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Abstract Optimisation algorithms such as the Newton method were first generalised to
manifolds by generalising the components of the algorithm directly: gradients were replaced
by Riemannian gradients, straight lines were replaced by geodesics, and so forth. This meant
having to endow the manifold with a Riemannian metric. Traditionally then, attention focused
on the geometry of the underlying manifold. However, we argue the geometry of the manifold is
not the right geometry to focus on because it does not take the cost function into consideration.
For online optimisation problems requiring the minimisation of many different cost functions,
of most relevance is the geometry of the family of cost functions as a whole: if the cost functions
fit together in a “nice” way, fast optimisation algorithms can be developed even if individual
cost functions are difficult to optimise. In particular, non-convex problems are not necessarily
difficult problems. This paper presents a Riemannian-based homotopy algorithm for solving
such Optimisation Geometry problems and briefly explains how it can be generalised to a non-
Riemannian (e.g., coordinate-adapted) algorithm.
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1. INTRODUCTION

Numerical optimisation is a key tool in control, signal
processing and machine learning. Engineering applica-
tions include communications, remote sensing, audio and
biomedical signal analysis and computer vision. Online op-
timisation algorithms in these fields must solve an optimi-
sation problem each time new data is observed. Denoting a
(vector-valued or manifold-valued) observation by θ ∈ Θ,
the algorithm must solve

x∗ = argmin
x∈X

f(x, θ) (1)

each time a new observation θ arrives, where f : X ×
Θ → R is some cost function, and X and Θ are manifolds.
For example, if θ represents a block of received data,
the transmitted data x can be found by minimising the
negative log-likelihood function f(x, θ) characterising the
channel model Kay (1993). Finite-horizon control prob-
lems are also of this form (see e.g. Garg et al. (2011)), as
are various machine-learning algorithms such as Harandi
et al. (2017).

Invariably, there are two approaches to solving (1). If the
observations vary slowly in time, it is treated as a tracking
problem: the minimum x∗ for the previous observation
θ is used as a starting point for finding the minimum
for the current observation. Alternatively, if there is little
relationship between successive observations, (1) is treated
as a standard optimisation problem for the individual cost

� This material is based on a collaboration that was supported by
the IDEX University of Grenoble Alpes.

function f(·, θ) where θ is fixed. In particular, if each
individual cost function is not convex, the optimisation
problem is usually considered difficult. But this ignores we
have prior knowledge of the family of cost functions.

As pointed out in Manton (2013), if the cost functions fit
together nicely then (1) can be readily solved even though
every individual cost function is difficult to optimise. To
exemplify this, consider the trivial case f(x, θ) = g(x− θ).
If g is difficult to optimise then so is each individual cost
function f(·, θ). But given we are allowed to make a finite
number of precomputations at the algorithm design stage,
we can (somehow) optimise g. If x0 ∗ is the minimum of g
then x∗ = x0 ∗ + θ is the minimum of f ; a single addition
is all that is needed to solve (1) in this case.

In more realistic applications, greater effort will be re-
quired to go from the minimum of one cost function to the
minimum of a neighbouring cost function. One aim of this
paper is to give a rigorous algorithm for doing just this.
It is based on a simple homotopy idea, but importantly,
this can be augmented to give guaranteed performance,
as outlined in Manton (2013). Guaranteed performance
will be the subject of a future paper: ultimately, an upper
bound can be given on the number of computational steps
required to find the global minimum to within a prescribed
level of accuracy.

Finding the global minimum is achieved by tracking all
the local minima. This is well-suited to modern computing
platforms that are highly parallel.
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have prior knowledge of the family of cost functions.

As pointed out in Manton (2013), if the cost functions fit
together nicely then (1) can be readily solved even though
every individual cost function is difficult to optimise. To
exemplify this, consider the trivial case f(x, θ) = g(x− θ).
If g is difficult to optimise then so is each individual cost
function f(·, θ). But given we are allowed to make a finite
number of precomputations at the algorithm design stage,
we can (somehow) optimise g. If x0 ∗ is the minimum of g
then x∗ = x0 ∗ + θ is the minimum of f ; a single addition
is all that is needed to solve (1) in this case.

In more realistic applications, greater effort will be re-
quired to go from the minimum of one cost function to the
minimum of a neighbouring cost function. One aim of this
paper is to give a rigorous algorithm for doing just this.
It is based on a simple homotopy idea, but importantly,
this can be augmented to give guaranteed performance,
as outlined in Manton (2013). Guaranteed performance
will be the subject of a future paper: ultimately, an upper
bound can be given on the number of computational steps
required to find the global minimum to within a prescribed
level of accuracy.

Finding the global minimum is achieved by tracking all
the local minima. This is well-suited to modern computing
platforms that are highly parallel.
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1. INTRODUCTION

Numerical optimisation is a key tool in control, signal
processing and machine learning. Engineering applica-
tions include communications, remote sensing, audio and
biomedical signal analysis and computer vision. Online op-
timisation algorithms in these fields must solve an optimi-
sation problem each time new data is observed. Denoting a
(vector-valued or manifold-valued) observation by θ ∈ Θ,
the algorithm must solve

x∗ = argmin
x∈X

f(x, θ) (1)

each time a new observation θ arrives, where f : X ×
Θ → R is some cost function, and X and Θ are manifolds.
For example, if θ represents a block of received data,
the transmitted data x can be found by minimising the
negative log-likelihood function f(x, θ) characterising the
channel model Kay (1993). Finite-horizon control prob-
lems are also of this form (see e.g. Garg et al. (2011)), as
are various machine-learning algorithms such as Harandi
et al. (2017).

Invariably, there are two approaches to solving (1). If the
observations vary slowly in time, it is treated as a tracking
problem: the minimum x∗ for the previous observation
θ is used as a starting point for finding the minimum
for the current observation. Alternatively, if there is little
relationship between successive observations, (1) is treated
as a standard optimisation problem for the individual cost
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function f(·, θ) where θ is fixed. In particular, if each
individual cost function is not convex, the optimisation
problem is usually considered difficult. But this ignores we
have prior knowledge of the family of cost functions.

