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Abstract—Similarity search is a key operation in multimedia
retrieval systems and recommender systems, and it will play an
important role also for future machine learning and augmented
reality applications. When these systems need to serve large
objects with tight delay constraints, edge servers close to the end-
user can operate as similarity caches to speed up the retrieval.
In this paper we present AÇAI, a new similarity caching
policy which improves on the state of the art by using (i) an
(approximate) index for the whole catalog to decide which objects
to serve locally and which to retrieve from the remote server, and
(ii) a mirror ascent algorithm to update the set of local objects
with strong guarantees even when the request process does not
exhibit any statistical regularity.

I. INTRODUCTION

Mobile devices can enable a rich interaction with the environ-
ment people are in. Applications such as object recognition
or, in general, augmented reality, require to process and
retrieve in real time a set of information related to the content
visualized by the camera. The logic behind such applications is
very complex: although mobile devices’ computational power
and memory constantly increase, they may not be sufficient
to run these sophisticated logics, especially considering the
associated energy consumption. On the other hand, sending
the data to the cloud to be processed introduces additional
delays that may be undesirable or simply intolerable [1].
Edge Computing [2], [3] solves this dichotomy by providing
distributed computational and memory resources close to the
users. Mobile devices may pre-process locally the data and
send the requests to the closest edge server, which runs the
application logic and provides quickly the answers.

Augmented reality applications often require to identify
similar objects: for example an image (or an opportune encod-
ing of it) can be sent as a query, and the application logic finds
similar objects to be returned to the user [3]–[6]. For instance,
a recommendation system may suggest similar products to a
user browsing shop windows in a mall, or similar artists to a
user enjoying a street artwork. The search for similar objects
is based on a k-nearest neighbor (kNN) search in an opportune
metric space [7]. The flexibility of kNN search comes at the
cost of (i) high computational complexity in case of high
dimensional spaces, and (ii) large memory required to store
the instances. The first issue has been solved in recent years
with a set of techniques used to index the collection of objects
that provide approximate answers to kNN searches, i.e., they
trade accuracy for speed. Searches over large catalogs (billions

of entries) in high dimensional spaces may be executed now in
less than a millisecond [8]. Still, the issue about the memory
required to store the objects remain, especially in a distributed
edge computing scenario, as edge servers have limited memory
resources compared to the cloud.

The selection of which objects a specific edge server should
maintain remains an open issue. Requests coming from the
users often exhibit spatial and temporal correlation—e.g.,
the same augmented reality application will recover different
information in different areas, and this information can change
over time as the environment changes and users’ interests
evolve. This observation suggests that we may use the request
pattern to drive the object selection. In other words, the edge
server can be seen as a cache that contains the set of objects
required to reply efficiently to the local requests avoiding to
forward them to the cloud.

In this paper, we study how to optimize the use of the
edge server memory for similarity searches. To this aim, we
consider the costs associated to the replies, which capture
both the quality of the reply (that is how similar/dissimilar
to the request the objects provided are), as well as system
costs like the delay experienced, the load on the server or
on the network. The aim of our study is to design an online
algorithm to minimize such costs. We provide the following
contributions:

• We formulate the problem of kNN optimal caching taking
into account both dissimilarity costs and system costs.

• We propose a new similarity caching policy, AÇAI, that
1) relies on fast, approximate similarity search indexes
to decide which objects to serve from the local datastore
and which ones from the remote repository and 2) uses an
online mirror ascent algorithm to update the cache content
in order to minimize the total service cost. AÇAI offers
strong theoretical guarantees without any assumption on
the traffic arrival pattern.

• We compare our solution with state-of-the-art algorithms
for similarity caching and show that AÇAI consistently
improves over all of them under realistic traces.

The remainder of the paper is organized as follows: we present
similarity caches in Sec. II and other relevant background in
Sec. III. We introduce AÇAI in Sec. IV and our experimental
results in Sec. V. An extended version is available online [9].
It contains additional results and more detailed proofs.
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II. SIMILARITY CACHES

Consider a remote server that stores a catalog of objects N :=
{1, 2, . . . , N}. A similarity search request r aims at finding
the k objects o1, o2, . . . , ok ∈ N that are most similar to r
given an application-specific definition of similarity. To this
purpose, similarity search systems rely on a function cd(r, o),
that quantifies the dissimilarity of a request r and an object o.
We call such function the dissimilarity cost.

In practice, objects and requests are mapped to vectors in
Rd (called embeddings), so that the dissimilarity cost can be
represented as (a function of) a selected distance between the
corresponding embeddings. For instance, in case of images,
the embeddings could be a set of descriptors like SIFT [10],
or ORB [11], or the set of activation values at an intermediate
layer of a neural network [12], [13]. Examples of commonly
employed distances are the p-norm, Mahalanobis or cosine
similarity distances.

