
HAL Id: hal-03376236
https://hal.science/hal-03376236

Submitted on 8 Dec 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

POISE: A Framework for Designing Perfect Interactive
Systems with and for Imperfect People

Philippe Palanque

To cite this version:
Philippe Palanque. POISE: A Framework for Designing Perfect Interactive Systems with and for
Imperfect People. 18th IFIP Conference on Human-Computer Interaction (INTERACT 2021), Aug
2021, Bari, Italy. pp.39-59, �10.1007/978-3-030-85623-6_5�. �hal-03376236�

https://hal.science/hal-03376236
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

This document is the original author manuscript of a paper submitted to an IFIP
conference proceedings or other IFIP publication by Springer Nature. As such, there
may be some differences in the official published version of the paper. Such
differences, if any, are usually due to reformatting during preparation for publication or
minor corrections made by the author(s) during final proofreading of the publication
manuscript.

POISE: A Framework for Designing Perfect

Interactive Systems with and for Imperfect People

Philippe Palanque [0000-0002-5381-971X]

ICS-IRIT, Université Toulouse III-Paul Sabatier, Toulouse, France

palanque@irit.fr

Abstract. The operator is frequently considered as the main sources of vulnera-

bility in command and control systems; for example, in a 2006 survey 79% of

fatal accidents in aviation were attributed to “human error.” Beyond the case of

command and control systems, users’ faults occur not only at use time but also

during the design and development of systems. Following Avizienis et al.’s tax-

onomy for faults, human-made error can be characterized as the operator’s failure

to deliver services while interacting with the interactive system. Non human-

made errors are called natural faults and may occur during development or set

the interactive system as well as its users into an error-state during its use. Focus-

ing on interactive systems specificities, this paper presents a comprehensive de-

scription of faults covering both development and operation phases. In corre-

spondence with this taxonomy, we present mechanisms to avoid, remove, tolerate

and mitigate faults in order to design and develop what we call “perfect” interac-

tive systems taking into account the organization, the interactive system, the en-

vironment and the people operating them. We define an interactive system as

perfect when it blends multiple and diverse properties such as usability, security,

user experience, dependability, learnability, resilience … We present multiple

concrete examples, from aviation and other domains, of faults affecting socio-

technical systems and associated fault-tolerant mechanisms.

Keywords: Faults, Interactive Systems, Dependability, Usability, Security,

User Experience.

1 Introduction

Over the last decades, the research work in the field of HCI has been focussing on

supporting user-related properties such as usability [90], privacy [77], accessibility

[9] or user experience [54]. Contributions have been ranging from increased under-

standing of human behaviour (e.g. motor side [1], perceptive side [63] or cognition [4])

to the design of interaction techniques and innovative input and output devices. Unfor-

tunately, as pointed out in [8] these contributions are rarely incorporated into products

that are designed using early understanding of human behaviour (e.g. [23]) and stand-

ardized interaction (e.g. IBM CUA [13]) incorporated in Operating Systems manufac-

turers (e.g. touch interactions for Android[3]). While [8] argues that this can be solved

by changing the focus of HCI research from user interfaces to interaction, this paper

2

argues that these research contributions should take more into account (an in an inte-

grated way):

 the People (performing the tasks and the work),

 the Interactive System (that is used to perform the work),

 the Organization (providing the work context for the People and being the project

owner of the Interactive System)

 the environment (where the People work and where the Interactive System is de-

ployed.

Fig. 1. The POISE framework blending People, Organization, Interactive System

and the Environment

The three vertexes of the triangle represent the three main components POISE frame-

work. These elements are connected to the other ones by dedicated trapeziums (Auto-

mation, System Requirements and Training and Operational Procedures). These trape-

ziums represent explicitly how the element influences the other ones. At the basis of

the vertexes of the triangles, the blue trapeziums refine the description of the content of

the vertexes. This way, Work organization and Processes are refinement of the organi-

zation, Tasks are refinement of the People and Interactive Systems are the relevant part

of the Technology component. This is a refinement of the early work from Meshkati

[64], claiming that the resilience of socio-technical systems require addressing in the

same single framework Human Organization and Technology. Outside of the triangle

the grey part corresponds to the Environment where the interactive system is deployed

and where the people are working. The environment may be highly dynamic like

weather condition for an aircraft or very static and controlled like a dark room of an

enroute air traffic control centre.

While the four aspects of POISE have to be taken into account holistically, this paper

leaves out aspects related to the organization including standards, training and require-

ments. Indeed, the focus is here about interaction technologies and their users but taken

3

explicitly into real life concerns imposed by the operational environment. In this con-

text, other properties are relevant (and sometimes of higher importance) that the user-

related ones mentioned above. Properties such as reliability [59], dependability [7],

resilience [88], fault-tolerance [38] or security [56] are “usually” related to the inter-

active system element of POISE while they can also apply to the entire socio-technical

systems (including the organization) as argued in [49].

We believe the approaches proposed in this paper would benefit any deployable in-

teractive system (including desktop application or entertainment interactive software)

but the benefits are more tangible in the context of safety critical ones.

A safety-critical system is a system in which failures or errors potentially leads to

loss of life or injuries of human beings [19] while a system is considered as critical

when the cost of a potential failure is much higher than the development cost. Whether

or not they are classified as safety-critical or “only” critical, interactive systems have

made their way into most of the command and control workstations including satellite

ground segments, military and civil cockpits, air traffic control... Furthermore, the com-

plexity and quantity of data manipulated, the amount of systems to be controlled and

the high number of commands to be triggered in a short period of time have required

the design, development and deployment of sophisticated interaction techniques.

Building reliable and dependable interactive systems is a cumbersome task due to

their very specific nature. The behaviour of these reactive systems is event-driven. As

these events are triggered by human operators manipulating hardware input devices,

these systems have to react to unexpected events. On the output side, information (such

as the current state of the system) has to be presented to the operator in such a way that

it can be perceived and interpreted correctly. Lastly, interactive systems require ad-

dressing together hardware and software aspects (e.g., input and output devices together

with their device drivers).

In the domain of fault-tolerant systems, empirical studies have demonstrated (e.g.,

[67]) that software crashes may occur even though the development of the system has

been extremely rigorous. One of the many sources of such crashes is called natural

faults [7] triggered by alpha-particles from radioactive contaminants in the chips or

neutron from cosmic radiation. A higher probability of occurrence of faults [82] con-

cerns systems deployed in the high atmosphere (e.g., aircrafts) or in space (e.g., manned

spacecraft [48]). Such natural faults demonstrate the need to go beyond classical fault

avoidance at development time (usually brought by formal description techniques and

properties verification) and to identify all the threats that can impair interactive systems.

The paper is structured as follows. The next section focuses on the identification of

the of the specificities of interactive systems. It presents the H-MIODMIT architecture

which extends MIODMIT [29] architecture by incorporating the operator. The third

section focuses introduces two classifications of faults one dedicated to faults altering

the functioning of the interactive system and the other one dedicated to faults altering

the behaviour of the operator. The fourth section identifies processes and tools that,

when combined, can contribute to the quest for perfect interactive systems by providing

means of incorporating and evaluating the presence (or absence) of the properties men-

4

tioned above. The fifth section illustrates contributions from the HCI, dependable com-

puting and software engineering domains that support some of the properties and how,

by integrating them, they improve the overall quality of interactive systems. Last sec-

tion concludes the paper and identifies possible paths towards perfect interactive sys-

tems.