As pointed out in Manton (2013), if the cost functions fit
together nicely then (1) can be readily solved even though
every individual cost function is difficult to optimise. To
exemplify this, consider the trivial case f(x, θ) = g(x− θ).
If g is difficult to optimise then so is each individual cost
function f(·, θ). But given we are allowed to make a finite
number of precomputations at the algorithm design stage,
we can (somehow) optimise g. If x0 ∗ is the minimum of g
then x∗ = x0 ∗ + θ is the minimum of f ; a single addition
is all that is needed to solve (1) in this case.

In more realistic applications, greater effort will be re-
quired to go from the minimum of one cost function to the
minimum of a neighbouring cost function. One aim of this
paper is to give a rigorous algorithm for doing just this.
It is based on a simple homotopy idea, but importantly,
this can be augmented to give guaranteed performance,
as outlined in Manton (2013). Guaranteed performance
will be the subject of a future paper: ultimately, an upper
bound can be given on the number of computational steps
required to find the global minimum to within a prescribed
level of accuracy.

Finding the global minimum is achieved by tracking all
the local minima. This is well-suited to modern computing
platforms that are highly parallel.

The natural setting for studying the “geometry” of the
cost functions is to generalise (1) to a certain type of
constrained optimisation problem on a fibre bundle Man-
ton (2013). For simplicity of presentation, we refrain from
doing this here, working instead with the trivial fibre
bundle M = X × Θ. This suffices for studying the crux
of the problem.

2. RIEMANNIAN VS NON-RIEMANNIAN

The classical Newton iterate for finding a critical point is

xk+1 = Nf (xk), Nf (x) = x− [Hess f(x)]−1 ∇ f(x). (2)

Although the gradient ∇ f and the Hessian Hess f depend
on the chosen inner product, the Newton iterate does not.
It was generalised to manifolds by Gabay (1982), who
replaced the gradient and Hessian by their Riemannian
counterparts: for f : X → R, its gradient ∇ f(x) ∈ TxX
is defined implicitly by Df(x) · z = 〈∇ f(x), z〉x for all
z ∈ TxX. Note TxX is the tangent space at x ∈ X of the
manifold X. The Riemannian Hessian Hess fθ(x) at x ∈ X
is the linear map defined as

Hess fθ(x) : TxX → TxX
ξx �→ ∇ξx ∇ fθ(x)

where ∇ : TX ×TX → TX is the Levi-Civita connection.
This means v = −[Hess f(x)]−1 ∇ f(x) is an element of
TxX. Since Nf (x) = x + v can be interpreted as starting
at x and moving in a straight line for one unit of time
with constant velocity v, it generalises to moving along a
geodesic, expressed via the Riemannian exponential map:

Nf (x) = expx
(
−[Hess f(x)]−1 ∇ f(x)

)
. (3)

Except in special cases when the cost function directly
relates to the geometry of the manifold (e.g., Manton
(2004)), there is no performance benefit in using a Rieman-
nian approach: following geodesics can be computationally
intensive, and the behaviour of the cost function itself is
normally ignored when choosing the Riemannian structure
to endow X with. Instead, a coordinate-adapted approach
is generally preferred Manton (2002, 2015). Its derivation
starts with the observation that applying the Newton
method in a different coordinate system takes the form

xk+1 = (φ ◦Nf◦φ ◦ φ−1)(xk) (4)

where φ is a change of coordinates. The key idea is to allow
different coordinate changes at each step:

xk+1 = (φk ◦Nf◦φk
◦ φ−1

k )(xk). (5)

Importantly, this can be applied to functions on a manifold
if the φk are chosen to be local parametrizations: functions
from Rn to a neighbourhood of xk on the manifold. If the
φk are chosen to be Riemannian normal coordinates then
the Riemannian Newton method is recovered.

Going further, it is argued in Manton (2015) that any
Newton method on a manifold must be of the form

xk+1 = (ψk ◦Nf◦φk
◦ φ−1

k )(xk) (6)

where ψk is an approximation of φk, again allowing for
computationally more efficient choices.

The remainder of the paper takes a Riemannian approach
for simplicity of presentation: it is “cleaner” to work with.
Importantly though, the ideas immediately generalise to a
coordinate-adapted framework.

3. OPTIMISATION GEOMETRY

The goal of optimisation geometry is to use precomputa-
tions on a family of functions to simplify the quest for the
local or global minima of one element in this family. A first
step in doing so is to show that for nice enough functions,
the critical point fit together in a nice way meaning it’s
possible to define a smooth path of critical points from
one critical point to another.

3.1 Smooth path between critical points

First, we define a nice class of function on which the
method we propose has guaranteed performance. This is
done in Definition 1.

Definition 1. LetX, Θ be two smooths compact manifolds
of dimensions k and n respectively, and M = X × Θ, be
their Cartesian product of dimension k + n. Let f : X ×
Θ → R be a smooth cost function on M . f is called fibre-
wise Morse on M if the restriction

fθ : X → R
x �→ f(x; θ)

is a Morse function for every θ ∈ Θ. We recall that a
Morse function is a smooth real-valued function that has
no degenerate critical points Milnor et al. (1969).

A direct consequence of the definition of a Morse function
is that its critical points are isolated. A less direct but still
close consequence is that Morse functions on compact sets
can only have a finite number of critical points. These
two elements are of importance in the definition of an
homotopy method in section 3.2. The next theorem shows
how critical points of a smooth family of Morse functions
fit together in a nice way, and is the first step in showing
why the family of function rather than just the individual
cost function should be considered.

Theorem 2. A point (x∗, θ) is called fibre-wise critical if
x∗ is a critical point of fθ i.e Dfθ(x

∗) = 0. The set

Ñ of fibre-wise critical points of the fibre-wise Morse
function f : M = X × Θ → R is a n-dimensional smooth
submanifold of M in the sense of Guillemin and Pollack
(2010). Furthermore, it is topologically closed and has no
boundaries.