The server replies to each request r with the k most similar
objects in the catalogN . As the dissimilarity is captured by the
distance in the specific metric space, these objects are also the
k closest objects (neighbors) in the catalog to the request r
(kNN(r,N )).1 The mapping translates the similarity search
problem in a kNN problem [14], [15].

We can also associate a dissimilarity cost to the reply
provided by server (e.g., by summing the dissimilarity costs for
all objects in kNN(r,N )). This cost depends on the catalog
N and we do not have control on it. In addition, there is
a fetching cost to retrieve those objects. The fetching cost
captures, for instance, the extra load experienced by the server
or the network to provide the objects to the user, the delay
experienced by the user or a mixture of those costs.

In the Edge Computing scenario we consider, we can reduce
the fetching cost by storing at the edge server a subset of
the catalog N , i.e., the edge server works as a cache. When
answering to a request, the cache could provide just some of
the objects the server would provide. The seminal papers [16],
[17] proposed a different use of the cache: the cache may
reply to a request using a local subset of objects that are
potentially farther than the true closest neighbors to reduce
the fetching cost while increasing—hopefully only slightly—
the dissimilarity cost. They named such cache a similarity
cache. The original applications envisaged were content-based
image retrieval [16] and contextual advertising [17]. But, as
recognized in [18], the idea has been rediscovered a number
of times under different names for different applications:
semantic caches for object recognition [3]–[6], soft caches for
recommender systems [19], [20], approximate caches for fast
machine learning inference [21].

A common assumption in the existing literature is that the
cache can only store h objects and the index needed to manage
them has essentially negligible size. We also maintain this
assumption that is justified in practice when objects have a

1More precisely, these are the k objects whose embeddings are closer to
the embedding of r. From now on we identify objects and their embeddings.

size of a few tens of kilobytes (see the quantitative examples
in Sec. III).
Caching policies. The performance of the cache depends
heavily on which objects the cache stores. Among the papers
mentioned above, many (e.g., [19], [20]) consider the offline
object placement problem: a set of objects is selected on the
basis of historical information about object popularity and
prefetched in the cache. But object popularity can be difficult
to estimate and can change fast, specially at the level of small
geographical areas (as those that can be served by an edge
server) [22]. Other papers [3]–[6], [21], [23] present more a
high-level view of the different components of the specific
application system, without specific contributions in terms of
cache management policies (e.g., they apply minor changes
to exact caching policies like LRU or LFU). Some recent
papers [18], [24], [25] propose online caching policies that
try to minimize the total cost of the system (the sum of the
dissimilarity cost and the fetching cost), but their schemes
apply only to the case k = 1, which is of limited practical
interest.

To the best of our knowledge, the only dynamic caching
policies conceived to manage the retrieval of k > 1 similar
objects are SIM-LRU, CLS-LRU, and RND-LRU proposed
in [17] and QCACHE proposed in [26]. Next, we describe
in detail these policies to highlight AÇAI’s differences and
novelty.

All these policies maintain an ordered list of key-value pairs
where the key is a previous request and the value is the set
of k′ closest objects to the request in the catalog (in general
k′ ≥ k). The cache, whose size is h, maintains a set of
h/k′ past requests. This approach allows to decompose the
potentially expensive search for close objects in the cache (see
Sec. III) in two separate less expensive searches on smaller
sets. Upon arrival of a request r, the cache identifies the l
closest requests to r among the h/k′ in the cache. Then, it
merges their corresponding values and looks for the k closest
objects to r in this set including at most l× k′ objects. If this
answer is evaluated to be good enough, then an approximate
hit occurs and the answer is provided to the user, otherwise
the request r is forwarded to the server that needs to provide
all k closest objects. The cache state is updated following a
LRU-like approach: upon an approximate hit, all key-value
pairs that contributed to the answer are moved to the front of
the list; upon a miss, the new key-value pair provided by the
server is stored at the front of the list and the pair at the end
of the list is evicted.

This operation is common to SIM-LRU, CLS-LRU, RND-
LRU, and QCACHE. They differ in the choice of the parame-
ters k′ and l and in the way to decide between an approximate
hit and a miss. As they assume no knowledge about the
catalog at the server, they cannot compare the quality (i.e.,
the dissimilarity cost) of the answer the cache can provide
with the quality of the answer the server can provide. They
need then to rely on heuristics.

SIM-LRU considers k′ ≥ k and l = 1. Upon a request
for r, SIM-LRU selects the closest request in the cache
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and decides for an approximate hit (resp. a miss) if their
dissimilarity is smaller (resp. larger) than a given threshold Cθ.
Every stored key r′ covers then a hypersphere in the request
space with radius Cθ.

SIM-LRU has the property that no two keys in the cache
have a dissimilarity cost lower than Cθ, but the corresponding
hyperspheres may still intersect. CLS-LRU [17] is a variant
of SIM-LRU, that can update the stored keys (the centers
of the hyperspheres) and push away intersecting hyperspheres
to cover the largest possible area of the request space. To
this purpose, CLS-LRU maintains the history of requests
served at each hypersphere and, upon an approximate hit,
moves the center to the object that minimizes the distance
to every object within the hypersphere’s history. When two
hyperspheres overlap, this mechanism drives their centers
apart, which in turn reduces the overlapping region.

