
HAL Id: hal-03376168
https://hal.science/hal-03376168

Submitted on 13 Oct 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Towards inference delivery networks: distributing
machine learning with optimality guarantees

Tareq Si Salem, Gabriele Castellano, Giovanni Neglia, Fabio Pianese, Andrea
Araldo

To cite this version:
Tareq Si Salem, Gabriele Castellano, Giovanni Neglia, Fabio Pianese, Andrea Araldo. Towards infer-
ence delivery networks: distributing machine learning with optimality guarantees. MEDCOMNET
2021 - 19th Mediterranean Communication and Computer Networking Conference, Jun 2021, Ibiza
(virtual), Spain. pp.1-8, �10.1109/MedComNet52149.2021.9501272�. �hal-03376168�

https://hal.science/hal-03376168
https://hal.archives-ouvertes.fr

Towards Inference Delivery Networks: Distributing
Machine Learning with Optimality Guarantees

Tareq Si Salem∗, Gabriele Castellano∗†, Giovanni Neglia∗, Fabio Pianese†, Andrea Araldo‡
∗Inria, Université Côte d’Azur, France, {tareq.si-salem, gabriele.castellano, giovanni.neglia}@inria.fr,

†Nokia Bell Labs, France, {fabio.pianese, gabriele.castellano.ext}@nokia.com,
‡Télécom SudParis - Institut Polytechnique de Paris, France, andrea.araldo@telecom-sudparis.eu

Abstract—We present the novel idea of inference delivery
networks (IDN), networks of computing nodes that coordinate
to satisfy inference requests achieving the best trade-off between
latency and accuracy. IDNs bridge the dichotomy between device
and cloud execution by integrating inference delivery at the
various tiers of the infrastructure continuum (access, edge,
regional data center, cloud). We propose a distributed dynamic
policy for ML model allocation in an IDN by which each node
periodically updates its local set of inference models based on
requests observed during the recent past plus limited information
exchange with its neighbor nodes. Our policy offers strong
performance guarantees in an adversarial setting and shows
improvements over greedy heuristics with similar complexity in
realistic scenarios.

I. INTRODUCTION

Machine Learning (ML) models are often trained to perform
inference, that is to elaborate predictions based on input
data that need to be delivered to the final users. ML model
training is a computationally and I/O intensive operation and
its streamlining is the object of much research effort. Although
inference does not involve complex iterative algorithms and
is therefore generally assumed to be easy, it also presents
fundamental challenges that are likely to become dominant
as ML adoption increases [1]. In a future where AI systems
are ubiquitously deployed and need to make timely and safe
decisions in unpredictable environments, inferences will have
to be served in real-time and the aggregate rate of predictions
needed to support a pervasive ecosystem of sensing devices
will become overwhelming.

Today two main deployment options for ML models are
common: inferences can be served locally by the end devices
(smartphones, IoT equipment, smart vehicles, etc.), where only
simple models can run, or by a remote cloud infrastructure,
where powerful “machine learning as a service” (MLaaS)
solutions by the major cloud providers can serve inferences
by sophisticated models at extremely high throughput.

However, there exist applications for which both options
may be unsuitable: local models may have inadequate ac-
curacy, while the cloud may fail to meet delay constraints.
As an example, popular applications such as recommendation
systems, voice assistants, and ad-targeting, need to serve pre-
dictions from ML models in less than 200 ms. Future wireless
services, such as connected and autonomous cars, industrial
robotics, mobile gaming, augmented/virtual reality, have even
stricter latency requirements, often below 10 ms and in the

order of 1 ms for what is known as the tactile Internet [2]. In
enabling such strict latency requirements, the advent of Edge
Computing plays a key role, as it deployes computational
resources at the edge of the network (base stations, access
points, ad-hoc servers). However, edge resources have limited
capacity in comparison to the cloud and need to be wisely
used. Therefore, integrating ML inference in the continuum
between end devices and the cloud—passing through edge
servers and regional micro data-centers—will require complex
resource orchestration.

We believe that, to allocate resources properly, it will
be crucial to study the trade-offs between accuracy, latency
and resource-utilization, adapted to the requirements of the
specific application. In fact, inference accuracy and, in general,
resource efficiency increase toward the cloud, but so does
communication latency. In this paper, we present the novel idea
of inference delivery networks (IDN): networks of computing
nodes that coordinate to satisfy inference requests achieving
the best trade-off. An IDN may be deployed directly by the ML
application provider, or by new IDN operators that offer their
service to different ML applications, similarly to what happens
for content delivery networks. The same inference task can
be served by a set of heterogeneous models featuring diverse
performance and resource requirements (e.g., different model
architectures [3], multiple downsized version of the same
pre-trained model [4], different configuration and execution
setup). Therefore, we study the novel problem of how to
deploy the available ML models on the available IDN nodes,
where a deployment strategy consists in two coupled decisions:
(i) where to place models for serving a certain task and (ii) how
to select their size/complexity among the available alternatives.

In this paper, after defining a specific optimization prob-
lem and characterizing its complexity, we introduce INFIDA
(INFerence Intelligent Distributed Allocation), a distributed
dynamic allocation policy. Following this policy, each IDN
node periodically updates its local allocation of inference
models on the basis of the requests observed during the recent
past and limited information exchange with its neighbors. The
policy offers strong performance guarantees in an adversarial
setting [5], that is a worst case scenario where the environment
evolves in the most unfavorable way. Numerical experiments
in realistic settings show that our policy outperforms heuristics
with similar complexity. Our contributions are as follows:
(1) We present the novel idea of inference delivery networks.

(2) We frame the allocation of ML model in IDNs as an
(NP-hard) optimization problem that captures the trade-
off between latency and accuracy (Sec. III).

(3) We propose INFIDA, a distributed and dynamic allocation
algorithm for IDNs (Sec. IV), and we show it provides
strong guarantees in the adversarial setting (Sec. V).

(4) We evaluate INFIDA in a realistic simulation scenario and
compare its performance with a greedy heuristic under
different trade-off settings (Sec. VI).

