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Two-way kernel matrix puncturing:
towards resource-efficient PCA and spectral clustering

Romain Couillet ! 2 Florent Chatelain' Nicolas Le Bihan !

Abstract

The article introduces an elementary cost and stor-
age reduction method for spectral clustering and
principal component analysis. The method con-
sists in randomly “puncturing” both the data ma-
trix X € CP*™ (or RP*™) and its corresponding
kernel (Gram) matrix K through Bernoulli masks:
S € {0,1}*" for X and B € {0,1}"*" for
K. The resulting “two-way punctured” kernel is
thus given by K = S[(X © S)M(X © 9)] © B.
We demonstrate that, for X composed of inde-
pendent columns drawn from a Gaussian mixture
model, as n,p — oo with p/n — ¢¢ € (0, 00),
the spectral behavior of K — its limiting eigen-
value distribution, as well as its isolated eigen-
values and eigenvectors — is fully tractable and
exhibits a series of counter-intuitive phenomena.
We notably prove, and empirically confirm on var-
ious real image databases, that it is possible to
drastically puncture the data, thereby providing
possibly huge computational and storage gains,
for a virtually constant (clustering of PCA) perfor-
mance. This preliminary study opens as such the
path towards rethinking, from a large dimensional
standpoint, computational and storage costs in
elementary machine learning models.

1. Introduction

The ever-increasing tremendous amounts of data that ma-
chine learning algorithms now need to face start to tip the
scale towards a major computational and storage resource
bottleneck. In such fields as astrophysics with the recent
SKA radiotelescope or Internet data mining, the collected
data are simply too large to be stored and must therefore
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be processed in real-time before being discarded altogether.
In parallel, even if those data could be stored, algorithm
complexities beyond linear can in general not be afforded.
This is already a problem for as elementary methods as
principal component analysis (PCA) or spectral clustering —
both related to Gram matrix eigenvector retrieval.

Evidently, numerous works have proposed various direc-
tions of cost-efficient methods for PCA and spectral cluster-
ing. For instance, the line of works (Johnstone & Lu, 2009;
Cai et al., 2013; Deshpande & Montanari, 2014) provides a
series of sparse PCA methods by assuming that the principal
components are sparse: the main gain arises from automati-
cally selecting the reduced set of covariates having largest
amplitude. More recently, inspired by statistical physics,
(Zhong et al., 2020) proposes an empirical Bayes version of
PCA, by setting a (non-Gaussian) product measure prior on
the principal components: (Zhong et al., 2020) in particular
obtains (in simulations) a thousand-fold reduction in the
number of data necessary to maintain equal performance
with respect to standard PCA. Yet, the most popular meth-
ods to handle large dimensional PCA fall into the realm of
dimensionality reduction and random projections (Freund
et al., 2007) which, one way or another, also require prior
knowledge on the sought principal components to avoid
dramatic performance losses. Similar ideas have been de-
vised for spectral clustering, such as hierarchical clustering
(Murtagh & Contreras, 2012).

But these works all exploit strong structural prior on the
data (e.g., a prior on principal components) to reduce the
effective data dimension, and in general only operate on one
dimension — either the data size or number.

As for mitigating storage constraints, clustering can be per-
formed in a streaming manner, as proposed in (Keriven et al.,
2018) by means of a data sketching approach. This approach
however looses much discriminating power in not effectively
“comparing” all raw data and thus fails to compete against
spectral methods. Stochastic gradient descent in deep neural
networks also performs clustering in a non-spectral man-
ner by “streaming” in small data batches (Bottou, 1991),
but these algorithms only converge after multiple epochs,
meaning that the data must be stored for later reuse. More
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conventionally, since the addition of new data induce succes-
sive rank-1 perturbations of the sample covariance, iterative
perturbation methods based on the Sherman-Morrison for-
mula can be exploited (Engel et al., 2004), however here
again at the cost of full data storage.

To cope with these limitations, the present article introduces
a new random data sparsification method which trades off
storage and computational cost reduction against perfor-
mance. The proposed two-way puncturing approach con-
sists in random Bernoulli deletions of entries (i) of the data
matrix X = [x1,...,2,] € CP*" (the indices of non-zero
entries differing across data) and (ii) of the Gram (sample
covariance %X XM or kernel %X H X') matrix, generically
resulting in the kernel matrix model

K= {;(XQS)H(XQS)} ®BeC™™ (1)

for random independent Bernoulli S' € {0, 1}7*™ and (sym-
metric) B € {0, 1}"*", with respective parameters £g and
ep € (0,1]. Small values of g reduce the storage size of
X and the cost of the inner-product evaluation zz;, while
small values of ¢ reduce the number of inner-product cal-
culus in K and the subsequent processing of the sparsified
matrix K. The approach follows after our preliminary work
(Zarrouk et al., 2020), restricted to S = 1p11 (or equiva-
lently eg = 1) and to a simpler model for X, which already
revealed that, contrary to intuition, the puncturing proce-
dure in general does not affect the structure of the estimated
eigenvectors (thus principal components in PCA or data
classes in clustering). This conclusion still holds true here.
More surprisingly, the analysis also demonstrates that there
exist well-defined regimes — in terms of the ratio p/n and
puncturing intensities €g and € g — for which the PCA per-
formance is virtually unaltered. In particular, for equivalent
levels of sparsity (in terms of resulting computational costs),
we confirm here the finding of (Zarrouk et al., 2020) accord-
ing to which the performance of PCA or spectral clustering
on K largely overtakes the performance of the possibly more
natural subsampling alternative.! This result is recalled in
Figure 1 foreg =landep =¢.

Our main findings may be summarized as follows:

1. for data z; arising from a Gaussian mixture
model EIZ:1 meN (pe, I,) (resp., a Gaussian measure
N(0,C) with C = I, + R and R of low rank), we
show that K has a limiting eigenvalue distribution fol-
lowing a variation of the popular Marc¢enko-Pastur and

!Subsampling consists here in performing PCA or spectral
clustering on n/e subsets of the data, each of size en, for some
e € (0,1] a multiple of 1/n, before merging the n/e results
(which for simplicity we assume here comes at no cost).

1 Y
T 08| \\ Classification possible |~~~ Ksup |
o . with K, and — K
g 06 el
8 Rt
E/ 04\ = eessiiE
02| Classification possible only with K|
3
- 0 | Classification impossible

0.02 0.04 0.06 0.08 0.1
€ (+ K more sparse, K, smaller)

Figure 1. Phase transition diagram of spectral clustering for punc-
turing matrix K with es = 1 and ep = ¢ versus subsampling
Kgup € C"*"¢. Here for z; ~ sCN (i, Ip) + sCN (—p, I,),
and n/p = 100 in the large n, p limit. Solid and dashed lines
indicate theoretical phase transitions. The puncturing approach
largely overtakes the subsampling method.

semi-circle laws; upon conditions on the eigenvalues of
the matrix {, /7,7, Iﬂj}ﬁjﬂ (resp., of the matrix R),
a phase transition phenomenon occurs beyond which
some eigenvalues of K isolate, and their associated
eigenvectors correlate to the population eigenvectors;

2. the quantities p/n, €g, and £ 5 modulate the storage-
and-computational cost versus (PCA or spectral clus-
tering) performance trade-off; in particular, for small
€5, €, the performance only depends on e%e 5 B,

3. for small p/n ratios (i.e., for huge amounts of data), the
performance of PCA and spectral clustering plateaus
for a large range of values of € g (with g fixed), before
suffering a sharp avalanche phenomenon for €5 below
a certain threshold: this in particular indicates that
intensive puncturing (and thus complexity and storage
reduction) almost comes for free in this regime;

4. simulations on classes of Fashion-MNIST and Big-
GAN generated images qualitatively (and partially
quantitatively) confirm our theoretical findings, justify-
ing the possibility to drastically reduce computational
cost with virtually no impairment on classification per-
formance.