RND-LRU [17] is a random variant of SIM-LRU that
determines the request r to be a miss with a probability that is
increasing with the dissimilarity cost between r and the closest
request in the cache.

Finally, QCACHE [26] considers k′ = k and l > 1.
The policy decides if the k objects selected from the cache
are an approximate hit if (1) at least two of them would
have been provided also by the server—a sufficient condition
can be obtained from geometric considerations—or (2) the
distribution of distances of the k objects from the request looks
similar to the distribution of objects around the corresponding
request for other stored key-value pairs.

These policies share potential inefficiencies: (i) the sets of
closest objects to previous queries are not necessarily disjoint
(but CLS-LRU tries to reduce their overlap) and then the
cache may store less than h distinct objects; (ii) the two-level
search may miss some objects in the cache that are close to r,
but are indexed by requests that are not among the l closest
requests to r; (iii) the policy takes into account the dissim-
ilarity costs at the caches but not at the server; (iv) objects
are served in block, all from the cache or all from the server,
without the flexibility of a per-object choice. As we are going
to see, AÇAI design prevents such inefficiencies by exploiting
new advances in efficient approximate kNN search algorithms,
which allows us to abandon the key-value pair indexing and
to estimate the dissimilarity costs at the server. Also AÇAI
departs from the LRU-like cache updates, considering gradient
update schemes inspired by online learning algorithms [27].

III. OTHER RELEVANT BACKGROUND

Indexes for approximate kNN search. Indexes are used to
efficiently search objects in a large catalog. In case of kNN,
one of the approaches is to use tree-based data structures. Un-
fortunately, in high dimensional spaces, e.g., Rd with d > 10,
the computational cost of such search is comparable to a full
scan of the collection [28]. Approximate Nearest Neighbor
search techniques trade accuracy for speed and provide k
points close to the query, but not necessarily the closest, some-
times with a guaranteed bounded error. Prominent examples
are the solutions based on locality sensitive hashing [29],

product quantization [8], [30], and graphs [31]. Despite being
approximate, these indexes are in practice very accurate, as
showed over different benchmarks in [32].

As we are going to describe, AÇAI employs two approx-
imate indexes (both stored at the edge server): one for the
content stored in the cache, and one for the whole catalog
N stored in the remote server. For the former, since cache
content varies over time, we rely on a graph-based solution,
such as HNSW [31], that supports dynamic (re-)indexing with
no speed loss. On various benchmarks [32], HNSW results
the fastest index, and it is able to answer a 100NN query
over a dataset with 1 million objects in a 128-dimensional
space in less than 0.5 ms with a recall greater than 97%.2

As for the memory footprint, a typical configuration of the
HNSW index requires O(d) bytes per objects, where d is
the number of dimensions. For instance, in case of d = 128
dimensional vectors, the memory required to index 10 million
objects is approximately 5 GB. As the server catalog changes
less frequently, AÇAI can index it using approaches with a
more compact object representation like FAISS [8]. FAISS
is slightly slower than HNSW and does not support fast re-
indexing if the catalog changes, but it can manage a much
larger set of objects. With a dataset of 1 billion objects, FAISS
provides an answer in less than 0.7 ms per query, using a
GPU.3 As for the memory footprint, for a typical configuration
(IVFPQ), FAISS is able to represent an object with 30 bytes
(independently from d): only 3 GB for a dataset with 100
million objects!

Summing up our numerical example, if each object has size
20 KB, an edge server with AÇAI storing locally 10 million
objects from a catalog with 100 million objects, needs 200 GB
for the objects and only 8 GB for the two indexes. The larger
the objects, the smaller the index footprint: for example, when
the server has a few Terabytes of disk space to store large
multimedia objects, the indexes’ size can be ignored.

Gradient descent approaches. Online caching policies based
on gradient methods have been studied in the stochastic
request setting for exact caching, with provable performance
guarantees, [33], [34]. More recently, the authors of [25] have
proposed a gradient method to refine the allocation of objects
stored by traditional similarity caching policies like SIM-
LRU. Similarly, the reference [35] considers a heuristic based
on the gradient descent/ascent algorithm to allocate objects
in a network of similarity caches. In both papers, the system
provides a single similar content (k = 1).

We deviate from these works by considering k > 1 and
the more general family of online mirror ascent algorithms
(of which the usual gradient ascent method is a particular
instance). Also our policy provides strong performance guar-
antees under a general request process, where requests can
even be selected by an adversary. Our analysis relies on results
from online convex optimization [36] and is similar in spirit to

2Experiments on a 4-core Intel Core i7-4790, 32 GB RAM, 3.6 GHz.
3Experiments on 2x2.8GHz Intel Xeon E5-2680v2, 4 Maxwell Titan X

GPUs, CUDA 8.0.
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what done for exact caching using the classic gradient method
in [27] and mirror descent in [37].