2 Specificities of Interactive Systems and Their Users

2.1 The H-MIODMIT Generic Architecture

Fig. 2 presents an architectural view (from left to right) of the operator, the interactive

command and control system, and the underlying system (e.g., an aircraft engine). This

architecture is a simplified version of MIODMIT (Multiple Input and Output Devices

and Multiple Interaction Techniques), a generic architecture for multimodal interactive

systems [29] described in AADL [40]. Following the attribute dimensions of [7] we

highlight (top right of Fig. 2) the hardware and software components, and show how

the human operator interacts with them (thick dotted lines).

Perceptual

Processor

Cognitive

Processor

Motor

Processor

Visual

Image Store

Auditory

Image Store
...

Interaction
Loop

Drivers &

Librairies

Input Chain

Devices

Input Chains

manager

Output Chains

manager

Global Interactions

techniques

Rendering System

Output Chain

Devices

Drivers &

Librairies

Dialog

Input
Devices

Output
Devices

Application

Core
Functional

Adapter

Cyber

Physical

Systems

(e.g.

aircraft

systems)

Hardware HardwareSoftware

Direct operator input from the Cyber Physical system (e.g. engine noise, vibrations, smoke)

Human

Dimensions

Fig. 2. H-MIODMIT architecture (adapted from [29])

As shown in the figure, interaction mainly takes place though the manipulation of input

devices (e.g., keyboard or mouse) and the perception of information from the output

devices (e.g., a computer screen or speaker). Another channel usually overlooked is the

direct perception by the operator of information produced (usually as a side effect) of

the underlying cyber-physical systems (e.g., noise or vibrations from an aircraft engine

(represented by the lower dotted line in the figure)).

The specificities of the Interaction. The top left of the Software section of the dia-

gram corresponds to the interaction technique that uses information from the input de-

vices. Interaction techniques have a tremendous impact on operator performance.

Standard interaction techniques encompass complex mechanisms (e.g. modification of

the cursor’s movement on the screen according to the acceleration of the physical

5

mouse on the desk). This design space is of prime importance and HCI research has

explored multiple possibilities for improving performance, such as enlarging the target

area for selection on touch screens [69] and providing on-screen widgets to facilitate

selection [2].

Fig. 3. H-MIODMIT detailed with the explicit representation of motor, perceptive and cogni-

tive capability of operators and their tasks

D
ri
v
e
rs

 &

L
ib

ra
ir
ie

s

In
p

u
t

C
h
a

in

D
e
v
ic

e
s

In
p

u
t

C
h
a

in
s

m
a

n
a

g
e

r

O
u

tp
u

t
C

h
a

in
s

m
a

n
a

g
e

r

G
lo

b
a

l
In

te
ra

c
ti
o

n
s

te
c
h

n
iq

u
e

s

R
e
n

d
e

ri
n

g
 S

y
s
te

m

O
u

tp
u

t
C

h
a

in

D
e
v
ic

e
s

D
ri
v
e
rs

 &

L
ib

ra
ir
ie

s

D
ia

lo
g

In
p

ut

D
ev

ic
es

O
ut

p
ut

D

ev
ic

es

A
p

p
li
c
a
ti
o

n

C
o
re

F
u

n
c
ti
o
n

a
l

A
d

a
p

te
r

C
y
b
e

r

P
h

y
s
ic

a
l

S
y
s
te

m

H
a

rd
w

a
re

H
a

rd
w

ar
e

In
te

ra
ct

io
n

 T
ec

hn
iq

ue

D
im

en
si

on
s

In
te

ra
ct

iv
e

A
p

p
lic

at
io

n

P
e
rc

e
p
tu

a
l

P
ro

ce
ss

o
r

M
o

to
r

P
ro

ce
ss

o
r

C
o
g
n

it
iv

e

P
ro

ce
ss

o
r

M
ot

o
ri

c
O

rg
an

Se
n

so
ry

O

rg
an

V
is

u
a
l

Im
a
g

e
 S

to
re

A
u
d

ito
ry

Im
a
g

e
 S

to
re

..
.

T
a

s
k

O
rg

an
s

C
og

n
it

io
n

In
te

ra
ct

iv
e

Sy
st

em
/C

o
m

m
an

d
 &

 C
on

tr
o

l S
ys

te
m

C
PS

H
u

m
an

W
o

rkW
o

rk
In

te
ra

ct
io

n

Lo
o

p

L
o

g
ic

a
l
In

p
u

t

C
o
m

p
o

n
e

n
t

L
o

g
ic

a
l
O

u
tp

u
t

C
o
m

p
o

n
e

n
t

6

The System side. The right side of the Software section of the architecture corre-

sponds to what is usually called interactive applications. This is where HCI methods

such as task analysis are needed for building usable application that fit the operators’

work [32].

The Human side. The left side of Fig. 2 represents the operator’s view. The drawing

is based on work that models the human as an information processor [24], based on

previous research in psychology. In that model, the human is presented as a system

composed of three interconnected processors. The perceptive system senses infor-

mation from the environment – primarily the visual, auditory, and tactile systems as

these are more common when interacting with computers. The motor system allows

operators to act on the real world. Target selection (a key interaction mechanism) has

been deeply studied [85]; for example, Fitts’ Law provides a formula for predicting the

time needed for an operator to select a target, based on its size and distance [43]. The

cognitive system is in charge of processing information gathered by the perceptual sys-

tem, storing that information in memory, analyzing the information and deciding on

actions using the motor system. The sequential use of these systems (perceptive, cog-

nitive and motoric) while interacting with computers is called the Human-Computer

Interaction Loop (HCIL).

2.2 Incorporating Operators’ Work

Fig. 3 proposes a refinement of H-MIODMIT presented in Fig. 2. The bottom of the

figure adds description about the work of the operators (in term of tasks) and how this

work is performed exploiting the motor, perceptive and cognitive processes described

in [24]. This architecture fits POISE framework (see Fig. 1) as it covers entirely the

bottom part of the triangle.

Describing users’ tasks may be a complex and cumbersome activity especially when

dealing with real domains [52]. Beyond, as shown in Fig. 1, this is where automation

design takes place by migrating user’s tasks to the interactive system. In addition, this

design requires identifying the all the RCRAFT aspects: Responsibility, Resources, Au-

thority and Control Transitions as defined in [44] and refined and connected to task

models in [18].

3 Taxonomies of Faults

This section identifies the faults that can alter the functioning of the elements pre-

sented in the architecture presented in Fig. 3. We start by presenting the taxonomy of

faults that impair the functioning of the interactive system and then present a recent

taxonomy of faults that organizes the various types of faults that impair people’s be-

haviour.

7

3.1 Faults Altering the System

To be able to ensure that the system will behave properly whatever happens, a system

designer has to consider all the issues that can impair the functioning of that system. To

this end the domain of dependable computing e.g. Avizienis et al [7] have defined a

taxonomy of faults. This taxonomy leads to the identification of 31 elementary classes

of faults. Fig. 4 presents a simplified view of this taxonomy and makes explicit the two

main categories of faults (top level of the figure): i) the ones made at development time

(see left-hand side of the figure) including bad designs, programming errors, … and ii)

the one made at operation times (see right-hand side of the figure) including operator

errors such as slips, lapses and mistakes as defined in [80].

The leaves of the taxonomy are grouped into five different categories as each of them

bring a special problem (issue) to be addressed:

Fig. 4. Taxonomy of faults in computing systems (adapted from [7]) and associated issues for

the dependability of these systems

 Development software faults (issue 1): software faults introduced by a human during

system development. They can be, for instance, bad design errors, bugs due to faulty

coding, development mistakes …

 Malicious faults (issue 2): faults introduced by human with the deliberate objective

of damaging the system. They can be, for instance, an external hack causing service

denial or crash of the system.