We refer the reader to Manton (2013) for a proof of this
theorem in a more general case. In the following property,
the shape of Ñ is further specified. It sits in M over Θ,
and can be locally parametrized by θ ∈ Θ.

Proposition 3. Each connected component of Ñ locally
defines a smooth section over Θ. Numbering the connected
components of Ñ as Ñj , there is an open set U such that
the map

πj : U ∩ Ñj → Θ

(x, θ) �→ θ

is a smooth diffeomorphism.

This theorem and its corollary show that the shape of
the submanifold of fibre-wise critical points is deeply con-
nected and constrained by the topology ofM itself. Indeed,
Ñ is closed and has no boundaries, and because it is locally
parametrizable by θ, it can have no turning point with
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The natural setting for studying the “geometry” of the
cost functions is to generalise (1) to a certain type of
constrained optimisation problem on a fibre bundle Man-
ton (2013). For simplicity of presentation, we refrain from
doing this here, working instead with the trivial fibre
bundle M = X × Θ. This suffices for studying the crux
of the problem.

2. RIEMANNIAN VS NON-RIEMANNIAN

The classical Newton iterate for finding a critical point is

xk+1 = Nf (xk), Nf (x) = x− [Hess f(x)]−1 ∇ f(x). (2)

Although the gradient ∇ f and the Hessian Hess f depend
on the chosen inner product, the Newton iterate does not.
It was generalised to manifolds by Gabay (1982), who
replaced the gradient and Hessian by their Riemannian
counterparts: for f : X → R, its gradient ∇ f(x) ∈ TxX
is defined implicitly by Df(x) · z = 〈∇ f(x), z〉x for all
z ∈ TxX. Note TxX is the tangent space at x ∈ X of the
manifold X. The Riemannian Hessian Hess fθ(x) at x ∈ X
is the linear map defined as

Hess fθ(x) : TxX → TxX
ξx �→ ∇ξx ∇ fθ(x)

where ∇ : TX ×TX → TX is the Levi-Civita connection.
This means v = −[Hess f(x)]−1 ∇ f(x) is an element of
TxX. Since Nf (x) = x + v can be interpreted as starting
at x and moving in a straight line for one unit of time
with constant velocity v, it generalises to moving along a
geodesic, expressed via the Riemannian exponential map:

Nf (x) = expx
(
−[Hess f(x)]−1 ∇ f(x)

)
. (3)

Except in special cases when the cost function directly
relates to the geometry of the manifold (e.g., Manton
(2004)), there is no performance benefit in using a Rieman-
nian approach: following geodesics can be computationally
intensive, and the behaviour of the cost function itself is
normally ignored when choosing the Riemannian structure
to endow X with. Instead, a coordinate-adapted approach
is generally preferred Manton (2002, 2015). Its derivation
starts with the observation that applying the Newton
method in a different coordinate system takes the form

xk+1 = (φ ◦Nf◦φ ◦ φ−1)(xk) (4)

where φ is a change of coordinates. The key idea is to allow
different coordinate changes at each step:

xk+1 = (φk ◦Nf◦φk
◦ φ−1

k )(xk). (5)

Importantly, this can be applied to functions on a manifold
if the φk are chosen to be local parametrizations: functions
from Rn to a neighbourhood of xk on the manifold. If the
φk are chosen to be Riemannian normal coordinates then
the Riemannian Newton method is recovered.

Going further, it is argued in Manton (2015) that any
Newton method on a manifold must be of the form

xk+1 = (ψk ◦Nf◦φk
◦ φ−1

k )(xk) (6)

where ψk is an approximation of φk, again allowing for
computationally more efficient choices.

The remainder of the paper takes a Riemannian approach
for simplicity of presentation: it is “cleaner” to work with.
Importantly though, the ideas immediately generalise to a
coordinate-adapted framework.

3. OPTIMISATION GEOMETRY

The goal of optimisation geometry is to use precomputa-
tions on a family of functions to simplify the quest for the
local or global minima of one element in this family. A first
step in doing so is to show that for nice enough functions,
the critical point fit together in a nice way meaning it’s
possible to define a smooth path of critical points from
one critical point to another.

3.1 Smooth path between critical points

First, we define a nice class of function on which the
method we propose has guaranteed performance. This is
done in Definition 1.

Definition 1. LetX, Θ be two smooths compact manifolds
of dimensions k and n respectively, and M = X × Θ, be
their Cartesian product of dimension k + n. Let f : X ×
Θ → R be a smooth cost function on M . f is called fibre-
wise Morse on M if the restriction

fθ : X → R
x �→ f(x; θ)

is a Morse function for every θ ∈ Θ. We recall that a
Morse function is a smooth real-valued function that has
no degenerate critical points Milnor et al. (1969).

A direct consequence of the definition of a Morse function
is that its critical points are isolated. A less direct but still
close consequence is that Morse functions on compact sets
can only have a finite number of critical points. These
two elements are of importance in the definition of an
homotopy method in section 3.2. The next theorem shows
how critical points of a smooth family of Morse functions
fit together in a nice way, and is the first step in showing
why the family of function rather than just the individual
cost function should be considered.

Theorem 2. A point (x∗, θ) is called fibre-wise critical if
x∗ is a critical point of fθ i.e Dfθ(x

∗) = 0. The set

Ñ of fibre-wise critical points of the fibre-wise Morse
function f : M = X × Θ → R is a n-dimensional smooth
submanifold of M in the sense of Guillemin and Pollack
(2010). Furthermore, it is topologically closed and has no
boundaries.

We refer the reader to Manton (2013) for a proof of this
theorem in a more general case. In the following property,
the shape of Ñ is further specified. It sits in M over Θ,
and can be locally parametrized by θ ∈ Θ.

