

lim t→0 t -1 F k (f ) -F k H k,α (t)f = . 2α F k (f ) in L 2 k (R d ).
Thus, by Plancherel's theorem, we deduce that

H 2α k (R d ) ⊂ D α,2 .
The following result contains further properties of the fractional Dunkl Laplacian . They can be easily seen using (2.21) and the properties of the Dunkl transform. So we choose to leave the details for the reader.

Proposition 2.7 Let f, g ∈ H 2α k (R d ). i) Translation invariance: for all x ∈ R d , τ x (-∆ k ) α f = (-∆ k ) α τ x f, in L 2 k (R d ). (2.23)
ii) Convolution invariance:

(-∆ k ) α (f * k g) = (-∆ k ) α f * k g = f * k (-∆ k ) α g , in L 2 k (R d ). (2.24)
iii) Symmetry:

(-∆ k ) α f, g L 2 k (R d ) = (-∆ k ) α/2 f, (-∆ k ) α/2 g L 2 k (R d ) = f, (-∆ k ) α g L 2 k (R d ) .
(2.25)

In the next result, we are interested in the action of (-∆ k ) α on the Dunkl kernel

E k (iξ, .) ∈ C b (R d ).
Proposition 2.8 For all fixed ξ ∈ R d , we have

(-∆ k ) α E k (iξ, .) = ξ 2α E k (iξ, .).
(2.26)

Let J k be the generalized Bessel function defined by ( [START_REF] Opdam | Dunkl operators, Bessel functions and the discriminant of a finite Coxeter group[END_REF])

J k (x, y) := 1 |W | g∈W E k (gx, y), x, y ∈ C d . Then (-∆ k ) α J k (iξ, .)(x) = ξ 2α J k (iξ, x). (2.27) 
Proof: By virtue of the relation (2.11), we see that

∀ t > 0, H k,α (t) E k (iξ, .) (x) = F k p k,α (t, -x, .) (ξ) = e -t ξ 2α E k (ix, ξ).
Accordingly for each fixed ξ ∈ R d , the sequence t -1 (E k (iξ, .) -H k,α (t)E k (iξ, .), t > 0 of continuous bounded functions converges uniformly to the function

ξ 2α E k (iξ, .) ∈ C b (R d ).
This gives the stated formula (2.26).

Example 2.1

In the rank one case the root system is Φ = {±1}, the reflection group is W = Z 2 and the multiplicity function is a parameter k > 0. By using (1.3), we deduce that the action of the Z 2 -Dunkl Laplacian is given by

∆ Z2 k f (x) = f (x) + 2k f (x) x -k f (x) -f (-x) x 2 .
Moreover, the Z 2 -Dunkl kernel can be written as (see [START_REF] Rösler | Dunkl Operators: Theory and Applications[END_REF])

E Z2 k (iξ, x) = j k-1/2 (xξ) + ixξ 2k + 1 j k+1/2 (xξ),
with j ν , ν ≥ -1/2, the normalized Bessel function

j ν (z) = Γ(ν + 1) ∞ n=0 (-1) n (z/2) 2n n!Γ(n + ν + 1) .
In particular, the generalized Z 2 -Bessel function (2.27) is given by

J Z2 k (iξ, x) = 1 2 E Z2 k (iξ, x) + E Z2 k (-iξ, x) = j k-1/2 (xξ). From (2.27) we have (-∆ k ) α j k-1/2 (xξ) = ξ 2 j k-1/2 (xξ).

Fundamental solution

In this Subsection, we are concerned with the fundamental solution of the fractional Dunkl Laplacian (-∆ k ) α/2 , for all α ∈ (0, d + 2γ). The case where α 2 is a positive integer (i.e. the case of the polyharmonic Dunkl Lapalcian) was studied in [START_REF] Gallardo | Riesz potentials of Radon measures associated to reflection groups[END_REF]. From [START_REF] Gallardo | Riesz potentials of Radon measures associated to reflection groups[END_REF] we know that the ∆ k -Riesz kernel of index θ ∈ (0, d + 2γ) is defined by

R k,θ (x, y) := 1 Γ( θ 2 ) ∞ 0 t θ 2 -1 p k (t, x, y)dt, (2.28) 
with p k (t, x, y) being the ∆ k -heat kernel (2.9). According to [START_REF] Gallardo | Riesz potentials of Radon measures associated to reflection groups[END_REF], the relation (2.28) can be rewritten as

R k,θ (x, y) = A k,d,θ R d d(x, y, z) θ-d-2γ dµ y (z), (2.29) 
where A k,d,θ is the precise positive constant

A k,d,θ = 2 d 2 +γ-θ Γ( d 2 + γ + θ 2 ) c k Γ( θ 2 )
.