 Development hardware faults (issue 3): natural (e.g. caused by a natural phenome-

non without human involvement) as well as human-made faults affecting the hard-

ware during its development. They can be, for instance, a short circuit within a pro-

cessor (due to bad construction).

8

 Operational natural faults (issue 4): faults caused by a natural phenomenon without

human participation, affecting hardware as well as information stored on hardware

and occurring during the service of the system. As they affect hardware faults are

likely to propagate to software as well. They can be, for instance, a memory altera-

tion due to a cosmic radiation.

 Operational human-errors (issue 5): faults resulting from human action during the

use of the system. They include faults affecting the hardware and the software, being

deliberate or non-deliberate but don’t encompass malicious ones. Connection be-

tween this taxonomy and classical human error classification as the one defined in

[80] can be easily made with deliberate faults corresponding to mistakes or viola-

tions [76] and non-deliberate ones being either slips or lapses. [37] describes pre-

cisely how these errors can be connected to the description of operators’ work in

task models.

3.2 Faults Altering the Human

The classification presented in this section expands Avizienis’ taxonomy in four

ways. First, we extend the System boundary dimension to recognize that human faults

can be induced inside the operator from external causes. Second, we add new levels

to the Phenomenological cause dimension to distinguish between faults arising 1) from

the operator, 2) from another person, and 3) from the natural world (including the sys-

tem itself). Third, we introduce the Human capability dimension to differentiate faults

in the operator’s perceptual, cognitive, and motor abilities. Fourth, we add specific fault

categories that derive from these dimensions. This presentation

In particular, the complex interactions between an operator and a system (following

the architecture presented in Fig. 3) have properties and characteristics that are separate

from the operator alone or the system alone, and the architecture can lead to many dif-

ferent types of faults that have many different underlying causes – some of which in-

volve the fault being “induced” in the operator by outside forces. For example, an air-

craft’s hard landing may arise from within the operator (e.g., a pilot’s early-stage Par-

kinson’s disease that reduces their muscular coordination), from another person (e.g.,

someone shining a laser pointer into the pilot’s eyes from the end of the runway), or

from effects of the natural world (e.g., air turbulence that shakes a pilot’s arm as they

try to press a button on the instrument panel). Although these three faults are very dif-

ferent in terms of implications for design, they would all be placed in the same category

in the Avizienis framework (i.e., “Operational / External / Human-made / Non-mali-

cious / Non-deliberate / Accidental” operator faults). To address this gap, we need to

broaden the dimensions that characterize faults. The classification presented in [71]

focusses only on operational faults (leaving aside the development faults and their

causes but their types are similar [83]).

The classification expands the System boundary dimension to add the architecture

of Fig. 3 as a conceptual location for faults that should be considered separately from

Avizienis et al.’s categories of “internal to the system” and “external to the system.”

9

The idea of internal/external faults separation applied to the architecture of Fig. 3 sep-

arates faults that arise from inside the operator (see Fig. 5 bottom) and those that arise

external to the operator (see Fig. 5 top).

Fig. 5. The taxonomy on Internal and External faults altering the capability of the operator as a

service provider (with concrete examples – right-hand side in italics)

10

This classification covers various types of influential factors for people behaviors

such as seven deadly sins [31] (e.g. items 20 and 23 in Fig. 5), cognitive biases [89]

(e.g. item 14), aging [92] (e.g. items 13 and 15) as well as more standard human error

classification [80] (e.g. items 19 and 21).

4 The Quest for Perfect Software

As other types of computing systems [16], interactive system development follows the

three basic principles of incentives in economy: Economic Incentives, Social incentives

and Moral incentives (as highlighted in [58]). Economic incentives concern the real

development costs and, for instance, detailed information about usability evaluation

costs can be found in [15]. Beyond, low quality software exposes software developers

and distributors to legal risks [97] that contribute as an economic incentive. Moral in-

centive will motivate designers and developer to follow their “moral compass” which

could prevent them from performing low quality work due, for instance, to laziness [6].

Last, social incentives [36], could be used to develop people’s natural desire to be

looked upon favorably by others. On the flip side, people fear being shamed and looked

upon disfavorably by their peers. This means that control quality and assessment of

quality of production might incent them to produce artefacts of better quality.

These three incentives have a strong influence on developers and designers’ behav-

ior and might, if well exploited, contribute to the development of interactive systems of

better quality. Unfortunately, they are also conflicting as, for instance, increase in qual-

ity assessment will increase the development cost and thus reduce the economic incen-

tive.

4.1 Expected Properties of Interactive Software

With the early work on understanding interactive systems [33] came the identification

of properties that “good” interactive systems should exhibit (e.g. honesty) and “bad”

properties that they should avoid (e.g. deadlocks). Later, guidelines for the design of

interactive systems [95] were provided, identifying in a similar way “good” properties

(e.g. guidance), in order to favor usability of these systems. In the area of software

engineering, early work [55] identified two main good properties of computing systems

namely safety (i.e. nothing bad will ever happen) and liveness (i.e. something good will

eventually happen). In [60] a hierarchy of software properties is proposed identifying

for the first time explicit relationships between properties gathered in a hierarchy (e.g.

“reactivity” divided in “recurrence” and “persistence”). While in the area of Human-

Computer Interaction the properties were initially expressed in an informal way, [75],

[74] proposed the use of temporal logics to describe these properties.

Beyond these “generic” properties, it is of interest to represent specific properties

related to the very nature of each system. These properties might also be of a high level

of abstraction (e.g. trust for a banking system) or of very low level (e.g. only possible

to enter a personal identification number three times on a cash machine). The detailed

property would contribute to the high-level one.

11

Usability and User Experience. These two major properties in Human-Computer In-

teraction do not have currently the same level of maturity. Usability has been studied

since the early 80’s and has been standardized by ISO in the ISO 9241 part 11 since

1996 [50]. Its structure is presented on the a) section of Fig. 6. The standard specializes

Usability into three sub-properties (efficiency, effectiveness and satisfaction) while

some researchers would also add at least Learnability and Accessibility [47] as im-

portant aspects of Usability.

a) b)

Fig. 6. Representation of the hierarchical relationships between properties and their contrib-

uting factors for a) Usability [50, 68] and b) User Experience [73]

User Experience is a more recent concept that is under standardization but still not

mature. Sub-properties of User Experience (usually called dimensions) are diverse in

terms of level of abstraction and vary widely amongst authors (see [47] for a description

of user experience in terms of hedonic and ergonomic qualities – another word for

properties). [73] proposes the only set of dimensions that has been carefully check for

orthogonality and proposes six dimensions at the same level of abstraction (see right-

hand side b) section of Fig. 6)

Dependable and Secure Computing and Concurrent Programs Properties. The

first issue of the IEEE transactions on Dependable and secure computing included a

paper [7] dedicated to a taxonomy of properties of those systems. The taxonomy is

presented in part a) of Fig. 7. Beyond a very clear definition of each property this clas-

sification shows that some sub-properties such as availability are related to higher-level

12

properties namely safety and security. Indeed, a loss of availability might impact de-

pendability of the systems (if the service not available is requested) while security at-

tacks might target at a reduction of availability of service (as in the classical DDoS –

Distributed Denial of Service).

The right-hand side of Fig. 7 presents a very old and classical decomposition of

properties of concurrent systems: safety and liveness that have been introduced in the

introduction. Beyond this separation, Sistla proposed in [84] a refinement of these prop-

erties in more precise ones contributing to the presence or the absence of the more high-

level ones.

a) b)

Fig. 7. Representation of hierarchical relationships between properties and contributing factors

for Security and Dependability [7] (a) and for concurrent programs [75, 74]

A more comprehensive description of hierarchies of properties for interactive sys-

tems and a dedicated notation to represent them and their possible conflicts can be

found in [39].