Supplementary material. All proofs of our main results,
along with Python codes to reproduce our simulations, are
deferred to the supplementary material.

2. The two-way puncturing model

Before relating our study to principal component analysis
and spectral clustering, we first formalize the model under
study in a generic (and thus abstract) manner.
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2.1. Abstract model

Let X € CP*™ be a random matrix satisfying the following
assumptions.”

Assumption 1 (Data model).
X=7Z+P

in which Z;j ~ CN (0, 1) are independent, and P € CP*™
is a rank-k matrix for some integer k.

Also define the binary puncturing matrices S € {0, 1}P*"
and B € {0,1}™*™ as follows.

Assumption 2 (Puncturing matrices). Let

* Si; € {0,1} be Bernoulli random variables with mean
€s, independent across i, j;

* B;; = Bj; € {0,1} be Bernoulli random variables
with mean €, independent across i > j;

* B;; = b€ {0,1} be deterministic and fixed.

Besides, matrices S, B, and X are mutually independent.

Our objective is to study the spectral properties of the ran-
dom matrix model (1). Specifically, we determine the limit-
ing spectrum as well as the existence and characterization of
isolated eigenvalues (i.e., away from the limiting spectrum
and referred to as spikes) and their associated eigenvectors,
in the limit of large p, n. To this end, the following growth
rate assumptions are requested.

Assumption 3 (Large p, n asymptotics). As n — 0o,
p/n — ¢ € (0,00)

and there exists a decomposition P = LV™ of P with
V e C"¥* isometric (i.e., VAV = I,) and

1
~I"L - L
n

for some deterministic matrix £ € C**F_ In particular, the

eigenvalues of L are the limiting k non-trivial eigenvalues
of %PHP. Besides,

. 27
hmnsup 1r£%xn{\/ﬁ%j} =0.
1252k

The condition p/n — ¢y € (0, 00) translates the practical
fact that both the dimension and number of data are large
and commensurable. The convergence (1/n)LHL — L
with P = LV" is merely technical: the decomposition
P = LV can always be ensured by singular value decom-
position, and the convergence to £ is mostly for technical
convenience. In effect, the only stringent condition is that
lim sup,, max; ; \/HVZ = 0: while naturally satisfied for
spectral clustering (the V;;’s are the normalized binary class
indicators), for PCA this demands that the principal compo-
nents be delocalized, i.e., not sparse.

2All results are provided in C but are equally valid in R.

2.2. PCA and spectral clustering

The model (1) specializes to principal component analysis
and spectral clustering.

Spectral clustering. Letting P = MJ', where
M = [)Ule"'MUJk] S (CpXk and J = []1,,]“ S
{0, 1}k with [j,]; = O{E[z;)=p,} fOr some ny, ... ng,
X models a k-class Gaussian mixture model with z; ~
Z’;:l 7aCN (i, I,) and n,/n — 7, almost surely as
n — oo. Further assuming that

ne/n — mp =[]y € (0,00)
D MPMD: — M

where D, = diag({m}r,), we get that P =
1
2

1
(MDZ2)(JD,, ?)H with D,, = diag({n;}*_,), for which

(DR T(IDy %) = I, —(MD2)H(MDE) — M

1
n
thereby satisfying Assumptions 1-3, for £ = M. Under
this setting, %X H X is (the elementary version of) a kernel
random matrix used in machine learning as the base ingre-
dient for kernel-based classification methods. In particular,
the eigenvectors associated with the dominant eigenvalues
of 2 X"X are the base elements of the popular (kernel)
spectral clustering algorithm (Von Luxburg, 2007).

Principal component analysis. Letting instead P = Z AR
with A € C"** deterministic and Z € CP** random with
i.i.d. CN(0, 1) entries, independent of Z, we get
H
XM= [In A] [gH]
which is a matrix with CN(0,I,, + AAM) independent
columns, so that %X H X is a sample covariance matrix for
the p rows® of X of dimension n; the dominant eigenvec-
tors of 1 X" X are therefore the principal components of
the popular principal component analysis method. Further
requesting A to have spectral decomposition A = USVH,
where S € R’iXk satisfies S7.S — S deterministic, one gets
that P = (ZUS)V™ with V?V = I, and

1 - .
E(ZUS)H(ZUS) - S
again satisfying Assumption 3 for £ = S.

3. Main results

As per standard random matrix methods, the technical ap-
proach to study the limiting spectrum of K consists in char-
acterizing the resolvent matrix

Q2) = (K —21,)"!

30One must be careful here that standard notations of n and p
are reversed under this setting.
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defined for z € C\ {\;}; with \; the eigenvalues of
K. Specifically, the spectral measure v, = %Z?:l O,
of K relates to the Stieltjes transform m,(z) = [(t —
2)"tuy (dt) = LtrQ(z), while the eigenvector @; € C™ as-
sociated to eigenvalue \;(K) relates to the Cauchy-integral
il = 5L $p. Q(z)dz for Ty, asmall positively oriented
complex contour circling around \; only.

3.1. Limiting spectral behavior

Our core technical result provides a said deterministic equiv-
alent for the random matrix Q(z), from which the limiting
behavior of the eigenvalues and eigenvectors of K follows.
Theorem 1 (Deterministic equivalent for Q). Under As-
sumptions 1-3, let z € C be away from the limsup of the
union of the supports of V1, Vs, . ... Then, as n — oo,

-1

G enm(s)

Q(z) &> m(z) [In + 1+ EBEscalm(Z')

where m(-) is the unique Stieltjes transform solution to

1 —2.3 3 2
z=¢egb— —— —cylepetm(z) + % Ej;asm(z)
m(z) 1+ ¢y epesm(z)

and the notation A < B indicates that, for any linear
functional v : C"*™ — R of bounded infinity norm, u(A —
B) — 0 almost surely as n — <.

One must understand the theorem as follows: since Q(z)
encapsulates the structural spectral information about K,
this information is fully determined (in the large n, p limit)

(i) by the scalars eg, € g, cg and b; these mostly impact the
shape of the limiting spectrum in defining m(-)) and
modulate the “noise level” of the eigenvectors (from
the factor preceding V £V in the expression of Q(-));

(ii) by the rank-k matrix ¥V £V"; this matrix defines the
“average” behavior of the dominant eigenvectors of K:
these eigenvectors are simply “isotropic noisy versions”
of linear combinations of the columns of V. That
is, mapped to the applications in Section 2.2, noisy
versions of either the class canonical vectors j,’s or of
the genuine PCA vector.

As an immediate — and possibly quite surprising — con-
sequence, the dominant eigenvectors of K are, up to ex-
tra homogeneous noise, the same as those of PHp =
]E[%X HX] — I,,. The proposed two-way puncturing algo-
rithm therefore does not affect spectral algorithms as the
structure of the retrieved eigenvectors is maintained.

Let us now quantify these so far qualitative statements. As
a first corollary of Theorem 1, with probability one,

%trQ(z) =my(2) = m(z)

which implies, according to random matrix theory, that

n
1
V,,szg O, =V
n-
=1

almost surely, where v is the unique probability measure
having Stieltjes transform m(z) (ie., m(z) = [(t —
2)~ty(dt)). It thus suffices to solve the defining equation
for m(z) in Theorem 1 to estimate the limiting spectral
distribution v of K.* Figure 2 indeed confirms the corre-
spondence between the empirical (finite n, p) spectrum v,
of K versus the estimated limit v.

