
HAL Id: hal-03676625
https://hal.science/hal-03676625

Submitted on 24 May 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Dispatch of UAVs for Urban Vehicular Networks: A
Deep Reinforcement Learning Approach

Omar Sami Oubbati, Mohammed Atiquzzaman, Abdullah Baz, Hosam
Alhakami, Jalel Ben-Othman

To cite this version:
Omar Sami Oubbati, Mohammed Atiquzzaman, Abdullah Baz, Hosam Alhakami, Jalel Ben-Othman.
Dispatch of UAVs for Urban Vehicular Networks: A Deep Reinforcement Learning Approach. IEEE
Transactions on Vehicular Technology, 2021, 70 (12), pp.13174-13189. �10.1109/TVT.2021.3119070�.
�hal-03676625�

https://hal.science/hal-03676625
https://hal.archives-ouvertes.fr


IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. XX, NO. XX, XXX 2021 1

Dispatch of UAVs for Urban Vehicular Networks: A
Deep Reinforcement Learning Approach
Omar Sami Oubbati, Member, IEEE, Mohammed Atiquzzaman, Senior Member, IEEE,

Abdullah Baz, Senior Member, IEEE, Hosam Alhakami, Senior Member, IEEE,
Jalel Ben-Othman, Senior Member, IEEE

Abstract—Due to the dynamic nature of connectivity in
terrestrial vehicular networks, it is of great benefit to deploy
unmanned aerial vehicles (UAVs) in these networks to act as
relays. As a result, a remarkable number of studies have exploited
UAVs to bridge the communication gaps between terrestrial
vehicles, and sometimes despite their unoptimized mobility, their
restricted communication coverage, and their limited energy
resources. However, it was noted that for an intermittently
connected vehicular network, UAVs could not cover all sparse
areas all the time. Even worse, when deploying enough UAVs
to cover all these areas, the probability of inter-UAV collisions
increases, and it will be complex to control their movements
efficiently. Consequently, it is required to dispatch an organized
and intelligent group of UAVs to perform communication relays
in the long term while keeping their connectivity, minimizing
their average energy consumption, and providing an efficient
coverage strategy. To meet these requirements, we propose a deep
reinforcement learning (DRL) framework, called DISCOUNT
(Dispatch of UAVs for Urban VANETs). Extensive simulations
have been conducted to evaluate the performance of the proposed
framework. It has been shown that the proposed framework
significantly outperforms two commonly-used baseline techniques
and some reinforcement learning methods in terms of energy
consumption, coverage, and routing performances.

Index Terms—UAV; Deep Reinforcement Learning; VANET;
Energy Efficiency; Routing.

I. INTRODUCTION

THE deployment of Unmanned Aerial Vehicles (UAVs)
has become a practical solution in various applications

in wireless systems [1]. Due to their many desirable
advantages, including ease of deployment, swift mobility,
and low-cost operation, UAVs turn into a mainstream tool
of our everyday life. UAVs can be quickly deployed to
complement existing terrestrial networks by providing various
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assistance services ranging from increasing network capacity
and aerial monitoring to removing coverage holes and
improving connectivity [2]. In the literature, UAVs have been
mostly deployed to provide temporary coverage for overloaded
terrestrial networks or as relays for terrestrial mobile networks
suffering from frequent intermittent connectivity [3]. Recently,
UAVs have been deployed as mobile relays to cooperate with
existing vehicular ad hoc networks (VANETs) on the ground
to get around disruptive ground obstacles, highly dynamic
topology, frequent disconnections, and participate reliably in
data transmission between vehicles [4], [5]. Also, the UAV
assistance to VANETs is only done on the basis of several
UAVs forming an aerial subnetwork, which can cover a broad
region, detect any sparse connections appearing on the ground,
and efficiently play the role of relays between disconnected
vehicles.

To provide sufficient long-term communication coverage
to a VANET deployed on a large urban area, a sufficient
number of mobile UAVs would be required to operate as an
autonomous connected group that intelligently covers every
disconnected zone, as illustrated by a motivating scenario
plotted in Fig. 1. However, the UAV deployment faces
several constraints and challenges. For instance, since sparsely
connected zones can appear anywhere and at any time, it
is required that UAVs hover and continuously change their
positions to cover these zones for a reasonable amount of
time while linking the maximum number of disconnected
vehicles. As a consequence, three main challenges could be
encountered. First, UAVs could quickly exhaust their on-board
energy due to their constant mobility, and thus restricting
their communication capabilities significantly. Second, the
probability of inter UAV collisions increases considerably
when UAVs are flying close to each other. Finally, since UAVs
are constantly moving mainly at the same and low altitude
to communicate with vehicles, the possibility of colliding
with obstacles (e.g., skyscrapers or high trees) is extremely
high. To overcome all these challenges, it is required to make
intelligent decisions regarding each UAV trajectory so that the
available energy among UAVs should be optimally and fairly
exploited to provide coverage to as many disconnected zones
as possible. For this purpose, it is supposed that UAVs are
backhaul-connected through satellite links, which is a common
assumption in different works [6], [7]. Then, the current state
of the environment (i.e., positions, energy usages, number
of connected zones, etc.) is continually observed by the
control agent located at the satellite, which allows controlling
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Fig. 1: Motivating scenario.

each UAV movement towards achieving an intelligent UAV
coverage over VANETs. It is worthy to note that UAVs
preserve their connectivity to participate in the data delivery
between ground vehicles reliably, and especially when the
VANET is highly fragmented (i.e., there is no routing path
between communicating vehicles).

The main focus of this piece of work is to address the above
issues and challenges by jointly optimizing the trajectories of
UAVs and providing as much intelligent coverage as possible
for sparse areas within a terrestrial VANET. This task is
a complicated problem, which makes it difficult to process
using traditional optimization techniques. Hence, we propose
to leverage Deep Reinforcement Learning (DRL) methods
that have proven their efficiency by handling complicated
state space and time-varying environments. Moreover, these
methods can provide peak performance on a good number of
learning tasks with little or no domain knowledge.

To ensure reliable connectivity of VANETs based on the
assistance of UAVs, a set of contributions are carried out in
this paper as follows:

• Maximizing the UAV coverage all over sparsely
connected areas, while increasing the number of linked
vehicles through relay UAVs.

• Reducing collisions between UAVs, while avoiding
obstacles during their mobility.

• Minimizing the average energy consumption while
ensuring the integrity of the UAV network by optimally
using available energy on each UAV.

• Preserving the UAV network connectivity during the
whole flight period.

• Conducting a series of simulations to evaluate the
performance of the proposed work.

The remainder of this paper is outlined as follows. In
Section II, the relevant works of the state-of-art are reviewed.
Section III describes the proposed system model as well as
the problem formulation. In Section IV, we present both
the required preliminaries about DRL and the proposed
DRL-based approach. The simulation results for performance

evaluation are illustrated in Section V. Concluding remarks
are outlined in Section VI.

II. RELATED WORK

The optimization of control, deployment, and trajectory
of UAVs have been widely studied in recent years. Various
solutions have been proposed towards different goals, which
take into account different requirements. Moreover, there has
been a renewed interest in applying machine learning (ML)
techniques to the mobility management of UAVs. Therefore, as
part of our work, we focus our attention here on recent studies
proposed in the context of several research areas, such as
the UAV deployment and coverage optimization, UAV-assisted
VANETs, and DRL-based for UAV trajectory, deployment, and
coverage optimization.