4.2 Processes Supporting the Presence of Expected Properties

User Centered Design Processes. These processes as defined in [51] promotes taking

into account usability (especially satisfaction and efficiency) and user experience by

iterative processes involving explicitly real users in the design and evaluation phases

[45]. Effectiveness is addressed by processes promoting explicit description of user

work and tasks as in Cognitive Work Analysis [96] or task-centered processes [62].

While focusing on these “user-centered” properties, these approaches tend to lower the

importance of the “system-centered” other properties as this is the case for agile pro-

13

cesses focusing of early delivery of low quality systems [93]. According to the classi-

fication of faults in Fig. 4 by supporting usability, these processes would support ad-

dressing human-made development faults (by having usable Integrated Development

Environments) as well as human-made operational faults (by designing usable interac-

tive applications).

Dependability Centered Design Processes. In the field of critical systems, safety

standards such as DO-178C or IEC 61508 define Development Assurance Levels for

software systems (or for functions of software systems). These levels are based on the

analysis of consequences or effect of a malfunction. For instance, if a function failure

has high consequences such as multiple fatalities, it is called catastrophic and certifica-

tion authorities will require that the system manufacturer will provide a Development

Assurance Level A (DO-178C standard for aeronautics [34]). If consequences are

lower, the required level will decrease. Developing a system of a DAL A is extremely

resource consuming and expensive and, as far as software is concerned, the use of for-

mal description techniques is required [35]. In lower DALs, such expensive approaches

are not required and for reaching levels such as DAL D rigorous software engineering

approaches are sufficient.

According to the classification of faults in Fig. 4 by supporting reliability, these pro-

cesses would support addressing human-made development faults (by using formal

methods to detect defects in the code).

Processes integrating dependability, usability and user experience. Some processes

(such as [11]) which focusses on the use of formal models of the interactive system to

assess usability (mainly efficiency and satisfaction) and [61] which focusses on the ef-

fectiveness dimension of usability (see decomposition of usability in Fig. 6). Merging

these two approaches is very difficult and few contributions address it [12]. Indeed, this

brings specific issues such as the expertise of developers and designers but also the

economic benefits in the case of non-critical interactive applications.

5 Techniques and Approaches for Addressing Faults

This section presents several fault-tolerant mechanisms designed in several research

domains such as dependable computing, formal methods and human-computer interac-

tion providing means to avoid, detect, remove, tolerate or mitigate the faults presented

in Fig. 4 and Fig. 5.

5.1 Techniques for Addressing Human Faults

Heuristic evaluations. The ten heuristics from [68] aims at support experts in detecting

defects in an interactive application and avoiding the operational human-made faults

from Fig. 4. In can also support detecting some of the faults affecting the operator in

Fig. 5 but more the human-made ones (bottom of the figure) rather than the other ones.

14

UCD processes. As explained above, techniques deployed in UCD processes aim at

detecting development faults (at design level) by involving users through user testing.

Beyond detection, processes focusing on creativity as [21] aim at identifying solutions

that would remove the fault by proposing better designs in terms of usability and user

experience.

Debiasing cognitive biases. Several hundred of cognitive biases have been identified

in the literature. The cognitive biases codex [89] breaks down cognitive errors into four

quadrants: memory, meaning, information overload, and need for speed . Others [10]

have proposed different grouping according to the general mental problem they attempt

to address: too much information, not enough meaning, need to act fast, what should

be remembered. In the field of HCI some specific biases have been studied (e.g. peak-

end effect [27]) and their use for design (e.g. organizing work over multiple pages tak-

ing into account peak-end effect) has been proposed. Similarly, work from Saint-Lot et

al. [81] proposes a graphical countermeasure to cognitive tunneling bias (an orange-red

flash of 300 milliseconds with a 15% opacity) to improve reaction time of air traffic

controller and mitigate attention tunneling bias. However, such research contributions

are not connected with each other and propose local solution to selected cognitive bi-

ases (on a one by one basis).

Environment disturbance tolerance. The environment in which the system is de-

ployed can deeply degrade operators’ performance. This is because the environment

triggers faults on the operator without possibly affecting the interactive system. This

type of fault is represented, for instance, in item 1 of Fig. 5. The turbulences trigger a

natural fault that sets the operator in an error mode [70]. If the operator needs to provide

input to the interactive system (in that case an aircraft cockpit) the likelihood of error

is very high. To prevent such error a new interaction technique called “brace touch” has

been proposed that nearly remove all the operators’ errors in case of light and severe

turbulences [26].

User interface services. Specific function such as copy-paste or undo are added to user

interfaces in order to prevent operational faults such as triggering a command inadvert-

ently or making mistake or slips (as defined in [80]) when type the same text in another

place. These faults may occur at development and operational times demonstrating the

need to encompass these services both in IDEs and in interactive applications.

5.2 Techniques for Addressing Interactive System Faults

Self-checking software components (redundancy, diversity and segregation). As

introduced in [7] and [57], many dependability strategies rely on replicated self-check-

ing components as they provide error-confinement and can thus be considered as fail-

stop components. The COM/MON approach [91] is the basis for various N-Self-Check-

15

ing Programming (NSCP)-based architectures [57]. A self-checking software compo-

nent can be roughly described as composed of two pieces of software, the first one

(functional component) being the classical component and the second one (monitoring

component) being in charge of checking its execution and outputs and being able to

send error notifications in case of inconsistency. As both pieces receive the same input,

fault (e.g. natural faults in Fig. 4) will be detected if both pieces produce inconsistent

output. In order to correct the natural faults, more dissimilar (but functionally equiva-

lent) pieces have to be executed in parallel. Having a voting mechanism checking the

output of the pieces will allow detecting a fault (if they don’t provide the same output)

but also remove the fault (by following the majority of outputs that are the same). Self-

cheking approach (embedding redundancy, diversity and segregation) have been ap-

plied to interactive systems in the area of aircraft cockpits [86].

Formal verification. Formal verification aims at exploiting mathematical reasoning

over a model (or directly the code) of the system to detect defects (corresponding usu-

ally to properties not being true). It thus aims at detecting development faults and usu-

ally also provide means or support to remove them. For instance, model checking tools

will verify is a property is true on a specification and if not will provide a counter ex-

ample (a sequence of actions that lead to a state where the property does not hold) [53].

These approaches have been applied for many years to interactive systems, starting

from WIMP interaction technique [66] to more sophisticated ones such as multitouch

[46] or even brace touch introduced in the previous section [70]. In order to ensure that

the verification is performed correctly, tools and tool suites are developed. [28] pro-

poses a systematic comparison of formal tools for interactive systems highlighting both

the benefits of these approaches and their limitations. User-related properties can also

be checked, at least partly, using formal verification techniques as demonstrated in [72]

which demonstrate how to verify ergonomic rules over a formal model of an interactive,

post-WIMP, application.

Interactive software testing. Software testing is another type of technique for detect-

ing development faults. The basic idea is to run a large number of test cases in order to

detect behaviors that are incompatible with the requirements. Software testing has been

developed for many years and, in order to deal with the complexity of the cases, model-

based testing is nowadays the most prominent approach [94]. As for model-checking,

software testing support also the identification of defects and debugging [65]. In the

area of interactive systems, testing is a complex tasks as user actions are unpredictable

and the number of cases is infinite [20]. Formal model-based approaches offering for-

mal verification have recently been combined to detect and correct defects in interactive

systems encompassing both hardware and software aspects of the architecture in Fig. 3

[18].