Remark 1 (Sitting between Marcenko-Pastur and Wigner).
Not surprisingly, when eg = landb =1, K = %(X ®
SYH(X © 8) with X ® S a matrix with i.i.d. entries of
zero mean and variance €%, so that v falls back onto the
popular Marcenko-Pastur distribution (Marcenko & Pastur,
1967) (up to an eg scale). Precisely, for 2/ = z/eg and
m(z) = [(t/es —z) " v(dt) (i.e., the Stieltjes transform of
the limiting measure of the \;/cg), the canonical equation
of m(z) in Theorem 1 becomes

1 o ()

2 =1- —
m(z') 1+ cytm(2)

which is the defining Stieltjes transform equation of the
Marcenko-Pastur law. The more interesting small € g setting
is treated in Section 3.3 and gives rise to a Wigner semi-
circle limit instead (Wigner, 1958). As such, through the
values g, € g, the limiting spectral measure v continuously
moves from the Marcenko-Pastur to the Wigner semi-circle
laws. Figure 2 illustrates this observation: the shape of v is
simultaneously reminiscent of both laws.

3.2. Phase transition and dominant eigenvectors

The limiting Stieltjes transform m(z) determines the
“macroscopic” behavior of the spectrum v,, of K, but does
not provide the position of its isolated eigenvalues and even
less the shape of the associated eigenvectors. To this end, a
deeper investigation of the deterministic equivalent of Q(z)
is needed. Our next result provides this analysis.

Theorem 2 (Phase transition, isolated eigenvalues and
eigenvectors). Define the functions

9 1 9
F(t):t4+t3+2<1—co)t2—?t—cg
£s €% £B ey &5
_ €S EB
G(t) = egb ! 1 t
(t) = esb+co epes( +6S)+1+sst+t(1+€5t)

and I' € R be the largest real solution to F(I') = 0.
Further denote 01 > ... > (f the k < k distinct eigen-
values of L of respective multiplicities L1, ..., L;, and

*The measure v is practically retrieved from m(-) by using the
inverse formula v/(dt) = limy o 2 S[m(t + w)]dt.
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Figure 2. Eigenvalue distribution v,, of K versus limit measure
v, for p = 200, n = 4000, z; ~ AN (u1,Ip) + .6N (p2, Ip)
for [u], 1317 ~ N(0,1[1935] @ L) es = 2.5 = 4
b = 1. Sample vs theoretical spikes in blue vs red circles. The two
“humps” remind the semi-circular and Marcenko-Pastur laws.

Iy, ..., I0; € R¥** the projectors on their respective asso-
ciated eigenspaces. Similarly denote (\1,01), ..., (An,On)
the eigenvalue-eigenvector pairs of K in descending order
and gather the first k eigenvectors under the isometric ma-
trices Vi = [01,...,01,] up to Vi = [Oh—r 41, - -, Uk].

Then, fori € {1,...,k}andforall j € {L1+...+L;_1+
1,...,L1+ ...+ L;},

) o G(ﬁz) N lfgZ >T
Aﬁ”ZZ{G(F) LT
almost surely, and

F()e}

ViV o GVILVRY, for ¢ = { éi(1+5s@i)3 ' ? >T

) [ —
with the notation ‘<’ introduced in Theorem 1. In par-

ticular, if the £;’s have unit multiplicities with associated
population eigenvectors v;, then

|l o2 = ¢, i=1,...,k.
To best understand the theorem, suppose that P = [v is
a rank-1 matrix with ||[v]|?> = 1 and ||I||?/n = ¢. Then,
if £ > T, with T the largest solution to F(I') = 0 — this
threshold only depending on €g, € g and ¢y —, the spectrum
of K exhibits an isolated eigenvalue J, the eigenvector ¥
of which aligns to v: i.e., f)Hv\z — ¢ > 0. Otherwise, if
¢ < T, the largest eigenvalue A of K remains “stuck” in the
limiting bulk of eigenvalues of K and |9Hv|? — 0 (i.e., the
eigenvector ¥ does not carry any information on v: PCA
and spectral clustering both fail in this scenario). Figure 3

illustrates the limiting (squared) alignment ( as a function
of 4.

In the more general setting where P is a rank-k matrix, pos-
sibly with multiplicities, the theorem specifies the conditions
on €p, €s and ¢y under which the dominant eigenvectors of
K remain correlated (and to which extent) to the population
eigenspaces. This characterization is of tremendous impor-
tance to assess the exact performance of PCA and spectral

= 1 T

< |

w 0.8 ! n
+ /o

= 06} | !

N ! L/ —— (.2,.025,1)
”ucf 0.4 :“ :,/,6 ('17'27 2)

< 7 ----(.05,.05,1)
~ 0.2 i ----(.1,.0125,1)

Il it (.05,.1,2)
vy 0 o

0 100 200 300 400
l

Figure 3. Illustration of Theorem 2: asymptotic sample-population
eigenvector alignment for £ = ¢ € R, as a function of the “in-
formation strength” ¢. Various values of (eg, g, co) indicated in
legend. Black dashed lines indicate the limiting (small g, eR)
phase transition threshold I" = (s%agcgl)’%. Ases,ep — 0,
performance curves coincide when cpe%cy Yis constant (plain
versus dashed set of curves).

clustering under the double-puncturing cost reduction. Fig-
ure 3 illustrates Theorem 2 in a clustering setting.

An important quantity of Theorem 2 is the function F', which
intervenes both to establish the condition under which infor-
mative isolated eigenvalues are found in the spectrum of K,
thereby defining the phase transition threshold for the pop-
ulation eigenvalue ¢; (through F'(¢;) = 0), and to evaluate
the corresponding empirical eigenvector(s) quality through
G = F(6;)ed/(6:(1 + esl;)?) (which is zero right at the
phase transition threshold). The phase transition determines
which values of the tuple (eg, €5, ¢o, ¢;) coincide with the
emergence of an isolated eigenvalue in the spectrum of K
associated to the population eigenvalue ¢;, and thus to the
actual feasibility of PCA or spectral clustering.

Assume now that ¢y < 1 (i.e., n > p) and that eg and ¢;
are kept fixed and away from zero. Then, in the expression
of F'(¢;), 1 > ¢o/ep so that, in the first order, F'(¢;) is
independent of € . This quite importantly implies that the
“function” g : eg — eg(ep) such that F'(¢;) = 0is mostly
flat for a range of non-small values of € 5. This behavior is
confirmed in Figure 4 (left display). Also, since {; would
also marginally depend on ¢ g, the eigenvector quality is also
the same for a wide range of € . The major consequence of
this remark is that, for ¢y < 1, e g can be taken quite small
without affecting the quality of the dominant eigenvectors:
puncturing through B does not affect the PCA or spectral
clustering performance and thus almost comes for free!

Conversely, still for ¢y < 1, for g fixed and away from
zero, we find that, at the phase transition,

ep ~co/(1+e5t;)%

As such, the reverse function € g(gg) is quite different from
es(ep): it mostly behaves as 1/£% so that, in order not to
loose performance, increased sparsification through S must
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Figure 4. Phase transition curves F'(¢) = 0 for L = ¢ € R and
varying values of ¢, for ¢co = .05. Above each phase transition
curve, a spike eigenvalue is found away from the support of v. For
large (, a wide range of c’s (resp.cs) is admissible at virtually
no performance loss. Here, also, sparser B matrices are more
effective than sparser S matrices.

come along with reduced sparsification through B.

Of utmost interest though is the case where ¢y and ¢; are
fixed (although, as we will see, E? /co must be large), and
where both Bernoulli parameters € g and €5 assume small
values. This scenario is all the more relevant that Theo-
rems 1-2 and their corollaries take on simple and intuitive
forms. This setting is discussed next.