A. Deployment of UAVs and Coverage

The optimization of UAV deployment and coverage is
considered a complex task in emerging UAV-assisted systems.
In [8], the authors proposed an ellipse clustering algorithm
to allow UAV base stations (UAV-BSs) to increase the
probability of covering the maximum of ground users while
avoiding inter-cell interference. Moreover, an energy-efficient
3D deployment method is proposed to reduce the total
amount of consumed energy by UAV-BSs, while ensuring a
certain level of Quality of Service (QoS) for every covered
ground user. The authors of [9] proposed a path planning
optimization to enhance wireless coverage using UAVs during
a disaster scenario by complementing affected infrastructures.
An optimal separation distance between UAVs was proposed
in [10] to both mitigate co-channel interference and increase
the coverage of multiple UAVs in urban areas. In [11], the
authors presented an iterative approach where a minimal
number of UAVs are deployed to improve the communication
coverage for user equipments (UEs) with unknown positions.
Two fast UAV deployment problems were studied in [12] for
maximizing wireless coverage. The first problem is to reduce
the total deployment delay for efficiency, and the second is to
minimize the deployment delay for fairness consideration.
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TABLE I: Features comparison with the related works.
Deployment of UAVs and Coverage UAV-assisted VANETs DRL-based UAV-assisted systems

Features Ref. [9] Ref. [11] Ref. [13] Ref. [14] Ref. [15] Ref. [16] Ref. [17] Ref. [18] Our framework

Basic ideology
Optimization of UAV

coverage over
disaster areas

Deploying a reduced
number of UAVs to

serve UEs while
preserving their

connectivity

Optimization of
VANET routing

process using UAVs

Improvement of
VANET connectivity

Integration of
cellular-connected

UAVs and UAV-BSs
through 3D cellular

networks

Minimization of
latency based on

interference-aware
path planning of

cellular-connected
UAVs

A DRL-based
method to provide

optimized
energy-efficient UAV

trajectory while
minimizing AoI

A multi-UAV
long-term coverage

using DRL

DRL-based
UAV-assisted

VANET

Type of assisted
networks VANET UEs VANET VANET UAV Network BSs/UEs UEs IoT VANET

Optimized
metrics

UAV trajectory,
Throughput, Fairness

Coverage, Load
balance, Throughput

Packet loss, Delivery
delay

Routing path
availability, Delivery

delay
Latency, Throughput Latency, Throughput

AoI, Energy
consumption,

Resource utilization

Energy consumption,
Coverage, Fairness

Energy consumption,
Coverage, Routing

path, Delivery Delay

UAV density Multiple UAVs Multiple UAVs Multiple UAVs Single UAV Multiple
UAVs/UAV-BSs Multiple UAVs Multiple UAVs Multiple UAVs Multiple UAVs

Mobility of
UAV(s) Dynamic Dynamic Dynamic Dynamic Dynamic Static Dynamic Dynamic/Static Dynamic/Static

Mobility of
assisted nodes Dynamic Static Dynamic Dynamic Static Static Static Static Dynamic

Major advantage
Throughput is fairly
maximized among

vehicles

A high coverage
ratio is ensured

through a reduced
number of UAVs

UAVs are used as
alternatives (relays)

in case of
disconnections

Fill in
communication gaps

between vehicles
using UAVs

Latency and spectral
efficiency of

cellular-connected
UAVs are optimized

A better latency and
rate are achieved per
each UAV and UE,

respectively

Enhancement of
energy efficiency and

collected data
freshness

Maximizing the fair
temporal coverage of

IoT devices

Optimization of UAV
trajectory while
considering its

energy consumption
and connectivity

Major Limitation
UAV energy

consumption is not
considered

Unexpected
disconnections and

UAV energy
consumption are not

considered

Optimization of
trajectory and energy

consumption of
UAVs are overlooked

High delivery delays
due to UAV
movements

Energy consumption
and mobility of

different UAVs are
not considered

Energy consumption
of UAVs is not
considered and

evaluated

Mobility of UEs is
not considered

Collisions between
UAVs are overlooked

during the training
process

Overlooking fairness
in coverage of sparse

areas

However, reducing collisions between UAVs and avoiding
obstacles, especially in urban areas, can allow UAVs to
perform coverage missions reliably. Moreover, the terrestrial
environment is generally unknown for UAVs, which requires
some interaction to explore it. These constraints have not been
considered in the above-cited works.

B. UAV-assisted VANETs

Much research has been recently conducted to address
various issues in UAV-assisted VANETs [13], [19]–[22]. For
instance, in [13], the authors used cooperative UAVs, playing
the role of relays over an urban VANET. This scheme estimates
the link expiration time to make the data transmission
between vehicles more reliable. In [23], a game-theory-based
UAV-assisted VANET scheme is proposed. The main purpose
of this scheme is to predict disconnected road segments
and deploy UAVs accordingly. The authors of [24] proposed
a novel UAV-assisted data dissemination strategy, where a
recursive least square algorithm predicts the movement of
vehicles, and thus maximizes throughput and minimizes the
delay. Fawaz et al. [14] deployed UAVs as store-carry and
forward nodes over a fully-collaborative VANET with the
aim to enhance connectivity and minimize the delivery delay.
The authors of [25] designed a UAV-assisted cooperative
data dissemination strategy in VANETs to minimize network
transmission delay and speed up the file downloading by
deploying UAVs as relays with data caching features.

However, deploying UAVs without adequately controlling
their movements, energy consumption, and continuous
connectivity cannot provide better control of UAVs to achieve
the assigned tasks efficiently.

C. DRL-based UAV-assisted systems

Actually, we are witnessing a resurgence of interest in ML
techniques in the context of UAV-assisted systems. This is due
to their ability to address complicated issues that are difficult,
if not impossible, to solve using traditional optimization
techniques. For example, Mozaffari et al. [15] proposed a
novel machine learning approach to optimize a novel 3D UAV
cell association scheme within a cellular network consisting

of a set of UAV users and UAV-mounted BSs. To ensure
fair coverage of each ground user and energy efficiency, the
authors in [26] proposed a 3D UAV deployment algorithm
based on Deep Deterministic Policy Gradient to schedule the
mobility planning of multiple UAVs for energy replenishment.
In [16], the authors exploited a DRL method based on an echo
state network to support an interference-aware path planning
method for cellular-connected UAVs. This method allows the
UAV to optimize its direction, transmission power, and cell
association, which can minimize the transmission latency and
interference on the ground. In [27], the authors leveraged DRL
to find the appropriate trajectories for a minimum number of
UAVs to provide coverage and acceptable QoS to vehicles
on a highway. In [17], the trajectory of UAVs is optimized
to minimize both their energy consumption and the average
age of information (AoI) of collected information under a
predefined threshold. In [18], a decentralized DRL algorithm
is developed to navigate a network of UAV-BSs for providing
coverage to mobile ground users while considering their
energy consumption and preserving their connectivity. Wand
et al. [28] proposed a DRL approach for UAV navigation and
control signals in complex urban areas without any knowledge
of mapping information provided by sensed data. The authors
of [29] proposed a DRL method to control multiple UAV-BSs
for providing effective coverage over terrestrial users.

However, due to the extensive computational power of DRL
methods and the restricted energy capacity of UAVs, it is
required to preserve connectivity among UAVs while avoiding
collisions between them or with obstacles. These requirements
are essential to provide an updated coverage status and for the
environment enlightenment.

In this context, when deploying a set of UAVs over a
terrestrial VANET, this paper considers all the requirements
related to each aforementioned research area, while assuming
no prior knowledge of the terrestrial environment. To the best
of our knowledge, filling communication gaps of terrestrial
urban VANETs using an intelligent connected group of UAVs
controlled by a DRL method has not been attempted so far.
Table I highlights the novelties of our approach compared with
the previously discussed works based on various features.
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III. SYSTEM MODEL AND PROBLEM STATEMENT

As depicted in Fig. 1, we consider a terrestrial vehicular
network with a medium density of vehicles. Traditionally, such
a network suffers from frequent disconnections that disrupt
communications between vehicles. In this work, we deploy a
set M , {i = 1, 2, . . . ,M} of UAVs, which are intended to
serve as relays by flying horizontally between disconnected
vehicles moving within road segments, while maintaining a
fixed optimal altitude h. A particular 2D urban square area of
width W is considered where the road segments, as well as the
other areas, are divided into a set Z , {z = 1, 2, . . . , Z} of
fixed size square zones. Then, the vehicles are designated as
V = {V1, . . . , VZ}, where Vz is a subset of vehicles belonging
to Zonez , where z ∈ Z . Each vehicle is supposed to belong to
only one single zone, thus Vz∩Vz′ = ∅, where z 6= z′, ∀z, z′ ∈
Z . It is noteworthy that the density of vehicles present within
the square area is variable. However, to avoid the complexity
of having variable densities of vehicles, we suppose that the
maximum number of vehicles within the target area is |V|= N .
We consider that communicating vehicles are disconnected if,
and only if there is at least one zone Zonez separating them,
where |Vz|= 0 (i.e., Vz is empty). The initial distribution of
vehicles and the zone partitioning will be discussed in Section
III-B. Our system is analyzed over a given flight period of
T time-slots of length t ∈ T = {1, 2, . . . , T}. Each UAVi is
aware of its own coordinate at each time-slot t, which is given
by: pti = [(xti, y

t
i , hi)]

T ∈ R3×1. In addition, it is required that
each UAVi with a communication range Ri maintains at least a
single connectivity to the whole UAV network. This allows that
a connected UAV network could be exploited as a relay bridge
in the case when the terrestrial vehicular network is highly
fragmented. It should be stressed that the deployed satellite
has a role to operate as a central DRL agent to control the
movements of the UAV network, which will also be discussed
in Section IV.

To ensure reliable relay between disconnected vehicles, we
assume that the center of each empty zone on the road,
called Center-of-Interest (CoI), must be covered by at least
a single UAV for a required amount of time. The covered
zones cannot remain empty all the time due to the dynamic
topology of vehicles. Thus, the UAVs need to fly around
to cover other disconnections formed elsewhere. Once UAVs
reach their target CoIs, they hover there and start their role of
relays for a given number of time-slots until that covered CoIs
become connected (i.e., become occupied by vehicles). Due
to the limited number of UAVs, we prioritize covering certain
zones over others, according to the following priorities in the
order listed: (i) Covering empty zones that directly connect
the maximum occupied zones and (ii) Covering isolated empty
zones. This task is very challenging due to the limited capacity
of resources of UAVs in terms of energy resources and
communication coverage. Indeed, at the initial stage of the
task, UAVs take off from a random origin, and learn to fly
horizontally with a direction Ωti ∈ {0, . . . , 2π} and distance
dti ∈ {0, . . . , dmax}, or hovering at their current locations (i.e.,
dti = 0).

The energy consumption follows a linear model, which

increases with the increase of flying distance. It should be
stressed that the energy consumption follows the same energy
consumption model proposed in [30] in which the propulsion
energy can be expressed as follows:

(1)

Prop(V ) = Pb

(
1 +

3V 2

V 2
tip

)
︸ ︷︷ ︸
blade profile power

+Pi

(√
1 +

V 4

4u20
− V 2

2u20

)
︸ ︷︷ ︸

induced power

+
1

2
f0anRV

3︸ ︷︷ ︸
parasite power

where Pi and Pb represent the induced power in a hover
state and the blade profile power, respectively. V denotes
the flying speed of the UAV, Vtip represents the tip speed
of the rotor blade, and u0 and n indicate the mean induced
velocity and the solidity of the rotor, respectively. f0, a,
and R are the fuselage drag ratio, the air density, and the
rotor disc area, respectively. In each time-slot t ∈ T and
after performing either hovering or flying horizontally, UAVi
consume an energy of Eti ∈ [f,Emax], where f = Pi + Pb
is the hovering energy and Emax is the maximum energy
capacity that could be consumed by each UAV. The total
energy consumption of UAVi during the whole period t can
be calculated as follows:

(2)Eti =

∫ t

0

Prop(‖v(t)‖)dt︸ ︷︷ ︸
propulsion energy

For more clarity, Table II shows the major notations used
in this paper.

TABLE II: List of notations.

Symbol Explanation

M,M, i Set, number, and index of UAVs
V, N, n Set, number, and index of vehicles
Z, Z, z Set, number, and index of zones
T , T, t Set, number, and index of time-slots
Ri, E

t
i , p

t
i Range, Consumed energy, and position of UAVi

dti,Θ
t
i,Ω

t
i Distance, Activity, and Direction of UAVi

Rn, ptn Range and position of vehicle Cn

CoIz , NBZiz Center-of-Interest of zone z, Number of linked
zones by UAVi from zone z.

Coni(t), Con(t) Number of covered zones by UAVi, Number of
covered zones by all UAVs.

Hovti,z , Cont
i,z Hovering and Coverage states of CoIz by UAVi.

st, at, rt State, action, and reward of all UAVs.
D, D, F Replay buffer, Size of the buffer, Size of the

mini-batch.
Q(.), r(.), tgtDDQN Q function, Reward function, Target value in

DDQN.
γ, ε, % Discount factor, Exploration probability,

Decrement factor.
π(.), π∗(.), L(.) Policy function, Optimal policy function, Loss

function.
ηQ, ηQtarget Weights of Q(.) network, Weights of target

network.
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A. Channel Model

Generally, the channel model of the UAV-assisted systems
includes three different models, i.e., Air-to-Ground (A2G)
channel, Ground-to-Air (G2A) channel, and Air-to-Air (A2A)
channel, which describe the links between UAVs and vehicles
and the links between solely UAVs, respectively. To avoid
interference, different carrier waves are used for each kind
of link. Moreover, as in [31], the Doppler effect is assumed
to be perfectly compensated based on the GPS, where the
speeds and locations of UAVs can be accurately predicted.
To illustrate channel modeling formulation, we consider the
descriptive scenario depicted in Fig. 2 by zooming in the
scenario named (Relay between two disconnected vehicles) in
Fig. 1.

 

UAVi 

UAV-to-Vehicle link 

Communication range 

of vehicles Rn 

𝒑𝒊
𝒕=(𝒙𝒊

𝒕, 𝒚𝒊
𝒕,hi) 

 

UAVj 

UAV-to-UAV link 
Cn Rn 

Fig. 2: A relay scenario with a single UAV linking two
disconnected vehicles.

1) A2A Channel: The A2A channels are mainly dominated
by line-of-sight (LoS) links due to the lack of obstacles in the
sky. According to [32], the LoS pathloss (in dB) between a
pair of communicating UAVs (e.g., UAVi and UAVj) can be
modeled by the free space propagation loss (FSPL), which can
be expressed as follows:

PLA2A
ij [dB] = 10ζ log10

(
4πψdij
λ

)
+ LLoS (3)

where ζ is the free space path loss exponent, which is set
to 2 according to FSPL. ψ is the DSRC carrier frequency,
dij =

√
(xi − xj)2 + (yi − yj)2, λ = 3 × 108m/s is the

speed of the light, and LLoS representing the attenuation that
is added to the LoS environment. It should be stressed that the
A2A channel model is less impacted by fading. To ensure that
any pair of UAVs is connected, the signal-noise ratio (SNR)

at the receiver should be greater than a certain threshold of
τA2A as follows:

SNRA2A
ij = Powt,A2A

ij − PLA2A
ij − σA2A ≥ τA2A (4)

where Powt,A2A
ij is the sender transmit power, σA2A is

the noise power at the receiver side. It is worthy to note
that the maximum value of dij , which satisfies the equation
(4) is considered to be the communication range Ri = dij ,
∀i, j ∈M.

