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Entangled and correlated photon 
mixed strategy for social decision 
making
Shion Maeda1*, Nicolas Chauvet1,2, Hayato Saigo3, Hirokazu Hori4, Guillaume Bachelier5, 
Serge Huant5 & Makoto Naruse1,2*

Collective decision making is important for maximizing total benefits while preserving equality 
among individuals in the competitive multi-armed bandit (CMAB) problem, wherein multiple players 
try to gain higher rewards from multiple slot machines. The CMAB problem represents an essential 
aspect of applications such as resource management in social infrastructure. In a previous study, we 
theoretically and experimentally demonstrated that entangled photons can physically resolve the 
difficulty of the CMAB problem. This decision-making strategy completely avoids decision conflicts 
while ensuring equality. However, decision conflicts can sometimes be beneficial if they yield greater 
rewards than non-conflicting decisions, indicating that greedy actions may provide positive effects 
depending on the given environment. In this study, we demonstrate a mixed strategy of entangled- 
and correlated-photon-based decision-making so that total rewards can be enhanced when compared 
to the entangled-photon-only decision strategy. We show that an optimal mixture of entangled- and 
correlated-photon-based strategies exists depending on the dynamics of the reward environment as 
well as the difficulty of the given problem. This study paves the way for utilizing both quantum and 
classical aspects of photons in a mixed manner for decision making and provides yet another example 
of the supremacy of mixed strategies known in game theory, especially in evolutionary game theory.

Optics and photonics are expected to play key roles in accommodating the massive requirements of future 
intelligent information systems1. Recent developments in the field include photonic reservoir computing for 
time series predictions2–4, on-chip lightwave circuits for photonic learning functions5,6, fibre optic neuromor-
phic systems7,8, among others. Decision making is another important research topic in which decisions have to 
be made autonomously in dynamically changing uncertain environments9,10. Furthermore, collective decision 
making involving multiple players becomes a critical issue in the management of social utilities11. Recently, pho-
tonic approaches to decision-making problems have been intensively studied using single photons12,13, chaotic 
lasers14,15, and entangled photons16. Related topics are discussed in recent review articles1,17,18.

The multi-armed bandit (MAB) problem describes some of the fundamental issues associated with decision 
making. The objective of the MAB problem is to maximize the player rewards from multiple slot machines 
with an initially unknown hit probability. Here, spending a lot of time gathering new information can be costly, 
while hasty decisions lead to missing out on good choices. This issue is known as the exploration–exploitation 
dilemma19. The physical attributes of photons have been successfully utilized to solve such MAB problems20. The 
MAB problem becomes even more complicated when multiple players come into play. As individual players seek 
to maximize their rewards, they will choose the best machine, which leads to a decision conflict. Many relevant 
issues in real-life situations, ranging from congestion in information networks and traffic jams on roads to hoard-
ing of goods are caused by many players choosing the same decision9,10, suggesting the importance of collective 
decision making. Such a problem that deals with multiple players and slot machines is called the competitive 
multi-armed bandit (CMAB) problem16.

In previous work concerning the two-player, two-armed bandit problem, we theoretically and experimen-
tally demonstrated collective decision making by using polarization-entangled photon pairs so that decision 
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conflicts are avoided and maximum total reward is accomplished while ensuring equality16. More recently, we 
have theoretically derived optimal quantum states that provide the maximum total reward, while preserving 
equality, with respect to more than three players on two-armed bandit problems21. We also showed that classical 
photons, in the sense of not-entangled states such as single photons and correlated photon pairs, cannot resolve 
decision conflicts16. In these studies, the reward dispensed from a slot machine is constant at a time. Hence, in 
the event of a decision conflict, the individual player’s reward is reduced by the number of overlaps, resulting in 
a reduction in the total reward.

However, depending on the given environmental conditions, decision conflicts can also provide a greater total 
reward. For example, if the individual reward is not reduced from a particular slot machine even in the case of 
conflicts, choosing the same slot machine (decision conflict) yields a higher total reward than choosing differ-
ent slot machines (non-conflicting decision). Indeed, we can observe similar real-life scenarios, for example, in 
the form of enhanced services or resource availability, such as computing power and reduced sales prices which 
are offered during a limited amount of time. Similarly, the notion of critical mass that has to be reached for an 
activity to be sustainable reflects the non-decreasing rewards with conflicting decisions.