IV. AÇAI DESIGN

A. Cost Assumptions
Many of the similarity caching policies proposed in the
literature (including SIM-LRU, CLS-LRU, RND-LRU, and
QCACHE) have not been designed with a clear quantitative
objective, but with the qualitative goal of significantly reducing
the fetching cost without increasing too much the dissimilarity
cost. Because of such vagueness, the corresponding papers do
not make clear assumptions about the dissimilarity costs and
the fetching costs. On the contrary, AÇAI has been designed
to minimize the total cost of the similarity search system and
we make explicit the corresponding hypotheses.

Our main assumption is that all costs are additive. The func-
tion cd(r, o) introduced in Sec. II quantifies the dissimilarity of
the object o and the request r. Let A be the set of objects in the
answer to request r: it is a natural to consider as dissimilarity
cost of the answer

∑
o∈A cd(r, o).

In addition, if fetching a single object from the server incurs
a cost cf , the fetching cost to retrieve m objects is m × cf .
This is an obvious choice when cf captures server or network
cost. When cf captures the delay experienced by the user, then
summing the costs is equivalent to consider the round trip
time negligible in comparison to the transmission time, which
is justified for large multimedia objects. It is easy to modify
AÇAI to consider the alternative case when the fetching cost
does not depend on how many objects are retrieved. Finally,
as common in other works [18], [25], we assume that both
the dissimilarity cost and the fetching cost can be directly
compared (e.g., they can both be converted in dollars). Under
these assumptions, when, for example, the k nearest neighbors
in N to the query r (kNN(r,N )) are retrieved from the
remote server, the total cost experienced by the system is∑
o∈kNN(r,N ) cd(r, o) + kcf .

B. Cache Indexes
AÇAI departs from the key-value indexes of most the sim-
ilarity caching policies. As discussed in Sec. II, such ap-
proach was essentially motivated by the need to simplify
kNN searches by performing two searches on smaller datasets
(the set of keys first, and then the union of the values for
l keys), and may lead to potential inefficiencies including sub-
utilization of the available caching space.

The two-level search implemented by existing similarity
caching policies can be seen as a naive way to implement
an approximate kNN search on the set of objects stored
locally (the local catalog C). Thanks to the recent advances
in approximate kNN searches (Sec. III), we have now better
approaches to search through large catalogs with limited
memory and computation requirements. We assume then that
the cache maintains two indexes supporting kNN searches: one
for the local catalog (the objects stored locally) and one for the
remote catalog (the objects stored at the server). A discussion
about which approximate index is more appropriate for each
catalog is in Sec. III.

The local catalog index allows AÇAI to (i) fully exploit
the available space (the cache stores at any time h objects and
can perform a kNN search on all of them), (ii) potentially
find closer objects in comparison to the non-optimized key-
value search. Instead, the remote catalog index allows AÇAI
to evaluate what objects the server would provide as answer to
the request, and then to correctly evaluate which objects should
be served locally and which one should be served from the
server, as we are going to describe.

C. Request Serving

Differently from existing policies, AÇAI has the possibility
to compose the answer using both local objects and remote
ones. Upon a request r, AÇAI uses the two indexes to find
the closest objects from the local catalog C and from the
remote catalog N . We denote the set of objects identified
by these indexes as kNN(r, C) and kNN(r,N ) respectively.
AÇAI composes the answer A by combining the objects with
the smallest costs in the two sets. For an object o stored
locally (o ∈ C), the system only pays cd(r, o); for an object o
fetched from the remote server (o ∈ N \ C), the system pays
cd(r, o) + df . The total cost experienced is

C(r,A) ,
∑

o∈A∩kNN(r,C)

cd(r, o) +
∑

o∈A\kNN(r,C)

(cd(r, o) + cf ) .

(1)

The answer A is determined by selecting k objects that
minimize the total cost, that is

A = arg min
B⊂kNN(r,C)∪kNN(r,N )

|B|=k

C(r,B). (2)

D. Cache State and Service Cost/Gain

In order to succinctly present how AÇAI updates the local
catalog and its theoretical guarantee, it is convenient to express
the cost in (1) as function of the current cache state and replace
the set notation with a vectorial one.

First, we define the augmented catalog U to be the set N ∪
{N + 1, N + 2, . . . , 2N} and define the new costs

c(r, i) =

{
cd(r, i), if i ∈ N ,
cd(r, i−N) + cf , if i ∈ U \ N . (3)

Essentially, i and i+N (for i ∈ {1, . . . , N}) correspond to the
same object, with i capturing the cost when the object is stored
at the cache and i + N capturing the cost when it is stored
at the server. From now on, when we talk about the closest
objects to a request, we are referring to c(., .) as distance.