16

6 Conclusion and Perspectives

This paper has presented a generic framework called POISE (People, Organizations,

Interactive Systems and Environment) that presents in an integrated way four different

aspects affecting deeply interactive systems development and exploitation. Based on

two complementary on faults taxonomy we have presented a comprehensive coverage

of faults altering the functioning of interactive systems (i.e. human-made and natural

faults) and the behavior of people (i.e. internal and external to the operator) including

cognitive biases, deadly sins and standards operators.

Beyond, the paper has offered an overview of processes, methods and techniques

offering various means to address all these faults. These contributions come from dif-

ferent research domains such as Formal Methods, Dependable Computing and Software

Engineering and Human-Computer Interaction. While they usually try to tackle a single

type of faults, some (which incorporate techniques stemming from multiple domains)

have been trying to provide more complex solutions dedicated to the design, develop-

ment, evaluation and the operation of interactive system embedding multiple (some-

times conflicting) properties such as usability, user experience, reliability, dependabil-

ity, security, safety … among many other ones [5].

Due to space constraints and for keeping the message simple, the issues related to

organizational aspects are not presented. It is however at least as important as the other

three aspects as the organization structure the work of operators, define the require-

ments, select the development processes and techniques to be used by designers and

developer and above all plan training and organize operators in teams. Incidents and

accidents stemming from the organizations are numerous as demonstrated in [78] as

they might jeopardize all the efforts on the other aspects. As stated in the introduction,

even though the people are identified as sources of faults, we would advocate that de-

signs should not aim at removing them even though this is the path promoted by Arti-

ficial Intelligence (targeting at unmanned systems as drones or so-called autonomous

vehicles produced with as limited as possible human intervention. On the opposite, de-

sign and development should rely on trained and qualified operators, supported by us-

able and efficient tools in order to ensure that the human contribution will be fully pre-

sent in future interactive systems. Knowledge, tools and empowerment of designers and

developers is the only path to deploying perfect interactive systems.

Acknowledgements. The author would like to acknowledge support from the ICS team

in Toulouse (E. Barboni, D. Navarre and C. Martinie) for working on most of the con-

tributions presented. Special also goes to Yannick Deleris and Christine Gris from Air-

bus who contributed and funded part of this work.

References

1. Accot J.and Zhai S. 2003. Refining Fitts' law models for bivariate pointing. In Proceedings

of the SIGCHI Conference on Human Factors in Computing Systems (CHI '03). Association

17

for Computing Machinery, New York, NY, USA, 193–200.

DOI:https://doi.org/10.1145/642611.642646

2. Albinsson, P.A. & Zhai, S. (2003) High Precision Touch Screen Interaction. Proc. ACM

CHI conference, pp. 105-112

3. Android Material Design guidelines https://material.io/design/guidelines-overview (re-

trieved July 6th 2021)

4. Antti Kangasrääsiö, Kumaripaba Athukorala, Andrew Howes, Jukka Corander, Samuel

Kaski, and Antti Oulasvirta. 2017. Inferring Cognitive Models from Data using Approxi-

mate Bayesian Computation. Proceedings of the 2017 CHI Conference on Human Factors

in Computing Systems. Association for Computing Machinery, New York, NY, USA, 1295–

1306. DOI:https://doi.org/10.1145/3025453.3025576

5. Ardito C., Bernhaupt R., Palanque P., Sauer S. (2019) Handling Security, Usability, User

Experience and Reliability in User-Centered Development Processes. In: Lamas D., Loiz-

ides F., Nacke L., Petrie H., Winckler M., Zaphiris P. (eds) Human-Computer Interaction –

INTERACT 2019. INTERACT 2019. Lecture Notes in Computer Science, vol 11749.

Springer, Cham. https://doi.org/10.1007/978-3-030-29390-1_76

6. Armour P. G. The business of software estimation is not evil. Communications of the ACM,

57(1):42–43, 2014.

7. Avizienis, A., Laprie, J.-C., Randell, B., Landwehr, C. (2004) Basic concepts and taxonomy

of dependable and secure computing. IEEE Trans. on Dependable and Secure Computing,

vol.1, no.1, pp. 11- 33, Jan.-March 2004

8. Beaudouin-Lafon M. 2004. Designing interaction, not interfaces. In Proceedings of the

working conference on Advanced visual interfaces (AVI '04). Association for Computing

Machinery, New York, NY, USA, 15–22. DOI:https://doi.org/10.1145/989863.989865

9. Beirekdar A., Keita M., Noirhomme M., Randolet F., Vanderdonckt J., Mariage C. (2005)

Flexible Reporting for Automated Usability and Accessibility Evaluation of Web Sites. In:

Costabile M.F., Paternò F. (eds) Human-Computer Interaction - INTERACT 2005.

INTERACT 2005. Lecture Notes in Computer Science, vol 3585. Springer, Berlin, Heidel-

berg. https://doi.org/10.1007/11555261_25

10. Benson B. 2016. Cognitive biases cheat sheet. https://medium.com/better-humans/cogni-

tive-bias-cheat-sheet-55a472476b18 (retrieved July 2021).

11. Bernhaupt R., Navarre D., Palanque P., Winckler M. (2008) Model-Based Evaluation: A

New Way to Support Usability Evaluation of Multimodal Interactive Applications. In: Law

E.LC., Hvannberg E.T., Cockton G. (eds) Maturing Usability. Human-Computer Interaction

Series. Springer, London. https://doi.org/10.1007/978-1-84628-941-5_5

12. Bernhaupt R., Palanque P., Manciet F., Martinie C. (2016) User-Test Results Injection into

Task-Based Design Process for the Assessment and Improvement of Both Usability and

User Experience. In: Bogdan C. et al. (eds) Human-Centered and Error-Resilient Systems

Development. HESSD 2016, HCSE 2016. Lecture Notes in Computer Science, vol 9856.

Springer, Cham. https://doi.org/10.1007/978-3-319-44902-9_5

13. Berry R. Common User Access – A consistent and usable human-computer interface for the

SAA environments". IBM Systems Journal, Volume 27, Nº 3, 1988

14. Bev Littlewood and Lorenzo Strigini. 2000. Software reliability and dependability: a

roadmap. In Proceedings of the Conference on The Future of Software Engineering (ICSE

'00). Association for Computing Machinery, New York, NY, USA, 175–188.

DOI:https://doi.org/10.1145/336512.336551

15. Bias R. G. and Mayhew D. 2005. Cost-Justifying Usability: An Update for the Internet Age.

Morgan Kaufmann Publishers Inc., San Francisco, CA, USA.

https://material.io/design/guidelines-overview
https://doi.org/10.1007/978-3-030-29390-1_76
https://doi.org/10.1007/11555261_25
https://medium.com/better-humans/cognitive-bias-cheat-sheet-55a472476b18
https://medium.com/better-humans/cognitive-bias-cheat-sheet-55a472476b18
https://doi.org/10.1007/978-1-84628-941-5_5
https://doi.org/10.1007/978-3-319-44902-9_5
https://archive.org/details/ibmsj2703E
https://archive.org/details/ibmsj2703E
https://archive.org/details/ibmsj2703E
https://en.wikipedia.org/wiki/IBM_Systems_Journal

18

16. Boehm B. and Sullivan K. 2000. Software economics: a roadmap. In Proceedings of the

Conference on The Future of Software Engineering (ICSE '00). Association for Computing

Machinery, New York, NY, USA, 319–343. DOI:https://doi.org/10.1145/336512.336584

17. Bouzekri E., Canny A., Martinie C., Palanque P., Gris C. (2019) Deep System Knowledge

Required: Revisiting UCD Contribution in the Design of Complex Command and Control

Systems. In: Lamas D., Loizides F., Nacke L., Petrie H., Winckler M., Zaphiris P. (eds)

Human-Computer Interaction – INTERACT 2019. INTERACT 2019. Lecture Notes in

Computer Science, vol 11746. Springer, Cham. https://doi.org/10.1007/978-3-030-29381-

9_42

18. Bouzekri E., Martinie C., Palanque P., Atwood K., Gris C. Should I add Recommendations

to my Warning System? The RCRAFT Framework can Answer This and Other Questions

about Supporting the Assessment of Automation Designs. IFIP TC 13 INTERACT 2021

conference, LNCS, Springer.