Proposition 3. Each connected component of Ñ locally
defines a smooth section over Θ. Numbering the connected
components of Ñ as Ñj , there is an open set U such that
the map

πj : U ∩ Ñj → Θ

(x, θ) �→ θ

is a smooth diffeomorphism.

This theorem and its corollary show that the shape of
the submanifold of fibre-wise critical points is deeply con-
nected and constrained by the topology ofM itself. Indeed,
Ñ is closed and has no boundaries, and because it is locally
parametrizable by θ, it can have no turning point with
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regard to Θ. An illustrative way to see it is that the sub-
manifold Ñ sits over the base space Θ in M , like a topolog-
ical copy of Θ. Hence, there can be no boundaries or limit
points in θ. A direct consequence is that all Morse function
of the family {fθ} have the same number of critical points.
As an example, let M = S1 × S1 the two-dimensional
torus parametrized by (x, θ), where x describes a rotation
along horizontal circles (see figure 1) and θ is a rotation
along vertical axis. Let f a fibre-wise Morse function over
the torus. The set of fibre-wise critical points of f is a
one-dimensional closed differentiable submanifold of M
with no boundaries. Hence, it is made of one or several
loops (closeness condition) winding their way around the
torus and never intersecting each other (submanifold con-
dition). Furthermore, It is locally parametrizable by the
vertical circles θ (vertical circle in Figure 1) which means
in particular it can have no turning point with respect
to this coordinate. This condition excludes for instance a
horizontal circle around the Torus. If all the functions of
the family fθ are the same however, then Ñ is a vertical
circle. The only way to cross the same angle θ twice is by
turning around the torus, with the angle θ only increasing
or only decreasing modulo 2π. Then, Ñ can only be made
of one or several circles winding their ways around the
torus the same number of times.

Figure 1. A possible shape for the fibre-wise critical points
of a f on the torus. The submanifold Ñ is represented
by the red and blue lines and is made of two connected
components winding their way seven times around
the Torus. The number K of critical points in this
example is 14, it is the number of intersection of Ñ
with any horizontal circle at θ constant.

The following corollary shows that if Ñ is made of finitely
many connected components, then just some of them
contain local minima. It ensures in particular that the
index of a critical point along a connected component is
constant.

Corollary 4. There is a submanifold N ⊂ Ñ made of
finitely many connected components and containing only
fibre-wise local minima.

Assume that in real time a data θ1 is observed so that
we have to optimise on fθ1 while having precomputed

information on fθ0 . If we build a path between θ0 and
θ1, can we deduce a path between a local minima of fθ0

and fθ1 so that every element on the path is a local minima
for some fθ ? The next corollary shows that the answer is
yes, and that this path can be smooth.

Corollary 5. Let θ0 and θ1 be two sets of data in Θ. Let
θ : [0, 1] → Θ a smooth diffeomorphism joining θ0 and θ1,
i.e. θ(0) = θ0 and θ(1) = θ1. Let x0 ∗ be a local minimum
of fθ0 . and let N0 ⊂ N be the connected component
containing (θ0, x0 ∗). Then there is a unique smooth path
x∗ : [0, 1] → X satisfying (θ(t), x∗(t)) ∈ N0, ∀t. The
endpoint x∗(1) = x1 ∗ is a local minimum of fθ1 .

Figure 2 shows an example of how a path in θ induces
a lift in N . Note that the lift is not unique as long as
x0 ∗ is not defined, and this is true even if N has only
one connected component. Indeed, in the Torus example
where N winds its ways several times around the Torus,
a connected component can intersect several points of the
shape (θ, xi) where θ is fixed.

Figure 2. Illustration of Corollary 5 on the torus where
an admissible submanifold of fibre-wise critical points
is represented in red. The torus is parameterized by
(x, θ) where x is the angle along the horizontal circles
and θ the angle along the vertical circles. The green
circle is the set of points with a fixed θ = θ0 and the
blue circle has a fixed θ = θ1. Green dots are fibre-
wise critical points of fθ0 while blue dots are fibre-wise
critical points of fθ1 . The dark lines are the lifts in N
of a curve θ(t) that goes from θ0 to θ1. Note that the
lift generates as many possible x∗(t) as the number of
local minima of fθ0 . However, fixing a starting point
(one of the green dots) uniquely determines a section
of dark line, i.e a function x∗(t).

3.2 A homotopy method for optimisation geometry

Previous section has shown the existence of a smooth
path made of local minima, joining the two point of
interest in our problem. A homotopy method can take
advantage of this path as long as it is a natural attractor
for some recursive algorithm. We will show how this is
the case for x∗. Our work differs from previous work on
homotopy methods, a summary of which can be found
in Allgower and Georg (2012), which usually focus on

ordinary differential equations or level sets of 0 by the
homotopy map. Being on the tangent bundle TX, we
consider the level set of the submanifold made of the zeros
of the different tangent spaces in TX. This whole section
uses Riemannian tools and framework. Let f : X×Θ → R
be a fibre-wise Morse function as in Definition 1. Let θ0,
θ1 ∈ Θ and let x0 ∗ ∈ X be a local minimum of fθ0 . We
aim at finding a local minimum x1 ∗ of fθ1 by exploiting the
known local minimum x0 ∗ of fθ0 . To do so, we first need
to define a diffeomorphic curve θ : [0, 1] → Θ such that
θ(0) = θ0 and θ(1) = θ1. For example, if Θ is a Riemannian
manifold, one can choose the curve θ : [0, 1] → Θ as the
geodesic joining θ0 and θ1. From Corollary 5, we know
that there exists a curve x∗ : [0, 1] → X of local minima of
the functions fθ(t). Thus, starting from x0 ∗, we propose
to follow the curve x∗ : [0, 1] → X corresponding to
the chosen curve θ : [0, 1] → Θ in order to find a local
minimum x∗(1) = x1 ∗ of fθ1 .

The curve x∗ : [0, 1] → X is implicitly defined, hence one
cannot expect to obtain it in closed form in general and
an iterative method is needed to estimate it. To construct
x∗ : [0, 1] → X, we exploit its graph, which is defined as

G(x∗) = {(t, x∗(t)) : t ∈ [0, 1]} ⊂ [0, 1]×X.

To do so, we rely on the characterisation of G(x∗) provided
in Proposition 6. This property shows that locally, the
curve x∗ exactly contains all and only the antecedent of
points of the shape 0x ∈ TX for H. The function H thus
introduced is the homotopy map we will use in this section.

Proposition 6. Let the mapping

H : [0, 1]×X → TX
(t, x) �→ ∇ fθ(t)(x) ∈ TxX.

Then, every point (t, x∗(t)) satisfies the relation

H(t, x) = 0x
Furthermore, for every point (t, x∗(t)), there is a neigh-
bourhood V around this point such that {(t, x) ∈ [0, 1] ×
X : H(t, x) = 0x}∩V contains only points in the graph of
x∗, i.e, only points of the shape (t, x∗(t)) for some t ∈ [0, 1].

An equation for the curve x∗ : [0, 1] → X is not known in
closed form, so that in order to be able to follow this curve
we need its tangent. Given (t, x∗(t)) ∈ G(x∗), we are able
to define the tangent space T(t,x∗(t)G(x∗), which is a one-
dimensional subspace of R × Tx∗(t)X. To do so, we need
to differentiate the function H defined in Proposition 6.
Differentiating H with respect to t ∈ [0, 1] in direction
dt ∈ R yields ∂

∂t ∇ fθ(t)(x)dt, while differentiating it with
respect to x ∈ X in direction dx ∈ TxX yields the
Riemannian Hessian Hess fθ(t)(x)dx of fθ(t), i.e.,

DH(t, x)(dt, dx) =
∂

∂t
∇ fθ(t)(x)dt+Hess fθ(t)(x)dx.

It is readily checked that, as expected, DH(t, x) is a
mapping from R×TxX onto TxX. Proposition 7 provides a
closed form expression of the tangent space T(t,x∗(t))G(x∗)
of G(x∗) at (t, x∗(t)) and an illustration is proposed in
Figure 3.2.

Lemma 7. The tangent space T(t,x∗(t))G(x∗) of the graph
G(x∗) at (t, x∗(t)) is

T(t,x∗(t))G(x∗) = ker(DH(t, x∗(t))).

Furthermore, the kernel of the mapping DH(t, x∗(t)) is

ker(DH(t, x∗(t))) = {λ(1, ξ) : λ ∈ R},

ker(DH(t, x∗(t)))•
(t, x∗(t))

•
(0, x0 ∗)

•
(1, x1 ∗)

Figure 3. Schematic illustration of the graph G(x∗) of the
curve x∗ : [0, 1] → X of local minima corresponding
to the curve θ : [0, 1] → Θ. At (t, x∗(t)) ∈ G(x∗), the
tangent space of the graph, which is a one-dimensional
subspace of R×Tx∗(t)X, is given by ker(DH(t, x∗(t))).

where ξ ∈ Tx∗(t)X is the unique solution to

Hess fθ(t)(x
∗(t))ξ = − ∂

∂t
∇ fθ(t)(x

∗(t)). (7)

These results are sufficient to be able to develop an itera-
tive algorithm that estimates the curve x∗ : [0, 1] → X of
local minima. Given a predetermined sequence {tk}0≤k≤K

arranged in increasing order such that t0 = 0 and tK = 1,
it returns the sequence {x∗

k} of local minima of the func-
tions fθk , where θk = θ(tk). The proposed method is
described in Algorithm 1 and a schematic illustration is
provided in Figure 3.2. Every iteration can be decomposed
into two steps. The first one is the prediction step (lines 2-4
in Algorithm 1), which consists in following the direction
dx∗

k in Tx∗
k
X provided by the tangent space of G(x∗) at

(tk, x
∗
k). It yields yk ∈ X, which is obtained by taking

the Riemannian exponential mapping of dx∗
k at x∗

k. The
second one is the correction step (line 5 in Algorithm 1),
where x∗

k+1 is obtained by projecting yk on the curve
x∗ : [0, 1] → X. This is achieved by minimising fθk+1

with
the Newton method initialised at yk.

Algorithm 1 Optimisation geometry algorithm

Require: {tk}0≤k≤K arranged in increasing order, with
t0 = 0 and tK = 1; {θk}0≤k≤K such that θk = θ(tk);
local minimum x0 ∗ corresponding to θ0.

Ensure: Sequence {x∗
k}0≤k≤K of local minima corre-

sponding to each θk.
1: for k = 0 to K do
2: Solve Hess fθk(x

∗
k)ξk = − ∂

∂t ∇ fθk(x
∗
k) for ξk.

3: Compute dx∗
k = dtkξk, where dtk = tk+1 − tk.

4: Compute yk = expXx∗
k
(dx∗

k).

5: Compute x∗
k+1 by solving argminx∈X fθk+1

(x) with
the Newton method initialised at yk.

6: end for

3.3 Convergence analysis

In this part we give the sketch of a proof for the conver-
gence of the homotopy method provided in Algorithm 1. A
more rigorous and complete proof is left for future publica-
tions, as well as a discussion about the rate of convergence.
Given a fibre-wise Morse function f : X ×Θ → R, a fibre-
wise local minimum (θ0, x0 ∗) of f and a path θ : [0, 1] → Θ
satisfying conditions of Corollary 5 such that θ(0) = θ0 and
θ(1) = θ1, the aim is to show that there exist an integer K
and a sequence {tk}0≤k≤K such that Algorithm 1 to the
local minimum x1 ∗.

The idea is to show that there exists δ0 > 0 such that,
for all k, we can choose dtk = tk+1 − tk ≥ δ0 allowing to
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ordinary differential equations or level sets of 0 by the
homotopy map. Being on the tangent bundle TX, we
consider the level set of the submanifold made of the zeros
of the different tangent spaces in TX. This whole section
uses Riemannian tools and framework. Let f : X×Θ → R
be a fibre-wise Morse function as in Definition 1. Let θ0,
θ1 ∈ Θ and let x0 ∗ ∈ X be a local minimum of fθ0 . We
aim at finding a local minimum x1 ∗ of fθ1 by exploiting the
known local minimum x0 ∗ of fθ0 . To do so, we first need
to define a diffeomorphic curve θ : [0, 1] → Θ such that
θ(0) = θ0 and θ(1) = θ1. For example, if Θ is a Riemannian
manifold, one can choose the curve θ : [0, 1] → Θ as the
geodesic joining θ0 and θ1. From Corollary 5, we know
that there exists a curve x∗ : [0, 1] → X of local minima of
the functions fθ(t). Thus, starting from x0 ∗, we propose
to follow the curve x∗ : [0, 1] → X corresponding to
the chosen curve θ : [0, 1] → Θ in order to find a local
minimum x∗(1) = x1 ∗ of fθ1 .

The curve x∗ : [0, 1] → X is implicitly defined, hence one
cannot expect to obtain it in closed form in general and
an iterative method is needed to estimate it. To construct
x∗ : [0, 1] → X, we exploit its graph, which is defined as

G(x∗) = {(t, x∗(t)) : t ∈ [0, 1]} ⊂ [0, 1]×X.

To do so, we rely on the characterisation of G(x∗) provided
in Proposition 6. This property shows that locally, the
curve x∗ exactly contains all and only the antecedent of
points of the shape 0x ∈ TX for H. The function H thus
introduced is the homotopy map we will use in this section.

Proposition 6. Let the mapping

H : [0, 1]×X → TX
(t, x) �→ ∇ fθ(t)(x) ∈ TxX.

Then, every point (t, x∗(t)) satisfies the relation

H(t, x) = 0x
Furthermore, for every point (t, x∗(t)), there is a neigh-
bourhood V around this point such that {(t, x) ∈ [0, 1] ×
X : H(t, x) = 0x}∩V contains only points in the graph of
x∗, i.e, only points of the shape (t, x∗(t)) for some t ∈ [0, 1].

An equation for the curve x∗ : [0, 1] → X is not known in
closed form, so that in order to be able to follow this curve
we need its tangent. Given (t, x∗(t)) ∈ G(x∗), we are able
to define the tangent space T(t,x∗(t)G(x∗), which is a one-
dimensional subspace of R × Tx∗(t)X. To do so, we need
to differentiate the function H defined in Proposition 6.
Differentiating H with respect to t ∈ [0, 1] in direction
dt ∈ R yields ∂

∂t ∇ fθ(t)(x)dt, while differentiating it with
respect to x ∈ X in direction dx ∈ TxX yields the
Riemannian Hessian Hess fθ(t)(x)dx of fθ(t), i.e.,

DH(t, x)(dt, dx) =
∂

∂t
∇ fθ(t)(x)dt+Hess fθ(t)(x)dx.

It is readily checked that, as expected, DH(t, x) is a
mapping from R×TxX onto TxX. Proposition 7 provides a
closed form expression of the tangent space T(t,x∗(t))G(x∗)
of G(x∗) at (t, x∗(t)) and an illustration is proposed in
Figure 3.2.

Lemma 7. The tangent space T(t,x∗(t))G(x∗) of the graph
G(x∗) at (t, x∗(t)) is

T(t,x∗(t))G(x∗) = ker(DH(t, x∗(t))).

Furthermore, the kernel of the mapping DH(t, x∗(t)) is

ker(DH(t, x∗(t))) = {λ(1, ξ) : λ ∈ R},

ker(DH(t, x∗(t)))•
(t, x∗(t))

•
(0, x0 ∗)

•
(1, x1 ∗)

Figure 3. Schematic illustration of the graph G(x∗) of the
curve x∗ : [0, 1] → X of local minima corresponding
to the curve θ : [0, 1] → Θ. At (t, x∗(t)) ∈ G(x∗), the
tangent space of the graph, which is a one-dimensional
subspace of R×Tx∗(t)X, is given by ker(DH(t, x∗(t))).

where ξ ∈ Tx∗(t)X is the unique solution to

Hess fθ(t)(x
∗(t))ξ = − ∂

∂t
∇ fθ(t)(x

∗(t)). (7)

These results are sufficient to be able to develop an itera-
tive algorithm that estimates the curve x∗ : [0, 1] → X of
local minima. Given a predetermined sequence {tk}0≤k≤K

arranged in increasing order such that t0 = 0 and tK = 1,
it returns the sequence {x∗

k} of local minima of the func-
tions fθk , where θk = θ(tk). The proposed method is
described in Algorithm 1 and a schematic illustration is
provided in Figure 3.2. Every iteration can be decomposed
into two steps. The first one is the prediction step (lines 2-4
in Algorithm 1), which consists in following the direction
dx∗

k in Tx∗
k
X provided by the tangent space of G(x∗) at

(tk, x
∗
k). It yields yk ∈ X, which is obtained by taking

the Riemannian exponential mapping of dx∗
k at x∗

k. The
second one is the correction step (line 5 in Algorithm 1),
where x∗

k+1 is obtained by projecting yk on the curve
x∗ : [0, 1] → X. This is achieved by minimising fθk+1

with
the Newton method initialised at yk.

Algorithm 1 Optimisation geometry algorithm

Require: {tk}0≤k≤K arranged in increasing order, with
t0 = 0 and tK = 1; {θk}0≤k≤K such that θk = θ(tk);
local minimum x0 ∗ corresponding to θ0.

Ensure: Sequence {x∗
k}0≤k≤K of local minima corre-

sponding to each θk.
1: for k = 0 to K do
2: Solve Hess fθk(x

∗
k)ξk = − ∂

∂t ∇ fθk(x
∗
k) for ξk.

3: Compute dx∗
k = dtkξk, where dtk = tk+1 − tk.

4: Compute yk = expXx∗
k
(dx∗

k).

5: Compute x∗
k+1 by solving argminx∈X fθk+1

(x) with
the Newton method initialised at yk.

6: end for

3.3 Convergence analysis

In this part we give the sketch of a proof for the conver-
gence of the homotopy method provided in Algorithm 1. A
more rigorous and complete proof is left for future publica-
tions, as well as a discussion about the rate of convergence.
Given a fibre-wise Morse function f : X ×Θ → R, a fibre-
wise local minimum (θ0, x0 ∗) of f and a path θ : [0, 1] → Θ
satisfying conditions of Corollary 5 such that θ(0) = θ0 and
θ(1) = θ1, the aim is to show that there exist an integer K
and a sequence {tk}0≤k≤K such that Algorithm 1 to the
local minimum x1 ∗.

The idea is to show that there exists δ0 > 0 such that,
for all k, we can choose dtk = tk+1 − tk ≥ δ0 allowing to
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X

•
x0 ∗ •

x1 ∗

Tx∗
k
X

•
x∗
k dx∗

k

•
yk

•
x∗
k+1

Figure 4. Schematic illustration of the procedure of Algo-
rithm 1. Given iterate x∗

k ∈ X, a prediction step is
achieved by computing yk ∈ X through the Rieman-
nian exponential of dx∗

k ∈ Tx∗
k
X, which is provided

by the tangent space of the graph G(x∗) at (tk, x
∗
k).

A correction step is then performed in order to obtain
the next iterate x∗

k+1 by projecting the predicted
point yk onto x∗ : [0, 1] → X.

predict a point yk = expXx∗
k
(dtkξk) ∈ X sufficiently close to

the local minimum x∗
k+1 of fθk+1

. By sufficiently close, we
mean that there exists ε0 > 0 such that d(yk, x

∗
k+1) < ε0,

where d is the Riemannian distance on X, and that the
Newton method minimising fθk+1

converges to x∗
k+1 for

any starting point y satisfying d(y, x∗
k+1) < ε0

1 . It follows

that for Algorithm 1 to return x1 ∗, a sequence {tk} of at

most
⌊

1
δ0

⌋
+ 1 elements is required, where �·� is the floor

function. To show this convergence result, the following
points are to be proven:

(1) The convergence to a point on the curve x∗ : [0, 1] →
X of the Newton method on line 5 of Algorithm 1
needs to be guaranteed when initialised with the
predicted point yk. We can show that there exists
ε0 > 0 such that the Newton method converges to
x∗
k+1 if the initial point y satisfies d(y, x∗

k+1) < ε0. As
ε0 must not depend on k, this step basically requires f
to admit basins of attractions of constant size across
X and Θ.

(2) As yk = expXxk
(dtkξk), the only parameter we can

pilot to ensure d(yk, x
∗
k+1) < ε0 is the step-size dtk.

We need to show that d(yk, x
∗
k+1) can be bounded by

an expression involving only constants and dtk.
(3) The latter expression is then used to find a step-size

dtk that puts yk in the convergence radius ε0 of x∗
k+1.

(4) Finally, we need to check that the sequence {tk} does
not converges to l < 1, i.e. that x1 ∗ can be reached in
a finite number of steps. Hence, it is needed to prove
that there exists δ0 > 0 such that, for all k, we have
d(yk, x

∗
k+1) < ε0 for dtk ≥ δ0.

The remaining of this section details how the four previous
points can be proven.

Point 1: By definition of fibre-wise Morse functions, fθ
is locally convex around each critical point x∗. Thus, the
Newton method has a basin of convergence around each

1 In Section 3.2, we consider H(t, x) = 0x for simplicity. We argue
that having ‖H(t, x‖x ≤ ε is enough, where ‖·‖x is the norm on TxX
and ε > 0 is the tolerance. This is enough to ensure the convergence
of the Newton method in a finite number of iteration.

critical point x∗. Let εk be the radius of the basin around
x∗
k. From the Morse condition, εk > 0. It is then needed

to show that the infimum ε0 of εk over all possible x∗
k

is strictly greater than zero. This can be achieved by
(i) proving that εk is greater than a strictly positive
continuous function in X ×Θ and (ii) using the fact that
a continuous function on a compact set always reaches its
bounds. Thus, we have 0 < ε0 < εk for all possible εk.
The minoring function in (i) can be built by exploiting
implicit functions sending θ over a zero of the eigenvalue
λi(Hess fθ(x)).

Point 2: Bounding the Riemannian distance d(yk, xk+1)
can be done in two steps. First, we bound the distance
d(x∗

k, x
∗
k+1) between points on x∗ : [0, 1] → X and the

distance d(x∗
k, yk). Second, the triangular inequality is used

to obtained the wished bound. The curve x∗ : [0, 1] → X
admits a Lipschitz constant L with respect to the distance
d on X. It comes from the fact that Dx∗ is continuous and
therefore bounded on [0, 1]. We have:

d(x∗(tk+1), x
∗(tk)) ≤ dtkL. (8)

Moreover, as yk = expXx∗
k
(dx∗

k), we have d(x∗
k, yk) =

‖dx∗
k‖x = dtk‖ξk‖x. Notice that ξk = ∇x∗(xk) ∈ TxX,

thus
d(x∗

k, yk) = dtk‖∇x∗(xk)‖xk
(9)

The operator norm on L(Txk
X) and the vector norm on

Txk
X both derive from the Riemannian metric and are

compatible. It follows that ‖∇x∗(xk)‖xk
≤ L. Combining

(9) and (8) hence gives

d(yk, xk+1) ≤ 2dtkL. (10)

Point 3: With Equation (10), we can set dtk = ε0
2L in

order to get d(yk, x
∗
k+1) ≤ ε0

Point 4: In point 2, we could have bounded Dx∗ only
locally, which would have given a bigger (hence better)
step-size in point 3. However, taking the supremum of the
derivative on [0, 1] brings that the step-size dtk = ε0

2L is
independent of k. Hence, we can simply choose δ0 = ε0

2L .