It is also convenient to represent the state of the cache (the
set of objects stored locally) as a vector x ∈ {0, 1}2N , where,
for i ∈ N , xi = 1 (resp., xi = 0), if i is stored (resp., is not
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stored) in the cache, and we set xi+N = 1 − xi.4 The set of
valid cache configurations is given by:

X ,

{
x ∈ {0, 1}2N :

∑
i∈N

xi = h, xj+N = 1− xj ,∀j ∈ N
}
.

(4)

For every request r ∈ R we define the sequence πr as the
permutation of the elements of U , where πri gives the i-th
closest object to r in U according to the costs c(r, o),∀o ∈ U .
The answer A provided by AÇAI (Eq. (2)) coincides with the
first k elements of πr for which the corresponding index in x
is equal to 1. The total cost to serve r can then be expressed
directly as a function of the cache state x:

C(r,x) =

2N∑
i=1

c(r, πri )xπri 1
{∑i−1

j=1 xπrj
<k

},∀x ∈ X . (5)

where 1{χ} = 1 when the condition χ is true, and 1{χ} = 0
otherwise.

Instead of working with the cost C(r,x), we can equiva-
lently consider the caching gain defined as the cost reduction
due to the presence of the cache (as in [38]–[40]):

G(r,x) , C(r, (0, 0, . . . , 0︸ ︷︷ ︸
N

, 1, 1, . . . , 1︸ ︷︷ ︸
N

))− C(r,x), (6)

where the first term corresponds to the cost when the cache is
empty (and then requests are entirely satisfied by the server).
The theoretical guarantees of AÇAI are simpler to express in
terms of the caching gain (Sec. IV-G).

The caching gain has the following compact expression [9,
Lemma 6]:

G(r,x) =

Kr−1∑
i=1

αri min

k − σri ,
i∑

j=1

xπrj − σ
r
i

 , (7)

where

σri ,
i∑

j=1

1{πrj∈U\N}, ∀(i, r) ∈ U ×R, (8)

Kr is the value of the minimum index i ∈ N such that σri = k,
and αri , c(r, πri+1) − c(r, πri ) ≥ 0. Let conv(X ) denote
the convex hull of the set of valid cache configurations X .
We observe that G(r,y) is a concave function of variable
y ∈ conv(X ). Indeed, from Eq. (7), G(r,y) is a linear
combination, with positive coefficients, of concave functions
(the minimum of affine functions in y).

E. Cache Updates
We denote by rt ∈ R the t-th request. The cache is allowed
to change its state xt ∈ X to xt+1 ∈ X in a reactive
manner, after receiving the request rt and incurring the gain
G(rt,xt). AÇAI updates its state xt with the goal of greedily
maximizing the gain.

4The vector x has clearly redundant components, but such redundancy leads
to more compact expressions in what follows.

The update of the state xt is driven from a continuous
fractional state yt ∈ [0, 1]2N , where (yt)i can be interpreted as
the probability to store object i in the cache. At each request rt,
AÇAI increases the components of yt corresponding to the
objects that are used to answer to rt, and decreases the other
components. This could be achieved by a classic gradient
method, e.g., yt+1 = yt + ηgt, where gt is a subgradient
of G(rt,yt) and η ∈ R+ is the learning rate (or stepsize),
but in AÇAI we consider a more general online mirror ascent
update OMA [41, Ch. 4] that is described in Algorithm 1.5

OMA is parameterized by the function Φ(·), that is called
the mirror map. If the mirror map is the squared Euclidean
norm, OMA coincides with the usual gradient ascent method,
but other mirror maps can be selected. In particular, our
experiments in Sec. V show that the negative entropy map
Φ(y) =

∑
i∈N yi log yi achieves better performance.

Periodically, every M requests, AÇAI use the randomized
rounding scheme DEPROUND [42] to generate a cache allo-
cation xt+1 ∈ {0, 1}2N from yt+1 ∈ [0, 1]2N , and the cache
can fetch from the server the objects that are in xt+1 but not
in xt. In [9] we discuss also an approach based on coupling
the random variables xt and xt+1 to significantly reduce the
number of fetched objects to update the cache state.

F. Time Complexity

AÇAI uses OMA in Algorithm 1 coupled with a rounding
procedure DEPROUND. The rounding step may take O (N)
operations (amortized every M requests). In practice, AÇAI
quickly sets irrelevant objects in the fractional allocation
vector yt very close to 0. Therefore, we can keep track only
of objects with a fractional value above a threshold ε > 0, and
the size of this subset is practically of the order of h.

Similarly, subgradient computation may require O (N) op-
erations per each component and then have O

(
N2
)

complex-
ity, but in practice, as the vector yt is sparse, calculations in
[9, Eq. (55)] require only a constant number of operations and
complexity reduces to O (N).