(2.30)

In particular, we have R k,θ (0, .) = A k,d,θ . θ-d-2γ . Moreover, it was shown in ( [START_REF] Gallardo | Riesz potentials of Radon measures associated to reflection groups[END_REF]) that for each x ∈ R d , the function R k,θ (x, .)ω k is locally integrable w.r.t. the Lebesgue measure on R d and also is a tempered distribution.

The ∆ k -Riesz potential of f ∈ L 1 k,loc (R d ) (satisfying a suitable integrability condition) is defined by

I k,θ [f ](x) := R d R k,θ (x, y)f (y)ω k (y)dy.
(2.31)

We refer to [START_REF] Gallardo | Riesz potentials of Radon measures associated to reflection groups[END_REF] for more details on the potential theory of the ∆ k -Riesz kernel.

Let u ∈ L 1 k,loc (R d ) = L 1 loc (R d , ω k (x)dx). So the function uω k defines a distribution. If the linear functional D(R d ) f -→ uω k , (-∆ k ) α f := R d u(x)(-∆ k ) α f (x)ω k (x)dx
defines a distribution, then the symmetry property (2.25) of the nonlocal operator (-∆ k ) α enable us to define the weak fractional Dunkl Laplacian of the distribution uω k by assuming that

(-∆ k ) α (uω k ), f := uω k , (-∆ k ) α f . (2.32) Theorem 2.1 Assume that 0 < α ≤ θ < d + 2γ.
i) For every f ∈ S(R d ), we have

I k,θ [(-∆ k ) α 2 f ] =    I k,θ-α [f ], if θ > α, f, if θ = α.
(2.33)

ii) For each x ∈ R d , the linear functional

f -→ (-∆ k ) α 2 R k,θ (x, .)ω k , f := I k,θ [(-∆ k ) α 2 f ](x)
defines a tempered distribution. Moreover, in S (R d ), we have

(-∆ k ) α 2 R k,θ (x, .)ω k =    R k,θ-α (x, .)ω k , if θ > α, δ x , if θ = α.
(2.34)

In particular, for each α ∈ (0, d+2γ), the locally integrable function R k,α (x, .)ω k is the fundamental

solution of the α 2 -fractional Dunkl Laplacian. iii) Let f ∈ L 1 k (R d ) ∩ L ∞ k (R d ). Then the function u = I k,α [f ] is a solution of the (-∆ k ) α 2 -Poisson equation (-∆ k ) α 2 (uω k ) = f ω k in S (R d ).
We need the following two lemmas Lemma 2.1 If f and its Dunkl transform

F k (f ) are in L 1 k (R d ), then for all x ∈ R d I k,θ [f ](x) = 1 Γ(θ/2) ∞ 0 e t∆ k f (x)t θ 2 -1 dt = c -2 k R d ξ -θ F k (f )(ξ)E k (ix, ξ)ω k (ξ)dξ. (2.35)
Moreover, we have

I k,θ [f ] ∞ f ∞ + f L 1 k (R d ) .
(2.36)

Proof: From (2.28), we can write

I k,θ [|f |](x) = 1 Γ(θ/2) ∞ 0 e t∆ k |f |(x)t θ 2 -1 dt = 1 Γ(θ/2) 1 0 + 1 Γ(θ/2) ∞ 1 Observing that f ∈ L ∞ k (R d ) and using the inequality 0 ≤ p k (t, x, y) ≤ c -1 k (2t) -d 2 -γ (see the relation (2.9)) we deduce that ∀ x ∈ R d , I k,θ [|f |](x) f ∞ + f L 1 k (R d )
. Therefore Fubini's theorem is applied to get the first equality in (2.35). Moreover, we obtain the second equality by using the relation

e t∆ k f (x) = c -2 k R d e -t ξ 2 F k (f )(ξ)E k (ix, ξ)ω k (ξ)dξ
together with Fubini's theorem.

Lemma 2.2 Assume that p = 1 or p = ∞. For every θ > 0, there is a positive constant C = C(θ) such that for every f ∈ S(R d )

(-∆ k ) θ f L p k (R d ) ≤ C ∆ θ k f L p k (R d ) + ∆ θ +1 k f L p k (R d ) .
(2.37)

Proof: The result holds true when θ is a positive integer. Assume that θ / ∈ N. Replacing f by ∆ θ k f ∈ S(R d ), it suffices to show the result in the case where θ ∈ (0, 1). Let us write

Γ(-θ)(-∆ k ) θ f (x) = 1 0 e t∆ k f (x) -f (x) dt t θ+1 + ∞ 1 e t∆ k f (x) -f (x) dt t θ+1 = A[f ](x) + B[f ](x).
Let p = 1 or p = ∞. We have

B[f ] L p k (R d ) ≤ ∞ 1 e t∆ k f L p k (R d ) + f L p k (R d ) dt t θ+1 ≤ 2 θ f L p k (R d ) .
Furthermore, using the relation ∂ s e s∆ k = e s∆ k ∆ k and Fubini's theorem, we deduce that