II. RELATED WORK

There is a vast literature on content placement [6] where
objects, e.g., files or streams, can be stored (cached) into
different nodes in order to reduce the operational cost of
content delivery. The problem has been extended to the case
of service caching (or placement), where an entire service
can be offloaded onto nodes co-located with base-stations
or mobile-micro clouds, engaging not only storage but also
computational resources and energy [7], [8]. The problem
considered in this paper differs from the above, as inference
services can run under different configurations that lead to
variable resource consumption and inference accuracy. In some
sense, traditional services provide a binary answer to any user
request: the request can be satisfied if and only if the service
is deployed at the node. In ML inference, however, several
models can provide an answer but the accuracy and the latency
of the answer can be different [9].

A similar trade-off between resource usage and perceived
quality typically emerges in the context of video caching.
In [10]–[12] a same video can be cached into multiple network
nodes at different qualities (or resolutions): the operator opti-
mizes the user experience by jointly deciding the placement
of videos and their quality. Video caching has however a far
weaker dependency on latency, which is instead of paramount
importance when placing interactive ML models, in particular
for applications like augmented reality or autonomous driving.
Moreover, in [10], [11] online placement is based on heuristic
policies with no performance guarantees. The algorithm pro-
posed in [12], instead, optimizes video placement in a snapshot
of the system, assuming user demand is known in advance,
while we propose a dynamic policy capable to adapt to varying
requests in every time slot. We also prove strong performance
guarantees, which are meant to hold in any condition thanks
to our adversarial setting (Sec. V).

ML model allocation in an IDN can also be considered as a
particular instance of similarity caching [13], a general model
where items and requests can be thought as embedded in a
metric space: edge nodes can store a set of items and requests,
and the distance between a request and an item determines
the quality of the matching between the two. Similarity
caching was applied to a number of applications including
contextual advertising, object recognition, and recommender
systems (see [13] for specific references). To the best of our
knowledge, the literature on similarity caching has restricted
itself to (i) a single cache (with the exception of [14]–
[16]), and (ii) homogeneous items with identical resource

requirements. A consequence is that in our setting similarity
caching policies would only allocate models based on their
accuracy, ignoring the trade-offs imposed by their resource
requirements.

A related set of works attempts to adapt inference to the ca-
pabilities of mobile hardware platforms through the principle
of model splitting, a technique that distributes a ML model
by partitioning its execution across multiple discrete comput-
ing units. Model splitting was applied to accommodate the
hardware constraints in multi-processor mobile devices [17],
to share a workload among mobile devices attached at the
same network edge [18], and to partially offload inferences to
a remote cloud infrastructure [19], possibly coupled with early
exit strategies [20] and conditional hierarchical distributed
deployment [21]. Model splitting is orthogonal to our concerns
and could be accounted for in an enhanced IDN scheme.

There has been some work on ML model placement at the
edge in the framework of what is called “AI on Edge” [22], but
it considers a single intermediate tier between the edge device
and the cloud, while we study general networks with nodes in
the entire cloud-to-the-edge continuum. Our dynamic place-
ment INFIDA algorithm could be applied also in this more
particular setting, for example in the MODI platform [23]. The
work closest to ours is [24], which proposes an online learning
policy, with the premise of load balancing over a pool of edge
devices while maximizing the overall accuracy. INFIDA has
more general applicability.

Finally, VideoEdge [25] studies how to split the analytics
pipeline across different computational clusters to maximize
the average inference accuracy. Beside the focus on a specific
application, the paper does not propose dynamic allocation
placement algorithms.

III. INFERENCE SYSTEM DESIGN

We consider a network of compute nodes, each capable of
hosting some pre-trained ML models depending on its capa-
bilities. Such ML models are used to serve inference requests
for different classification or regression tasks.1 Requests are
generated by end devices and routed over given serving paths
(e.g., from edge to cloud nodes). The goal of the system is
to optimize the allocation of ML models across the network
so that the aggregate serving cost is minimized. Our system
model is detailed below.

A. Compute Nodes and Models

We represent the inference delivery network (IDN) as a
weighted graph G(V, E), where V is the set of compute nodes,
and E represents their interconnections. Each node v ∈ V
is capable of serving inference tasks that are requested from
anywhere in the network (e.g., from end-users, vehicles, IoT
devices). We denote by N={1, 2, . . . , N} the set of tasks the
system can serve (e.g., object detection, speech recognition,
classification), and assume that each task i ∈ N can be served
with different quality levels (e.g., different accuracy) and

1We are using the term task according to its meaning in the ML community,
e.g., a task could be to recognize specific images.

TABLE I: Notation Summary.

G(V, E) weighted graph, with nodes V and edges E
N / M tasks / models catalog
svm size of model m ∈M on node v ∈ V
bv allocation budget constraint at node v
xvm variable indicating model m is deployed on node v
ωvm indicates model m is permanently deployed on node v
ppp routing path {p1, . . . , pJ} of connected nodes pj ∈ V
R set of request types ρ = (i, ppp), i ∈ N and ppp is a path

C
pj
ppp,m cost of serving on pj along path ppp using model m
rtρ number of time ρ is requested during time slot t
Lvm maximum capacity of model m on node v
lt,vρ,m potential capacity of m on node v for request ρ at t
γkρ k-th smallest cost for request ρ along its path
λkρ potential capacity of the model serving ρ with cost γkρ
zkρ effective capacity of the model serving ρ with cost γkρ

C / G the overall system cost (9) / allocation gain (10)

different resources’ requirements by a set of suitable models
Mi={1, 2, . . . ,Mi}. We denote byM=∪i∈NMi the catalog
of all the available models. Note that each task is served by
a separate set of models, i.e., Mi∩Mi′=∅,∀i, i′ ∈ N , i 6= i′.
Catalog Mi may encompass, for instance, independently
trained models or shrunk versions of a high quality model
generated through distillation [26], [27]. Finally, every model
of the catalog may provide a different throughput (i.e., number
of requests it can serve in a given time period), and therefore,
support a different load (we formalize this in Sec. III-D).

