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Abstract—This paper briefly introduces optimisation geometry,
a method based on family of functions that proposes to solve
complex optimisation problems with continuation methods and
pre-computed points. As an illustration, the problem of tracking
eigenvectors is presented, based on the Rayleigh quotient, and
conditions under which the proposed approach is operational are
detailed.
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I. INTRODUCTION

The central idea of optimisation geometry is to consider
optimisation problems through families of functions rather
than individual cost functions [1]. In many applications such
as inference or tracking, optimisation problems depend on
an observable (some data) which may vary while the core
structure of the problem remains unchanged. Classical opti-
misation would treat every occurrence of a new set of data as
a once-off optimisation problem. We argue that the common
structure of a problem of optimisation involving different
observables should be used to reduce the complexity of the
overall problem: for observations θ1, θ2, . . . , θn compute
local minima x∗1, x

∗
2, . . . , x

∗
n. For instance, a classical inference

problem is to fit a given distribution to some data, denoted
hereafter θ0. This usually involves maximizing the likelihood
L(x; θ0) where x is a vector parametrizing the distribution.
Suppose the problem is to find the best parameters for θ0

and θ1 two independent set of data. We assume independence
between the observation as we do not treat the overlap with
tracking methods, where it is assumed that θ0 and θ1 are
close. In the previous question, we are left with two distinct
optimisation problems: maximizing L(x; θ0) and L(x; θ1) with
respect to x. In optimisation geometry, we propose to see the
problem as depending on both x and θ, so that a solution
found for θ0 can be used to determine a solution for θ1.
Suppose for instance that the structure of L is such that
L(x; θ1) = L(h(x); θ0) where h is an application between
vectors of parameters. Then it is obvious that solving the
problem in θ1 can be achieved by finding the antecedent of a
maxima x∗0 of L(x; θ0) by the function h. The goal is to exploit
the properties of the function h, even though it has no explicit
algebraic formulation. This approach allows to relocate the
complexity of the problem from the graph of a function in
x to the graph of a function in θ. We propose to show in

this paper how optimisation geometry method is compatible
with an homotopy method for the problem of estimating and
tracking eigenvectors thanks to the Rayleigh quotient [2]. The
proposed approach is particularly well suited for functions
defined over manifolds and could be generalized to a wide
variety of optimisation problems in signal processing, i.e.
source separation [3] or array processing [4] for example.

II. OPTIMISATION GEOMETRY

This section introduces some general results on optimisation
geometry applied to a generic function f , before some illustra-
tions depicting how this can lead to using the same numerical
methods as these used by the homotopy community [5]. Let
f be a function parametrized by two quantities: x and θ. We
refer to x as the parameter variable, while θ is the observation
or data. The set of functions {fθ = f(·; θ)|θ ∈ Θ} where Θ is
any set of possible observations, defines a family of functions
of x parametrized by θ.

A. Optimisation as a tracking problem

The idea of optimisation geometry is to use a critical point
x∗0 of the function fθ0 to reach a critical point x∗1 of fθ1 . A
naive approach would be to use x∗0 as the initialization for
an iterative method on fθ1 . This idea is generally supported
by perturbation theory results, such as in [6], which shows
that under regularity assumptions on f , if θ0 and θ1 are in a
small enough neighborhood of each other, then x∗0 and x∗1 are
also within a small radius of each other. Note however that
in the proposed framework, no assumptions are made on the
distance between θ0 and θ1. They can be very far away from
each other, and so can the critical points of fθ0 and fθ1 .

Our main assumption will be the local existence of a
function h so that f(x, θ1) = f(h(x), θ0). Then, even if h
is not explicitly available, it is possible to iteratively follow
its graph, initialized at a critical point (x∗0, θ0) of fθ0 up to
(x∗1, θ1) a critical point of fθ1 . The next assumptions are used
to prove the local existence of h and the tractability of a
tracking problem on the graph of h. Let f :X×Θ→ R be the
cost function defined earlier. We suppose that X is a closed
compact manifold and that Θ is a connected Riemannian
manifold. Let θ0, θ1 be two sets of data in Θ, then there
is a smooth path θ: [0, 1] → Θ that satisfies θ(0) = θ0

and θ(1) = θ1 because Θ is smooth and connected [7].
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Furthermore, it is always possible to choose θ such that
the derivative along the curve never vanishes. The geodesic
between θ0 and θ1 for instance satisfies this condition. The
following definition brings up the condition on a subset of a
family of functions {fθ} for h to be nice. They are basically
asked to be the “nicest” possible functions on a manifold, i.e.
Morse functions.