A[f ](x) = 1 0 t 0 ∂ s e s∆ k f (x)ds dt t θ+1 = 1 θ 1 0 e s∆ k ∆ k f (x)(s -θ -1)ds. Therefore A[f ] L p k (R d ) ≤ 1 θ 1 0 e s∆ k ∆ k f L p k (R d ) s -θ ds ≤ ∆ k f L p k (R d ) θ(1 -θ) .
Proof of Theorem 2.1: i) Take f ∈ S(R d ). If we make use of the inequality (2.37) and of the fact that

F k (-∆ k ) α 2 f = . α F k (f ) ∈ L 1 k (R d ), then we can replace f by (-∆ k ) α 2 f in (2.35) to write I k,θ [(-∆ k ) α 2 f ](x) = c -2 k R d ξ α-θ F k (f )(ξ)E k (ix, ξ)ω k (ξ)dξ.
Therefore applying (2.35) when θ > α and the inversion formula for the Dunkl transform when θ = α, we get the desired result.

ii) Thanks to (2.33), it is enough to justify that for each x ∈ R d , the linear functional

f -→ R k,θ (x, .)ω k , (-∆ k ) α 2 f = I k,θ [(-∆ k ) α 2 f ](x)
defines a tempered distribution. From the inequalities (2.36) and (2.37), we can find a positive constant C = C(k, d, α, θ) such that

I k,θ [(-∆ k ) α 2 f ](x) ≤ C ∆ m k f ∞ + ∆ m+1 k f ∞ + ∆ m k f L 1 k (R d ) + ∆ m+1 k f L 1 k (R d ) , with m = α 2 .

Accordingly, this inequality together with the continuity of the polyharmonic Dunkl Laplacian

∆ m k = c -1 k F -1 k . 2m F k on the Schwartz space show that (-∆ k ) α 2 R k,2α (x, .)ω k ∈ S (R d ).
iii) By virtue of the inequalities (2.36) and (2.37), we see that the linear functional

T : S(R d ) ψ -→ (-∆ k ) α 2 I k,α [f ]ω k , ψ := R d I k,α [f ](x)(-∆ k ) α 2 ψ(x)ω k (x)dx satisfies | T, ψ | ≤ I k,α [f ] ∞ (-∆ k ) α 2 ψ L 1 k (R d ) ≤ C(α) I k,α [f ] ∞ ∆ m k ψ L 1 k (R d ) + ∆ m+1 k ψ L 1 k (R d ) .
Hence T is a tempered distribution. In addition, by Fubini's theorem and (2.33) we have

T, ψ = R d I k,α [(-∆ k ) α 2 ψ](y)f (y)ω k (y)dy = f ω k , ψ .
Proposition 2.9 Let 1 < p < ∞ and 0 < α < d+2γ p . There is a positive constant

C = C(k, d, α, p) such that ∀ f ∈ S(R d ), f L p(d+2γ) d+2γ-αp k (R d ) ≤ C (-∆ k ) α 2 f L p k (R d ) (2.

38)

Proof: The result follows from the relation (2.33) and the fact that

I k,α : L p k (R d ) -→ L p(d+2γ) d+2γ-αp (R d ) is bounded ([15]).
At the end of this Subsection, we will express the Riesz kernel in terms of the fractional heat kernel:

Proposition 2.10 Let α ∈ (0, 1). Then R k,2α (x, y) = ∞ 0 p k,α (t, x, y)dt, x, y ∈ R d .
Proof: The result is a direct consequence of Fubini's theorem and the relation (2.3).

Extension problem for the fractional Dunkl Laplacian

The goal of this Subsection is to study the ∆ k -extension problem by using a fractional Poisson kernel and to show the Caffarelli-Silvestre harmonic characterization for the fractional Dunkl Laplacian. Following [START_REF] Caffarelli | An extension problem related to the fractional Laplacian[END_REF]33,[START_REF] Stinga | User's guide to the fractional Laplacian and the method of semigroups[END_REF], we introduce the fractional Poisson kernel of index α > 0 via the ∆ k -heat kernel by

P k,α (t, x, y) := t 2α 4 α Γ(α) ∞ 0 p k (s, x, y)e -t 2 4s ds s α+1 , t > 0, x, y ∈ R d . ( 2 

.39)

The corresponding α-Poisson integral transform is

P k,α [f ](t, x) := R d P k,α (t, x, y)f (y)ω k (y)dy.
(2.40)

The kernel P k,α (t, ., .), t > 0, inherits some properties from the Dunkl heat kernel:

1. It is positive and symmetric.

Since

∀ t > 0, t 2α 4 α Γ(α) ∞ 0 e -t 2 4s ds s α+1 = 1, (2.41) it follows that P k,α (t, x, .) L 1 k (R d ) = 1, ∀x ∈ R d ,
and by (A.13), the Dunkl transform of the function P k,α (t, x, .) is given by

F k (P k,α (t, x, .))(ξ) = E k (-ix, ξ). t 2α 4 α Γ(α) ∞ 0 e -s ξ 2 e -t 2 4s ds s α+1 , ξ ∈ R d .
(2.42)

3. for all x, the function P k,α (t, x, .) ∈ L 2 k (R d ). So, by meaning of the Dunkl translation (see the relation (A.9)), the relation (2.42) enables us to write P k,α (t, x, y) = τ -x P k,α (t, 0, .)(y).