In this study, to accommodate the aforementioned changes in the environmental conditions and maximize 
total rewards, we propose and demonstrate a mixed strategy of utilizing entangled photons and classical pho-
tons (specifically, polarization-entangled photon pairs and polarization-correlated photon pairs) to find the 
optimal solution of 2-player, 2-armed bandit problems. While utilizing entangled photons, which guarantee 
non-conflicted and fully equal decisions, each player accumulates information about the reward environment. 
When recognizing that the conflicted choice provides greater rewards, we utilize correlated photons to fully 
exploit the reward from the environment. We show that an optimal mixture of entangled and correlated photons 
exists depending on the dynamics of the reward environment as well as the difficulty of finding the higher reward 
probability machine. Although the following discussion is restricted to 2-player, 2-choice problems, the present 
study captures the essential aspects of entangled and classical-photon mixed strategies that can be extended for 
solving more generalized problems.

Results
System architecture.  We consider two players (Players 1 and 2), each of whom chooses one of two slot 
machines (Machines A and B) with the intention of maximizing the total reward or the summation of the reward 
of each player. The reward probabilities of Machines A and B are denoted as PA and PB, respectively. Although 
the present study examines the properties of entangled and classical photon states theoretically and numeri-
cally, it assumes technologically feasible experimental optical systems to generate photon pairs by spontaneous 
parametric down conversion (SPDC), as schematically represented in Fig. 1a, which is essentially the same as 
the experimental setup proposed in our previous study16. The photon pair generation is based on a standard 
Sagnac loop architecture22 to induce SPDC. The signal and idler photons correspond to the decisions of Players 
1 and 2, respectively. The signal photon goes through a half-wave plate (HW1) followed by a polarization beam 
splitter PBS (PBS1). If the photon is detected by the photodetector corresponding to the horizontally polarized 
light (PD1), the decision of Player 1 is to choose Machine A, whereas if the photon is detected by the photode-
tector corresponding to the vertically polarized light (PD2), then the decision of Player 1 is to choose Machine 
B. Similarly, the decision of player 2 is determined by the detection of the idler photon by PD3 or PD4, which 
corresponds to the decisions of selecting Machines A and B, respectively.

We introduce several notations to describe the system. The input photon state for the decision of Player i 
( i = 1, 2 ) is denoted as |θi� , where θi is the linear polarization angle. The roles of HWi and PBSi are given by

and

where |Hi� and |Vi� indicate photon states with horizontal and vertical polarizations propagating in orthogonal 
directions beyond PBSi

23. One strategy for realizing collective decision making is to link the decisions of Play-
ers 1 and 2 by introducing correlations among the decisions at the level of photon states. Here, we consider 
polarization-orthogonal photon pairs denoted by, |θ1, θ2� where.

as input photon states to the two players. In practice, we can fix θi (i = 1, 2) by controlling the polarizers and half/
quarter waveplates in the path of the excitation laser (respectively denoted by P, HWE, and QWE in Fig. 1a). Let 
us set θ1 = 0 and θ2 = π/2, for the sake of simplicity. The probability of observing photons at PD1 and PD3 (mean-
ing that both players chose Machine A) and at PD2 and PD4 (both players select Machine B) are represented 
by the following equations.

and

(1)HWi|θi� =
∣
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〉
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∣
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By letting θHW1
= 0 and θHW2

= π
/

2 or their Nπ angle-shifted equivalents (where N is an integer) in Eq. (4), 
P(A, A) becomes unity, indicating that both players always chose Machine A, which is schematically illustrated 
in Fig. 1b. Similarly, P(B,B) becomes unity when θHW1

= π
/

2 and θHW2
= 0 or their Nπ angle-shifted equiva-

lents in Eq. (5). That is, with polarization orthogonal photon pairs, both players can choose the same intended 
machine with appropriate half-wave plate settings. Meanwhile, the probability of observing photons at PD1 and 
PD4 is given by

which becomes unity when θHW1
= 0 and θHW2

= 0 or their Nπ phase-shifted equivalent. PC(A,B) = 1 implies 
that Player 1 always chooses Machine A while Player 2 always selects Machine B. There is indeed no decision 