Finally, we adapted the Euclidean projection algorithm
in [43] to obtain a neg-entropy Bregman projection (line 6
of Algorithm 1) that has O (N logN) time complexity. The
O (N logN) is due to a sorting operation while the actual
projection takes O (h). Again, most of the components of yt
are equal to 0, so that we need to sort much less than N points.

G. Theoretical Guarantees

We observe that maximizing the gain (6) is NP-hard in general
even for k = 1 under a stationary request process [18].
Nevertheless, AÇAI provides guarantees in terms of the ψ-
regret [44]. In this scenario, the regret is defined as gain loss
in comparison to the best static cache allocation in hindsight
x∗ ∈ arg max

x∈X

∑T
t=1G(rt,x). The ψ-regret discount the best

5Properly speaking OMA, only refers to the update of yt and does not
include the randomized rounding scheme DEPROUND in lines 7–9.
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Algorithm 1 Online Mirror Ascent (OMAΦ)
1: procedure ONLINEMIRRORASCENT(y1 = arg min

y∈X∩D
Φ(y),x1 =

DEPROUND(y1), η ∈ R+)
2: for t = 1, 2, . . . , T do . Incur a gain G(rt,yt), and receive a

subgradient gt ∈ ∂yG(rt,yt) using [9, Eq. (55)]
3: ŷt ← ∇Φ(yt) . Map primal point to dual point
4: ẑt+1 ← ŷt + ηgt . Take gradient step in the dual
5: zt+1 ← (∇Φ)−1 (ẑt+1) . Map dual point to a primal point
6: yt+1 ←

∏Φ
X∩D(zt+1) . Proj. new point onto feasible region

7: if M | t then . Round the fractional state every M requests
8: xt+1 ← DEPROUND(yt+1)
9: end if

10: end for
11: end procedure

static gain by a factor ψ ≤ 1. Formally,

ψ-RegretT,X (OMAΦ) =

sup
{r1,r2,...,rT }∈RT

{
ψ

T∑
t=1

G(rt,x∗)− E

[
T∑
t=1

G(rt,xt)

]}
,

(9)

where the expectation is over the randomized choices of
DEPROUND. Note that the supremum in (9) is over all
possible request sequences. This definition corresponds to the
so called adversarial analysis, imagining that an adversary
selects requests in R to jeopardize cache performance. This
modeling approach is commonly used to characterize system
performance under highly volatile external parameters (e.g.,
the sequence of requests rt) and has been recently successfully
applied to caching problems [27], [37], [45].

Obviously, regret bounds in the adversarial setting provide
strong robustness guarantees in practical scenarios. AÇAI has
the following regret guarantee:

Theorem IV.1. Algorithm 1 with M = 1 has a sublinear
(1− 1/e)-regret in the number of requests, i.e., there exists a
constant A such that:

(1− 1/e)-RegretT,X (OMAΦ) ≤ A
√
T . (10)

where A ∝ ckd + cf . ckd is an upper bound on the dissimilarity
cost of the k-th closest object for any request in R.

Proof. (sketch) We first prove that the expected gain of the
randomly sampled allocations xt is a (1−1/e)-approximation
of the fractional gain. Then, we use online learning results [41]
to bound the regret of OMA schemes operating on a convex
decision space against concave gain functions picked by an
adversary. The two results are combined to obtain an upper
bound on the (1−1/e)-regret. We fully characterize the regret
constant A in [9].

A consequence of Theorem IV.1 is that the expected time-
average (1 − 1/e)-regret of AÇAI can get arbitrarily close
to zero for large time horizon. Hence, AÇAI performs on
average as well as a (1 − 1/e)-approximation of the optimal
configuration x∗. This observation also suggests that our
algorithm can be used as an iterative method to solve the
NP-hard static allocation problem with the best approximation
bound achievable for this kind of problems [46].

Corollary IV.1.1. (offline solution) Let ȳ be the average
fractional allocation ȳ = 1

T

∑T
t=1 yt of AÇAI, and x̄ the

random state sampled from ȳ using DEPROUND. ∀ε > 0 and
over a sufficiently large time horizon T , x̄ satisfies

E
[

1
T

∑T
t=1G(rt, x̄)

]
≥
(
1− 1

e − ε
)

1
T

∑T
t=1G(rt,x∗).

where x∗ = arg max
x∈X

∑T
t=1G(rt,x).

V. EXPERIMENTS

We evaluate AÇAI under different real world traces. We
compare our solution with state of the art online policies
proposed for kNN caching, i.e., SIM-LRU [17], CLS-LRU
[17], and QCACHE [26] described in Sec. II.
A. Data-sets Description
SIFT1M trace. SIFT1M is a classic benchmark data-set
to evaluate approximate kNN algorithms [47]. It contains
1 million objects embedded as points in a 128-dimensional
space. SIFT1M does not provide a request trace so we gener-
ated a synthetic one according to the Independent Reference
Model [48] (similar to what done in other papers like [16],
[23]). Request rt is for object i with a constant probability λi
independently from previous requests. We spatially correlated
requests by letting λi depend on the position of the embed-
dings in the space. In particular, we considered the barycenter
of the whole dataset and set λi proportional to d−βi , where
di is the distance of i from the barycenter. The parameter β
was chosen such that the tail of the ranked objects popularity
distribution is similar to a Zipf with parameter 0.9, as observed
in some image retrieval systems [26]. We generated a trace
with 105 requests. The number of distinct objects requested in
the trace is approximately 2× 104.
Amazon trace. The authors of [49] crawled the Amazon web-
store and collected a dataset to model relationships among
products and provide user recommendations. They took as
input the visual features of product images obtained from
a machine learning model pre-trained on 1.2 million images
from ImageNet. They also collected information about which
users purchased or viewed the objects. The authors of [25]
built a request trace from the timestamped user reviews for
objects in the category Baby embedded in a 100-dimensional
space. Two products o and o′ are considered similar if they
have been viewed by the same users. We use the request trace
from [25], and in particular the interval [2 × 105, 3 × 105].6

The number of distinct objects requested in this trace is
approximately 2× 104.
B. Settings and Performance Metrics
For AÇAI, unless otherwise said, we choose the negative
entropy Φ(y) =

∑
i∈N yi log(yi) as mirror map (see Fig. 6

and the corresponding discussion for other choices). The
learning rate is set to the best value found exploring the range
[10−6, 10−4].

6We discard the initial part of the trace because it contains requests only
for a small set of objects (likely the set of products to crawl was progressively
extended during the measurement campaign in [49]).
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Fig. 1: Caching gain for the different policies. The cache size
is h = 1000 and k = 10.

As for the state-of-the-art caching policies, SIM-LRU and
CLS-LRU have two parameters, Cθ and k′, that we set in each
experiment to the best values we found exploring the ranges
[cf , 2cf ] for Cθ and [1, h] for k′. For QCACHE we consider
l = h/k: the cache can then perform the kNN search over all
local objects.

We also consider a simple similarity caching policy that
stores previous requests and the corresponding set of k closest
objects as key-value pairs, and manages the set of keys
according to LRU. The cache then serves locally the request
if it coincides with one of the previous requests in its memory,
it forwards it to the server, otherwise. The ordered list of keys
is updated as in LRU. We refer to this policy simply as LRU.

For every caching policy P , we can define its caching gain
GP(r,x) as in Eq. (6). We can then compare the policies in
terms of their normalized average caching gain per-request,
where the normalization factor corresponds to the caching
gain of a cache with size equal to the whole catalog. In
such case, the cache could store the entire catalog locally and
would achieve the same dissimilarity cost of the server without
paying any fetching cost. The maximum possible caching gain
is then kcf . The normalized average gain over T requests can
then be defined as:

NAG(P) = 1
kcfT

∑T
t=1GP(rt,xt). (11)

C. Results
We consider a dissimilarity cost proportional to the squared
Euclidean distance. This is the usual metric considered for
SIFT1M benchmark and also the one considered to learn the
embeddings for the Amazon trace in [49].

The numerical value of the fetching cost depends on its
interpretation (delay experienced by the user, load on the
server or on the network) as well as on the application,
because it needs to be converted into the same “unit” of the
approximation cost. In our evaluation, we let it depend on the
topological characteristics of the dataset in order to be able
to compare the results for the two different traces. Unless
otherwise said, we set cf equal to the average distance of
the 50-th closest neighbor in the catalog N .

Figure 1 shows how the normalized average gain changes
as requests arrive and the different caching policies update the
local set of objects (starting from an empty configuration). The
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Fig. 2: Caching gain for the different policies, for different
cache sizes h ∈ {50, 100, 200, 500, 1000, 2000} and k = 10.
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Fig. 3: Caching gain for the different policies and different
retrieval cost. The retrieval cost cf is taken as the average
distance to the i-th neighbor, i ∈ {2, 10, 50, 100, 500, 1000}.
The cache size is h = 1000 and k = 10.
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Fig. 4: Caching gain for the different policies. The cache size
is h = 1000, and k ∈ {10, 20, 30, 50, 100}.
cache size is h = 1000 and the cache provides k = 10 similar
objects for each request. All policies reach an almost stationary
gain after at most a few thousand requests. Unsurprisingly,
the naive LRU has the lowest gain (it can only satisfy locally
requests that match exactly a previous request) and similarity
caching policies perform better. AÇAI has a significant im-
provement in comparison to the second best policy (SIM-LRU
for SIFT1M and CLS-LRU for Amazon).

This advantage of AÇAI is constantly confirmed for differ-
ent cache sizes (Fig. 2), different values of the fetching cost
cf (Fig. 3), and different values of k (Fig. 4). The relative
improvement of AÇAI, in comparison to the second best
policy, is larger for small values of the cache size (+30%
for SIFT1M and +25% for Amazon when h = 50), and small
values of the fetching cost (+35% for SIFT1M and +100%
for cf equal to the average distance from the second closest
object). Note how these are the settings where caching choices

7



0.0001 1e-05 1e-06
η

0.0

0.5

1.0
N

A
G
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Fig. 5: Caching gain for AÇAI for different values of η (top).
Caching gain for SIM-LRU(middle) and CLS-LRU (bottom)
for different values of the parameters (k′, Cθ). SIFT1M trace.

are more difficult (and indeed all policies have lower gains):
when cache storage can accommodate only a few objects, it
is critical to carefully select which ones to store; when the
server is close, the costs of serving requests from the cache or
from the server are similar and it is difficult to correctly decide
how to satisfy the request. Caching policies performance are
in general less dependent on the number k of similar objects
to retrieve and AÇAI achieves about 10% improvement for k
between 10 and 100 when h = 1000 (Fig. 4).

Sensitivity analysis. We now evaluate the robustness of AÇAI
to the configuration of its single parameter (the learning rate
η). Figure 5 shows indeed that, for learning rates that are two
orders of magnitude apart, we can achieve almost the same
normalized average gain both for h = 50 and for h = 1000.7

In contrast, the performance of the second best policies
(SIM-LRU and CLS-LRU) are more sensitive to the choice
of their two configuration parameters k′ and Cθ. For example,
the optimal configuration of SIM-LRU is k′ = 10 and
Cθ = 1.5 × cf for a small cache (h = 50) but k′ = 200
and Cθ = 2 × cf for a large one (h = 1000). Moreover, in
both cases a misconfiguration of these parameters would lead
to significant performance degradation.

Choice of the mirror map. If the mirror map is selected equal
to the squared Euclidean norm, the OMA update coincides
with a standard gradient update. Figure 6 shows the superiority
of the negative entropy map: it allows to achieve a higher gain
than the Euclidean norm map or the same gain but in a shorter
time. To the best of our knowledge, ours is the first paper that
shows the advantage of using non-Euclidean mirror maps for
caching problems. It is possible to justify theoretically this
result, considering the difference of subgradients norms for

7Under a stationary request process, a smaller learning rate would lead to
converge slower but to a solution closer to the optimal one. Under a non-
stationary process, a higher learning rate may allow faster adaptivity. In this
trace, the two effects almost compensate, but see also Fig. 6.
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Fig. 6: Caching gain for AÇAI configured with negative
entropy and Euclidean maps (SIFT1M trace). The cache size
is h = 100 and k = 10.
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Fig. 7: AÇAI caching gain improvement in comparison to the
second best state-of-the-art similarity caching policy: contribu-
tion of approximate indexes and gradient updates. The cache
size is h = 1000, and k ∈ {10, 20, 30, 50, 100}.
similarity caching and exact caching problems [9, Appendix
D].

Dissecting AÇAI performance. In comparison to state-of-
the-art similarity caching policies, AÇAI introduces two key
ingredients: (i) the use of fast, approximate indexes to decide
what to serve from the local catalog and what from the remote
one, and (ii) the OMA algorithm to update the cache state. It
is useful to understand how much each ingredient contributes
to AÇAI improvement with respect to the other policies.

To this aim, we integrated the same indexes in the other
policies allowing them to serve requests as AÇAI does,
combining both local objects and remote ones on the basis of
their costs (see Sec. IV-C), while leaving their cache updating
mechanism unchanged. We then compute in the setting of
Fig. 4 how much the gain of the second best policy (SIM-LRU
for SIFT1M and CLS-LRU for Amazon) increases because of
the use of AÇAI request service mechanism. This is the part
of AÇAI improvement attributed to the use of the indexes,
the rest is attributed to the cache update mechanism through
OMA.

We observe from Fig. 7 that most of AÇAI gain im-
provement over the second best caching policy is due to
the use of approximate indexes, but OMA updates are still
responsible for 15–20% of AÇAI performance improvement
under SIFT1M trace and for 20–35% for the Amazon trace.

VI. CONCLUSION

Edge computing provides computing and storage resources
that may enable complex applications with tight delay guar-
antee like augmented-reality ones, but these strategically po-
sitioned resources need to be used efficiently. To this aim,
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we designed AÇAI, a content cache management policy that
determines dynamically the best content to store on the edge
server to reply to similarity search queries. Our solution adapts
to the user requests, without any assumption on the traffic
arrival pattern. AÇAI leverages on two key components:
(i) new efficient content indexing methods to keep track of
both local and remote content, and (ii) mirror ascending
techniques to optimally select the content to store. The results
show that AÇAI is able to outperform the state-of-the-art
policies and does not need careful parameter tuning.

As future work, we plan to evaluate AÇAI in the context of
machine learning classification tasks [50], in which the size of
the objects in the catalog is comparable to their d-dimensional
representation in the index, and, as a consequence, the index
size cannot be neglected in comparison to the local catalog
size.
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