(2.43)

In particular, the α-fractional Poisson integral of f ∈ L 2 k (R d ) can be expressed as a Dunkl convolution product:

P k,α [f ](t, .) = P k,α (t, 0, .) * k f (2.44)
The following result states a Caffarelli-Silvestre type relation for the fractional Dunkl Laplacian:

Theorem 2.2 Let f ∈ L 2 k (R d ).
1) The function

(t, x) → P k,α [f ](t, x) is a solution of the extension problem    ∂ 2 t u(t, x) + 1-2α t ∂ t u(t, x) + ∆ k u(t, x) = 0, in (0, +∞) × R d lim t→0 u(t, .) = f in L 2 k (R d ).
(2.45)

2) If f ∈ H 2α k (R d ), then the following equalities holds in L 2 k (R d ): (-∆ k ) α f (x) = lim t→0 + 4 α Γ(α) Γ(-α) t -2α P k,α [f ](t, x) -f (x) (2.46)
and

(-∆ k ) α f (x) = lim t→0 + 4 α Γ(α) 2αΓ(-α) t 1-2α ∂ t P k,α [f ](t, x). ( 2 

.47)

Proof: 1) Let s > 0. By virtue of (A.11) and the fact that f ∈ L 2 k (R d ) we have

e s∆ k f (x) = p k (s, 0, .) * k f (x) = c -2 k R d e -s ξ 2 F k (f )(ξ)E k (-ix, ξ)ω k (ξ)dξ.
So from the estimate (A.3) and the differentiation theorem under the integral sign we conclude that e s∆ k f is of class C ∞ on R d . Moreover, the Cauchy-Schwarz inequality and Plancherel's formula imply that

∀ s > 0, ∀ x ∈ R d , |e s∆ k f (x)| s -d 2 -γ f L 2 k (R d )
. Therefore, we may apply Fubini's theorem to express the α-Poisson integral of f as

P k,α [f ](t, x) = t 2α 4 α Γ(α) ∞ 0 e s∆ k f (x)e -t 2 4s ds s 1+α .
From this formula, we see that the function P k,α [f ](t, .) is of class C ∞ on R d . In addition, the relation ∆ k e s∆ k f = ∂ s e s∆ k f as well as an integration by part formula allow us to obtain

∆ k P k,α [f ](t, x) = - t 2α+2 4 α+1 Γ(α) ∞ 0 e s∆ k f (x)e -t 2 4s ds s 3+α + (α + 1)t 2α 4 α Γ(α) ∞ 0 e s∆ k f (x)e -t 2 4s ds s 2+α = 4α(α + 1) t 2 P k,α+1 [f ](t, x) -P k,α+2 [f ](t, x) . Now, for x ∈ R d fixed, the function t → P k,α [f ](t, x
) is also of class C ∞ on (0, +∞) and

∂ t P k,α [f ](t, x) = 2α t P k,α [f ](t, x) -P k,α+1 [f ](t, x) . (2.48) 
Differentiating again this relation, we get

∂ 2 t P k,α [f ](t, x) = 2α t 2 (2α -1)P k,α [f ](t, x) -(4α + 1)P k,α+1 [f ](t, x) + 2(α + 1)P k,α+2 [f ](t, x) .
These relations prove that the function (t, x) → P k,α [f ](t, x) satisfies the equation

∂ 2 t u(t, x) + 1 -2α t ∂ t u(t, x) + ∆ k u(t, x) = 0. Now, we want to show that lim t→0 P k,α [f ](t, .) = f in L 2 k (R d ).
By virtue of the Jensen inequality, we have

P k,α [f ](t, .) -f 2 L 2 k (R d ) ≤ t 2α 4 α Γ(α) ∞ 0 e s∆ k f -f 2 L 2 k (R d ) e -t 2 4s ds s α+1 = 1 Γ(α) ∞ 0 e t 2 4θ ∆ k f -f 2 L 2 k (R d ) e -θ s θ-1 dθ.
So, the wanted result is a direct consequence of the fact that (see [START_REF] Rösler | Dunkl Operators: Theory and Applications[END_REF])

lim t→0 e t 2 4θ ∆ k f -f 2 L 2 k (R d ) = 0.
2) At first, let us observe that the α-Poisson transform P k,α,t [.] leaves the space

L 2 k (R d ) invariant with P k,α [f ](t, .) L 2 k (R d ) ≤ f L 2 k (R d ) , ∀ f ∈ L 2 k (R d ).
Using the relations (2.44), (2.42) and (2.41) together with the properties of the Dunkl transform we obtain