(6)PC(A, B) = cos
2
(

2θHW1

)

sin
2
(

2θHW2
− π

2

)

Figure 1.   System architecture for entangled and correlated-photon mixed strategy for collective decision 
making. (a) Schematic of the optical system configuration consisting of photon pair (either entangled or 
correlated) generation and photon detection systems that directly provide the decisions of the two players 
(Player 1 and 2) to select either of the two slot machines (Machine A or Machine B) in the external environment. 
(b) With entangled photons, the decisions of the players are never in conflict. With correlated photons, both 
players take the same decision by properly choosing the half waveplate angle (see text for details). The elements 
of (a) are adapted from Chauvet et al.16. Copyright 2019 Author(s), licensed under a Creative Commons 
Attribution 4.0 License.
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conflict in this case. However, equality is severely deteriorated; for example, when Machine A owns a higher 
reward probability than Machine B, Player 1 earns greater rewards than Player 2. More details can be found in 
Ref.16. In the discussion of mixed strategy below, such fixed choices prevent the players from autonomously 
realizing which machine is actually dispensing higher rewards.

To overcome this issue, we utilize a coherent superposition of states corresponding to the entangled states. 
Here, we consider the maximally entangled singlet photon state given by

where θ1 and θ2 are orthogonal to each other, as specified in Eq. (3). The maximally entangled photons are usually 
represented in the form 1√

2
(|HV� − |VH�) . A different notation is used in Eq. (7) to maintain consistent nota-

tions with the aforementioned polarization-correlated photons ( |θ1, θ2� ) and to clearly present the role of half-
wave plates in the following discussion. Considering the probability amplitude originating from the second term 
in Eq. (7), the probabilities of the two players’ decisions are given by16:

which means that if θHW1
= θHW2

 is satisfied, the non-conflict probability is always unity and equality is ensured 
by Eq. (9). This also means that the conflict probability is always zero in Eq. (8) regardless of the values of θi and 
θHWi

 . That is, both players randomly but equally select Machine A or B, but conflict never happens. Such col-
lective decision-making is schematically illustrated in Fig. 1b. If θHW1

 and θHW2
 are orthogonally arranged with 

each other, for example, θHW1
= θHW2

+ π
/

2 , the relationship is completely reversed: decision conflict is always 
induced with equal probability at Machine A and Machine B. Although such an orthogonally arranged configura-
tion is another interesting aspect of entangled-photon states given by Eq. (7), it is not exploited in the following 
discussion for simplicity. One remark is that, while such an orthogonal arrangement of θHW1

 and θHW2
 provides 

conflicted decisions, the machine to be chosen cannot be specified to the intended one as opposed to polarization 
correlated photon pairs discussed earlier; this aspect does not meet the mixed strategy discussed shortly below.

When two players make the same decision, the reward for each player is usually divided into two halves, as 
schematically illustrated in Fig. 2a. Therefore, from the viewpoint of maximizing the total reward, when a player 
chooses the best slot machine, the other player should select the other machine. Hence, entangled-photon-based 
decision making theoretically provides the maximum total reward16. However, as discussed in the introduction, 
decision conflicts could yield greater total reward depending on the reward environment conditions. Here, we 
define the notion of a happy hour. During the happy hour, one of the two slot machines dispenses a reward of 
unity per play to all players who select that machine even when the decisions are conflicted, as schematically 
shown in Fig. 2b. In the present study, we assume that the higher-reward-probability machine occasionally pro-
vides a happy hour. This means that a player gets one coin when he wins even if the decision is in conflict with 
the decision of the other player during the happy hour. At the same time, it should be emphasized that the reward 
per play is unity during non-happy hours. That is, a player can get one coin when he wins if the decision is not 
conflicted. Therefore, the player cannot detect the occurrence of a happy hour simply by observing the amount 
of reward per play. On the other hand, the player can immediately realize the end of the happy hour because the 
dispensed reward decreases to one-half due to decision conflict.

Mixed strategy.  The aim of the present study is to statistically mix entangled-photon-based decision-mak-
ing and correlated-photon-based decision making. While the entangled photons provide non-conflict decisions, 
the players can accumulate information about the slot machines. Assume that Machine i is selected Ni times, and 
the number of wins is Li. Based on maximum likelihood estimation, the estimated reward probability of Machine 
i is given by P̂i = Li

/

Ni (i = A, B). Here, we consider that the machine that gives the maximum P̂i would be the 
best machine. This machine is denoted as Machine m. The source photon states are switched (by HWE and QWE 
in Fig. 1a) so that they provide correlated photons. Although here we tune a common photon pair source for 
both types of states, this could be done by switching from one distinct photon pair source to another, without 
any difference for the results. At the same time, the half-wave plates of Players 1 and 2 (denoted, respectively, by 
HW1 and HW2 in Fig. 1a) are configured in such a way that Machine m is chosen based on Eqs. (4) and (5), i.e., 
conflicting decision-making is intentionally induced. If the amount of reward is unity in such an intentionally 
induced conflicted decision, we can deduce that Machine m is indeed being operated at a happy hour. In addi-
tion, once Machine m returns to the non-happy hour operation, the player can immediately detect the end of 
the happy hour since the dispensed reward becomes one-half due to decision conflict. Such a mixed strategy of 
entangled- and correlated-photons is summarized in Algorithm 1 and Fig. 2c.

Algorithm 1: Entangled and correlated-photon mixed strategy

1.
[Entangled strategy] Play slot machines based on entangled-photon-based decision making 
while accumulating knowledge about the reward probability of the slot machines. Repeat this 
strategy during SI steps. SI refers to search interval. Determine the highest reward probability 
machine by m = argmax

i

(P̂i).

(7)
1√
2
(|θ1, θ2� − |θ2, θ1�),

(8)PE(A,A) = PE(B,B) =
1

2
sin

2
[

2
(

θHW1
− θHW2
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,

(9)PE(A,B) = PE(B,A) =
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Algorithm 1: Entangled and correlated-photon mixed strategy

2.
[Correlated strategy] Play slot machines based on correlated-photon-based decision-making. 
Here, the half-wave plates of Players 1 and 2 are configured so that both players select Machine 
m. Repeat this strategy during CP steps. CP refers to check span.

3.

If the dispensed reward does not become unity, go back to the entangled-photon decision 
making (Step 1).
If the dispensed reward is unity (i.e., Machine m is operated in a happy hour), the correlated-
photon strategy is maintained. When the dispensed reward becomes half, go back to the 
entangled-photon decision making (Step 1).

Discussion
The present study is stimulated by the notion of an evolutionary stable strategy (ESS) known in evolutionary 
game theory24. Let us roughly describe the Hawk-Dove game to convey a fundamental concept of ESS. Detailed 
discussions of this strategy are available in literature, such as Ref.24. Players who choose the Hawk strategy always 
take adversarial actions when confronted by their opponents. By doing so, they can gain a lot of rewards if they 
win the battle. However, they could also suffer from huge damage if they lose. Conversely, players who choose 
the Dove strategy always avoid battles when they face their enemies. Hence, there is no gain (because they avoid 
battles), but there is also no risk of loss. In evolutionary game theory, there exists an optimal mixture of Hawk 
and Dove strategies that maximizes the expected rewards, and this mixed strategy can be superior to both pure 
Hawk and pure Dove strategies depending on the environment. The optimal mixture depends on the gains and 
losses in the battle.

We observe similarities between this concept in evolutionary game theory and the present study of the CMAB 
problem. The Dove strategy is similar to the entangled-photon strategy which attempts to secure the achievable 
total reward, while the Hawk strategy is like the correlated-photon strategy which seeks greater reward at a certain 
degree of risk. The difference lies in the method by which the optimal mixture is derived.

Figure 2.   Reward environments and collective decision-making strategies. (a) Usually, the reward gained by 
a single player is half a unit reward, if the decision is conflicted. (b) During the happy hour, the higher-reward 
probability machine yields unit reward to both the players, even if the decision is conflicted. (c) In the mixed 
strategy, while entangled photons are used most of the time, correlated photons are occasionally used (denoted 
by search interval) during certain duration (check span) to check if greedy action is more beneficial.
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In the following numerical analysis, 1500 consecutive slot machine plays are conducted for the 2-player, 
2-armed CMAB problem. For the sake of simplicity, we assume a fixed reward probability throughout the 1500 
plays for PA and PB. The total reward, which is the summation of the rewards gained by Player 1 and Player 2, 
is calculated by averaging over 1000 repetitions of such 1500 consecutive plays. See the “Methods” section for 
the details. In addition, we assume that PA is greater than PB while the condition of PA + PB = 1 holds. Therefore, 
if there are no happy hours, the expected maximum total reward is 1500 by the entangled-photon decision 
strategy. This is because the entangled photons ensure the absence of conflict, meaning that the two machines 
are always selected. Conversely, the condition of PA + PB = 1 leads to a constant total reward by entangled photon 
only strategy, which allows us to examine the effect of the mixed strategy only. The dashed blue line in Fig. 3a 
shows the calculated total reward.

Now, we examine the impact of the occurrence of happy hours. We assume that happy and non-happy hours 
periodically interchange in every T steps, with T being an integer. Let us first focus on the case when T is equal 
to 50. The red curve shown in Fig. 3a represents the average total reward as a function of the search interval 
when (PA, PB) = (0.6, 0.4). We can observe that the total reward is greater than that of the entangled-photon-
only strategy if SI is between 6 and 30, while the maximum total reward is realized when SI = 14. Hence, SI = 14 
provides the optimal mixed strategy for this particular reward environment. A search interval that is too short 
indicates excessive greedy actions (SI < 6), whereas an excessively long search interval indicates missing a large 
reward during the happy hours (SI > 30). For the numerical evaluation, the initial starting time of the happy hour 
was determined for each repetition by a uniformly distributed random natural number between 1 and 2 × T, 
where T is the interval of happy and non-happy hours. The solid curve is the average of the total reward over 
1000 such randomly arranged repetitions. The error bars show the corresponding standard deviation, which was 
found to be unaffected by larger repetition numbers (up to 10,000). Note that the standard deviation is indicated 

Figure 3.   Demonstration of the proposed mixed strategy. (a) The dashed cyan line shows the total reward 
gained by using the entangled-photon-only strategy. With the mixed strategy, the total reward can be greater 
than that of the entangled-photon-only decision-making strategy. Here, the happy hour and non-happy hour 
are periodically switched every 50 steps. (b) The dependence of the total reward on the environmental change 
interval, and (c) their normalized representation to examine optimality of the mixture of entangled and 
correlated photons for a variety of environmental conditions.
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only for the search intervals of 1 and 5 × n (n = 1, …, 10) in Fig. 3a. The computing environments are described 
in the “Methods” section.

The green, magenta, and brown curves in Fig. 3a show the average total reward when (PA, PB) is equal to (0.7, 
0.3), (0.8, 0.2), and (0.9, 0.1), respectively. The optimal search interval that yields the maximum total reward 
decreases as PA becomes larger. This is because the rewards gained during happy hours dramatically increase 
as PA increases. When PA = 0.9, the total reward is almost 2050, which is nearly a 40% increase compared with 
the entangled-photon-only strategy. In addition, when PA is greater than 0.7, the total reward is greater than the 
entangled-photon-only strategy even with extremely small as well as extremely long search intervals, indicating 
that the gain accomplished during a happy hour surely pays off the cost of conducting correlated-photon-based 
greedy actions.

The optimal mixture, however, also depends on the frequency of happy hours. The curves in Fig. 3b examine 
the total rewards when the interval of the happy hour is increased from 10 to 100 steps. First, we consider the 
case when (PA, PB) = (0.6, 0.4) denoted by Fig. 3b-iv. As the happy-hour interval decreases, the maximum total 
reward decreases, indicating that the mixed strategy cannot adapt to rapid environmental changes. Neverthe-
less, we also observe that the search interval that yields the maximum total reward decreases as the happy-hour 
interval decreases, meaning that frequent usage of a correlated-photon-based decision-making strategy provides 
a greater total reward. The same tendency is observed in different reward probability settings (PA, PB) given by 
(0.9, 0.1), (0.8, 0.2), and (0.7, 0.3), which are summarized in Fig. 3b-i, ii, and iii, respectively. Furthermore, it is 
interesting to observe the oscillatory behaviour of the total rewards as a function of the search interval. This is 
clearly due to interdependence between the environmental switching and the strategy switching as the period of 
oscillation is about twice the period of environmental switching and does not depend on the reward probabilities.

For the sake of obtaining higher rewards regardless of the given environmental change dynamics and to 
accommodate any uncertainty in the given environment, we discuss the optimality of the search interval. The 
curves in Fig. 3c represent the normalized total reward, (R − RMIN)

/

(Rmax − RMIN) , where R is the total reward 
for a search interval. RMIN and RMAX indicate the minimum and maximum total rewards in the range of the 
search interval under study ( 1 ≤ SI ≤ 50 ). The black curves represent the average total reward over different 
happy-hour intervals. The search interval that maximizes the normalized total rewards is summarized in Fig. 4a. 
The horizontal axis represents the difficulty of finding a higher reward probability machine, which is defined as 
1 − (PA − PB). The reward probability of the combination (PA, PB) = (0.9, 0.1) corresponds to a difficulty of 0.2, 
whereas (PA, PB) = (0.5, 0.5) corresponds to a difficulty of unity, which means that the slot machines are identical. 
One remark here is that Machine A provides happy hour in the case of PA = PB while Machine B does not provide 
happy hour. The optimal search interval monotonically increases as the difficulty of finding a better machine 
increases. Furthermore, if the difficulty is less than 0.8 (the reward probability differences are greater than 0.2), 
the search interval of approximately 5–10 is close to the optimal search interval. This is also confirmed by Fig. 3b, 
suggesting that such a search interval can accommodate the uncertainty of reward environments in terms of both 
the reward probability values as well as the dynamic change of happy hour occurrences.

The check span is another parameter that influences the optimal mixture of entangled and correlated-photon-
based decision-making strategy. Here we focus on the case when reward probabilities are given by (PA, PB) = (0.7, 
0.3), whose optimal search interval is 9 as observed in Fig. 4a. While keeping this search interval (SI = 9), the 
square marks in Fig. 4b show the average total rewards as a function of CP when the happy hour interchange 
interval is 50. The number of repetitions is 1000 while the initial starting timing of the happy hour is randomly 
specified for each repetition as in the above analyses. The maximum total average reward is obtained when CP 
is 2. This result indicates that too short an CP (CP < 2) may miss the detection of a happy hour because of the 
probabilistic attributes of the slot machine, whereas excessive CP (CP > 2) also leads to excessive loss. The analysis 
in Fig. 3 was conducted based on an CP value of 2. However, it should be noted that the achievable rewards are 
comparable in view of the standard deviation denoted by the error bars. This indicates that CP is not a dominant 
parameter; hence the optimality of CP cannot conclusively be affirmed.

In the demonstrations above, the summation of the reward probabilities has been kept unity: PA + PB = 1. 
Again, this condition is for the purpose of analyzing the effect of the mixed strategy while keeping the same total 
reward with the entangled photon only strategy. The proposed strategy does work with other reward environment 
in general. Figure 5 shows the total reward as a function of the search interval for the cases when PA is given by 
0.9, 0.7, 0.5, and 0.3 while PB is being kept at 0.2. The other conditions are the same with Fig. 3a; the happy and 
non-happy hour are periodically switched every 50 steps and the check span is 2. The dashed lines depict the 
total reward when entangled-photon-only strategy is adopted, which is given by (PA + PB) × 1500 where 1500 is 
the total number of plays. The amount of the total reward obtained by the mixed strategy becomes larger than for 
the entangled-photon-only strategy as PA increases because the reward obtained during happy hour increases. 
On the other hand, when PA = 0.3 and PB = 0.2, the merit of the mixed strategy is negligible or even negative since 
the difference of the reward probability is small, which is similar to the observation in Figs. 3 and 4.

Before concluding the paper, we put a few remarks on this study. In this work, we focussed on the 2-player, 
2-machine CMAB problem to highlight the central concept and principle of the entangled and correlated-photon 
mixed strategy. The extension of the proposed method to a general case, N-player, M-machine CMAB is an 
important future study. Indeed, Chauvet et al. have already demonstrated optimal entangled photon states for 
three, four, and five players for the 2-armed bandit problem21. Scalability analysis is also critical from the view-
point of practical applications such as resource management in information and communication infrastructure10. 
Also, the mixed strategy studied herein allows the players to immediately change the photon states from corre-
lated to entangled photons when they detect the end of happy hour in Step 3 of Algorithm 1. Such controllabil-
ity or accessibility of the photon source by the player can be generalized through using time delay for example, 
which is an interesting future topic.
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The reward probability estimation also needs to be studied. In Step 1 of Algorithm 1, the expected reward 
probabilities of Machine A and B were evaluated as P̂A = LA

/

SI and P̂B = LB

/

SI , respectively, after SI-step 
slot machine plays. Here, LA and LB denote the number of wins by playing Machines A and B, respectively. It 
is remarkable that the denominators of P̂A and P̂B are both SIs because the decisions were based on entangled 
photons, i.e., Machine A and Machine B were chosen exactly the same number of times. However, it should also 
be noted that in the present study, the information integration is assumed from both players. In a future study, 
we will tackle the case where the reward probability estimation is completely independently conducted by each 
player. We would also presume, however, that the impact of this independent estimation may be minor, particu-
larly when SI is moderately large owing to the equality secured by entangled photons. Meanwhile, an alternative 
approach to find the higher reward probability machine is to utilize a round-robin scheduling; for instance, Play-
ers 1 and 2 select Machines A and B, respectively, during SI/2 plays, and vice versa for the subsequent SI/2 plays 
using classical photon pairs. This approach, however, requires a pre-determined coordination among players to 
avoid conflicting selections, which is outside the problem setting of the present study. Entangled photon pairs, 
on the other hand, autonomously provide random and non-conflicting choices for the players.

It should also be noted that order recognition is required for solving general N-player, M-machine CMAB 
problems, especially when M > N . Hence, finding the highest reward probability machine alone is not sufficient, 
and a novel strategy should be developed for order recognition. In this respect, we presume that the random and 
non-conflicting selections by entangled photons may provide more efficient recognition of the reward environ-
ment, even when compared with the pre-coordinated round-robin scheduling approach. To achieve this, several 

Figure 4.   Optimal mixture of entangled- and correlated-photon-based decision making. (a) The optimal search 
interval monotonically increases as the difficulty of finding better slot machine increases. Also, if the difficulty 
is less than 0.8, a search interval of approximately 5–10 yields nearly optimal total rewards (see Fig. 3b). (b) The 
check span (CP) is another parameter for the mixed strategy. CP of 2 yields the maximum average total rewards. 
However, concerning the standard deviation denoted by the error bars, the achievable rewards are comparable, 
indicating that CP is not necessarily a dominant parameter.
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approaches, such as using confidence interval25 and Schubert calculus26, could be integrated with the present 
study in the future.

Conclusion
We theoretically and numerically demonstrated an entangled and correlated-photon-based mixed decision-
making strategy to obtain enhanced total rewards in dynamically changing reward environments. Entangled-
photon-based decision-making completely avoids conflict and secures equal opportunities for all players. How-
ever, conflict avoidance does not necessarily maximize total rewards in reward environments where greedy 
actions are beneficial, even socially. By introducing the notion of happy hours in competitive multi-armed bandit 
problems, the cases in which conflicts are beneficial are systematically examined. We demonstrated an optimal 
mixture of entangled and correlated-photon strategies in terms of adequate switching intervals between these 
two strategies. The present study is relevant to evolutionary stable states known in evolutionary game theory, 
where the optimally mixed strategy provides greater expected rewards than other mixed and pure strategies in 
biological species. We observe similarities between the proposed method and evolutionary game theory in terms 
of the mixture in strategies themselves as well as the dependence on the given environment. This study paves the 
way for utilizing both quantum and classical aspects of photons in a mixed manner as well as demonstrating yet 
again, the supremacy of mixed strategies.

Methods
Numerical analysis.  The numerical analysis of the present study was conducted on a personal computer 
(MacBook Pro, Intel Core i5, 1867 MHz, 8 GB RAM, macOS Catalina, MATLAB R2019a). For emulating the 
entangled photons and the two slot machines, we utilized uniformly distributed pseudorandom numbers gener-
ated by Mersenne twister.

Data availability
Data used in this study is available upon reasonable request to the corresponding author.
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