2) A2G/G2A Channels: A growing number of studies
related to the wireless coverage of UAVs deployed over a
terrestrial network have been studied. A vehicle may have
LoS connection with the UAV with which it communicates.
However, different obstructions (e.g., buildings, high trees, or
bridges) might exist between the vehicle and the UAV, causing
a non-LoS (NLoS) connection, where the vehicle still receives
a signal from the UAV due to reflections and diffractions.
Consequently, the A2G/G2A channels can be modeled based
on [33], [34]. As illustrated in Fig. 2, the received power from
both UAVi (xi, yi, hi) and vehicle Cn (xn, yn) is given by the
below equation:

Powr,A2G
in =

{
Powt,A2G

in − Li,n
LoS , LoS links

Powt,A2G
in − Li,n

NLoS , NLoS links

Powr,G2A
in =

{
Powt,G2A

in − Li,n
LoS , LoS links

Powt,G2A
in − Li,n

NLoS , NLoS links

(5)

where Powt,A2G
in and Powt,G2A

in are the transmission
powers of UAVi and vehicle Cn, respectively. Li,nLoS and
Li,nNLoS are the average LoS and NLoS path-losses (in dB),
and they can be expressed as:

Li,nLoS = 20 log

(
4πωkin
λ

)
+ δ(LoS),

Li,nNLoS = 20 log

(
4πωkin
λ

)
+ δ(NLoS),

(6)

where ω is the carrier frequency of UAV-to-vehicle channel
and λ is the speed of the light. kin is defined as the distance
between UAVi and Cn, which is given by kin =

√
h2i + ∆2

in,
where ∆in =

√
(xi − xn)2 + (yi − yn)2 represents the

horizontal euclidean distance between UAVi and Cn. δ(.) is
the average additional path-loss, which is dynamic according
to LoS and NLoS environments. Therefore, we deduct that
A2G/G2A links are connected, if their respective SNR
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Fig. 3: UAV coverage based on hovering zones.
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(SNRA2G
in and SNRG2A

in ) at the receiver side are larger than
the given thresholds (τA2G and τG2A). That is:

SNRA2G
in = Powr,A2G

in − σA2G ≥ τA2G

SNRG2A
in = Powr,G2A

in − σG2A ≥ τG2A

(7)

where σA2G and σG2A are the noise powers at their
respective receiver sides.

B. Problem Statement

Before describing the problem statement, it is essential to
present some assumptions and concepts. Initially, we suppose
that vehicles are non-uniformly distributed over the roads of
the target area and the traffic of vehicles follows a normal
distribution. Moreover, the speeds of vehicles are generated
based on a truncated Gaussian distribution with a mean
equal to 50 km/h. Then, the mobility traces of vehicles are
generated during T time-slots based on a customized version
of VanetMobiSim [35]. We consider that all road segments
are divided into equal fixed square zones of width S, which
approximately equals to the transmission range Rn of ground
vehicles for vehicle-to-vehicle (V2V) communications that are
established based on other embedded wireless interfaces in
vehicles, such that 0 < (Rn − S) ≤ ε, where 0 < ε � 1.
This will cause a disconnection between two communicating
vehicles if there is at least one empty zone between each other.
By considering the constraint of the equation (7), we assume
that each UAVi and vehicles Cn could establish a successful
communication between each other at a maximum horizontal
distance ∆in = 3S

2 with a maximum altitude of hi. Based
on this assumption, we can say that each UAVi that will be
positioned (hovering) over the CoI of a given zone, can both
cover the entire current zone as well as its adjacent zones as
shown in Fig. 4, and serve multiple vehicles simultaneously
by employing a time division multiple access (TDMA).

S 

CoI 

UAV 

(a) Intersection.

S 

3/2 S 

CoI 

coverage 

(b) Road segment.

Fig. 4: Decomposition of zones.

1) Total coverage of the disconnected zones: The objective
of this paper is to link the maximum number of disconnected
vehicles while minimizing the energy consumption of UAVs.
For the simplicity of analysis, maximizing the number of
linked vehicles is considered the same as maximizing the
number of covered zones. For this purpose, we have to find
a control policy to define how UAVs should move in each
time-slot over a set of dynamic CoIs (i.e., disconnected zones).
To mathematically formulate the problem, we introduce a
binary variable Hovti,z ∈ {0, 1}, to indicate whether CoIz ∈

Zonez is hovered (covered) by UAVi in a time-slot t, Hovti,z
is expressed as follows:

Hovti,z =

{
1, if

√
(xti − xz)2 + (yti − yz)2 ≤ ε

0, Otherwise
(8)

To update the relay status of a given UAVi hovering over a
given CoIz , we calculate the SNR between UAVi and each
vehicle Cn in range. In this manner, we get all possible
connections between UAVi and all vehicles around satisfying
a certain QoS level. Also, we calculate the distances of all
vehicles from the hovered CoIz to know precisely how many
zones are being linked and connected. The example of Fig.
3 represents the calculation process of connected zones in
different scenarios. The detailed process is shown in Algorithm
1.

Algorithm 1: Zones connectivity
input : CoIz, UAVi, V , B.
output: NBZiz /* Number of connected zones. */

1 begin
33 Initialization:
4 NBZiz ← 1
5 B ← ∅
77 foreach Cn ∈ V do
99 if (SNRA2G

in ≥ τA2G) ∧ (SNRG2A
in ≥ τG2A) then

1111 if ∆zn ≤ 3S
2

then
1313 subset← Search subset(Cn, V)
1515 if subset ∩ Vz = ∅ then
1717 if subset /∈ B then
1919 B ∪ subset
2121 NBZiz ← |B|+1

22 else
2424 NBZiz ← 0
25 Break

where NBZiz is the number of zones that are covered
by UAVi from CoIz . We also define a connectivity variable
Conti,z indicating the coverage state by UAVi of CoIz at a
time-slot t, Conti,z is defined as follows:

Conti,z =

{
NBZiz, ifHovti,z = 1 ∧ NBZiz ≥ 1

0, Otherwise
(9)

The total coverage carried out by the ith UAV at a time-slot
t is given by (10):

Coni(t) =

Z∑
z=1

Conti,z (10)

The total number of the entire covered zones at time interval
t, Con(t) is given by (11):

Con(t) =

M∑
i=1

Z∑
z=1

t∑
t=1

Conti,z (11)
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2) UAV network connectivity: To have an accurate view of
the UAV network connectivity, we need to define the status
of the different links among UAVs at each time-slot t. To do
so, a symmetric matrix l= [li,j ]M×M is introduced to denote
the existing links among UAVs, where li,j = 1 means that
UAVi is connected with UAVj (i.e., UAVi is within UAVj’s
communication range), otherwise, li,j = 0. UAVs periodically
broadcast Hello packets to their one-hop neighbors, which
contain their respective geographical positions. Based on
this information, each UAV can calculate the distances with
one-hop neighbors, which are periodically collected by the
centralized entity to update the matrix l as shown in Algorithm
2.

Algorithm 2: UAV network connectivity
input : M
output: l

1 begin
33 for ∀i ∈M and ∀j ∈M do
55 if dij ≤ Ri then
6 li,j ← 1
7 else
8 li,j ← 0

3) Optimal UAV mobility problem: For simplicity, after
the mobility of each UAVi at each time-slot t, it remains

E −
t∑
t=1

Eti of energy, ∀i ∈ M, where E is the total energy

capacity within each UAV. Therefore, the average energy
consumption of all UAVs during the whole flight period is

given by

 M∑
i=1

T∑
t=1

Et
i

M

. For the convenient presentation, let

P = {pi(t),∀i ∈ M} be the set of locations of all UAVs at
a time-slot t. To find the optimal UAV mobility to provide
reliable relaying services to disconnected zones, we propose
solving the following optimization problem:

max
P

E


∑M

i=1

∑Z
z=1

∑T
t=1 Con

t
i,z

M∑
i=1

T∑
t=1

Et
i

M




s.t. C1: (E −

t∑
t=1

Eti ) > 0 ∀i ∈M,∀t ∈ T

C2: Hovti,z ≤ 1 ∀i ∈M,∀t ∈ T ,∀z ∈ Z
C3: ‖pi[t]− pj [t]‖2 ≥ (L)2 ∀i 6= j ∈M,∀t ∈ T
C4: 0 ≤ xti ≤W ∀i ∈M,∀t ∈ T
C5: 0 ≤ yti ≤W ∀i ∈M,∀t ∈ T
C6: ∃m ≤M, (lm)i,j 6= 0 ∀i 6= j ∈M

(12)
where E[.] is calculated by considering the random

appearance of sparse areas on the roads. C1 makes sure
that the energy consumed of UAVi at each episode is within
the limit of its available energy. C2 imposes to each UAV
to serve at most one CoI at each time-slot t. C3 ensures
that there is a safety distance L at each time-slot tt with

obstacles or UAVs. C4 and C5 guarantee that each UAVi
will not cross the target area boundaries during the whole
flight period. C6 denotes that there is at least one routing
path between any pair of deployed UAVs. To summarize, our
goal is to find a control policy to move a team of UAVs
for providing coverage to disconnected zones that appear
dynamically on the roads while simultaneously: (i) maximize
the total/average CoI coverage score, (ii) minimize the energy
consumption while making sure that the consumed energy by
each UAV is within the limit of its available energy, and
(iii) ensuring that the UAV network is connected in every
time-slot t, while keeping UAVs neither crossing the area
border nor colliding between each other or with obstacles.
It is quite challenging to achieve all these objectives at once
due to two reasons. On the one hand, to maximize the average
CoI coverage, UAVs should continually move around to find
out the maximum number of zones to be connected for a
maximum of time-slots. On the other hand, to ensure that
UAVs stay connected during the whole task and reduce energy
consumption, it would be better to minimize the mobility of
UAVs to save more energy and ensure durable connectivity
between them. It is true that in theory, some optimization
methods could be involved to relieve this problem. However,
it is impractical to explore the dynamic movement of the
vehicles, which denotes that it is challenging to adapt to all
possible changes in the environment. Moreover, it is observed
that (12) is a mixed-integer non-linear program (MINLP) due
to the existence of the binary variable Hovti,z in C2 and
also includes a non-convex constraint C1, which is generally
computationally complex to solve it efficiently, and especially
for large-scale networks. Consequently, DRL methods are
considered as efficient solutions to solve this multi-objective
problem and learn the dynamics of the environment.

IV. DRL BACKGROUND

Recently, one of the branches of Machine learning (ML) is
Reinforcement Learning (RL) which deals with the multi-state
decision process of an agent (a UAV in our case) while
interacting (i.e., taking a set of possible actions A) with
a system environment S at each of a sequence of discrete
time-slots. At each time-slot t, the agent observes an
environment state (st ∈ S), executes an action (at ∈ A) that
updates the environment state (st+1 ∈ S). The agent receives a
numerical reward rt based on st, at, and st+1. The goal of RL
is to learn a policy π(st, at) mapping from states to actions,
which maximizes the discounted future cumulative reward as,

rt =

T∑
t′=t

γt−t
′
r(st′ , at′) (13)

where T is the number of time-slots, the discount factor
γ ∈ [0, 1], and r(.) is the reward function at a time-slot t′.
Classical RL algorithms are based on Q-learning that allows
agents (UAVs) to optimally interact with the environment
represented by a Markov Decision Process (MDP). Moreover,
the Q-learning method uses a table to store the state-action
value function Q(st, at) = E[rt|st, at], which are iteratively
enhanced by estimating the reward rt when action at is
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taken. However, Q-learning is dedicated to only a finite
discrete action state space. In the case when the action state
space is large, a deep neural network (DNN) can be used
to approximate the Q(.) function. This concept is called
Deep Q Network (DQN), which is considered as a variant of
Q-learning and it can be trained by minimizing the following
loss function:

L(ηQ) = E[(rt(st, at)

+ γ max
at+1∈A

Q(st+1, at+1|ηQtarget)−Q(st, at|ηQ))2]

(14)

where ηQ are the weights or the function
parameters of a DNN and tgtDQN = rt(st, at) +
γmaxat+1∈AQ(st+1, at+1|ηQtarget) represents a target
value. However, sometimes, a DNN can cause divergence,
and that is certainly not wanted. To address this issue, DRL
uses generally two major techniques: (i) experience replay and
(ii) target network. In the experience replay mechanism, to
effectively update the DNN, DRL uses a random mini-batch
of samples from a big experience replay buffer to store D
state transition experience tuples (st, at, rt, st+1) which are
generated during learning by π at a time-slot t. Experience
replay helps break the correlations between sequentially
generated samples, which can reduce the variance of updates,
avoid divergence, and smooth out the learning. As for the
target network mechanism, DRL estimates target values
tgtDQN for DNN training based on an additional target
network.
tgtDQN has the same structure as Q(.), but its weight

ηQtarget is slowly updated with the original Q(.) weight
ηQ. This may cause the problem of over-fitting in the
DQN in which under certain conditions, the different action
values get overestimated. Moreover, in the experience replay
buffer, uniform samples have been selected rather than
importance-weighted samples, which may cause divergence
with large state spaces. To address all these issues, the double
DQN (DDQN) with Prioritized Replay of experiences based
on the sum-tree algorithm [36] has been proposed in [37].
Indeed, tgtDQN in DQN is replaced by tgtDDQN as follows:

tgtDDQN

= rt(st, at)

+ γQ(st+1, argmaxat+1∈AQ(st+1, at+1|ηQ)|ηQtarget)
(15)

In our work, we leverage the advantages of DDQN to
control the movements of UAVs under the same framework,
called DISCOUNT. A DRL agent periodically inspects the
status of the UAV network and the vehicular environment,
chooses the appropriate actions based on DISCOUNT, and
deploys them by transmitting commands to move UAVs at
each time-slot t. Therefore, the aim of DISCOUNT is to
maximize the long-term system rewards by attempting various
actions, learning from the observation of the environment, and
then reinforcing the actions until the best outcome is obtained.

A. State Space and Action Space

The state st, at each time-slot t consists of five parts:

• Coni(t),∀i ∈ M: the total number of covered zones by
each UAVi.

• Eti ,∀i ∈M: the energy consumption of each UAV.
• pti = (xti, y

t
i),∀i ∈M: the current position of each UAV,

which corresponds to CoI of a given zone.
• ptn = (xtn, y

t
n),∀n ∈ V: the current position of each

vehicle.
• Θt

i ∈ {0, 1},∀i ∈ M: takes the value of 0 if UAVi is
deployed and does not exhaust its available energy (E−
t∑
t=1

Eti ) > 0, and 1 otherwise (and therefore consider

UAVi as inactive and update M).

To reduce the training time for the network and the
computational load of each UAV trajectory planning, the
movements of UAVs are restricted at each state st. Indeed,
each UAVi at a time-slot t, an action at = {ati|i ∈ M} is
taken, which consists of two parts:

• Ωti ∈ {0, π/4, 3π/4, π, 5π/4, 3π/2, 7π/4, 2π}: the
horizontal flying direction of UAVi.

• dti ∈ {0, . . . , dmax}: the horizontal flying distance of
each UAVi. If dti = 0, it means that UAVi is hovering
at the same position, otherwise UAVi moves to a certain
distance dti ∈ {1, . . . , dmax}, where dmax = 3.

In this way, as shown in Fig. 5, 25 basic actions are designed
numbered from 0 to 24.
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Fig. 5: Discret actions of each UAV.

For a given task, the action space A ,
{at|t = 1, 2, . . . , T}. The format of the action
at = [Ωt1, . . . ,Ω

t
M , d

t
1, . . . , d

t
M ] with a cardinality of (2M).

Moreover, Formally, the format of state st would be st =
[Con1(t), . . . , ConM (t), Et1, . . . , E

t
M , p

t
1, . . . , p

t
M , p

t
1, . . . , p

t
N ,

Θt
1, . . . ,Θ

t
M ] with a cardinality of (4M + N). The states

and the actions are defined in this way to allow the DRL
agent to both make decisions based on the current number
of connected zones and energy consumption. For this
purpose, the DRL agent uses the control policy to figure
out the movement of each UAV at each time-slot t ∈ T . To
accelerate the learning process, all the input elements (i.e.,
st, at, and rt) are normalized to [0,1] by dividing them by
their range.
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B. Reward Function

The idea behind the reward function is to maximize the
number of connected zones while maintaining the initial
number of UAVs hovering without having exhausted their
batteries during the whole episode. Therefore, the reward rt
is defined as:

rt = E


M∑
i=1

Conti(t)(∑M
i=1 E

t
i

M

)
− M∑

i=1

Θt
i (16)

The reward has to satisfy two main objectives: (i)
maximizing the coverage and (ii) minimizing the energy
consumption of each UAV at a time-slot t, which have to be

properly treated by the reward. E

 M∑
i=1

Conti(t)(∑M
i=1

Et
i

M

)
 is considered

as an energy-efficient incremental coverage, which aims to
incite UAVs to move in a way the number of connected
zones is increased at each step while consuming less energy.
Moreover, to ensure that the initial number of UAVs remains
the same at the end of the episode without exhausting their
available energy, the number of inactive UAVs

∑M
i=1 Θt

i is
subtracted from the reward.

C. Expected Penalties

Several conditions should be satisfied when UAVs take
actions, such as flying in the area of interest, avoiding
collisions with UAVs and obstacles, and maintaining the
connectivity among UAVs. Therefore, three penalties are
applied to UAVs:

1) Penalty for crossing the area boundaries: a penalty is
incurred whenever an action at by UAVi would result in
crossing the target area boundaries, which is given by:

PEN1
i =

{
0, if 0 ≤ xti ≤W and 0 ≤ yti ≤W
Υ0

1, Otherwise
(17)

2) Penalty for collisions: to ensure that UAVi avoid
collisions with a given obstacle obs or another UAVj ,
a safety distance L ≤ di,obs or L ≤ dij is defined,
where dij and di,obs are the distances between UAVi and
UAVj , and between UAVi and obstacle obs, respectively.
For simplicity, the safety distance with UAVs and
obstacles is set at the same length, where L < Ri,∀i ∈
M. Therefore, a penalty is incurred every time an
action at would result in the UAV going over the safety
distance, which is given by:

PEN2
i =


Υ0

2, if di,obs < L

Υ1
2, if dij < L

0, Otherwise
(18)

3) Penalty for losing connectivity: to satisfy the constraint
C6 of the optimization problem (12), the connectivity of
the UAV network should be maintained at each time-slot

t. To do so, we adopt the breadth-first search (BFS) [38]
to check whether there is a path from a given UAVi to
any other UAV in the network. Indeed, after updating the
UAV network connectivity using Algorithm 2, a Boolean
value bool = 1 is used if the constraint C6 is satisfied.
This process is described in Algorithm 3.

Algorithm 3: Connectivity checking using BFS
input : M, l
output: bool

1 begin
2 Execute Algorithm 2
3 bool← 1
55 for ∃i ∈M and ∀j ∈M and Θt

j 6= 1 do
6 path(i, j)←BFS(i, j) /* Find a path from i to

j based on l, where i 6= j. */
88 if path(i, j) then
9 Continue

10 else
11 bool← 0 and break

Therefore, a penalty is incurred every time an action at
would cause a problem of disconnection within the UAV
network, which is given by:

PEN3
i =

{
Υ0

3, if bool = 0

0, Otherwise
(19)

DISCOUNT derives the optimal solution by obtaining the
optimal policy π∗ that defines the set of optimal actions at
to execute at each state st. This process is repeated until the
expected sum of discount rewards will be maximized over a
finite flight period T . As an example, based on the policy π,
the total expected reward of the system from an initial state
s1 is expressed as follows:

Rπ =

T∑
t=1

Eπ[rt|s1] (20)

Then, the optimal policy π∗ is easily derived by maximizing
the total expected reward, i.e., π∗ = argmaxπRπ . To be
clear, the objective of DISCOUNT is to find the optimal policy
π∗ to maximize the long-term system reward, i.e., obtaining

argmaxπ∗E


∑M

i=1

∑Z
z=1

∑T
t=1 Con

t
i,z

M∑
i=1

T∑
t=1

Et
i

M



.

D. Markov Decision Model

Since we are dealing with a non-stationary environment,
we consider the non-stationary MDP consisting of the tuple
(S,A, Ct,Rt, γ) in the same way like in [27], where:
• S is the state space, at any time-slot t, the environment

state st ∈ S.
• At is the action space at time-slot t, which contains the

possible actions of each UAVi at time-slot t, i.e., at ⊂ At.
• Ct ⊂ S × At is a measurable subset of S × At and

defines the set of possible state-action combinations at
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the beginning of the tth time-slot. Ct contains the graph
of a measurable mapping.

• Rt : Cn → R is a measurable function where Rt(st, at)
provides the instant reward at time-slot t if the current
state st and a set of actions at is selected.

For a deep understanding, the current environment state, such
as the positions of UAVs, their energy levels, their covered
zones, their active status, and the positions of vehicles is quite
a sufficient statistic of the history to make a decision. That is
to say, the future is independent of the past given some current
aggregate statistics about the present, which satisfy the Markov
property. The objective of our DRL agent is to interact with
the dynamic vehicular environment and select the appropriate
actions for all UAVs, which maximize cumulative discounted
future rewards in the given time T .

E. Algorithm of DISCOUNT

The DISCOUNT structure is depicted in Fig. 6. During
their interaction with the vehicular environment ¬, UAVs
(controlled by a single agent on the satellite) select a set of
optimal actions at generated by the policy π∗(.) ¬. Then,
the tuple (st, at, rt, st+1) is stored in the experience replay
buffer ­. During the training process, we sample a prioritized
mini-batch ®. In the step ¯, based on (st, at, st+1) as an
input in the predicted network Q(.), we obtain the Q value
as an output. As for the target network °, DISCOUNT
selects the action for the next state st+1, which gives
argmaxa′∈AQ(st, a

′|ηQ) in the predicted network Q(.) and
identifies the corresponding Q value of state-action pair in the
target network tgtDDQN (.). Meanwhile, the predicted network
is updated by the loss function provided in (14). Based on the
updated Q-value, the agent selects a set of actions according
to the current state st with the adopted ε-greedy policy ±.

State Reward 

Centralized training 

𝐫𝐭 

Experience 

replay  

buffer 

D 

 

 

 

 

 

𝐬𝐭 
Mini-batch 

(𝐬𝐭,𝐬𝐭+𝟏) 

𝐫𝐭 

𝐬𝐭+𝟏 
(𝐬𝐭, 𝐚𝐭, 𝐫𝐭, 𝐬𝐭+𝟏) 
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Fig. 6: DISCOUNT structure.

The pseudo-code to train DISCOUNT and obtain the
appropriate trajectories of UAVs is formally presented in
Algorithm 4.

Algorithm 4: Centralized training of DISCOUNT
1 begin
2 Initialize replay buffer D to capacity D, where (D = ∅);
3 Randomly initialize ηQ, where ηQtarget = ηQ;
4 Episode← 0; Number of episodes← G;
5 Initialize ε and %;
6 Number of epochs← T ;
88 while Episode < G do
9 Collect the environment characteristics;

10 Initialize state s0 = [Coni(0), E0
i , p

0
i , p

0
n,Θ

0
i ],

∀i ∈M, ∀n ∈ V;
1212 for t← 1, . . . , T do
13 at ={

Random actions, ε probability

argmaxa∈AQ(st, a|ηQ), 1− ε probability
14 Execute: actions ait = [Ωt

i, d
t
i], ∀i ∈M;

15 Evaluate: get reward rt based on (16) and obtain a
new state st+1;

16 Observe:
st+1 = [Coni(t+ 1), Et+1

i , pt+1
i , pt+1

n ,Θt+1
i ],

∀i ∈M, ∀n ∈ V;
1818 foreach UAVi ∈M do
19 PENi =

∑3
n=1 PEN

n
i ;

2121 if PENi > 0 then
22 Cancel action ait of UAVi and update st+1;

23 rt ← rt −
∑M

i=1 PENi;
24 Store transition sample (st, at, rt, st+1) into the

replay memory D with maximal priority
priorityt = maxi<tpriorityi;

2626 if D is full then
2828 for f ← 1, . . . , F do
29 Sample transition (sf , af , rf , sf+1) ∼

based on (23);
30 Calculate importance-sampling weight ∼

based on (22);
31 Calculate TD-error ∼

(tgtDDQN −Q(sf , af |ηQ));
32 Update transition priority ∼ priorityf ←

|(tgtDDQN −Q(sf , af |ηQ))|;
33 Update weights ηQ of Q(.) by minimizing the

loss function ∼ based on (21);
34 Every M steps: ηQtarget = ηQ

3636 if ε > 0.01 then
37 ε← ε− %;

38 Episode← Episode+ 1;

39 Output: The optimal policy π∗.

Since there is no feasible manner to get full knowledge
about the dynamics of vehicles in advance before the
deployment of UAVs, the algorithm is considered as an offline
training phase to estimate the optimal policy π∗. Then, π∗

is extracted to control the movement of UAVs to cover
sparse areas with the maximal long-term system reward during
the online testing phase. Indeed, at the initial phase of the
algorithm, we initialize the reply buffer D of size D (Line
2). We randomly initialize the weights ηQ of Q(.) and the
target network with weights ηQtarget (Line 3). In Lines 4-6,
we initialize the number of episodes, the number of epochs
(time-slots), the exploration rate ε, and the decrement factor
%. In the second part of the algorithm (Lines 8-22), the training
process of DISCOUNT is made with G episodes, and in each
episode, there are T time-slots. In Lines 9-10, the environment
is initialized, and UAVs get the state s0. As for Lines 12-16, at
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each time epoch (time-slot), DISCOUNT selects a trajectory
action for each UAV based on the ε − greedy mechanism
according to output value Q(.). When the action is executed,
the system gets a reward rt and go to the next state st+1.
Then, an observation is carried out to see whether the UAVs
have exceeded their restrictions (17), (18), and (19). If it
is the case, a set of penalties is calculated in Lines 18-19.
These penalties are deducted from the calculated reward,
the involved movements are canceled, and the state st+1

is updated accordingly (Lines 19-23). Then, the transition
(st, at, rt, st+1) is stored in memory D according to the
adopted priority method. When memory D is full, the training
process starts by sampling a prioritized mini-batch of F
transitions to update the weights ηQ (Lines 26). This process
aims to minimize the following weighted loss function:

L(ηQ) =
1

F

F∑
f=1

Ψf (tgtDDQN −Q(sf , af |ηQ))2 (21)

where (tgtDDQN −Q(sf , af |ηQ)) is the temporal different
(TD) error and Ψf indicates the prioritized sampling weight,
which is used to correct the bias. According to [36], Ψf is
given by:

Ψf =
(|D|×PR(f))−ς

maxiΨi
(22)

where |D| is the size of the memory and the constant ς > 0.
During the training process, transition f is sampled according
to the following probability:

PR(f) =
priorityνf∑F
f=1 priority

ν
f

(23)

where priorityf indicates the priority of transition
(sf , af , rf , sf+1) and ν > 0 is the degree of priority. It
should be stressed that before memory D is full, priorityf
is initialized at the same value for all samples so that they
can have an equal chance of being sampled. When D is
full, priorityf is set to |(tgtDDQN − Q(sf , af |ηQ))| to
assign higher priority to the transition with higher absolute
TD error (Lines 28-32). In line 33, the weights ηQ are
updated by minimizing the loss function (21). In Line 37, a
decrement % is subtracted from ε at each epoch. It should
be stressed that DISCOUNT ensures a low variance and
avoids highly correlated data for successive updates. This
can be achieved thanks to the adopted prioritized mini-batch
in which multiple important experiences are sampled from
D. This kind of mini-batch can significantly optimize the
weights of the Q network such that the loss function in
(14) is significantly minimized during the training phase,
and thus calculating optimized actions and cope with the
non-stationarities induced by the dynamic speeds of vehicles.
It is worthy to note that to ensure a rapid adaptation to the
non-stationary environment, the agent should keep learning by
adopting a higher exploration rate and quickly adapt its policy
to maximize the long-term cumulative rewards. In addition,
by decoupling the predicted Q value and the target Q value,
DISCOUNT can also overcome the overestimation problem,
and thus reduce the bias.

V. PERFORMANCE EVALUATION

A set of experiments is conducted to evaluate the
performances of DISCOUNT. We first present the different
simulation settings and then interpret the obtained results.

A. Simulation settings

In the conducted simulations, a target area of 1.4 km ×
2.8 km is considered in Fig. 7. This area is divided into
98 fixed-size zones with two high-rise buildings (in red) that
constitute two obstacles for moving UAVs. To obtain the most
realistic results possible, the traffic of vehicles entering the
target area follows a normal distribution.

 

 
  

 

 

 

 

UAV 

vehicle 

Fig. 7: Map of our simulation.

The simulation runs are carried out with Tensorflow 1.14
and Python 3.6.9, through which DISCOUNT is trained for
1000 episodes, each having 100 epochs. Then, a test is
performed for 100 epochs and we calculate some crucial
metrics. The simulated DDQN consists of an input layer of
the neural network in the form of a state representative and
two fully-connected hidden layers composed of 512 neurons
for each one. The hidden layers are using the rectified linear
unit (ReLU) function for activation. The output layer is a
fully-connected linear layer, in which the number of neurons
is equal to the size of the action space. The values of all input
parameters used in the simulation are provided in Table III.

TABLE III: Simulation Parameters.

Parameter Value
Replay memory Prioritized
Memory size D 10000
Mini-batch size F 64
Discount factor γ 0.94
Initial ε exploration 1.0
Optimizer method RMSProp
RMSProp learning rate 0.00005
Υ0

1, Υ0
2, Υ1

2, Υ0
3 1.0

Zone size S 200 m
Prioritization sampling
weight Ψf

0.3 → 1.0

Surface of the area 3.92 km2

Number of UAVs [5 . . . 50]
Altitude of UAVs 100 m
Density of vehicles per
km2 [10 . . . 100]

Activation function ReLU
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Fig. 8: Performance comparisons over episodes (Number of UAVs=5 and Vehicles/km2=50).

B. Numerical results and discussions

In this part, simulation results are presented to validate
the performance of DISCOUNT based on three phases: (i)
Training phase, (ii) Testing phase, and (iii) Routing phase. In
the first phase, DISCOUNT is trained for 1000 episodes, and
ηQ is updated accordingly. As for the second phase, the last
updated ηQ value is used to study the behaviors and test the
performance of DISCOUNT, where another set of mobility
traces will be generated. While in the last phase, DISCOUNT
is adopted within the routing protocol proposed in [13] to show
its benefits in terms of several metrics.

1) Training phase: Firstly, we calculate and analyze the
obtained reward per each episode (see Fig. 9). It is clearly
observed that the obtained rewards converge to stable values
after 400 training episodes for DISCOUNT. This is because
UAVs in DISCOUNT can learn the vehicular network’s
dynamics efficiently by interacting with its entities while
making the right decisions to increase the coverage of empty
zones and reduce energy consumption.
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Fig. 9: Reward per episode in DISCOUNT (Number of
UAVs=5 and Vehicles/km2=50).

To study the effectiveness of DISCOUNT, a comparative
study is performed, where the performances of DISCOUNT
are compared with those obtained by the original DQN [39]
and Dueling DQN [40] under the same parameters. It should
be stressed that Dueling DQN is an enhanced version of DQN,
which separately estimates state-value and the advantages of
each action. Moreover, we have also considered another DRL
variant consisting of a DQN based on an LSTM network,

namely DQN+LSTM, which follows the same principle as in
[41]. The objective of DQN+LSTM is to define the long-term
correlated patterns over the input and output states. It is
worthy to note that the sets of actions and environment
states are recorded in the LSTM network and its output is
used as an input in the DQN. At a first step, we start by
analyzing the convergence performance in terms of average
reward, the average energy consumption, and the ratio of
covered zones for the three considered algorithms (c.f., Fig.
8). Generally, as illustrated in Fig. 8(a), it is shown that the
average reward per episode tends to increase over episodes
until convergence. Indeed, at the beginning of the experiment,
the average reward is approximately the same for the three
algorithms, which is explained by the insufficient information
provided by the interaction with the environment. However,
with the increased number of episodes, UAVs accumulate more
and more rewards by enlightening the environment. It can
be distinguished that DISCOUNT significantly outperforms
by alleviating the overestimation problem and enhancing
the training stability, which is not the case for DQN and
Dueling DQN. Additionally, compared with DISCOUNT, the
cumulative rewards of DQN and Dueling DQN converge
more slowly, which is caused by two different issues: (i)
the over-fitting issue of DQN and (ii) the extra layers used
by Dueling DQN which slow down the training speed. It
can also be shown that DISCOUNT overcomes DQN+LSTM,
which is due to the time taken by DQN+LSTM to preserve
more important experiences and try to define the long-term
correlated patterns between them to estimate the optimal
policy π∗.

To top it off, the obtained results related to the energy
consumption and the ratio of covered zones show that
DISCOUNT achieves better performance compared with the
other algorithms. Indeed, as shown in Fig. 8(b), it is clearly
distinguished that DISCOUNT obtains the lowest energy
consumption after convergence, which is 15% lower than that
of the DQN+LSTM algorithm. This is because DISCOUNT
learns faster and places UAVs at the appropriate locations so
that they move less to reach frequent sparse areas. As for
Fig. 8(c), DISCOUNT covers more CoIs after convergence,
which is explained by the fact that UAVs in DISCOUNT can
predict better the locations of CoIs that allow connecting the
maximum number of zones. As a result, DISCOUNT covers
more than 10% of zones compared with DQN, Dueling DQN,
and DQN+LSTM.
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2) Testing phase: To evaluate the performances of
DISCOUNT, in addition to DQN and Dueling DQN, we
consider two baseline methods, (i) Greedy and (ii) Random.
The first method selects at each time-slot the action that
can maximize the reward while considering the different
constraints mentioned above. While in the second method,
random action is selected for each UAV at each time-slot.
The optimized actions of DISCOUNT, DQN, and Dueling
DQN, are calculated by using the latest updated ηQ during
the training phase. It is worthy to note that each point of
the following obtained results represents the mean of 30
simulation runs with 95% confidence interval.
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Fig. 10: Average energy consumption results.

Initially, we study the impact of the density of UAVs
and vehicles on average energy consumption (EC) (see
Fig. 10). As depicted in Figs. 10(a) and 10(c), overall,
DISCOUNT outperforms the other algorithms in terms of
energy consumption for each density of UAVs, representing
an improvement of 15% over RL algorithms and 60% over
baseline methods. This is explained by the fact that UAVs
in DISCOUNT can place themselves near the zones that are
likely to be CoIs in the future, and thus UAVs move less than
other algorithms and methods. In Figs. 10(b) and 10(d), we
distinguish that the energy consumption of UAVs is high at
low densities of vehicles due to the constant movement of
UAVs that are looking for the increasing number of CoIs.
However, at high densities of vehicles, the number of CoIs is
getting weaker and weaker, which reduces the movements of
UAVs and thus their energy consumption. As for the random
and greedy methods, UAVs are permanently moving either
randomly or looking for a more accumulating reward, which
considerably consumes more energy.

Secondly, as shown in Fig. 11, it can be observed that
DISCOUNT consistently outperforms the RL algorithms and
the two baseline methods in terms of covered zones’ (CZ)
average. Overall, in Figs. 11(a) and 11(c), when the density of
UAVs is low (i.e., 5 ≤ Density ≤ 20), the number of covered
zones is low, and it increases as UAVs become denser and
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Fig. 11: Average of covered zones results.

denser, which is obviously explained by the number of CoIs
that could be covered. Generally, DISCOUNT achieves better
performance compared with other schemes. This is explained
by the fact that taking appropriate decisions certainly leads to
better coverage, which is not the case of baseline methods or
RL algorithms that require more learning steps. From Figs.
11(b) and 11(d), it can be noticed that the number of covered
zones decreases as the density of vehicles increases. This is
because the number of CoIs that should be covered decreases.
In the high UAV densities, DISCOUNT tries to find the
maximum number of CoIs to cover based on its robust learning
algorithm.
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Fig. 12: Number of active UAVs during an episode.

In Fig. 12, we analyze the number of active UAVs during
a whole episode. On average, DISCOUNT outperforms all
other techniques by making the number of active drones
approximately stable during the testing phase. This is because
DISCOUNT is based on an energy-efficient strategy that
allows UAVs to only move when necessary to cover CoIs.
As for the baseline methods, specific UAVs are moving
permanently according to their own rules, causing high energy
consumption. Thus, some UAVs exhaust their batteries before
the end of the episode.
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Fig. 13: Routing performances of Ref. [13] using DISCOUNT and baseline methods.

3) Routing phase: To demonstrate the different benefits of
DISCOUNT when applied in conjunction with the routing
protocol that is proposed in [13], we calculate three metrics
under different scenarios (see Fig. 13). In the first scenario,
we set the number of UAVs to 5 and vary the density of
vehicles. While in the second scenario, we set the density
of vehicles per km2 to 50 and vary the number of UAVs.
Three different metrics are calculated for each scenario, which
are Packet Delivery Ratio (PDR), End-to-End Delay (EED),
and Overhead. It is worthy to note that we consider the same
routing parameters in [13].

In Fig. 13(a), we clearly notice that the DISCOUNT
strategy generates a high PDR compared with the baseline
strategies. This can be justified by the optimized UAV actions
at each density of vehicles, where UAVs are trying to fill the
communication gaps wherever it is possible. Fig. 13(c) shows
that the DISCOUNT strategy achieves the lowest EED for all
vehicle densities. This is explained by the fact that routing
paths stay connected for long periods, and thus avoiding the
re-initialization of the discovery process and minimizing the
delivery delay. In Fig. 13(e), we clearly distinguish that the
DISCOUNT strategy generates less overhead compared to
baseline strategies. This is mainly due to the fact that routing
paths, once established, transit the maximum of data packets
without generating control packets. As shown in Fig. 13(g),
PDR with DISCOUNT strategy tends to be maximized to its
higher levels as the number of UAVs increases. This is due
to the increased number of covered empty zones, which can
definitely help avoiding packet losses. In Fig. 13(i), we notice

that the DISCOUNT strategy generates the lowest delays for
all UAV densities. This is caused by the use of the greedy
forwarding technique that can minimize the number of hops,
and thus the delay of delivery. Finally, Fig. 13(k) shows that
the DISCOUNT strategy generates the lowest control overhead
for all UAV densities. This is because the increased number of
UAVs tends to connect all possible terrestrial gaps, and thus
minimizing the number of disconnections and avoiding the
re-initialization of the discovery process at each disconnection.

VI. CONCLUSION

UAVs are considered as a flexible solution to provide
wireless connectivity to disconnected vehicles. However,
several constraints should be considered, such as collisions,
energy restrictions, connectivity between UAVs, and
movement optimization. Due to the complexity of these
constraints, in this paper, we study an energy-efficient
DRL-based framework called DISCOUNT, which intelligently
controls the movements of multiple UAVs over a dynamic
environment, and efficiently places them as relays between
disconnected vehicles whenever possible. It has been proved
that DISCOUNT was able to both learn quickly the terrestrial
vehicular environment dynamicity and guide UAVs through
the most appropriate trajectories for providing effective relay
between disconnected vehicles. The obtained results show
that DISCOUNT outperforms the considered RL algorithms
and the baseline methods in terms of energy consumption and
coverage. Further, DISCOUNT reduces inter-UAV collisions,
maintains the connectivity among UAVs, and prevents UAVs
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from exhausting their available energy. As a deduction, we
believe that by deploying UAVs for a significant pretraining
period of time (e.g., T > year), UAVs can almost perfectly
learn the traffic flow of vehicles for a given region and can
accurately select the appropriate placements for coverage. As
future work, we aim to extend this framework to control the
unlimited action space of UAVs and achieve achieving fair
and near-optimal coverage of an urban vehicular network.
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