F k P k,α [f ](t, .) -f = F k (f ) t 2α 4 α Γ(α) +∞ 0 e -s . 2 -1 e -t 2 4s ds s 1+α in L 2 k (R d ).
Now, taking into account the fact that f ∈ H 2α k (R d ), applying the dominated convergence theorem and using the relations (2.21) and (2.1), we conclude that

lim t→0 t -2α F k P k,α [f ](t, .) -f = Γ(-α) 4 α Γ(α) . 2α F k (f ) = Γ(-α) 4 α Γ(α) F k (-∆ k ) α f in L 2 k (R d ).
Finally, (2.46) follows from this equality and Plancherel's theorem for the Dunkl transform.

In order to establish (2.47), let us use (2.48) to write

t 1-2α ∂ t P k,α [f ](t, .) = 2αt -2α P k,α [f ](t, .) -P k,α+1 [f ](t, .) = 2αt -2α P k,α [f ](t, .) -f + 2αt -2α f -P k,α+1 [f ](t, .) .
So, by (2.46) we only need to justify that

lim t→0 t -2α f -P k,α+1 [f ](t, .) = 0 in L 2 k (R d ).
As above, we have

F k P k,α+1 [f ](t, .) -f = F k (f ) t 2α+2 4 α+1 Γ(α + 1) ∞ 0 e -s . 2 -1 e -t 2 4s ds s α+2 in L 2 k (R d ).
Observing that

∞ 0 e -s ξ 2 -1 e -t 2 4s ds s α+2 ≤ 2 ∞ 0 e -t 2 4s ds s α+2 t -2α , we deduce that t -2α F k P k,α+1 [f ](t, .) -f t 2-2α F k (f ) .
This implies that lim t→0 t -2α

F k P k,α+1 [f ](t, .) -f = 0 in L 2 k (R d ) as desired.

Estimates of the fractional Dunkl heat kernel

As already mentioned, in order to establish some estimates of the fractional Dunkl heat kernel, we will follow the idea of [START_REF] Huang | Fractional heat semigroups on metric measure spaces with finitedensities and applications to fractional dissipative equations[END_REF] which is based on the properties (2.3) -(2.6) of the probability densities of the vaguely continuous semigroup {η α,t (s)ds, t > 0}.

Before proceeding with the main topic of this section, we shall first prove that the kernel p k,α (t, x, y) is the fundamental solution of the heat equation associated with the fractional Dunkl Lapalcian.

Theorem 3.1 The kernel p k,α (t, ., .) is the fractional heat kernel associated with (-∆ k ) α i.e. for every

x ∈ R d    ∂ t + (-∆ k ) α p k,α (t, x, .) = 0, lim t→0 p k,α (t, x, .)ω k = δ x , in S (R d ).
(3.1) 

Moreover, if f ∈ S(R d ), then the function e -t(-∆ k ) α f := H k,α ( 
F k (-∆ k ) α p k,α (t, x, .) (ξ) = . α E k (ix, ξ)e -t ξ 2α = -∂ t F k p k,α (t, x, .) (ξ) = -F k ∂ t p k,α (t, x, .) (ξ).
So, the injectivity of the Dunkl transform implies that (-∆ k ) α p k,α (t, x, .) + ∂ t p k,α (t, x, .) = 0.

On the other hand, using (2.15) we deduce that lim t→0

F k p k,α (t, x, .)ω k , ϕ = lim t→0 H k,α (t)F k (φ) = F k (ϕ) = F k (δ x ), ϕ , ϕ ∈ S(R d ).
Since the Dunkl transform F k : S (R d ) -→ S (R d ) is an isomorphism, the result is proved. Now, the first part and

F k e -t(-∆ k ) α f = F k p k (t, 0, .) * k f = F k p k,α (t, 0, .) F k (f )
imply that e -t(-∆ k ) α f is the solution of the equation (3.2).

Our main result here establishes some lower-upper estimates for the fractional Dunkl heat kernel p k,α (t, x, y): Theorem 3.2 For every t > 0 and every x, y ∈ R d , we have

p k,α (t, x, y) min t -d+2γ 2α , t R d d(x, y, z) -d-2γ-2α dµ y (z) p k,α (t, x, y) R d min t -d+2γ 2α , t. d(x, y, z) -d-2γ-2α dµ y (z). (3.3) 
Proof: By virtue of (2.4), (2.9), Fubini's theorem and the identity