For each compute node v ∈ V , we denote by

xvm ∈ {0, 1}, for m ∈M (1)

the decision variable that indicates if model m ∈ M is
deployed on node v.2 Therefore, xxxv = [xvm]m∈M is the
allocation vector on node v, and we use notation xxx to denote
the global allocation decision.

We assume that the allocation of ML models at each node
is constrained by a single resource dimension, potentially
different at different nodes. A node could be, for instance,
severely limited by the amount of available GPU memory,
another by the maximum throughput in terms of instructions
per second. The limiting resource determines the allocation
budget bv ∈ R+ at node v ∈ V . We also denote with svm ∈ R+

the size of model m ∈M in terms of the limiting resource at
node v. Therefore, budget constraints are expressed as∑

m∈M
xvms

v
m ≤ bv,∀v ∈ V. (2)

To every task i ∈ N , we associate a fixed set of repository
nodes that always run at least a model capable of serving
task i (e.g., high-performance models deployed in large data
centers). Repositories ensure requests are satisfied even when
the rest of the network is not hosting any additional model
(there is no intermediate allocation).

We discern the repository models through constants ωvm ∈
{0, 1}, each indicating if model m is permanently deployed

2Our formulation allows each node to host multiple copies of the same
model to satisfy a larger number of request. This is captured by considering
multiple distinct models with identical performance and requirements.

on node v. Then, we express the repository constraint as

xvm ≥ ωvm,∀v ∈ V,∀m ∈M. (3)

B. Inference Requests

We assume that every node has a predefined routing path
towards a suitable repository node for each task i ∈ N . The
routing is therefore predefined, and our decisions only concern
placement of models (i.e., variables xvm).

A routing path ppp of length |ppp| = J is a sequence
{p1, p2, . . . , pJ} of nodes pj ∈ V such that edge (pj , pj+1) ∈
E for every j ∈ {1, 2, . . . , J−1}. As in [28], we assume that
paths are simple, i.e., they do not contain repeated nodes. A
request is therefore determined by the pair (i,ppp), where i is
the task requested and ppp is the routing path to be traversed.
We denote by R the set of all possible requests, and by Ri
all possible requests for tasks i. When a request is propagated
from node p1 toward the associated repository node pJ , any
intermediate node along the path that hosts a suitable model
can serve it.

C. Cost Model

When serving request ρ=(i,ppp) ∈ R on node pj using model
m, the system experiences an inference cost that depends on
the quality of the model (i.e., on inference inaccuracy), its
inference time, and the characteristics of node pj . Additionally,
the system experiences a network cost, due to using the path
between p1 and pk. In general, we can write the total cost of
serving a request as

C
pj
ppp,m = f((p1, . . . , pj),m). (4)

While our theoretical results hold under this very general cost
model, in what follows—for the sake of concreteness—we
refer to the following simpler model:

C
pj
ppp,m =

j−1∑
j′=1

wpj′ ,pj′+1
+ dpjm + α(1−am) (5)

where wv,v′ ∈ R+ is the (round-trip) latency of edge (v, v′) ∈
E , while dpjm and (1−am) are respectively the inference delay
and prediction inaccuracy of model m on node pj . Parameter
α weights the importance of accuracy w.r.t. latency.

Note that seeking cost minimization along a serving path
usually leads to a trade-off: while the network cost always
increases with j, in a typical network the service cost
d
pj
m +α(1−am) tends to decrease, as farther nodes (e.g., data

centers) are better equipped and can run more accurate models.

D. Request Load and Serving Capacity

Let us assume that time is split in slots of equal duration.
We consider a time horizon equal to T slots. During a slot t
the system receives a batch of requests rrrt = [rtρ]ρ∈R, where
rtρ ∈ N denotes the number of requests of type ρ ∈ R.

Model m ∈ M has maximum capacity Lvm ∈ N when
deployed at node v ∈ V , i.e., it can serve at most Lvm
requests during one time slot t ∈ [T]. We do not make specific
assumptions on the time required to serve a request.

We denote by lt,vρ,m the potential available capacity, defined
as the maximum number of type-ρ requests node v can serve at
time t through model m, if m is deployed locally. The effective
available capacity is then equal to lt,vρ,mx

v
m. In general, lt,vρ,m ≤

min{Lvm, rtρ} because (i) the model can be busy processing
other requests for the same task, and (ii) it cannot serve beyond
what is requested at time t.

The vector of potential available capacities at time t ∈ [T]
is denoted by

lllt = [lt,vρ,m](ρ,m,v)∈
⋃
i∈N Ri×Mi×V . (6)

Note that computing lt,vρ,m requires to know the request
arrival order, the scheduling discipline at node v, and the
distribution of requests for other tasks across the different
nodes. Our analysis in Sec. V considers a “pessimistic”
scenario where both requests and available capacities are
selected by an adversary. This approach relieves us from the
need to model system detailed operations, while our proposed
algorithm (Sec. IV) benefits from strong guarantees in the
adversarial setting. In what follows, we can then consider that
the vector lllt is exogeneously determined.

To make sure that any request can always be served on
the associated repository node, we assume that the repository
allocation is never saturated for any possible request load, i.e.,
for every t ∈ [T] and task i ∈ N we have∑
ρ∈Ri

rtρ ≤
∑

m∈Mi

ωvml
t,v
ρ,m, for all v ∈ V :

∑
M∈Mi

ωvm ≥ 1. (7)

Without loss of generality, we assume that a repository node
for a given task stores a single model with unlimited capacity
(it represents a pool of high quality models).

E. Serving Model

Let Kρ = |ppp||Mi| denote the maximum number of models
that request ρ=(i,ppp)∈R may encounter along its serving
path ppp. We order the corresponding costs {Cpjppp,m,∀m ∈
Mi,∀pj ∈ ppp} in increasing order and we denote by κρ(v,m)
the order of model m allocated at node v. If v /∈ ppp we have
κρ(v,m) =∞.

If κρ(v,m) = k, then model m at node v has the k-th
smallest cost to serve request ρ. We denote the model service
cost, its potential available capacity, and its effective capacity
as γkρ , λkρ(lllt), and zkρ (lllt,xxx), respectively:

γkρ = Cvppp,m, λkρ(lllt) = lt,vρ,m, zkρ (lllt,xxx) = xvml
t,v
ρ,m. (8)

We assume the IDN serves requests as follows. Each re-
quest is forwarded along its serving path and served when it
encounters a model with the smallest serving cost among those
that are not yet saturated.

Since models do not necessarily provide increasing costs
along the path, this serving strategy requires that a node that
runs a model m ∈Mi and receives a request for task i, knows
if there are better alternatives for serving task i upstream or
not. In the first case, it will forward the request along the
path, otherwise it will serve it locally. We argue that, in a real
system, this partial knowledge can be achieved with a limited

number of control messages. In fact, if node ph ∈ ppp hosts
the model with the k-th cost for request (i,ppp), it only needs
information about those models that (i) are located upstream
on the serving path (i.e., on nodes pl ∈ ppp with l > h), and
(ii) provide a cost smaller than γkρ . Since the cost increases
with the network latency (see (5)), the number of models
satisfying these criteria is small in practice.3 A node needs to
propagate downstream a control message with the information
about the requests it can serve and the corresponding costs.
Nodes forwarding the control message progressively remove
the information about the tasks they can serve with a smaller
cost, until the control message payload is empty and the
message can be dropped. These messages should be sent
whenever the availability to serve additional requests changes.

According to the presented serving strategy, the requests
load is split among the currently available models giving
priority to those that provide the smallest serving costs up
to their saturation. In particular, the model with the k-th
smallest cost will serve some requests of type ρ only if the
less costly models have not been able to satisfy all of them
(i.e., if

∑k−1
k′=1 z

k′

ρ (lllt,xxx) < rtρ). If this is the case, it will serve
with cost γkρ at most zkρ (lllt,xxx) requests (its effective available
capacity) out of the rtρ −

∑k−1
k′=1 z

k′

ρ (lllt,xxx) requests still to be
satisfied. The aggregate cost incurred by the system at time
slot t is then given by

C(rrrt, lllt,xxx) =
∑
ρ∈R

Kρ∑
k=1

γkρ min

{
rtρ −

k−1∑
k′=1

zk
′

ρ (lllt,xxx), zkρ (lllt,xxx)

}
· 1{∑k−1

k′=1
zk′ρ (lllt,xxx)<rtρ}. (9)

F. Allocation Gain and Static Optimal Allocations

We are interested in model allocations that minimize the ag-
gregate cost (9), or, equivalently, that maximize the allocation
gain defined as

G(rrrt, lllt,xxx) = C(rrrt, lllt,ωωω)− C(rrrt, lllt,xxx). (10)

The first term C(rrrt, lllt,ωωω) on the right hand side is the
service cost when only repositories are present in the network.
Since intermediate nodes can help serving the requests at a
reduced cost, C(rrrt, lllt,ωωω) is an upper bound on the aggregate
serving cost, and the allocation gain captures the cost reduction
achieved by model allocation xxx.

The static model allocation problem can then be formulated
as finding the model allocation xxx∗ that maximizes the sum of
the allocation gains over the time horizon [1, T], i.e., xxx∗ =
arg max

∑
tG(rrrt, lllt,xxx) subject to the budget constraints (2).

This is a submodular maximization problem under multiple
knapsack constraints, which is NP-hard. It is known that
submodular maximization problems can not be approximated
with a ratio better than (1−1/e) even under simpler cardinality
constraints [29]. Under the multi-knapsack constraint, it is
possible to solve the offline problem achieving a (1−1/e−ε)-
approximation through a recent algorithm proposed in [30].

3In realistic settings (Sec. VI), we experienced that each deployed model
has at most 6 better alternatives on upstream nodes (worst case with α=1).

Algorithm 1 INFIDA distributed allocation on node v
1: for t = 1, 2, . . . , T do
2: Compute gggv ∈ ∂yyyvtG(rrrt, lllt, yyyt) through (12)
3: ŷyyvt ← ∇Φ(yyyvt) . Map state to dual space
4: ĥhh

v
t+1 ← ŷyyvt + ηtgggvt . Take gradient step in the dual space

5: hhhvt+1 ← (∇Φ)−1 (ĥhh
v
t+1). Map dual state back to the primal space

6: yyyvt+1 ← PΦ
Yv (hhhvt+1) . Proj. new state onto the feasible region

7: xxxvt+1 ← DepRound(yyyvt+1) . Sample a discrete allocation

We conclude by providing a useful alternative formulation
of the allocation gain (the proof is in [31]):

Lemma III.1. The allocation gain (10) has the following
equivalent expression:

G(rrrt, lllt,xxx) =
∑
ρ∈R

Kρ−1∑
k=1

(
γk+1
ρ − γkρ

)
·min

{
rt,ρ−βt,kρ ,

k∑
k′=1

zk
′

ρ (lllt,xxx)−βt,kρ
}
, (11)

where βt,kρ := min{rt,ρ,
∑k
k′=1 z

k′

ρ (lllt,ωωω)}.

IV. INFIDA ALGORITHM

In this section, we propose INFIDA, an online algorithm
that can operate in a distributed fashion without requiring
global knowledge of the allocation state and requests arrival.
In Sec. V, we show that INFIDA converges to an allocation
within a (1− 1/e)-approximation from the optimum.

A. Algorithm Overview

On every node v ∈ V , INFIDA updates the allocation xxxv ∈
X v={0, 1}|M| operating on a correspondent fractional state
yyyv ∈ Yv=[0, 1]|M|. Each variable yvm can be interpreted as
the probability of hosting model m on node v, i.e., yvm =
P[xvm = 1] = E[xvm].

Note that G(rrrt, lllt, yyy) is a concave function of variable yyy ∈
Y =×v∈V Y

v . Indeed, (11) shows that G(rrrt, lllt, yyy) is a linear
combination, with positive coefficients, of concave functions
(the minimum of affine functions in yyy).

Within a time slot t, node v collects measurements from
messages that have been routed through it (Sec. IV-B). At the
end of every time slot, the node (i) computes its new fractional
state yyyv , and (ii) updates its local allocation xxxv accordingly.
INFIDA is summarized in Algorithm 1 and detailed below.
State computation. The fractional state yyyv is updated through
an iterative procedure aiming to maximize G(rrrt, lllt, yyy). This
could be the standard gradient ascent method, which updates
the fractional state at each node as yyyvt+1 = yyyvt + ηtggg

v
t ,

where ηt ∈ R+ is the step size and gggvt is a subgradient of
G(rrrt, lllt, yyy) with respect to yyyv . In our work, we use a gen-
eralized version of the gradient method called Online Mirror
Ascent (OMA) [32, Ch. 4]. OMA uses a function Φ (mirror
map) to map yyy to a dual space before applying the gradient
ascent method (lines 3-5 of Algorithm 1). OMA reduces to the
classic gradient ascent method if Φ is the squared Euclidean
norm. Instead, we use the weighted negative entropy map
Φ(yyyv) =

∑
m∈M svmy

v
m log(yvm), which is known to achieve

better convergence rate when optimizing functions with similar
properties to G [32, Sect. 4.3].

To compute a feasible fractional state yyyv , we then perform a
projection to the set Yv of fractional allocations that satisfy the
capacity constraint (2) on node v (line 6 of Algorithm 1). We
adapt the projection algorithm from [33] to obtain a negative
entropy projection PΦ

Yv . Our adaptation is described in [31].
Allocation update. Once the fractional state yyyv has been
updated, the final step of INFIDA is to determine a new
random discrete allocation xxxv and update the local models
accordingly. The sampled allocation xxxv should (i) comply with
the budget constraint (2) on node v and (ii) be consistent with
the fractional state, i.e., E[xvm] = yvm ∀m ∈ M. In particular,
we use the DepRound [34] subroutine (line 7 of Algorithm 1).

In the remainder of this section we detail how each node
computes its contribution to the global subgradient, and the
rounding strategy used to determine the discrete allocation.

B. Subgradient Computation

At the end of every time slot t, each node v ∈ V computes
gggvt , a subgradient of G(rrrt, lllt, yyyt) with respect to yyyv , i.e., gggvt ∈
∂yyyvG(rrrt, lllt, yyyt), using the following expression (see [31]).

gvt,m =
∑
ρ∈R

Kρ−1∑
k=κρ(v,m)

λkρ(lllt)
(
γk+1
ρ − γkρ

)
·1{∑k

k′=1
zk′ρ (lllt,yyyt)<rtρ}

=
∑
ρ∈R

K∗ρ (yyyt)−1∑
k=κρ(v,m)

λkρ(lllt)
(
γk+1
ρ − γkρ

)
, ∀m ∈M, (12)

where K∗ρ(yyyt) is the order of the last model that would be
needed to serve all request batch rtρ in the fractional state yyyt,
i.e., K∗ρ(yyyt) := min

{
k ∈ [Kρ − 1] :

∑k
k′=1 z

k′

ρ (lllt, yyyt) ≥ rtρ
}

.
This subgradient can be computed at each node using only

information from the control messages collected at the end
of the time slot t. Consider a request of type ρ = (i,ppp).
The first node of the path, p1, generates a control message
with the total number rtρ of type-ρ requests received during
the slot, and sends the message along the path ppp. Each node
traversed, p1 included, adds its cost and effective capacity, in
the fractional state, for each model m ∈ Mi. The message
needs to travel upstream until it the model with the K∗ρ(yyyt)-
th smallest cost is detected, let us say at node ph. Node
ph can then generate a new control message with the same
payload and forward it in the reverse direction back to node
p1. Each node along the path has then all information needed
to compute its own subgradient following (12). It is possible
to significantly reduce the size of the control messages using
opportune partial aggregation, which we detail in [31].

C. State Rounding

Once the new fractional state yyyt+1 is computed, each
node v independently draws a random set of models to store
locally in such a way that E[xxxvt+1] = yyyvt+1. This sampling
guarantees that the final allocation xxxvt+1 satisfies constraint
(2) in expectation. A naive approach is to draw each variable
xv,t+1
m independently, but it leads to a large variance of the

total size of the models selected, potentially exceeding by far
the allocation budget at node v.

To construct a suitable allocation we adopt the DepRound
procedure from [34]. The procedure modifies the fractional
state yyyvt+1 iteratively: at each iteration, DepRound operates
on two fractional variables yv,t+1

m , yv,t+1
m′ so that at least

one of them becomes integral and the aggregate size of the
corresponding models svmy

v,t+1
m +svm′y

v,t+1
m′ does not change.

This operation is iterated until all the variables are rounded
except (at most) one. This is done in O(|M|) steps.

Note that, to satisfy E[xxxvt+1] = yyyvt+1, the residual fractional
variable, say it yv,t+1

m̄ , needs to be rounded. At this point
xv,t+1
m̄ can be randomly drawn. Now the final allocation can

exceed the budget bound bv by at most sm̄. In practice, we can
cope with the dangling variable adopting several heuristics,
e.g., deploy the model that provides the best marginal gain
among those that fit the constraint, or admit elastic budgets.

V. THEORETICAL GUARANTEES

We provide the optimality guarantees of our INFIDA al-
gorithm in terms of the ψ-regret [35]. In our scenario, the ψ-
regret is defined as the gain loss in comparison to the best static
allocation in hindsight xxx∗ ∈ arg maxxxx∈X

∑T
t=1G(rrrt, lllt,xxx),

discounted by a factor ψ ≤ 1. Formally,

ψ-RegretT,X =

sup
{rrrt,lllt}Tt=1∈(B×L)

T

{
ψ

T∑
t=1

G(rrrt, lllt,xxx
∗)−E

[
T∑
t=1

G(rrrt, lllt,xxxt)

]}
,

where allocations xxxt are computed using INFIDA and the
expectation is over the randomized choices of DepRound,
while B and L are respectively the set of all possible request
batches and potential available capacities, i.e., rrrt ∈ B and
lllt ∈ L,∀t ∈ [T]. Note that, by taking the supremum over
all the potential available capacity and request sequences,
we measure regret in an adversarial setting, i.e., against an
adversary that selects, for every t ∈ [T], vectors rrrt and lllt to
jeopardize the performance of our algorithm.

The adversarial analysis is a modeling technique to char-
acterize system performance under highly volatile external
parameters (e.g., the sequence of requests rrrt) or difficult to
model system interactions (e.g., the available capacities lllt).
This technique has been recently successfully used to model
caching problems (e.g., in [33], [36]). Our main result is the
following (the full proof is in [31]):

Theorem V.1. INFIDA has a sublinear (1− 1/e)-regret in
the sequence of requests and potential capacities, i.e., there
exists a constant A such that:

(1− 1/e)-RegretT,X ≤ A
√
T , (13)

where A ∝ RLmax∆C . R and Lmax are upper bounds,
respectively, on the request batch size at any time slot and on
the model capacities, while ∆C is the largest cost difference
between serving at a repository node and at a source node.

Proof. (sketch) We first prove that the expected gain of the
randomly sampled allocations xxxt is a (1−1/e)-approximation
of the fractional gain. Then, we use online learning results [32]
to bound the regret of Online Mirror Ascent schemes operating
on a convex decision space and against concave gain functions
picked by an adversary. The two results are combined to obtain
an upper bound on the (1−1/e)-regret.

We fully characterize the regret constant A in [31].
We observe that the regret bound depends crucially on the

maximum batch size R, maximum model capacity Lmax and
maximum serving cost difference ∆C . When considering the
cost model in Eq. (5), ∆C is given by the total latency of
the longest path plus the largest inference delay difference
between the repository and the most constrained nodes. This
result is intuitive: when these values are bigger, the adversary
has a larger room to select values that can harm the perfor-
mance of the system.

As a direct consequence of Theorem V.1, the expected time-
average (1−1/e)-regret of INFIDA can get arbitrarily close to
zero for large time horizon. Hence, INFIDA achieves a time-
average expected gain that is a (1−1/e−ε)-approximation of
the optimal static gain, for arbitrarily small ε. This observation
also suggests that our algorithm can be used to solve the NP-
hard static allocation problem with the best approximation
bound achievable for this kind of problems [29]. This result
is formally stated by the following corollary:

Corollary V.1.1. (offline solution) Let ȳyy be the average
fractional allocation ȳyy = 1

T

∑T
t=1 yyyt of INFIDA, and x̄xx the

random state sampled from ȳyy using DepRound. ∀ε > 0 and
over a sufficiently large time horizon T , x̄xx satisfies

E
[

1
T

∑T
t=1G(rrrt, lllt, x̄xx)

]
≥
(
1− 1

e − ε
)

1
T

∑T
t=1G(rrrt, lllt,xxx

∗).

VI. EXPERIMENTAL RESULTS

We evaluate INFIDA simulating a realistic scenario based
on the typical structure of ISP networks. We compare our
solution with a greedy policy (described below), as the greedy
heuristic is known to achieve good performance in practice for
submodular optimization [35].
Topology. We simulate a hierarchical topology similar to [37]
that spans between edge and cloud, with different capacities
at each tier. We consider 5 tiers: base stations (tier 4), each
featuring a single low-budget server; central offices (tiers 3,
2), with tens of servers at each node; ISP data center (tier
1), featuring hundreds of servers; a remote cloud (tier 0),
with practically unlimited capacity. We assume a hierarchical
geographic distribution similar to LTE, with RTTs ranging
from few milliseconds between tiers 2, 3, and 4, to tens of
milliseconds between tiers 0, 1, and 2. The average RTT from
base stations to cloud is ≈50 ms. We scale our experiments
to a scenario with 60 base stations (86 nodes in total).
Processing Units. We simulate the performance of two differ-
ent processing units. We assume tier 0 is equipped with high
end GPUs (Titan RTX), while other tiers are equipped with

(a) Fixed Popularity Profile (b) Sliding Popularity Profile

Fig. 1: Popularity profiles of inference tasks. In (b), popularity changes at
fixed time intervals through a cyclic shift. At any moment the requests are
i.i.d. and sampled from a Zipf distribution with exponent 1.2.

mid-range GPUs (GeForce GTX 980). However, we limit the
available GPU memory on 75% of the base stations to 1 GB.
Catalog and requests. We consider a catalog with 20 different
object detection tasks, and 10 alternative models per task.
We simulate performance based on state-of-the-art pre-trained
models and their pruned versions [38], [39], profiled for each
simulated processing unit (Table 2 in [31]). The popularity
of requested tasks changes over time through a cyclic shift
(Fig. 1). In our simulations, requests are first received from
the base stations, and we submit to the system up to 15000
requests per second (rps).
Greedy heuristic. The greedy heuristic is adapted from the
cost-benefit greedy [35]. A node v uses counters rvm,ρ to
keep track of the number of times a request ρ ∈ R is
forwarded upstream but could have been served locally at
a lower cost compared to the repository, i.e., using any
model m ∈ M that introduces a positive gain gvm,ρ.
For every model m, an importance weight is computed as
wvm= 1

svm

1
|R|
∑
ρ∈R g

v
m,ρ min{rvm,ρ, Lvm}, where svm is the size

of model m and min{rvm,ρ, Lvm} is the number of requests that
could have been improved by m. The node selects the model
m∗ with the highest importance while respecting the resource
budget constraint, then subtracts the quantity min{rvm,ρ, Lvm}
from rvm∗,ρ and from and all the rvm′,ρ : gvm′,ρ < gvm∗,ρ, i.e.,
models that provide a gain lower than m∗. This procedure is
repeated until the resource budget of the node is consumed.
Performance Metric. The performance of a policy P is
evaluated in terms of the time averaged gain normalized to the
number of requests per second (NTAG); The NTAG evaluated
over T requests is defined as:

NTAG(P) =

T∑
t=1

GP(rrrt, lllt,xxxt)

T‖rrrt‖1
. (14)

A. Trade-off between Latency and Accuracy

We first evaluate how INFIDA adapts to different trade-offs
between end-to-end latency and inference accuracy, varying
the α parameter in the request cost (5).

Fig. 2 shows the average allocation decision at each tier
of the topology for different values of α. Models are ordered
horizontally by increasing accuracy with 5 potential replicas
for each model. Note that tier 0 acts as repository and then
its allocation is fixed. For this set of experiments, we submit
a load of 5000 rps.

For α = 1 (Fig. 2c), INFIDA allocates a considerable

0 5 10 15 20 25 30 35 40 45
Models ID

0
1

2
3

4
S

er
v
in

g
ti

er

0.5

1.0

Model ID

Se
rv

ic
in

g
tie

r

(a) α = 1.0

0 5 10 15 20 25 30 35 40 45
Models ID

0
1

2
3

4
S

er
v
in

g
ti

er

0.5

1.0

Model ID

Se
rv

ic
in

g
tie

r

(b) α = 3.0

0 5 10 15 20 25 30 35 40 45
Models ID

0
1

2
3

4
S

er
v
in

g
ti

er

0.5

1.0

Model ID

Se
rv

ic
in

g
tie

r

(c) α = 4.0

Fig. 2: Average allocation decisions yvm of INFIDA on the various tiers of the
network topology, under Fixed Popularity profile. The model IDs are sorted
for increasing accuracy. Values are averaged over all nodes in each tier.

2 4 6
Accuracy/Latency tradeoff α

0

20

40

60

A
vg

in
ac

cu
ra

cy
(1

00
-

m
A

P
)

0

20

40

60

A
vg

la
te

n
cy

(m
s)

(a)

0.25 1 2 4 6
Accuracy/Latency tradeoff α

0

20

40

60

N
T

A
G

INFIDA Greedy

(b)

Fig. 3: For different values of α: (a) average latency (dashed line) and
inaccuracy (solid line) costs experienced with INFIDA; (b) NTAG of INFIDA
and Greedy.

amount of small models (which provide low accuracy) near
the edge (i.e., tiers 2-4), as they can serve a large number of
requests. By giving more importance to the accuracy (α = 3)
the system tends to avoid serving the requests at the very edge,
also increasing the probability to deploy more accurate models
(Fig. 2c). For α = 4, also the number of models deployed
on tiers 1-3 drastically decreases, as the system selects high
quality models that quickly consume the resources of the
nodes. The few allocations on tiers 1-3 also suggests that a
significant amount of requests is served in the cloud, being
latency less important.

For better visualizing the trade-off, we describe below a set
of results obtained in a topology with smaller nodes (up to
5 times), which allowed us to stress the system even with a
moderate load of 5000 requests per second (Fig 3).

Fig. 3a shows the average experienced inaccuracy and
latency for different values of α. When the accuracy is not
important (i.e., α ≈ 0), INFIDA effectively achieves very
low end-to-end latency (few milliseconds), by prioritizing the
deployment of small and inaccurate models on the edge nodes.
Noticeably, the kink in both curves at α ≈ 4 suggests that,
when a higher accuracy is required, the system starts to prefer
models on the cloud, leading to a sudden change in the trade-
off and to a significant increase in latency.

In Fig. 3b we show the time averaged gain of INFIDA com-
pared to the Greedy policy for different values of α. The gain
is normalized to the number of requests per second. The plot
shows that the gain decreases by increasing α. This is expected
since the gain (10) is defined as the improvement w.r.t. the
repository allocation (tier 0). Therefore, when the latency is
not important, high accuracy models at tier 0 are preferred,
and there is no much room for improvement (the optimal
gain eventually tends to zero for α→+∞). Noticeably, in this
situation our algorithm performs much better than Greedy (the
gain is up to 2.5 times higher). This suggests that INFIDA does

0 20 40 60
Time (s)

20

40

60

N
T

A
G

INFIDA : 5000 rps

INFIDA : 10000 rps

INFIDA : 15000 rps

Greedy : 5000 rps

Greedy : 10000 rps

Greedy : 15000 rps

(a) Fixed Popularity profile

0 20 40 60
Time (s)

20

40

60

N
T

A
G

INFIDA : 5000 rps

INFIDA : 10000 rps

INFIDA : 15000 rps

Greedy : 5000 rps

Greedy : 10000 rps

Greedy : 15000 rps

(b) Sliding Popularity profile

Fig. 4: NTAG of INFIDA and Greedy for different request loads.

a better job in spotting the few remaining alternatives that can
reduce the cost compared to the repository.

B. Scalability on Requests Load

Last, we show how the system performs under different
requests loads. For this set of experiments, we set α = 0.5.
Fig. 4 shows that, in general, INFIDA provides a higher gain
compared to the Greedy heuristic.

In particular, while Greedy performs similar to INFIDA
for 5000 rps, it quickly deteriorates when the load increases,
reducing its average gain by ≈33% for 15000 rps. It is also
noteworthy that Greedy has visibly perturbed performance
when the popularity of the tasks changes over time (Fig. 4b).

On the other hand, results show that INFIDA preserves its
performance providing the same Normalized Time-Averaged
Gain for all the analyzed request loads and under both Fixed
and Sliding Popularity.

VII. CONCLUSIONS

In this paper, we introduced the idea of inference delivery
networks (IDNs), networks of computing nodes that coordinate
to satisfy inference requests in the continuum between Edge
and Cloud. IDN nodes can serve inference requests with
different levels of accuracy and end-to-end delay, based on
their geographic location and processing capabilities. We for-
malized the NP-hard problem of allocating ML models on IDN
nodes, capturing the trade-off between latency and accuracy.
We proposed INFIDA, a dynamic ML model allocation algo-
rithm that operates in a distributed fashion and provides strong
guarantees in an adversarial setting. We evaluated INFIDA
simulating the realistic scenario of an ISP network, and com-
pared its performance with a greedy heuristic. Our results show
that INFIDA adapts to different latency/accuracy trade-offs
and scales well with the number of requests, outperforming
the greedy policy in all the analyzed settings.
Acknowledgement. This work has been carried out in the
framework of a common lab agreement between Inria and
Nokia Bell Labs. G. Neglia acknowledges support from Inria
under the exploratory action MAMMALS.

REFERENCES

[1] I. Stoica et al., “A berkeley view of systems challenges for ai,”
arXiv:1712.05855, 2017.

[2] M. Simsek et al., “5g-enabled tactile internet,” IEEE JSAC, vol. 34,
no. 3, pp. 460–473, 2016.

[3] A. G. Howard et al., “Mobilenets: Efficient convolutional neural net-
works for mobile vision applications,” arXiv:1704.04861, 2017.

[4] L. Deng et al., “Model compression and hardware acceleration for neural
networks: A comprehensive survey,” Proc. of the IEEE, 2020.

[5] G. Goel et al., “Beyond Online Balanced Descent: An Optimal Algo-
rithm for Smoothed Online Optimization,” NIPS, 2019.

[6] X. Qiu et al., “Cost-Minimizing Dynamic Migration of Content Distri-
bution Services into Hybrid Clouds,” IEEE Trans. Par.Distr.Sys., 2015.

[7] J. Xu et al., “Joint service caching and task offloading for mobile edge
computing in dense networks,” in IEEE INFOCOM, 2018, pp. 207–215.

[8] S. Wang et al., “Dynamic Service Placement for Mobile Micro-Clouds
with Predicted Future Costs,” IEEE Trans. Par.Distr.Sys., 2017.

[9] A. Ben Ameur et al., “On the Deployability of Augmented Reality Using
Embedded Edge Devices,” in IEEE CCNC, 2021.

[10] A. Araldo et al., “Representation Selection Problem : Optimizing Video
Delivery through Caching,” in IFIP Netw., 2016.

[11] M. Choi et al., “Wireless Video Caching and Dynamic Streming Under
Differentiated Quality Requirements,” IEEE JSAC, vol. 36, 2018.

[12] Z. Qu et al., “Cooperative caching for multiple bitrate videos in small
cell edges,” IEEE Trans.Mob.Comp., vol. 19, no. 2, pp. 288–299, 2020.

[13] M. Garetto et al., “Similarity Caching: Theory and Algorithms,” in
IEEE INFOCOM, 2020. [Online]: https://hal.inria.fr/hal-02411268

[14] P. Sermpezis et al., “Soft cache hits: Improving performance through
recommendation and delivery of related content,” IEEE JSAC, 2018.

[15] J. Zhou et al., “Adaptive offline and online similarity-based caching,”
IEEE Networking Letters, vol. 2, no. 4, pp. 175–179, 2020.

[16] M. Garetto et al., “Content placement in networks of similarity caches,”
arXiv:2102.04974, 2021.

[17] N. D. Lane et al., “Deepx: A software accelerator for low-power deep
learning inference on mobile devices,” in ACM/IEEE IPSN, 2016.

[18] N. Fernando et al., “Computing with nearby mobile devices: A work
sharing algorithm for mobile edge-clouds,” IEEE Trans. Cloud Comput-
ing, vol. 7, no. 2, pp. 329–343, 2019.

[19] Y. Kang et al., “Neurosurgeon: Collaborative intelligence between the
cloud and mobile edge,” ACM SIGARCH Comp.Arch.News, 2017.

[20] S. Teerapittayanon et al., “Branchynet: Fast inference via early exiting
from deep neural networks,” in Int.Conf.Pattern Recog. (ICPR), 2016.

[21] S. Teerapittayanon et al., “Distributed deep neural networks over the
cloud, the edge and end devices,” in IEEE ICDCS, 2017.

[22] S. Deng et al., “Edge intelligence: The confluence of edge computing
and artificial intelligence,” IEEE IoT J., 2020.

[23] S. S. Ogden et al., “MODI: Mobile deep inference made efficient by
edge computing,” in USENIX HotEdge 2018, 2018.

[24] Y. Jin et al., “Provisioning Edge Inference as a Service via Online
Learning,” in IEEE SECON, 2020.

[25] C.-C. Hung et al., “Videoedge: Processing camera streams using hier-
archical clusters,” in IEEE/ACM Symposium on Edge Computing, 2018.

[26] G. Hinton et al., “Distilling the knowledge in a neural network,” preprint
arXiv:1503.02531, 2015.

[27] S. Ravi, “Custom On-Device ML Models with Learn2Compress,” 2018.
[28] S. Ioannidis et al., “Adaptive caching networks with optimality guaran-

tees,” SIGMETRICS Perform. Eval. Rev, vol. 44, pp. 113–124, 2016.
[29] G. L. Nemhauser et al., “Best algorithms for approximating the maxi-

mum of a submodular set function,” Math. of Op. Res., 1978.
[30] Y. Fairstein et al., “A (1-1/e-ε)-approximation for the monotone sub-

modular multiple knapsack problem,” in Euro. Symp. on Algorithms.
Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2020.

[31] T. Si Salem et al., “Towards inference delivery networks: Distributing
machine learning with optimality guarantees,” arXiv:2105.02510, 2021.

[32] S. Bubeck, “Convex optimization: Algorithms and complexity,” Found.
Trends Mach. Learn., vol. 8, no. 3-4, pp. 231–357, Nov. 2015.

[33] T. Si Salem et al., “No-Regret Caching via Online Mirror Descent,” in
IEEE International Conference on Communications (ICC), 2021.

[34] J. Byrka et al., “An improved approximation for k-median, and positive
correlation in budgeted optimization,” in ACM-SIAM symposium on
Discrete algorithms, 2014.

[35] A. Krause et al., “Submodular function maximization.” Tractability,
vol. 3, pp. 71–104, 2014.

[36] G. S. Paschos et al., “Learning to cache with no regrets,” in IEEE
INFOCOM, 2019.

[37] A. Ceselli et al., “Mobile edge cloud network design optimization,”
IEEE/ACM Trans. on Net., vol. 25, no. 3, pp. 1818–1831, 2017.

[38] A. Bochkovskiy et al., “Yolov4: Optimal speed and accuracy of object
detection,” arXiv:2004.10934, 2020.

[39] Y. Cai et al., “Yolobile: Real-time object detection on mobile devices
via compression-compilation co-design,” arXiv:2009.05697, 2020.