4. ILLUSTRATION

In this section, an illustration of the proposed optimisation
geometry method is provided. Even though this example is
trivial, it illustrates the interest of the method in practice.
Let X = [0, 1], Θ = [0, 1] and

f : X ×Θ → R
(x, θ) �→

(
x− θ2

)2
.

(11)

Given θ ∈ Θ, the global minimum x∗ of fθ : x �→ f(x, θ)
is simply x∗ = θ2. For the sake of the example, we
will however apply the optimisation geometry method to
obtain it.

First, we need to verify that f is fibre-wise Morse on
M = [0, 1] × [0, 1]. As it is polynomial in x and θ, it is
smooth on M . Furthermore, for all θ ∈ Θ,

d2fθ
dx2

= 2.

Hence, for all x ∈ X, the second order derivative of fθ is
positive definite. It is in particular true at the critical point

Figure 5. Graph of the function f : X × Θ → R defined
in (11) with X = [0, 1] and Θ = [0, 1]. The red curve
corresponds to the submanifold of fibre-wise critical
points of f embedded Guillemin and Pollack (2010) in
the graph of f . Given θ0 for which the minimum x0 ∗

is known, the optimisation geometry method aims at
following this curve in order to find the solution x1 ∗

of the optimisation problem for θ1.

of fθ. It follows that f is indeed fibre-wise Morse onM and
our optimisation geometry method can be employed.

Let θ0 ∈ Θ, for which the global minimum of fθ0 is
x0 ∗ = θ0 2, and θ1 ∈ Θ, for which the corresponding
minimum x1 ∗ is assumed to be unknown. Let the curve

θ : [0, 1] → Θ
t �→ tθ1 + (1− t)θ0.

The first order derivative of fθ(t) is

df = 2
(
x− θ(t)2

)
dx.

It follows that the function H : [0, 1] × X → TxX � R
defined in Proposition 6 is

H(t, x) = 2
(
x− θ(t)2

)
.

Its first derivative is

DH(t, x)(dt, dx) = 2dx− 4θ(t)θ̇(t)dt,

where θ̇(t) = θ1 − θ0. Thus, solving equation in Proposi-
tion 7, one can check that ker(DH(t, x)) = {λ(1, ξ) : λ ∈
R}, where

ξ = 2θ(t)θ̇(t) = 2(θ1 − θ0)(θ0 + (θ1 − θ0)t).

Let θ0 = 0 (x0 ∗ = 0), θ1 = 1 and {tk} = {0, 0.2, . . . , 0.8, 1}
(i.e., dtk = 0.2). Within these settings, θk = θ(tk) = tk for
all k. Algorithm 1 proceeds as follows at the kth iteration:

• the direction ξk is given by ξk = 2tk;
• the resulting predicted point is yk = x∗

k + 2tkdtk;
• the corrected point x∗

k+1 = θ2k+1 is obtained with one

iteration of the Newton method 2 .

An illustration of the procedure can be found in Figure 4.

5. CONCLUSION

We presented in this paper a Riemannian-based homotopy
algorithm that provides an original solution to optimisa-
tion problems over families of function. The main interest
2 Note that the important point here is not the Newton method but
the homotopy procedure.

x

t
0

•
(t1, y0)

•
(t1, x∗

1)
•
(t2, y1)

•
(t2, x∗

2)

•
(t3, y2)

•
(t3, x∗

3)

•
(t4, y3)

•(t4, x∗
4)

•
(t5, y4)

•(t5, x∗
5)

Figure 6. On this figure, all the steps of the homotopy
algorithm are represented. The black curve is the
graph of x∗, which usually has no closed form. The
red arrow show the prediction step, in the direction
of the tangent to the black curve. The blue arrow
shows the projection back to the curve achieved by
a descent method such as the Newton method. This
is the correction step. Size of dt was taken constant
equal to 0.2.

of this method is to focus on the complexity of the family
of function rather than the complexity of an individual
cost function.
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Let θ0 ∈ Θ, for which the global minimum of fθ0 is
x0 ∗ = θ0 2, and θ1 ∈ Θ, for which the corresponding
minimum x1 ∗ is assumed to be unknown. Let the curve

θ : [0, 1] → Θ
t �→ tθ1 + (1− t)θ0.

The first order derivative of fθ(t) is

df = 2
(
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dx.

It follows that the function H : [0, 1] × X → TxX � R
defined in Proposition 6 is

H(t, x) = 2
(
x− θ(t)2

)
.

Its first derivative is

DH(t, x)(dt, dx) = 2dx− 4θ(t)θ̇(t)dt,

where θ̇(t) = θ1 − θ0. Thus, solving equation in Proposi-
tion 7, one can check that ker(DH(t, x)) = {λ(1, ξ) : λ ∈
R}, where

ξ = 2θ(t)θ̇(t) = 2(θ1 − θ0)(θ0 + (θ1 − θ0)t).

Let θ0 = 0 (x0 ∗ = 0), θ1 = 1 and {tk} = {0, 0.2, . . . , 0.8, 1}
(i.e., dtk = 0.2). Within these settings, θk = θ(tk) = tk for
all k. Algorithm 1 proceeds as follows at the kth iteration:

• the direction ξk is given by ξk = 2tk;
• the resulting predicted point is yk = x∗

k + 2tkdtk;
• the corrected point x∗

k+1 = θ2k+1 is obtained with one

iteration of the Newton method 2 .

An illustration of the procedure can be found in Figure 4.

5. CONCLUSION

We presented in this paper a Riemannian-based homotopy
algorithm that provides an original solution to optimisa-
tion problems over families of function. The main interest
2 Note that the important point here is not the Newton method but
the homotopy procedure.
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shows the projection back to the curve achieved by
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of this method is to focus on the complexity of the family
of function rather than the complexity of an individual
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