A -λ = 1 4 λ Γ(λ) ∞ 0 s -λ-1 e -A 4s ds, A ≥ 0, λ > 0, it yields that p k,α (t, x, y) ≤ t c k 2 d 2 +γ R d ∞ 0 s -d 2 -γ-α-1 e -d(x,y,z) 2 4s ds dµ y (z) t. R d d(x, y, z) -d-2γ-2α dµ y (z).
On the other hand, we have

p k,α (t, x, y) ≤ ∞ 0 c -1 k (2s) -d 2 -γ t -1 α η α,1 (t -1 α s)ds t -d+2γ 2α ∞ 0 s -d 2 -γ η α,1 (s)ds t -d+2γ 2α .
where we have used -the relation (2.3) and the inequality p k (s, x, y) ≤ c -1 k (2s) -d 2 -γ in the first line, -the relation (2.5) in the third line. Thus, the upper bound in (3.3) follows. In addition, from (2.6) we can write

p k,α (t, x, y) t R d ∞ max(t 1/α , d(x,y,z) 2 ) s -d 2 -γ-α-1 e -d(x,y,z) 2 4s ds dµ y (z) t R d ∞ max(t 1/α , d(x,y,z) 2 ) s -d 2 -γ-α-1 ds dµ y (z) t R d max(t 1/α , d(x, y, z) 2 ) -d 2 -γ-α dµ y (z) R d min t -d+2γ 2α , t. d(x, y, z) -d-2γ-2α dµ y (z).
This proves the second part of (3.3).

Remark 3.1 Taking x = 0 in (3.3), we obtain Proof: Since the support µ y (1.5) is contained in the convex hull of the W -orbit of y, it follows that any z ∈ supp µ y can be written as convex combination z = g∈W λ g (z)g.y of the points g.y, g ∈ W . This implies that d(x, y, z

∀ t > 0, ∀ x ∈ R d ,
) 2 = x 2 + y 2 -2 x, z = g∈W λ g (z) x -gy 2 .
In particular ∀ z ∈ supp µ y , min If x, y ∈ C then we have min g∈W x -gy = x -y and so the above corollary gives us the following upper bound:

p k,α (t, x, y) min t -d+2γ 2α , t x -y d+2γ+2α .
In the next result, we obtain some Poissonian bounds for the (-∆ k ) α -heat kernel : . Accordingly, by using the fact that the Dunkl translation is positivity-preserving on radial functions (see (A.8)), we deduce that p k,α (t, x, y) = τ -x p k (t, 0, .)(y) t

Proposition 3.1 For all t > 0 and all x, y ∈ R d , p k,α (t, x, y) t R d t 1 α + d(x, y, z) 2 -d 2 -γ-α dµ y (z) = P k,α (t 1 2α , x, y), (3.5 
R d t 1 α + d(x, y, z) 2 -d 2 -γ-α dµ y (z).
This gives the estimate (3.5).

As an immediate consequence of the Poissonian bounds (3.5) and the monotone convergence theorem, we obtain the short time behavior of the fractional Dunkl kernel Corollary 3.2 We have

lim t→0 + p k,α (t, x, y) t R d d(x, y, z) -d-2γ-2α dµ y (z), x, y ∈ R d .
The Poissonian bounds yield also that Corollary 3.3 If f is a nonnegative function, then for all t > 0 and all x ∈ R d we have

e -t(-∆ k ) α f (x) P k,α [f ](t 1 2α , x) t ∞ 0 e s∆ k f (x)e -t 1 α 4s ds s α+1 .
Corollary 3.4 For every t > 0 and every x, y ∈ R d ,

|∂ t p k,α (t, x, y)| R d t 1 α + d(x, y, z) 2 -d 2 -γ-α dµ y (z). ( 3 

.6)

Proof: Using (2.3) and a change of variables, we deduce that

p k,α (t, x, y) = ∞ 0 p k (s, x, y)t -1 α η α,1 (t -1 α s)ds = ∞ 0 p k (t 1 α s, x, y)η α,1 (s)ds.
Hence, from the differentiation theorem under the integral sign, we get

|∂ t p k,α (t, x, y)| ≤ d + 2γ 2α t -1 ∞ 0 p k (t 1 α s, x, y)η α,1 (s)ds = d + 2γ 2α t -1 p k,α (t, x, y).
So, by virtue of (3.5), the inequality (3.6) holds.

We will also get the following result: Proposition 3.2 Let θ ∈ (0, 1). For every t > 0 and every x, y ∈ R d ,

∇ k p k,α (t, x, .)(y) t R d d(x, y, z) -d-2γ-2α-2 dµ y (z) (3.7) |(-∆ k ) θ p k,α (t, x, .)(y)| R d t 1 α + d(x, y, z) 2 -d 2 -γ-θ dµ y (z) = t -θ α P k,θ (t 1 2α , x, y). (3.8) 
Proof : Recall that for x, y, z ∈ R d with z ≤ y , d(x, y, z) =

x 2 + y 2 -2 x, z . Using the differentiation theorem under the integral sign and (2.3), we have

|∂ j p k,α (t, x, .)(y)| = ∞ 0 ∂ j p k (t, x, .)(y)η α,t (s)ds = ∞ 0 1 (2s) d 2 +γ+1 R d (z j -y j )e -d(x,y,z) 2 4s dµ y (z)η α,t (s)ds t. R d |y j -z j | d(y, x, z)) -d-2γ-2α-2 dµ x (z).
Hence, since x -z ≤ d(x, y, z) for all z ∈ supp µ y , we get