19. Bowen J. and Stavridou V. Formal Methods, Safety-Critical Systems and Standards. Soft-

ware Engineering Journal, 8(4):189–209, July 1993

20. Bowen J.and Reeves S. 2017. Generating Obligations, Assertions and Tests from UI Models.

Proc. ACM Hum.-Comput. Interact. 1, EICS, Article 5 (June 2017), 18 pages.

DOI:https://doi.org/10.1145/3095807

21. Buxton B. 2007. Sketching User Experiences: Getting the Design Right and the Right De-

sign. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA.

22. Canny A., Martinie C., Navarre D., Palanque P., Barboni E., and Gris C. 2021. Engineering

Model-Based Software Testing of WIMP Interactive Applications: A Process based on For-

mal Models and the SQUAMATA Tool. Proc. ACM Hum.-Comput. Interact. 5, EICS, Ar-

ticle 207 (June 2021), 30 pages. DOI:https://doi.org/10.1145/3461729

23. Card S., Moran T., Newell A. The psychology of human-computer interaction. Erlbaum

1983, ISBN 0898598591, pp. I-XIII, 1-469

24. Card, S.K; Moran, T. P; and Newell, A. The Model Human Processor: An Engineering

Model of Human Performance. Handbook of Perception and Human Performance. Vol. 2:

Cognitive Processes and Performance, 1986, pages 1–35.

25. Cockburn A., Gutwin C., Palanque P., Deleris Y., Trask C., Coveney A., Yung M., and

MacLean K. 2017. Turbulent Touch: Touchscreen Input for Cockpit Flight Displays. Pro-

ceedings of the 2017 CHI Conference on Human Factors in Computing Systems. Association

for Computing Machinery, New York, NY, USA, 6742–6753.

DOI:https://doi.org/10.1145/3025453.3025584

26. Cockburn A., Masson D., Gutwin C., Palanque P., Goguey A., Yung M., Gris C., Trask C.

Design and evaluation of braced touch for touchscreen input stabilisation, International Jour-

nal of Human-Computer Studies, Volume 122, 2019, Pages 21-37, ISSN 1071-5819,

https://doi.org/10.1016/j.ijhcs.2018.08.005

27. Cockburn A., Quinn P., and Gutwin C. 2015. Examining the Peak-End Effects of Subjective

Experience. In Proceedings of the 33rd Annual ACM Conference on Human Factors in

Computing Systems (CHI ’15). Association for Computing Machinery, New York, NY,

USA, 357–366. DOI:https://doi.org/10.1145/2702123.2702139

28. Creissac Campos J., Fayollas C., Harrison M. D., Martinie C., Masci P., and Palanque P.

2020. Supporting the Analysis of Safety Critical User Interfaces: An Exploration of Three

Formal Tools. ACM Trans. Comput.-Hum. Interact. 27, 5, Article 35 (October 2020), 48

pages. DOI:https://doi.org/10.1145/3404199

29. Cronel M., Dumas B., Palanque P., Canny A. (2019) MIODMIT: A Generic Architecture

for Dynamic Multimodal Interactive Systems. In Human-Centered Software Engineering.

HCSE 2018. LNCS, vol 11262. Springer.

https://doi.org/10.1007/978-3-030-29381-9_42
https://doi.org/10.1007/978-3-030-29381-9_42
https://dblp.org/pid/30/3377.html
https://dblp.org/pid/01/4946.html
https://doi.org/10.1016/j.ijhcs.2018.08.005

19

30. Cronel M., Dumas B., Palanque P., Canny A. (2019) MIODMIT: A Generic Architecture

for Dynamic Multimodal Interactive Systems. In: Bogdan C., Kuusinen K., Lárusdóttir M.,

Palanque P., Winckler M. (eds) Human-Centered Software Engineering. HCSE 2018. Lec-

ture Notes in Computer Science, vol 11262. Springer

31. Diamantaris M., Marcantoni F., Ioannidis S., and Polakis J. 2020. The Seven Deadly Sins

of the HTML5 WebAPI: A Large-scale Study on the Risks of Mobile Sensor-based Attacks.

ACM Trans. Priv. Secur. 23, 4, Article 19 (August 2020), 31 pages.

DOI:https://doi.org/10.1145/3403947

32. Diaper D. & Stanton N. The handbook of task analysis for human-computer interaction.

Lawrence Erlbaum Associates, 2003. ISBN 0-8058-4432-5

33. Dix A. Abstract, Generic Models of Interactive Systems. BCS HCI conference 1988, 63-77

(1988).

34. DO-178C / ED-12C, Software Considerations in Airborne Systems and Equipment Certifi-

cation, published by RTCA and EUROCAE, 2012.

35. DO-333 Formal Methods Supplement to DO-178C and DO-278A, published by RTCA and

EUROCAE December 13, 2011.

36. Eisenberg N. and Miller P. A. 1987. The relation of empathy to prosocial and related behav-

iors. Psychological Bulletin 101, 1 (1987), 91

37. Fahssi R., Martinie C., Palanque P. (2015) Enhanced Task Modelling for Systematic Iden-

tification and Explicit Representation of Human Errors. In: Abascal J., Barbosa S., Fetter

M., Gross T., Palanque P., Winckler M. (eds) Human-Computer Interaction – INTERACT

2015. INTERACT 2015. Lecture Notes in Computer Science, vol 9299. Springer, Cham.

https://doi.org/10.1007/978-3-319-22723-8_16

38. Fayollas C., Fabre J. C., Palanque P., M. Cronel, D. Navarre and Y. Deleris, "A Software-

Implemented Fault-Tolerance Approach for Control and Display Systems in Avionics,"

2014 IEEE 20th Pacific Rim International Symposium on Dependable Computing, 2014, pp.

21-30, doi: 10.1109/PRDC.2014.11.

39. Fayollas C., Martinie C., Palanque P., Ait-Ameur Y., FORMEDICIS (2018) QBP Notation

for Explicit Representation of Properties, Their Refinement and Their Potential Conflicts:

Application to Interactive Systems. In: Clemmensen T., Rajamanickam V., Dannenmann P.,

Petrie H., Winckler M. (eds) Global Thoughts, Local Designs. INTERACT 2017. Lecture

Notes in Computer Science, vol 10774. Springer, Cham. https://doi.org/10.1007/978-3-319-

92081-8_9

40. Feiler, P.H., Gluch, D.P., Hudak, J.J.: The architecture analysis & design language (AADL):

An introduction (No. CMU/SEI-2006-TN-011). CMU Software Engineering Inst (2006)

41. Feyisetan O. and Simperl E.. 2017. Social Incentives in Paid Collaborative Crowdsourcing.

ACM Trans. Intell. Syst. Technol. 8, 6, Article 73 (September 2017), 31 pages.

DOI:https://doi.org/10.1145/3078852

42. Feyisetan O. and Simperl E.. 2019. Beyond Monetary Incentives: Experiments in Paid Mi-

crotask Contests. Trans. Soc. Comput. 2, 2, Article 6 (October 2019), 31 pages.

DOI:https://doi.org/10.1145/3321700

43. Fitt, P. M. The information capacity of the human motor system in controlling the amplitude

of movement. Journal of Experimental Psychology. 1954; 47:pp. 381-391.

44. Flemisch, F., Heesen, M., Hesse, T. et al. Towards a dynamic balance between humans and

automation: authority, ability, responsibility and control in shared and cooperative control

situations. Cogn Tech Work 14, 3–18 (2012). https://doi.org/10.1007/s10111-011-0191-6

45. Gould, I.D., and Lewis, C. Designing for usability: Key principles and what designers think.

Commun. ACM 28, 3 (Mar. 1985), 300-311.

https://doi.org/10.1007/978-3-319-22723-8_16
https://doi.org/10.1007/978-3-319-92081-8_9
https://doi.org/10.1007/978-3-319-92081-8_9
https://doi.org/10.1007/s10111-011-0191-6

20

46. Hamon A., Palanque P., Silva J-L., Deleris Y., and Barboni E. 2013. Formal description of

multi-touch interactions. In Proceedings of the 5th ACM SIGCHI symposium on Engineer-

ing interactive computing systems (EICS '13). Association for Computing Machinery, New

York, NY, USA, 207–216. DOI:https://doi.org/10.1145/2494603.2480311

47. Hassenzahl M., Platz A., Burmester M., Lehner K. Hedonic and ergonomic quality aspects

determine a software's appeal. ACM CHI conference 2000: ACM DL, 201-208

48. Hecht H. and Fiorentino E. Reliability assessment of spacecraft electronics. In Annual Re-

liability and Maintainability Symp., pages 341–346. IEEE, 1987

49. Hollnagel E. How Resilient Is Your Organisation? An Introduction to the Resilience Anal-

ysis Grid (RAG). Sustainable Transformation: Building a Resilient Organization, May

2010,Toronto, Canada

50. International Standard Organization: “ISO 9241-11.” Ergonomic requirements for office

work with visual display terminals (VDT) – Part 11 Guidance on Usability (1996).

51. ISO 9241-210: Ergonomics of human-system interaction – Part 210: Human-centred design

for interactive systems, Geneva

52. Johnson P. 1992. Human-Computer Interaction: psychology, task analysis and software en-

gineering, McGraw Hill, Maidenhead, UK

53. Kupferman, O., Vardi, M.Y. Model Checking of Safety Properties. Formal Methods in Sys-

tem Design 19, 291–314 (2001). https://doi.org/10.1023/A:1011254632723

54. Lai-Chong, E., Roto, V., Hassenzahl, M., Vermeeren, A.: Kort. J. Understanding, scoping

and defining user experience: a survey approach. In: Proceedings of the 27th International

Conference on Human Factors in Computing Systems, pp. 719–728. ACM, NY (2009)

55. Lamport, L.: Proving the correctness of multiprocess programs. IEEE transactions on soft-

ware engineering (2), 125-143 (1977)

56. Landwehr C., Bull A., McDermott J., and Choi W. 1994. A taxonomy of computer program

security flaws. ACM Comput. Surv. 26, 3 (Sept. 1994), 211–254.

DOI:https://doi.org/10.1145/185403.185412

57. Laprie, J-C. et al. Definition and analysis of hardware and software fault-tolerant architec-

tures, IEEE Computer, Vol. 23, No. 7, pp.39–51. 1990

58. Levitt, S. D., & Dubner, S. J. (2005). Freakonomics: A rogue economist explores the hidden

side of everything. New York: William Morrow.

59. Littlewood B. and Strigini L. 2000. Software reliability and dependability: a roadmap. In

Proceedings of the Conference on The Future of Software Engineering (ICSE '00). Associ-

ation for Computing Machinery, New York, NY, USA, 175–188.

DOI:https://doi.org/10.1145/336512.336551

60. Manna, Z., Pnueli, A.: A Hierarchy of Temporal Properties. ACM Symposium on Principles

of Distributed Computing1990: 377-410 (1990).

61. Martinie C., Navarre D., Palanque P., and Fayollas C. 2015. A generic tool-supported frame-

work for coupling task models and interactive applications. In Proceedings of the 7th ACM

SIGCHI Symposium on Engineering Interactive Computing Systems (EICS '15). ACM, 244–

253. DOI:https://doi.org/10.1145/2774225.2774845

62. Martinie C., Palanque P., Navarre D., Barboni E. (2012) A Development Process for Usable

Large Scale Interactive Critical Systems: Application to Satellite Ground Segments. In:

Winckler M., Forbrig P., Bernhaupt R. (eds) Human-Centered Software Engineering. HCSE

2012. Lecture Notes in Computer Science, vol 7623. Springer, Berlin, Heidelberg.

https://doi.org/10.1007/978-3-642-34347-6_5

http://dblp.uni-trier.de/pers/hc/p/Platz:Axel
http://dblp.uni-trier.de/pers/hc/b/Burmester:Michael
http://dblp.uni-trier.de/pers/hc/l/Lehner:Katrin
http://dblp.uni-trier.de/db/conf/chi/chi2000.html#HassenzahlPBL00
https://doi.org/10.1023/A:1011254632723
https://doi.org/10.1007/978-3-642-34347-6_5

21

63. Maryam Mustafa, Lea Lindemann, and Marcus Magnor. 2012. EEG analysis of implicit hu-

man visual perception. Proceedings of the SIGCHI Conference on Human Factors in Com-

puting Systems. Association for Computing Machinery, New York, NY, USA, 513–516.

DOI:https://doi.org/10.1145/2207676.2207746

64. Meshkati, N. (1989). Technology transfer to developing countries: a tripartite micro- and

macro ergonomic analysis of human-organization-technology interfaces. International Jour-

nal of Industrial Ergonomics, 4, 101-115

65. Navabpour S., Bonakdarpour B., and Fischmeister S. 2011. Software debugging and testing

using the abstract diagnosis theory. In Proceedings of the 2011 SIGPLAN/SIGBED confer-

ence on Languages, compilers and tools for embedded systems (LCTES '11). Association for

Computing Machinery, New York, NY, USA, 111–120.

DOI:https://doi.org/10.1145/1967677.1967693

66. Navarre D., Palanque P., Bastide R., Sy O. (2001) Structuring Interactive Systems Specifi-

cations for Executability and Prototypability. In: Palanque P., Paternò F. (eds) Interactive

Systems Design, Specification, and Verification. DSV-IS 2000. Lecture Notes in Computer

Science, vol 1946. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44675-3_7

67. Nicolescu B., Peronnard P., Velazco R., and Savaria Y. Efficiency of Transient Bit-Flips

Detection by Software Means: A Complete Study. Proc. of the 18th IEEE Int. Symp. on

Defect and Fault Tolerance in VLSI Systems (DFT '03). IEEE Computer Society, 377-384

68. Nielsen J. 1994. Usability Engineering. Morgan Kaufmann Publishers Inc., San Francisco,

CA, USA.

69. Olwal, A. and Feiner, S. Rubbing the Fisheye: Precise Touch-Screen Interaction with Ges-

tures and Fisheye Views. Conference Supplement of UIST 2003. pp. 83-84.

70. Palanque P., Cockburn A., Désert-Legendre L., Gutwin C., Deleris Y. (2019) Brace Touch:

A Dependable, Turbulence-Tolerant, Multi-touch Interaction Technique for Interactive

Cockpits. In: Romanovsky A., Troubitsyna E., Bitsch F. (eds) Computer Safety, Reliability,

and Security. SAFECOMP 2019. Lecture Notes in Computer Science, vol 11698. Springer,

Cham. https://doi.org/10.1007/978-3-030-26601-1_4

71. Palanque P., Cockburn A., Gutwin C. (2020) A Classification of Faults Covering the Hu-

man-Computer Interaction Loop. In: Casimiro A., Ortmeier F., Bitsch F., Ferreira P. (eds)

Computer Safety, Reliability, and Security. SAFECOMP 2020. Lecture Notes in Computer

Science, vol 12234. Springer, Cham. https://doi.org/10.1007/978-3-030-54549-9_29

72. Palanque, P., Farenc, Ch., & Bastide, R. Embedding Ergonomic Rules as Generic Require-

ments in a Formal Development Process of Interactive Software. In Proceedings of IFIP TC

13 Conference on Human-Computer Interaction INTERACT'99 (Edinburg, Scotland, 1-4

September 1999.

73. Pirker, M. and Bernhaupt, R.: Measuring user experience in the living room: results from an

ethnographically oriented field study indicating major evaluation factors. EuroITV 2011,

79-82 (2011).

74. Pnueli A.: Applications of Temporal Logic to the Specification and Verification of Reactive

Systems: A Survey of Current Trends. LNCS n° 224 p.510-584. Springer Verlag (1986).

75. Pnueli, A.: The Temporal Logic of Programs. 18th IEEE symposium on the Foundations of

Computer Science, 46-57 (1977)

76. Polet, P, Vanderhaegen, F, and Wieringa, P. Theory of safety related violation of system

barriers. Cognition Technology & Work, 4, 3, 171-179. 2002.

77. Raber F., Kosmalla F., Krueger A. (2017) Fine-Grained Privacy Setting Prediction Using a

Privacy Attitude Questionnaire and Machine Learning. In: Bernhaupt R., Dalvi G., Joshi A.,

K. Balkrishan D., O’Neill J., Winckler M. (eds) Human-Computer Interaction – INTERACT

https://doi.org/10.1007/3-540-44675-3_7
https://doi.org/10.1007/978-3-030-26601-1_4
https://doi.org/10.1007/978-3-030-54549-9_29

22

2017. INTERACT 2017. Lecture Notes in Computer Science, vol 10516. Springer, Cham.

https://doi.org/10.1007/978-3-319-68059-0_48

78. Reason J. Managing the Risks of Organizational Accidents. Ashgate Publishing limited.

1997.

79. Reason J. The Human Contribution: Unsafe acts, Accidents and Heroic Recoveries.

Routeledge, Taylor and Francis, 2008.

80. Reason, J. (1990). Human Error, Cambridge University Press

81. Saint-Lot J., Imbert J-P. and Dehais F. 2020. Red Alert: A Cognitive Countermeasure to

Mitigate Attentional Tunneling. In Proceedings of CHI '20: CHI Conference on Hu-

man Factors in Computing Systems (CHI '20), April 25-30, 2020, Honolulu, HI,

USA. ACM, New York, NY, USA, https://doi.org/10.1145/3313831.3376709

82. Schroeder B., E. Pinheiro, and W.-D. Weber. DRAM errors in the wild: a large-scale field

study. In ACM SIGMETRICS, pages 193–204, Seattle, WA, June 2009.

83. Shah P., Berges M., and Hubwieser P. 2017. Qualitative Content Analysis of Programming

Errors. In Proceedings of the 5th International Conference on Information and Education

Technology (ICIET '17). ACM, 161–166. DOI:https://doi.org/10.1145/3029387.3029399

84. Sistla, A. P. On characterization of safety and liveness properties in temporal logic. In: Pro-

ceedings of the fourth annual ACM symposium on Principles of distributed computing, pp.

39-48, ACM (1985).

85. Soukoreff W. & MacKenzie S. Towards a standard for pointing device evaluation, perspec-

tives on 27 years of Fitts' law research in HCI. IJHCS. 61(6): 751-789 (2004)

86. Tankeu Choitat A, Fabre J.-C., Palanque P., Navarre D., and Deleris Y. 2011. Self-checking

widgets for interactive cockpits. In Proceedings of the 13th European Workshop on Depend-

able Computing (EWDC '11). Association for Computing Machinery, New York, NY, USA,

43–48. DOI:https://doi.org/10.1145/1978582.1978592

87. Tankeu-Choitat A., Navarre D., Palanque P., Deleris Y., Fabre J-C. and Fayollas C. Self-

Checking Components for Dependable Interactive Cockpits Using Formal Description

Techniques, 2011 IEEE 17th Pacific Rim International Symposium on Dependable Compu-

ting, 2011, pp. 164-173, doi: 10.1109/PRDC.2011.28.

88. ter Beek M.H., Faconti G.P., Massink M., Palanque P.A., Winckler M. (2009) Resilience of

Interaction Techniques to Interrupts: A Formal Model-Based Approach. In: Gross T. et al.

(eds) Human-Computer Interaction – INTERACT 2009. INTERACT 2009. Lecture Notes

in Computer Science, vol 5726. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-

3-642-03655-2_56

89. The cognitive biases codex: 175 cognitive biases https://medium.com/better-humans/cogni-

tive-bias-cheat-sheet-55a472476b18 (retrieved July 8th 2021)

90. Thoma V., White E.P. (2011) In Two Minds about Usability? Rationality and Intuition in

Usability Evaluations. In: Campos P., Graham N., Jorge J., Nunes N., Palanque P., Winckler

M. (eds) Human-Computer Interaction – INTERACT 2011. INTERACT 2011. Lecture

Notes in Computer Science, vol 6949. Springer, Berlin, Heidelberg.

https://doi.org/10.1007/978-3-642-23768-3_78

91. Traverse, P., Lacaze, I. and Souyris, J. Airbus fly-by-wire: a total approach to dependability,

Proc. WCC, pp.191–212. 2004

92. Trewin S., John B., Richards J., Sloan D., Hanson V., Bellamy R., Thomas J. and Swart C..

2012. Age-specific predictive models of human performance. CHI '12 Extended Abstracts

on Human Factors in Computing Systems. ACM, 2267–2272.

DOI:https://doi.org/10.1145/2212776.2223787

93. Turk, D., France, R., Rumpe, B. Limitations of agile software processes. In: Proc.Int. Conf.

on eXtreme Programming and Agile Processes in Software Engineering Italy (2002).

https://doi.org/10.1007/978-3-319-68059-0_48
https://doi.org/10.1145/3313831.3376709
https://doi.org/10.1007/978-3-642-03655-2_56
https://doi.org/10.1007/978-3-642-03655-2_56
https://medium.com/better-humans/cognitive-bias-cheat-sheet-55a472476b18
https://medium.com/better-humans/cognitive-bias-cheat-sheet-55a472476b18
https://doi.org/10.1007/978-3-642-23768-3_78

23

94. Utting M., Pretschner A., and Legeard B. 2012. A taxonomy of model-based testing ap-

proaches. Softw. Test. Verif. Reliab. 22, 5 (August 2012), 297--312.

DOI:https://doi.org/10.1002/stvr.456

95. Vanderdonckt, J.: Development milestones towards a tool for working with guidelines. In-

teracting with Computers 12(2), 81-118 (1999).

96. Vicente K. 1999. Cognitive Work Analysis: Toward Safe, Productive, and Healthy Com-

puter-Based Work. Lawrence Erlbaum Associates

97. Wahl N. J.. 1994. Responsibility for unreliable software. In Proceedings of the conference

on Ethics in the computer age (ECA '94). Association for Computing Machinery, New York,

NY, USA, 175–177. DOI:https://doi.org/10.1145/199544.199611