3.3. Small € 3, £ limit

Letting 2’ = /co/epe%(z — egb), we obtain, in the limit
of small e and g, that

2= —=1/mp(z") —mo(z") + 0 ((636%60_1)%72’10(2/))
with mo(z) = (g lepe)im((cyleped)2z + esh), ie
for v the measure associated to m(z), mg is the Stieltjes
transform of the measure v(¢/(cy ‘e pe?)?).

This is the defining equation of Wigner’s semi-circle law
(Wigner, 1958) centered at egb and with edges egb &

2(co 15355)

Similarly, assuming ¢; > T, and letting p, = (p; —

esb)/cy teped > and U, = l;(epecy 12, we find, after
first order Taylor expansion, the spike equation mg(p}) =
—1/€, + o((e pe%cy*) ), or equivalently

ph= b +1/6+ o ((encdeg )

which is the classically known isolated eigenvalue from
the deformed Wigner random matrix (Pastur & Shcherbina,
2011, Chapter 2.2). The scaling of ¢; into £} importantly in-
dicates that, for a non-trivial spike to emerge, the eigenvalue
¢; of £ must scale like O((cosglsEQ)% ).

In practical terms, these results show that (i) for spectral
clustering to be feasible (but non-trivial), the inter-class

distance ||f1q — 1||* must scale like /co/(£e%), and (ii)

for PCA, the eigenvalues of the principal components must
scale like v/co/(epe%).

As for the alignment of eigenspaces, it is given by

0((638500 )z ))VH vH

which, again, is a classical result in the deformed Wigner
random matrix model. Setting the alignment to zero, this
result also provides a much simpler value for the phase
transition threshold ¢; = I' of Theorem 2 (in the limit of
small £g, e g) which corresponds to ¢; ~ 1, or equivalently

UL, (1 —1/(0)?

I~ 1/(535%0&1)%.

Remark 2 (Trading off 5, 5 and ¢p). As a consequence
of the results above, it appears that, for small values of
ep, €5 and ¢y L the spectral behavior (eigenvalues and
eigenvectors) of K is unaltered so long that EBE%CO_I is
constant. For instance, doubling n is equivalent to doubling
e g or multiplying € 5 by \/2. This is confirmed by Figure 3 in
which the two sets of plain or dashed curves, corresponding
to constant e ge%cy ', almost coincide.

It is important to further note that, unlike € g, € is squared
in the expression € pe%,.cy ! due to the fact that, denoting S =
(81, ..., 8n), the inner products (z; ® s;)™(z; © s;), for all
i # j, involve on average €% terms (since %E[sjs]] =¢e2).

One must be careful not to confuse the findings of Sec-
tion 3.2 on non-small e g according to which e € (0, 1]
has a marginal impact on performance (and thus that inten-
sive puncturing comes for free), to the present results which
on the opposite indicate that for small € g, more intensive
puncturing decreases the performance. Both regimes are
very different as Figure 4 clearly indicates.

4. Practical consequences: the
storage/complexity performance trade-off

The main interest of the two-way puncturing approach lies
in its effective computational and storage cost reductions,
while maintaining high performance levels. As a follow-up
of Remark 2, puncturing through the matrix S can be traded
off by puncturing through B, and vice-versa, with, we will
see, varying effects on storage and computational costs.

4.1. Storage and computation costs

Computing K. For B;; = 1, evaluating K;; comes at
average cost of E[Y"7_ S;0S¢;] = €% products. As a result,
the whole matrix K, with an average > ', E[B;;] =
epn? (if b =1, and eg(n — 1)? if b = 0) non-zero entries,
has O(n?pe?ep) theoretical computation cost.
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Storage data. In terms of storage, if one wishes to main-
tain the data information X ® S for further (non-kernel

related) use, the net gain is a factor €5 on average (fora - _

net storage of egpn values). If instead only the matrix K
is of relevance for future use, then the storage is restricted
to egn(n — 1)/2 4+ n values when b = 1 (accounting for
symmetry) or egn(n — 1)/2 values when b = 0.

Spectral methods. When it comes to spectral methods
(PCA or spectral clustering), one needs to retrieve the (few)
dominant eigenvectors of K. Using a power method on K
to sequentially iterate over each elgenvector is in general
optimal and comes at a cost of O(epn?), where the O(-

notation encompasses the number of iterations required for
convergence (which depends on the spectral gap between
isolated eigenvalues and thus does not scale with n in our
setting). This is a gain of order € g over no puncturing.

Yet, when p < n, to evaluate the dominant eigenpairs of
XHX, it is more efficient in practice to proceed to a singular
value decomposition of the n x p matrix X, again via a
power method. When operating the Hadamard product with
B though, this strategy cannot be put in place as X" X ©® B
is in general of full rank n. It is thus in this case beneficial
to divert the sparsity into lettingep = 1 and eg < 1 so to
be able to run a singular vector decomposition over the very
sparse matrix (X ® S)H.

Remark 3 (Cache issues). The computational costs re-
ported in this section are provided in terms of net number
of product operations, irrespective of computer architecture
or implementation. But computing the entries of the Gram

matrix X" X can be advantageously performed “block-wise”

by caching vectors in sequences of blocks and computing
the corresponding subblocks of X" X. This powerful trick
cannot be performed on the two-way punctured matrix K
which, due to the randomness in S and B, is not organized
in blocks. In practice, we observed that the cost of system-
atically retrieving the x;’s by pairs from remote memory
is not outbalanced by the gains in net number of products.
Improved software designs are thus required to overtake this
practical limitation.

4.2. Application: large data clustering

As a telling application of our results, let us consider the
spectral clustering setting described in Section 2.2.

4.2.1. SYNTHETIC DATA

We first let x1,...,x, € RP arise from a synthetic two-
class Gaussian mixture with n = 4 000 and p = 2 000. Two
puncturing approaches are compared: (i) reducing the cost
of the inner products x] z; using a 5-fold (5 = .2 while
ep = 1) random puncturing of the data vectors z;, versus
(i1) a 25-fold puncturing of the matrix %XTX (ep = .04

— S

Figure 5. Two-way punctured matrices K for (left) (es,eB) =
(.2,1) or (right) (es,e5) = (1,.04), with co = 1, n = 4000,
p =2000,b = 0. Clustering setting with z; ~ AN (u1, Ip) +
6N (12, 1) for [u], p5]T ~ N0, L[39 121 @ I,). (Top) first
100 x 100 absolute entries of K (white for zero); (Middle) spec-
trum of K, theoretical limit, and isolated eigenvalues; (Bottom)
second dominant eigenvector v2 of K against theoretical average
in red. As confirmed by theory, although (top) K is dense for
B = 1 and sparse for e g = .04 (96% empty) and (middle) the
spectra strikingly differ, (bottom) since ¢ co L is constant, the
eigenvector alignment |03 vz|? is the same in both cases.

while eg = 1). Figure 5 depicts (for a setting detailed in
caption) the matrices K, their spectra and second dominant
eigenvector v (01 is not discriminating in this setting, due to
P" P having a dominant all-ones eigenvector). The reported
scenario is interesting in that we purposely took £ ge%cy !
constant in both cases; as such, while the matrices X and
their spectra dramatically differ, eigenvector 99 is essentially
the “same” in both matrices. This first confirms the theory
but most importantly defies the natural intuition that so
different matrices cannot possibly give rise to the same
eigenvector structure and quality.

In the very symmetric setting of two classes of equal sizes
(n/2 elements per class) and opposed statistical means
(.e., with z; ~ 5N (u,I,) + SN (—p, I,)), only one
spike population eigenvalue is non-zero and v = v 18
known: its normalized entries belong to {i —} (indeed,

here M = % ||u|[*[ !, 7'], the eigenvalues of which equal
||]|? and O with respective eigenvectors [1, —1] and [1, 1]).
By symmetry, the random entries of the sample eigenvec-
tor ¥ = ¢ are asymptotically centered on ++/(/n with
variance asymptotically equal to (1 — ¢)/n for ¢ = (; pro-
vided by Theorem 2 (with ¢; = ||u||?). Related random
matrix studies (e.g., (Kadavankandy & Couillet, 2019) for
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Figure 6. Limiting probability of error of spectral clustering of
N (£p, I,) with equal class sizes on K: as a function of ep for
fixed £ = ||u|* = 50 (top), and €5 for fixed £ = 50 (bottom).
Simulations (single realization) in markers for p = n = 4000
(x)and p = n = 8000 (+). Very good fit between theory and
practice for not too small s, cp.

€s = €p = 1) have shown that the fluctuations of the entries
of ¥ are asymptotically Gaussian and pairwise independent;
this suffices to justify that the asymptotic classification error
P, incurred by spectral clustering is given by:

1 n
P, = ” ;6{sign([ﬁ]i[v}i)<0} - Q ( ¢/(1— C))

almost surely, where Q(t) = \/% [ e " /2du is the
Gaussian tail function, and the (arbitrary) signs of v, ¥ are
chosen such that 0 < P, < % Figure 6 depicts the limiting
error for various values of (eg, €5, ¢g, £). Despite 5 and
€g being particularly in this setting, the simulations show a
strong fit between theory and practice, even for not so large
values of n.

Remark 4 (How large should n, p be in practice?). It is well
established in random matrix theory that limiting results
can be obtained at speeds up to O(1/,/pn) = O(1/n). We
may in particular show here that P, = Q(\/¢/(1 —()) +
O(1/n). As a consequence, our practical predictions are
already accurate for quite small values of n.

This being said, the O(1/n) term hides constants, particu-
larly depending on g, € g which cannot be taken too small.
As a rule of thumb, 1/eg, 1 /e g must remain small compared
to p,n.> This last remark explains in passing the disrupted
behavior of Figure 6-(bottom) for too small € .

>If not, as discussed in the article concluding remarks, K falls
into a “sparse regime” no longer supported by the present random
matrix analysis.

4.2.2. RESILIENCE TO REAL-WORLD IMAGES

To practically confirm our theoretical findings, we next ap-
ply the two-way puncturing kernel to vectors x; arising
from a two-class mixture (‘tabby’ cats versus ‘collie’
dogs; see Figure 7) of the (globally centered and scaled)
p = 4096-VGG features of randomly BigGAN-generated
images (Brock et al., 2018). The results are for varying € g
and either fixed 5 or eg set such that e%ep = 5-107*. The
simulation depicted in Figure 8 corroborates the presence
of a performance “plateau” and a significant reduction of
the transition value of e (from .05 to .015) when n (and
thus 1/¢p) increases fourfold. This supports the theoretical
performance of the central display in Figure 6. Maintaining
e2ep constant pushes this plateau further down to smaller
values of ¢ until the method breaks. The same conclusion
can be drawn on non-pretreated p = 784-dimensional real
word images from the Fashion-MNIST dataset, as shown in
Figure 9.

More interestingly, as shown in Figure 10, while for
ep = €s = 1 the eigenvalues of K for the GAN images
spread far from the theoretical Mar&enko-Pastur limit, for
€p,€s <K 1, the empirical spectrum is very close to the
predicted (uncorrelated vector) limit: this strongly suggests
that intensive puncturing has the effect to “decorrelate” data.
This remark has the powerful advantage to improve the
theoretical tractability of these preprocessed data. More sur-
prisingly, for both small or large € g, €5, despite the general
spectrum mismatch, the anticipated dominant eigenvalue
position and eigenvector behavior are extremely good, mak-
ing it still possible to predict clustering performance with
good accuracy. The same conclusions apply to the Fashion-
MNIST dataset (see supplementary materials’).

5. Concluding remarks

A fundamental conclusion of the article, confirmed on prac-
tical data, is that drastic computation and storage reduction
can be theoretically achieved while virtually incurring no
loss in PCA or spectral clustering. This follows from the
peculiar behavior of (doubly) punctured kernel and sample
covariance matrices /. As shown in an enlarging spectrum
of articles, the large dimensional behavior of () has imme-
diate further implications to the performance behavior of
many machine learning algorithms, ranging from support
vector machines (Kammoun & Alouini, 2020; Huang, 2017)

This may at first be thought to follow from strong feature
covariance (thus not close to I;,), but it turns out that in-sample
correlation is even stronger as the VGG-features of the produced
GAN images appear to have a very low variability.

"The code and data to reproduce all the fig-
ures are available in the companion gitlab repository
https://gricad-gitlab.univ-grenoble-alpes.fr/chatelaf/

two-way-kernel-matrix-puncturing
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v

Figure 7. Examples of BigGAN-generated images, ‘collie’ dog
instances (top row), ‘tabby’ cat instances (bottom row).
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Figure 8. Empirical classification errors for 2-class (balanced)
BigGAN-generated images (‘tabby’ vs ‘collie’), withn =
2500 (top) and n = 10000 (bottom). Theoretically predicted
“plateau”-behavior observed for all g not too small.

to semi-supervised graph inference (Mai & Couillet, 2018),
transfer and multi-task learning (Tiomoko et al., 2020), ran-
dom feature maps (Liao & Couillet, 2018b; Pennington &
Worah, 2019), or neural network dynamics (Liao & Couillet,
2018a; Advani et al., 2020), to cite a few. As such, the
article, rather than providing a ready-to-use method for fast
unsupervised learning, really lays the theoretical ground to
a systematic cost and storage reduction approach to a host
of learning algorithms.

On the downside though, following up on Remark 3, the ef-
fective software libraries for sparse matrix operations (which
heavily rely on block-sparsity) are far from optimal when
compared to efficient dense matrix operations, and thus
demand a profound treatment to ensure that our claimed
computational cost improvements are truly met in practice.
This is not a negligible aspect of the puncturing framework
which we shall investigate in greater depth in the future.

Another critical aspect lies in the request thate g, e = O(1)
with respect to p, n, thereby not allowing for truly sparse K.
For more severe puncturing, random matrix theory fails to
provide accurate predictions and, worse, the optimal phase
transition threshold is no longer met by clustering from K

= —6%6321673 H
—6520.1 H

Empirical P,
o= oo
I

a4

78.3 a
2 2 |
= 1

E.

S :

| | |
0 .02 .04 .06 .08 .1
Sparsity parameter ep

Figure 9. Empirical classification errors for 2-class (balanced)
MNIST-fashion images (‘t rouser’ vs ‘pullover’), withn =
512 (top) and n = 2048 (bottom). Similar “plateaus” as pre-
dicted by the theory and observed in Figure §.

largest eigenv‘alue
.1 40
3k 4k
.05 20
bl uont”
00 10 20 30 0 0 04 08

0 5k 10k 0 5k 10k
Figure 10. Sample vs limiting spectra and dominant eigenvec-
tor of K for 2-class GAN images (tabby vs collie); (left)
es = ep = 1 (error rate: P, = .004); (right) es = 0.01,
ep = 0.2 Pe = .011). Surprisingly good fit between sam-
ple and predicted isolated eigenvalue/eigenvector in all cases;
as for spectral measure, significant prediction improvement as
£S,EB — 0.

but from more elaborate matrices (such as proposed by sta-
tistical physicists (Krzakala et al., 2013; Dall’ Amico et al.,
2019)). Pushing towards sparser models therefore demands
a dramatic change of theoretical standpoint.
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Abstract

This supplementary material provides the proofs of the main theorems
of the core article.

1 Reminder of the main setting

For convenience, we first recall our main setting and assumptions. The central
object of interest is the matrix

1
K:{p(X@S)H(XGS)}QBE(C"X” (1)
under the large dimensional n, p regime. Here, X, S and B satisfy the following
assumptions.
Assumption 1 (Data model).
X=Z+P

where the Z;; ~ CN(0,1) are independent, and where P € CP*" is a rank-k
matrix for some k.

Assumption 2 (Large p,n asymptotics). As n — oo,
p/n— ¢y € (0,00)

and there exists a decomposition P = LV™ of P with V€ C"** isometric (i.e.,
VAV =1, ) and

1
"L ¢
p



for some deterministic matriz £ € CF*%. In particular, the eigenvalues of L are
the limiting k non-trivial eigenvalues of %PHP. Besides,

limnsup 11;113%)(”{\/5‘/;?} = 0.
1<j<k

2 The theorems

The spectral characterization of K is made through the study of its resolvent
matrix

Qz) = (K —zI,)"".
The results are then as follows.

Theorem 1 (Deterministic equivalent for Q). Under Assumptions let z € C
be away from the limsup of the union of supports of v1,vs,.... Then, as n — oo,
-1

Ve

cy tetepm(2)

Q(z) & m(2) | I, + T sgsscalm(z)

where m(-) is the unique Stieltjes transform solution t<E|

cg “eheym(z)’

z=¢cgb— — ¢y tepetm(z) +

1
m(z)
This theorem is in fact sufficiently exhaustive to characterize both the macro-
scopic spectrum of K (its limiting spectral measure) as well as the microscopic
behavior of its dominant isolated eigenvalues and associated eigenvectors. The
next result, which we name theorem in compliance with the core article, is in
effect an (important) corollary of Theorem

1+ cylepesm(z)

Theorem 2 (Phase transition, isolated eigenvalues and eigenvectors). Define
the functions

2 1 2

F(t):t4+t3+2<1—co>t2—c30t—cg
€s € EB

S €B

€
G(t) =egb+ct 1 t
(t) =esb+ ¢y epes( +€S)+1+55t+t(1+65t)

and T € R be the largest real solution to F(I') = 0. Further denote £1 > ... > {j,
the k < k distinct eigenvalues of L of respective multiplicities Ly, ..., Ly, and
y,...,II; € R*** the projectors on their respective associated eigenspaces.
Similarly denote (A1,01),...,(An,0n) the eigenvalue-eigenvector pairs of K in
descending order and gather the first k eigenvectors under the isometric matrices
Vl = [171, RPN ,f}Ll] up to Vfc = [6k—L,;+17 PN ,’lA)k]

1We also recall that the notation A <+ B stands for the fact that, for any linear functional
u : C"*™ — R of bounded infinity norm, u(A — B) — 0 almost surely as n — co.



Then, fori € {1,...,k} and forallj € {Li+...+L; 1+1,...,Li+...+L;},

o s = F(é,) ,€i>F
ITP=ELRT L, 4 <T

almost surely, and
VM & GVILVY, where ¢ = 4 Glitestor » G>T
0 , 4 <T

with the notation “’ introduced in Theorem[1l In particular, if the {;’s have
unit multiplicities with associated population eigenvectors v;, then

oo, = G, i=1,...,k

3 Elements of proof

3.1 Rationale

The proof relies on the Gaussian tools for random matrices popularized in [] and
consisting in exploiting Stein’s lemma

Bl0(2)] = E | 526()

for standard complex (or real) Gaussian random variables z ~ CN (0, 1) along
with the Nash-Poincaré inequality
21 )

As we shall see, Stein’s lemma is used to “unfold” the a priori quite involved
form of the expected value E[Q;;] of the entries of the resolvent matrix @ of
K. The Nash-Poincaré inequality is then subsequently used to control that the
variance of ();; vanishes at a proper rate.

2
+E

Var[f(z)] < Z (E Uﬁi’f(z)
i=1 ’

for standard multivariate complex Gaussian z ~ CN (0, I,).

3.2 Proof of Theorem 1

In order to be in a position to apply Stein’s lemma, we first exploit the straight-
forward resolvent identity: KQ — zQ = I,,, so to obtain

E[Qi;] = —251‘]‘ + %EHKQM-

By expanding X = Z 4 P, with P decomposed as P = LV" (L € CP** and
V € C"*), we have to consider four terms in the expansion of E[[KQ];;].



Term 1: involving (Z", 7)

Anticipating coming results, instead of evaluating E[[KQ)];;] directly, we rather
evaluate a modified version in which matrix B is replaced by a deterministic
matrix A with bounded operator norm and bounded entries: using Stein’s lemma,

we have
l (Ll) (Zo S)H Z@S)} @A) QL]

Z Z S SlmAim]E leZlQO]]

l

- - an]
Z Z Slzslm im ( |: zQO] + Zim 7y, :|) . (2)

=1 m=1

—

1 m=

1
p
_1
p

Using 5 aQ =—-Q 862(3562, it then comes

and
OZ 4

== Z Qull(X ©9) (Ea ® 5)] © Bl Quas

Li=1
for E,p the matrix with all zero entries but at coordinate (a,b) where the entry
equals 1. We further have that

p
(X o9 (Eso9)] o B8], Z 01501800 Sab Birr = Xa1SarSas Bur 0

so that

and
6Zab

- _% [@Dp.,(X © "] SapQua-

We then obtain for 71 (A4, S) = E H( [%(z o9 (Z e S)} © A) Q} U} in (2):

Z Z SlelmAimE |: zQO] Zlm [QDB (X O] S) :I lSliQij:|

l 1 m=1

1 r
=E [p [s" S].; ”QU:| - ;Z [ZDs, Da, QDg (X GS)HDS,YZ,DS,J]” Qij

where D, denotes the diagonal matrix with elements the entries of vector x.



Term 2: (7', P)

We obtain for Ty(A, P) = E H( [%(z G SHP e S)} ® A) Q] J :
E [Z1:51i Pin Stm Aim @mj ) »

p n 4
Z Z 51 Pron St Aimn E [522;]} ’

where we used in particular the fact that Dg = = Dg_,.

i

Summation of 71(A,S) and T,(A, S):

Summing the two previous terms, we get
1
Ti(A,S) 4+ Th(A,8) =E {p [s7s]., AMQ”}

1 & u

— =Y E[[XDs, Da, QD5 (X ©S)"Ds ], Qi;]
=1

Due to the presence of the term S; . inside the matrix evaluated at position (I,1),

the summation over [ cannot be “turned into a trace”, as conventionally done to

prove e.g., the Maréenko-Pastur theorem [| (when S;; = 1 and B;; = 1 for all

i,7). We therefore need to proceed otherwise by writing

110
pl

— Y [XDs, Da, QDp (X ©8)"Ds ],
=1

1 p
=2 > Xi.Ds, Da, @Dp. Ds, X{'S;.
=1

To evaluate the quadratic forms, we must “break” the dependence between X .
and Q). To this end, note that

p —1
Q= (; > {[Ds, X! X;.Ds, | ©B} - zln>

i=1

so that, applying Woodbury’s identity,

—1
Q=Q - }3@4 {[Ds, X" X,.Ds, ] @ B} (In + %Q,l {[Ds, X" X,;.D5, ] © B}) Q..



Plugged into the quadratic form over X ., this gives:
%XI,DSZ,.DAL.QDB_JDSZ,.X;T.
- %Xl,.Dsl,.DAi‘.Q_ZDB_,iDSZ,.Xﬁ.
_ Z%XZ,_DSZ_DAL_Q,l {[Ds X' X, Dg, | © B} (In + %Q,l {[Ds, X' X,.Ds, | © B}> B
X Q—zDB.,,-Dsl,.X{'.-

Recalling that X = Z+ LVH (so that X;. = Z;. + L;. V"), we first find that,
averaging over Z; .,

[t

E [Xl,Dsl,.DA,-,,Q—lDB.,iDsl,.X;,'.}

S

1 1
= EE [trDSL,.DA,-,.Q—ZDB.JDSIJ =+ ];E [LI;VHDSL.DAL.Q—lDB.J,DSl,.VLE.] .

A further application of the Nash-Poincaré inequality then shows that the variance
of Xl,~DSl,.DA,;,.Q—IDB.,iDs,.,XZF". vanishes as O(1/p) while Var[Q;;] = O(1), so
that the above result extends into
1 H
];E [Xi,.Ds, Da, @_1Dp.,Ds, X['Qi]
1
= ];IE [trDs, Da, Q_Dp.,Ds, |E[Qi]
1
+ B [Li.V"Ds, Da, Q1D Ds, VLI EQij] + O(p~%).

Now observe, for the second right-hand side term, that, by Cauchy-Schwarz’s
inequality and after summation over [,

2
1 P
<p2 Z]E [Ll»'VH‘DSL,4DA«L,»Q—Z-DB.J‘,DSL.VL;—,'.Qij} Su)
=1

1

< = > L,

U'=1

1 p
2]? Z E(|Qi;|°Li.Ds.,V"'Ds, Dp._,
=1
Q" Ds, D, VV"Dg, Da, Q_1Dp. ,Ds, VDs L]

1 p
< tr(L"L) i > |[E(Qi1*Ds. V' Ds, D ,Q",Ds, Da, VV"Ds, Da, Q-
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C _
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for C' > 0 a bound on the norm of the matrix in the expectation term. This bound
holds because we imposed that L"L — £ = Oy (1), because [|Q_;|| < 1/|S[2]|
(or < 1/z for z < 0) and because all entries of S, A, B are bounded.

Therefore, the term in the first line parentheses above is of order O(p~1). As
a consequence,

1

7 E [X,,.Ds, Da, Q-iDp.,Ds, X'Qij] St

[ M@

—_

p
pf Z [ttDg, Da, Q_1Dp ,Ds, Qi;] Si;i+0(m™").

In the remainder of the derivations, we will often use the Cauchy-Schwarz
and norm inequalities for more complex terms. We will not further develop them
in detail when the result is immediate or close to the previous derivation.

Back to our original sum over (I,1) indices, we are now left to estimating the
newly introduced quantity

1
- PXZVDRL'DAL-Q_Z {[DSlY.XlC.leDSL,] @ B}

] -1
X (In + 5@4 {[Ds, . X|.X;.Ds, | © B}> Q-1Dp. ,Ds, X .

This term is delicate as the dependence of the inner-matrix in X; . remains.
Here the main observation to make is the following and depends on the nature
of B:

1 1
1 .
+ ; {[Dsl,-Xl|:|~Xl,'DSz,.] ® B}
1
o {[Ds, X[' X1 Ds, | © (b—ep)l,}

where we wrote B = B — E[B] and used E[B] = egl,1] + (b—ep)1,.
Remark that

1 S .
2; [DSL.X;:'.XZ,-DSL,] OB = DDSL_XLH,_BDXL'DSL,

the spectral norm of which is bounded, for all large n,p with high probability

O(logp/./p): this is because the spectrum of B follows a semi-circle dis-
tribution in the limit with ||B||/\/% — 1, and [[Dx, || is the maximum of n
independent Gaussian variables which, uniformly on X cannot grow faster than
O(+/log(np)) = O(y/log p). This claim is conﬁrmed by a further application of
the Nash-Poincaré inequality. Similarly, {[DSL Xl X1, D5, |© (b—ep)I,} is

bounded in norm by O(log p/p).



With these remarks at hand, we may freely replace B in the expression of
[DSZ,.X;:'.XL-DSL,] ® B above by 1,1}, so to obtain

1
— FXL.DSL,DAL,Q,I {[Ds, X'X,.Ds, ] © B}

1 —1
X (In + EQ—z {[Ds, X|'X\.Ds, ] ® B}) Q-iDp.,Ds, X;!

e
- _pigxlfDRz,DAi.- Q—lDSl,'Xllj'XlVDSl"

1
€
X (In + ;Q—zDSL,.XlF,"Xz,-Dsl,.> Q-1Dp.,Ds, X' + Op(y/logp//p).

Using Sherman-Morrison’s identity ut (A4+-Auv") =t = ]&‘%7 this further
simplifies into

1
- EXl,-DSZ7.DAi,.Q7l {[Ds, X'X,.Ds,.] © B}

1 —1
X (In + ;Q—z {[Ds, X|'X\.Ds, ] ® B}) Q-iDp.,Ds, X;'

X,.Ds, Q_1Dp.,Ds, X}

B H .
=——X,.Ds, Da, Q_1Ds, X + Op(\/logp/\/p).
p2 L , 1, <, 1+ ETBXL'DSZ,-Q—lDSz,.XlI—)'. p f

The quadratic forms are now all accessible and all converge to their traces at
uniform speed O(log(p)//p) (again by a control of their variances), so that

1
~ 53X D, D, Q- {[Ds,. X['X,.Ds, | © B}

1 —1
X (In + ];Q—l { [Dsl,.XlF,'.Xz,-Ds,,.] O] B}) Q—JDB,,iDs,,.Xﬁ

trDB.,,;D?ql,. Q—l
1+ E?BtI'DSl’_ Q,l

€B
= *pjtrDSl,,DAj,.Q—l

+ O, (/logp/+\/p).

With the same argument as above, one may freely replace Q_; by @ up to
a negligible cost of O(1/,/p) in the above traces. Then, perturbing matrix K
so to discard the contribution of S;. and B.; also comes at a negligible cost, so
that, again with the same perturbation argument, we get

1
~ 55X Ds, D, Q- {[Ds,.X['X,.Ds, | © B}

1 1
X (In + 5@—1 {[Ds, X['X\.Ds,.] ® B}) Q-1Dp.,Ds, X|!

egestr@Q
14+ 76355 tr@

+Op(V1ogp//p)-

€B
= _pﬁtrDslw -DAiy.Qfl



Summarizing the results above, we then get (with the same necessary controls
by the Nash-Poincaré inequality as above),

1
Ti(A,R) + To(A,R) =E {p [SHS]iiAiiQij} —E
1 p
+-> E
p =1

Term 3: (PH 7)
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+ 0 )
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egegtr@
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At this stage in the calculus, it is necessary to study the normalized trace
1
ftrQDB‘sDAi‘ Dsl_ .
p

Note that, unless B = A;. (which could only occur for one value of s; typically
s =1 if we take A = B), using similar perturbation arguments in the large n, p
regime as above (the impact of column B. is negligible in Q)), we obtain

1 15
2;ter)B_sz)m_Dsl, - ?BtrQDAi,DSZ. + 0p(1).

As such, D{trQDB.SDA._Dsl,}’S’Zl is asymptotically close to a scaled identity
matrix depending on i and we may then rewrite

e
Ty(A,R) = —?BE [(PCDR)”D{%HQDA,DSL , (X@S)Q]. +o(1).

=1 1j
This further boils down to

EBES
Al ) [D{%trDAi,Q};Lzl(PQ H X e S)Q}

T3(A,S) = —

o)

?

= _EijS]E [{ (Posf(x oS e d{%trDAi.Q}?zl 11} Q} y +0(1)

where d,, is the (column) vector composed of the elements v;.

Term 4: (P P)
We finally add up the easiest term

Ty(A,R)=E H(B(P@ SHP o S)} o A) Q} j] .

Collecting the terms
Collecting all terms T;(A, S), it appears that the desired evaluation of E[Q;;],
which we obtain through that of
1
E [(X oSHMX e S)Q}
p ij
gives rise to two sets of “new” terms:

1. the traces
tr (Ds, Da, Q1)
2. the matrix expectation

E H [(POSMX ©8)] ©di1up,, gy, 11} Q]

ij

10



Using perturbation arguments, the traces are easily analyzed and all lead to
scaled versions of tr@ in the limit, thereby effectively not providing any new
term.