∇p k,α (t, x, .)(y) t. R d y -z d(y, x, z)) -d-2γ-2α-2 dµ x (z) t. R d d(y, x, z)) -d-2γ-2α-1 dµ x (z).
By the same way, we obtain

∇ k p k,α (t, x, .)(y) t x -y R d d(y, x, z)) -d-2γ-2α-2 dµ x (z).
• Now, we will deal with the estimate (3.8). Firstly, we claim that for every α, θ ∈ (0, 1), we have

(-∆ k ) αθ p k,α (t, x, .)(y) = 1 Γ(-θ) ∞ 0 e -s(-∆ k ) α -I p k,α (t, x, y) dt s θ+1 .
Indeed, using respectively the inversion formula for the Dunkl transform, Fubini's theorem and again the inversion formula, we get where f is the profile of f and µ y is the measure defined by (1.5). This formula was obtained by Rösler in [START_REF] Rösler | A positive radial product formula for the Dunkl kernel[END_REF].

∞ 0 e -s(-∆ k ) α -I)p k,α (t, x, y) ds s θ+1 = c -1 k ∞ 0 R d e -s ξ 2α -1)F k (p k,α (t, x, .))(ξ)E k (iy, ξ)ω k (ξ)dξ ds s θ+1 = c -1 k Γ(-σ) R d ξ 2ασ F k (p k,α (t, x, .))(ξ)E k (iy, ξ)ω k (ξ)dξ = Γ(-σ)(-∆ k ) αθ p k,α (t, x, .)(y). Now, since e -s(-∆ k ) α f -→ f as s -→ 0, we can write (-∆ k ) αθ p k,α (t, x, y) = 1 Γ(-α) ∞ 0 R d s 0 ∂ r p k,α ( 
On the other hand, when f ∈ L 2 k (R d ), τ x f is the L 2 k (R d )-function defined as a Dunkl transform multiplier:

F k (τ x f ) = E k (ix, .)F k (f ). (A.9)
In particular, if f ∈ S(R d ), then the formulas (A.6) and (A.9) coincide, τ x f ∈ S(R d ) and we have (see [START_REF] Trimèche | Paley-Wiener theorem for the Dunkl transform and Dunkl translation operators[END_REF]): 

τ x f (y) = c -2 k R d F k (f )(ξ)E k (ix,

A.3 Dunkl heat kernel

The Dunkl heat semigroup ( [START_REF] Rösler | Generalized Hermite polynomials and the heat equation for Dunkl operators[END_REF][START_REF] Rösler | Dunkl Operators: Theory and Applications[END_REF]) is given by e t∆ k f (x) = p k (t, 0, .) * k f (x) = where p k is the ∆ k -heat kernel defined by (2.9) This kernel has the following properties:

1. The Dunkl heat kernel is symmetric in x and y i.e. p k (t, x, y) = p k (t, y, x), t > 0.

2. For every t > 0 and x ∈ R d , p k (t, x, .) L 

  the space of measurable and essentially bounded functions on R d . • L 1 k,loc (R d ) the space of locally integrable functions on R d w.r.t. the measure ω k (x)dx. • S(R d ) the Schwartz space of C ∞ -functions on R d which are rapidly decreasing together with their derivatives. • S (R d ) the space of tempered distributions.
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  Properties of the fractional Dunkl Laplacian 2.1 The fractional Dunkl Laplacian via semigroup theory

g∈WxRemark 3 . 2

 32 -gy ≤ d(x, y, z) ≤ max g∈W x -gy So, the result follows from these inequalities and (3.3). Let Φ + be fixed positive subsystem of Φ and C be the Weyl chamber given byC := x ∈ R d :β, x > 0 for all β ∈ Φ + .

∂ 1 α

 1 r, y, z)p k,α (t, x, z)ω k (z) α (r, y, z)p k,α (t, x, z)ω k (z)dz dr ds r p k,α (t + r, x, y+ d(x, y, z) 2 -d 2 -γ-α dr ds s θ+1 dµ y (z)

1 α 1 αI 1 + I 2 ,d s 0 ∂ 1 ≤ R d t 1 α 1 α 1 -θ R d t 1 α 1 αR d t 1 αd t 1 α 1 . 2 . 3 . 4 . 5 .