Definition II.1. Let θ be a smooth path in Θ between θ0 and
θ1. Let

f|θ: X × θ([0, 1]) → R
x , θ 7→ f(x, θ) = fθ(x)

be the restriction of f to the image of θ. f|θ is said to be fibre
wise-Morse if it is a smooth function in (x, θ) and for every
θ ∈ θ([0, 1]) , fθ has only non-degenerate critical points. A
critical point of fθ is called a fibre-wise critical point of f|θ.

We borrowed the term “fibre” to the fibre-bundles termi-
nology because it is the natural extension for our framework.
Similarly, we call a fibre-wise critical point of the function
f a point (x∗, θ) such that x∗ is a critical point of fθ. With
the notion of fibre-wise Morse function and fibre-wise critical
points in hand, we can now state the main result of this paper.

Theorem II.1. If θ is a smooth diffeomorphic path with non-
vanishing derivative and f|θ is fibre-wise Morse, then the set
of fibre-wise critical points Ñ of f is a smooth topologically
closed submanifold of dimension one parametrizable by t.

Proof. Let

f ◦ θ: X × [0, 1] → R
x , t 7→ fθ(t)(x)

The derivative of f ◦θ with respect to x is: ∇x f ◦θ(x, t) =
∇ fθ(t)(x). The derivative of a function h on a manifold is the
application from M to the tangent bundle TM that sends x
on the vector ∇h(x) in the tangent space at TxM [8]. Note
that fibre-wise critical points denoted (θ∗(t), x∗) are the points
satisfying

∇ fθ∗(t)(x
∗) = 0x∗

where 0x∗ is the 0 of the tangent plane Tx∗X . The set of
fibre-wise critical points is then exactly the pre-image of the
zero section 0TX = {0x ∈ TX|x ∈ X} by the map ∇x f ◦θ.
According to the pre-image theorem for transverse maps [9],
the set (∇x f◦θ)−1(0TX) is a closed submanifold of X×[0, 1]
with no boundaries. Note that ∇x f ◦ θ is transverse to 0TX
because fθ is fibre-wise Morse. Furthermore, given (dx, dt) ∈
TxX × [0, 1], the kernel of the derivative

D [∇x f ◦ θ] (x, t).(dx, dt) = Hessx f ◦ θ(x, t)dx

+
∂d

∂dt
∇x f ◦ θ(x, t).dt

is made of tangent vectors of the shape (0, dt), which shows
that Ñ is one-dimensional and parametrizable by t.

A direct consequence of theorem II.1 is that the shape of
Ñ is constrained both by fθ being fibre-wise Morse and by

X

t0 1

Fig. 1. The domain X is a circle (represented on the left) and the t axis is
at the bottom. Every section of the cylinder represents the space X . Every
blue point a line above an fixed value of t is a potential critical point of the
function f|θ(t). In this example from left to right: components of Ñ merge,
have a turning point with respect to t, cross each other,have a parametrization
whose derivative goes to zero and do not admit a parametrization with respect
to t (the blue circle). All this situation are prevented if fθ is fibre-wise Morse.
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Fig. 2. A possible shape for the set of the fibre-wise critical points Ñ of a
fibre-wise Morse function fθ : the domain space X is a circle, and each t on
the horizontal axis can be sent to a unique θ. Ñ is represented by the red
lines, it has three connected components in this example. It can be seen that
the critical points of fθ0 and fθ1 are related in X × [0, 1] through Ñ

the topology of X . Figure 1 shows an example of pathological
situations that can not happen under our assumptions, while
figure 2 shows a possible realization for the set of fibre-wise
critical points of a fibre-wise Morse function. Because Ñ is
a manifold, it is made of finitely many disjoint components
of dimension 1. Because it is one-dimensional, we call a
component in Ñ a path. Two paths can not merge or cross.
As Ñ is closed and without boundaries, a path can not stop,
and because it is parametrizable by t, a tangent to a path can
never be orthogonal to the axis [0, 1]. In particular, the paths
can have no turning points with regard to t.

B. Homotopy methods

Homotopy methods have been known since Poincaré but
their interest really came into view in the eighties, with the
introduction of the fifth generation of computer whose most
important feature was to allow parallel computing [10], [5].
Indeed, homotopy methods first consisted in finding the zeros
of polynomials by following curves linking the zeros of a triv-
ial polynomial to the zeros of a more complex polynomial. By
definition, the method can only be well-behaved if all curves
are distinct, such that different starting points would lead to
different endpoints. It is naturally easy to parallelize. On the
opposite, with iterative methods such as the Newton descent
it is not possible to predict which zero of the polynomial will
be reached. As a consequence, in order to find all the roots of
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a polynomial, it is necessary to run sequentially the Newton
descent, excluding at each step the roots that were already
found. It should be noted that the numerical methods adapted
to tracking the zeros of polynomials through a homotopy
method are not restricted to polynomials and can instead be
used as long as the path following problem has some nice
properties such as:

1) The path γ can be continuously parametrized by a real
variable t ∈ [0, 1].

2) The derivative of a parametrization γ(t) of the path never
vanishes.

3) The path γ coincides with the set of attractor of an
iterative method in a neighborhood containing γ.

We showed in the previous paragraph that the set of fibre-
wise critical points Ñ of a fibre-wise Morse function f|θ
satisfies all three conditions. It is made of several disconnected
components, that do not merge or collapse into each other.
Hence, one can find separate open neighborhoods around
each one of them. Furthermore, the set of fibre-wise critical
points are the zeros for the gradient ∇x fθ, it is therefore an
attractor for any iterative root-finding method. Hence, point
3) is satisfied. Furthermore, if θ is parametrized by t ∈ [0, 1]
then so is Ñ . Smoothness comes from the manifold structure
of Ñ , and non-vanishing derivatives of the parametrization is,
as seen previously, a consequence of the regular value theorem.
This shows how optimisation geometry naturally leads to the
same continuation methods as the ones used in homotopy
frameworks.

III. OPTIMISATION GEOMETRY APPLIED TO THE
RAYLEIGH QUOTIENT

Eigenpairs of matrices are commonly approximated through
iterative methods such as power and inverse iteration, QR
algorithms or others [11]. For a general matrix with no
structure, these methods provide a linear rate of convergence.
Algorithms for structured matrices however can reach cubic
convergence [11]. For Hermitian matrices, an efficient method
is the Rayleigh quotient iteration, which possesses cubic
convergence rate to one of the eigenpairs [12]. This section
recalls the definition and interest of the Rayleigh quotient and
shows how optimisation applied to it leads to manifolds as the
natural domain space for computations.

A. Three definitions of the Rayleigh quotient

Let A be a symmetric real matrix with eigenvalues
(λ1, . . . , λn). The Rayleigh quotient with respect to A, de-
noted R(·;A), is the smooth function:

R: Rn\{0} × Mn(R) → R
x ; A 7→ xTAx

xT x

The following theorem is a special case of the Courant-Fischer
minimax theorem characterizing the eigenvalues of a real
symmetric n× n matrix [13].

Theorem III.1. The critical points (resp. critical values) for
R(·;A) are the eigenvectors (resp. eigenvalues) of A.

Note that the Rayleigh quotient is scale-invariant, that is:

∀λ ∈ R, R(x;A) = R(λx;A)

In practice, this property raises a problem for numerical
methods. For instance, the Newton iteration at xk on a scale-
invariant function yields the Newton iterate N (xk) = 2xk
[14]. As a consequence, the Newton method applied to the
Rayleigh quotient does not converge to the eigenvectors of
the matrix A, unless its initial point is actually an eigenvector.
Because of its homogeneity, R is also ill-suited to an opti-
misation geometry framework. Let A a symmetric matrix be
the data, and x the vector-parameter on which we optimize.
It is obvious that for any A, R(·;A) is not a Morse function
because if x∗ is a critical point, then the whole line defined
by λx∗, λ ∈ R is also made of critical points. Hence critical
points of the Rayleigh quotient for any matrix A are not
isolated, they are necessarily degenerate. In a sense, it is the
excess of symmetry in R that generates a problem. To reduce
the redundant information, one can change the domain space
of the Rayleigh quotient. There are two ways to do so that are
briefly introduced hereafter.

B. Rayleigh quotient on the sphere

Rather than defining R over R, where an infinity of points
are sent to the same number, one can define R on the sphere
Sn−1. By abuse of notation, we consider:

Rs:Sn−1×Sn → R
x,A 7→ xTAx.

The product xTAx is not defined if x is a point on the sphere,
but this expression should be understood as: φ(x)TAφ(x)
where φ is an embedding from the sphere to the set of vector
with norm 1 in Rn. The eigenvectors of A can be found by
φ(x∗) where x∗ is a critical point of R. Similarly, we define
−x the antipodal element to x on the sphere. Then, if φ(x∗)
is an eigenvector of A, x∗ and −x∗ are critical points of
Rs. Furthermore, Rs and R coincide on points where they
are both defined: for all x in the image of the embedding φ,
Rs(φ−1(x)) = R(x).

C. Rayleigh quotient on the projective space

Similarly, because R sends every line in Rn to the same
number, it is tempting to redifine the domain of R by quoti-
enting Rn by the relation x ∼ λx, ∀λ ∈ R. This gives the
real projective space RPn−1 known as the set of directions in
Rn. It is a compact smooth manifold which, contrarily to the
sphere, is not embedded in Rn. Imagine building the projective
space by gluing every point on a sphere with its antipodal.
This operation in Rn leads to a self-intersection, showing it
can not be a faithful representation (an embedding) of RPn−1.
We define:

Rp: RPn−1 × Sn → R
x , A 7→ xTAx

where x denotes an equivalence class in Rn: x = {λx ; λ ∈
R}. Again, note that Rp and R evaluated on the same element

957



(modulo the equivalence relation) coincide. Furthermore, if
x∗ and −x∗ are both critical points of RsA, x∗ is the only
critical point of RpA. These restrictions of the domain of R
now enable to give the conditions under which RsA or RpA are
Morse functions.

Theorem III.2. Let A be a symmetric matrix in Sn(R).
The functions RsA and RpA are Morse if and only if all the
eigenvalues of A are distinct.

Proof. For η a tangent vector to the sphere at x, the second-
derivative of RsA is [14]:

D2(RsA)(x).ηx = 2(Id− xxT )(Aηx − ηxxTAx)

if v is an eigenvector of A with eigenvalue λ:

D2(RsA)(v).ηv = 2(Id− vvT )(Aηv − λvηv)

the last expression cancels if and only if ηv is an eigenvector of
A for the eigenvalue λv . Because all eigenvalues are distinct,
it cancels only for vectors proportional to v. As the tangent
plane at v on Sn−1 contains only vectors orthogonal to v in
Rn, the second derivative D2(RsA)(v) is strictly injective. This
is true for any eigenvector of A, hence the critical points of
RsA are not singular.
Similarly, for ηx a tangent vector of PRn−1 at x, we have

D2RpA(x).ηx = 2Phx (Aηx − λiηx)

where Phx = I − 1
‖x‖2xx

T is a non-vanishing matrix. Hence,
D2RpA(x).ηx = 0 ⇐⇒ ηx = x which is not possible, as
the tangent space TxRPn−1 = {y ∈ Rn, xT y = 0} does not
contain x.

The previous theorem shows that the Rayleigh quotient fits
into our optimisation geometry framework as long as there
exists a path Γ(t) between A and B where all the matrices
Γ(t) have distinct eigenvalues. In that case only, the function
Rs,pΓ is fibre-wise Morse. We discuss in next section about the
possibility to find such a path.

D. A path in the set of symmetric matrices

As mentioned earlier, homotopy methods are essentially
path-following method, they rely on the definition of a homo-
topy map [5] parametrised by a variable t such that H(0, ·) is
a function whose zeros are known and H(1, ·) is the function
whose zeros are seeked. For instance, a classical map that is
built to solve the problem of finding the eigenpairs of a matrix
A is [15], [2]:

H(t, x, λ) =

(
((1− t)D + tA)x− λx, x

Tx− 1

2

)
Observe that H (t, (x, λ)) = 0 ⇐⇒ (λ, x) is an eigenpair
of (1− t)D + tA with ‖x‖= 1. In particular H (1, (x, λ)) =(
Ax, x

T x−1
2

)
so that the set H (1, (·, ·))−1

({0}) is exactly
made of the eigenpairs of A for eigenvectors of norm 1.
Similarly, for t = 0, H (0, (x, λ)) =

(
Dx, x

T x−1
2

)
so that

the antecedent of 0 are the eigenpairs of the matrix D. The
eigenpairs of D are the starting points of the continuation

method used to solve this homotopy problem, they should
therefore be known in advance. This can be achieved through
precomputations or more simply by choosing D diagonal
which is the approach adopted in [15], [2]. Note that the
second term of the function is to control the norm of x, so
that if H is defined on the sphere or the projective space, it’s
not needed anymore. It was already noticed in [15] that the
homotopy map is well suited to continuation method if and
only if all the matrices in the set {(1− t)A+ tD | t ∈ [0, 1]}
have distinct eigenvalues. We find the same conditions as
with the optimisation geometry framework, which is logical as
the numerical method for homotopy method and optimisation
geometry are interchangeable. The following result is shown
in [2]:

Proposition III.3. Let E be the set of n-tuples in Cn such
that D = diag(d1, ·, dn) satisfies: (1− t)A+ tD have distinct
eigenvalues for all t ∈ [0, 1]}. Then, E is a dense open subset
of Cn of full Lebesgue measure in Cn.

From a practical point of view, the previous theorem says
that the homotopy method can be initialized with a random
diagonal matrix in diag(Cn) and it gives a probability one
that the homotopy map from D to A built from this matrix is
well-behaved. By well-behaved, we mean that the continuation
method used to numerically solve the problem is proved to
converge in a finite number of steps. Interestingly, looking into
the proof of this theorem shows that it is crucial to choose
randomly D in Cn. The set E′ of real n-tuples satisfying
the condition of the proposition III.3 has Lebesgue measure
0 in Cn. In optimisation geometry, we wish to use the pre-
computed points from previous iteration of an optimisation
algorithm, meaning that the starting points are not picked at
random. But as we saw, if the starting point is real, it should
be chosen carefully to maintain the eigenvalue separation
throughout the path. Given the poor reliability of the convex
combination in the real case, we propose to examine a path
following method based on the Riemannian geodesic between
two matrices. Let A and B be two invertible positive symmet-
ric matrices. Then, the riemannian geodesic between A and
B is parametrised by: Γ(t) = A

1
2 (A−

1
2BA−

1
2 )tA

1
2 . Note that

positiveness was not a criteria until there, but because the set of
invertible symmetric matrices is not connected it is convenient
to choose A and B positive from here. Figure 3 compares
in the 2-dimensional case A,B ∈ S+

2 (R) the Riemmannian
geodesic and the convex combination. Figure 4 displays the
resulting paths that would be followed by a continuation
method in the cylinder S1 × [0, 1]. It is visible on the figures
that the choice of the path in S+

2 (R) greatly influences the
path in the set of eigenvectors. This has its importance, as
convergence of continuation methods are more or less fast
given elements such as the variation of the derivatives on
this path, and the absolute value of the derivative. In this
precise example, a high derivative results in a curve with
almost vertical sections. Hence our prediction is that for the
two matrices chosen in figure 3, the straight line gives better
numerical results than the Riemannian geodesic, as we can

958



see the variations on the grey curves are smoother than the
variations on the red curve. This result however can not be
generalized to every possible couple of matrices.

Fig. 3. Three dimensional illustration of paths in the set of positive semi-
definite matrices: paths go from A (red dot) at t = 0 to B (blue dot) at
t = 1. Black line is a straight line between the two while red line is the
Riemmannian geodesic. The wireframe in the background is the limit set of
positive semi-definite matrices.

Fig. 4. Paths in the set of one-dimensional eigenvectors: black and red lines
are the critical point along respectively the straight line and the Riemmannian
geodesic between A and B of the Rayleigh quotient. Parametrization of the
path is shown both as a color gradient and on the x-axis: left-wite for t = 0,
right-darker for t = 1.

IV. CONCLUSION

In this paper we briefly presented the idea of optimisation
geometry, and showed how it compares with the work of the
homotopy community on the special example on the Rayleigh
quotient. We highlighted prioritary targets for future work,
such as determining properties on the separate eigenvalue
condition along a Riemannian geodesic in the set of symmetric
positive matrices. Future work will consist in bringing more
insight and theoretical results on the relation between the
choice of the paths in a particular instance of optimisation
geometry, and the convergence properties of optimisation
methods. Rayleigh quotient is a simple example of how
knowledge on the structure of the function, and in particular
the data space, is necessary to adapt the path strategy. If
probabilistic results are available, deterministic approaches are
still an open problem, for the Rayleigh quotient as for many
other functions.
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