The matrix expectation is less immediate and must be appropriately used to
“close the loop” of the estimate of E[Q;;]. Specifically,

e letting A = B in the initial equation leads to evaluating
E[{[(PoS*(X®8)] ©diup, oy, 10} Q) }

which, from the fact that %trDBi,Q = E73‘51"62 + 0,(1), is essentially

E [iftr@ {{(lPoSXe9)] o1, } Q] )

a term that we thus need to evaluate;

e letting then A = 1,,1] leads instead to
E [{ [(POSNX©8)]Odi1up,, o, 12} QL,-
—E[(1/puQ) {[(Po s (X o) o111} al,
from which we may now close the loop.

Precisely, combining terms from T5(1,1},9) and Ty(1,1],9), we first find
that

{B(P@S)H(XQS)] ® ml}@
(535% Q) {[;(TQS)H(XGS)] @1n1;}Q

p

1
+ { L)(P oSHPoe S)} ® 1,111} Q
so that, letting m(z) € C be such that 1trQ < m(z),

{[;(P@S)H(XQS)] o lnll}Q

s hresrres]oufe
1

Next, combining all T;(B,S), we get, using in particular
almost surely,

[SHS]” — €8

1 b 3.3 —2
Qo ——I, + 222Q — e2epey 'm(2)Q + —BE5% m(2)
z z

2

1+ ¢y tepesm(?)

e4escy m(2)

_ 1 H 1 H
1+Co_163€sm(z)p(P®S) (PGS)Q+p{[(P®S) (Pos)]eb}e
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To complete the proof, we now need to handle the terms (P ® S)"(P ® S)Q
and %{[(P ® SH(P © S)] ® B}Q and relate then to Q directly. To this end,
similar to previously, let us write S = 51,17 + .SD', B = egl, 1] + B and
P = Zif:l L._[V_Q. Then, since we imposed the entries V;; to be essentially
of order 1/\/5 observe that the matrix ﬁL.’th} o8 = %DL_J.SO'DVW has
operator norm of order 1/,/p. The same reasoning applies to B, so that we may

rewrite

3

_ €
ZQ<—>—In+55bQ—5%€Bcolm(z)Q+ B 25
1+ ¢ epesm(z)

edcy®m(z)?

1

epesco m(2)

1 1
— —PHPQ +epe2 = PHPQ
14 ¢y tepesm(z) p Sp

3 2

€
=—1I,4+¢e5bQ — ekepey tm(2)Q + —L
S Q S<BCtq ( )Q 1+C615353m(2)

2

eco m(z)

pes_Lpnpg
1+4+c¢y egegm(z)p

Further using

1 1
EPHP = ];VLHLVH =VLVH + o)1)

along with the fact that VHV = I, we finally get the deterministic equivalent
for @

o 2ebelm(z)? 7
n

o |(egb— 21, — ¢ tedepm(2) L, +
Q ( S ) 0 ©S<B ( ) 1+EBESCalm(Z)
-1

—1 2
Ch ECERB
0 <SS VEVH

1+ epescy 'm(2)

In particular, recalling that m(z) is an asymptotic equivalent for %trQ, we
have

1

m(z) - cazs%s%m(z)2

(esb—2) — ¢y letepm(z) + ThepesesTm(?)

which unfolds from VLV being of finite rank k (so that it does not affect
the limiting normalized trace) and thus provides a deterministic equivalent.
Equivalently, this is

1
z=egb— —— —cylepetm(z) +

2More specifically, it is enough to assume that VZ? =o(1/y/n).

oo “eheym(z)’

1+ ¢y tepesm(2)

12



which, integrated in the previous expression of the random equivalent of @,
provides the shorter and final forms of the deterministic equivalent:

g tetepm(2) -

Q < m(2) [In + VKVH]

1 +epescy 'm(z2)

or possibly more expressively
-1

z)c} v

g tetepm(2)

Q & m)V VI m(2)V {Ik + —

1+ EBESCy m(
where in this last equality V| is an orthonormal basis completing V' (this last
result follows from Woodbury’s matrix inverse identity).

3.3 Proof of Theorem 2

With the previous result available, the proof of Theorem 2 follows from a classical
random matrix approach.

Let £ = Zle EZ—VZ-VZH be the spectral decomposition of £ with V; € CF*L:
isometric and such that II; = VinH is a projector on the eigenspace associated
to eigenvalue ¢; which we assume of multiplicity L; greater or equal to 1.

Then, assuming asymptotic separability (that is, the existence of a spike
associated to £;), such that the resulting associated eigenvalue(s) Aj,..., A\jyr,—1
of K converge to p; with associated eigenspace f/’i, we have, in the large n,p
limit, almost surely (the limit is needed to ensure that A;,...,\j+r,—1 fall into
the contour T',,),

1

¢y tetepm(2)

m(z)V {Ik + ) E] B VHdz

2m Jr,, 1+ epescy 'm(

for I'; a positively oriented complex contour surrounding = closely. By residue
calculus, we then find that

cy tetepm(?)

-1
ViV & — i — i UL+ L'} vH
¢ zeégpi(z pi)m(z) [ Ty epescy 'm(z)

cy tetepm(2)

-1
< — lim (z—p)m(z)VV; [1 + )El} yhyH
z

2€C—p; 1+ EBasco_lm(

where we exploited the fact that the denominator above must vanish as z — p;,
thereby in passing defining p;.

Specifically, we find that p;, the limit of the empirical eigenvalues of K
associated with ¢;, is solution to

—1 2

¢y €BESM(pi 1
; 0 _1B S (pz) -0 — _0618353(1+8S€i).

1+ ¢y epesm(p;) m(pi)

1+7

13



In particular, we have the following convenient relation for what follows:

_ esl;
1+ cylepesm(p;) = ﬁ

Exploiting the relation z = f(m(z)) above, applied to z = p;, this leads to the
explicit value of the isolated “spike” p;:

€S i €B
1+€S£i &(1‘*‘&9&)

pi = esb+cylepes(l4est;) +

By I'Hospital’s rule (or equivalently a first order Taylor expansion of both
numerator and denominator in the inverse formula of the residue), we then have

m(pi) (1 + ¢y 'epesm(pi))? PHYH

UvH « vy,
licy epetm! (p;)

where, exploiting the defining equation of m(z), we find after mere algebraic
calculus

1 1 1. 92 _93.3 2+ ¢y tepesm(z)
= ——5 —Cy €BEg t+ ¢y EREgM(2
m'(z)  m(z)2 0 TPTSTT0 TBES ()(1+c51535sm<z))2
I S S N i LG ¢y ehesm(z)
- 2 0 EB&S 1 1 2"
m(z) 14+cyepesm(z) (14 ¢y epesm(z))

Altogether, we finally find the fully explicit deterministic equivalent

( 65& _ Eséi . 1 . 1
1+egt; 60_163(1 +egl;)3 cgl(l +egl;)3 calsg&(l +egl;)?

Equating the term in parentheses to zero then provides the phase transi-
tion condition: indeed, the asymptotic alignment of population and sample
eigenspaces vanishes right at the position where the spike p; escapes the limiting
continuous part of the support of the eigenvalues of K. The phase transition for
p; then occurs when ¢; satisfies:

2 1 2
0=rl4+ 208+ <1C°>e$§°eicfj_p(e,;).
€5 or B €5 €5

This expression of F' is convenient as it takes the form of a polynomial of order
4 with unit leading monomial coefficient. It then suffices to remark that the
asymptotic alignment expression above expresses as F(p;)/l;/(1 + est;)® to
conclude the proof of Theorem 2.
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