 111201111111112345 + d(x, y, z) 2 -d 2 -γ-α r -θ dr dµ y (z) +d(x,y,z) 2 α ,where we have use, -the relatione -s(-∆ k ) α f (x) -f (x) = R r p k,α (r, y, z)dr f (y)ω k (y)dy,in the first line, -the Fubini's theorem and the differentiation theorem under the integral sign in the second line, -the Chapman-Kolmogorov property of the fractional heat kernel in the third line, -the estimate (3.6) in the forth line, -the Fubini's theorem in the fifth line.It is not difficult to see thatI + d(x, y, z) 2 -d 2 -γ-α (t +d(x,y,z) 2 α 0 r -θ dr dµ y (z) = 1 + d(x, y, z) 2 -d 2 -γ-αθ dµ y (z). + d(x, y, z) 2 -d 2 -γ-α ≤ r -d+2γ 2α -1 , we easily see that + d(x, y, z) 2 -d+2γ+2αθ 2 dµ y (z).Finally, taking σ = αθ, we conclude that(-∆ k ) σ p k,α (t, x, y) R + d(x, y, z) 2 -d+2γ+2σ 2 dµ y (z)which is the wanted inequality. Product formula: for all x, y, ξ ∈ R d ,τ x E k (ξ, .)(y) = E k (ξ, x)E k (ξ, y). (A.7) For all x ∈ R d , the operator τ x is continuous from C ∞ (R d ) into itself. For all f ∈ C ∞ (R d ) and all x, y ∈ R d , we have τ x f (0) = f (x) and τ x f (y) = τ y f (x). For all f ∈ C ∞ (R d ) and all x, ξ ∈ R d : τ x (D ξ f ) = D ξ (τ x f ). If f ∈ C ∞ (R d ) is radial, then ∀ x ∈ R d , τ x f (y) = R d f (x 2 + y 2 + 2 x, z )dµ y (z), (A.8)

  ξ)E k (iy, ξ)ω k (ξ)dξ, y ∈ R d . (A.10)Notice that this formula remains true whenever f and F k (f ) are in L 1 k (R d ). Classically, the Dunkl convolution of two L 2 k (R d )-functions f and g is defined byf * k g(x) = R d f (y)τ x g(-y)ω k (y)dy = f, τ x g(-.) L 2 k (R d ) .Using the Dunkl transform, we havef * k g(x) = c -2 k R d F k (f )(ξ)F k (g)(ξ)E k (ix, ξ)ω k (ξ)dξ. (A.11) 

p

  k (t, x, y)f (y)ω k (y)dy, t > 0, f ∈ S(R d ), (A.12)

  t)f is the solution of fractional heat equation ∂ t + (-∆ k ) α u(t, .) = 0 and lim

	t→0	u(t, .) = f.	(3.2)
	Proof: Using respectively the relations (2.21), (2.11) and (2.14), we deduce that	

  For every t > 0 and x, y ∈ R d ,p k (t, x, y) = c -2 k R d e -t ξ 2 E k (-ix, ξ)E k (iy, ξ)ω k (ξ)dξ. (A.14)4. For all t, s > 0, the Dunkl heat kernel satisfies the semigroup property∀ x, y ∈ R d , p k (t + s, x, y) = R d p k (t, x, z)p k (s, y, z)ω k (z)dz. (A.15)

1 k (R d ) = 1 and F k (p k (t, x, .))(ξ) = e -t ξ 2 E k (-ix, ξ), ξ ∈ R d . (A.13)

3.

A Annex

A. [START_REF] Blumenthal | Some Theorems on Stable Processes[END_REF] For y ∈ R d , E k (., y) is the unique solution of the system

The Dunkl kernel extends as an analytic function on C d ×C d . Furthermore, it satisfies the following properties (see [START_REF] Dunkl | Integral kernels with reflection group invariance[END_REF][START_REF] Dunkl | Orthogonal Polynomials of Several variables[END_REF][START_REF] De Jeu | The Dunkl transform[END_REF])

1. for all λ ∈ C, x, y ∈ C d and all g ∈ W , we have

2. for all x, y ∈ R d , we have

) is defined by (see [START_REF] De Jeu | The Dunkl transform[END_REF][START_REF] Rösler | Dunkl Operators: Theory and Applications[END_REF])

The Dunkl transform shares many properties with the usual Euclidean Fourier transform ( [START_REF] Dunkl | Hankel transforms associated to finite reflection groups[END_REF][START_REF] De Jeu | The Dunkl transform[END_REF][START_REF] Rösler | Dunkl Operators: Theory and Applications[END_REF]). Among them, we have 1. F k is an isomorphism of S(R d ) onto itself and its inverse is given by

where c k is the Mehta constant (2.10).

2. The Dunkl transform of a radial function is again a radial function.

Inversion formula: If

A.2 Dunkl translation operators and Dunkl convolution

By meaning of the Dunkl intertwining operator and its inverse, the Dunkl translation operators τ x , x ∈ R d , are defined on C ∞ (R d ) by (see [START_REF] Trimèche | Paley-Wiener theorem for the Dunkl transform and Dunkl translation operators[END_REF])

where T x is the classical translation operator given by T x f (y) = f (x + y).

The operators τ x , x ∈ R d , satisfy the following properties: