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1 Introduction

The Notices of the AMS, in their volume 58, number 9 of October 2011 (p.1226–1249),
presented a beautiful collection of essays in the memory of Shiing-Shen Chern. The contri-
butions are of the highest quality and I was struck by the essay written by the late Manfredo
do Carmo entitled “On collaborating with Chern”. Manfredo do Carmo explained how a
course given in 1968, in Berkeley, by S. S. Chern has deeply influenced his career. The course
was about a (at the time) recent preprint by J. Simons which eventually was published as
the article [Sim68] and dealt with minimal varieties in Riemannian manifolds. According to
Manfredo do Carmo the course was given in such an exciting way that he became convinced
that studying minimal surfaces was his “home”. I was lucky to meet several times Manfredo
do Carmo in Brazil and not only he was a renowned specialist of minimal varieties but he
also had built a strong school and there is certainly very few mathematical departments
in Brazil that does not have a researcher who is a descendant of Manfredo. It seems not
exaggerated to say that this grew out of this course given by S. S. Chern in Berkeley in
the winter of 1968 ! Very few mathematicians can have such a worldwide influence and
S. S. Chern was one of them.

The paper by Jim Simons became immediately famous. In its first part the author
proved what is now called the Simons equation, which is an elliptic equation satisfied by
the second fundamental form of any minimal variety in any Riemannian manifold. The
minimal surfaces (or submanifolds) theory has produced lots of beautiful examples and is
still very active nowadays. They can be studied for themselves or for their relations with
the topology and the geometry of the ambiant Riemannian manifold. There is a notion of
stability related to the Jacobi operator, and grosso modo saying that under normal local
(compact) deformations of the minimal submanifold the variation of the volume has non
negative hessian. The interested reader is referred to [CM11] for the details.

A striking fact is that stable minimal surfaces in 3-manifolds have a strong impact on
their topology and geometry. This was noticed by several authors, in particular R. Schoen
and S. T. Yau ([SY82]) and M. Gromov and B. Lawson ([GL83]). In the present text we
present a survey of some recents results on a family of manifolds: the contractible open
3-manifolds, the first example of which was constructed by J. H. C. Whitehead. Stable
minimal surfaces are used to prove a rigidity result asserting that, among all of them, R3 is
distinguishable by the geometry it can carry. This is by no mean exhaustive but concerns
striking examples of (open) 3-manifolds.

1



I would like to thank Xiaonan Ma for giving me the opportunity to advertise for this
topic, and for his patience, and Jian Wang for interesting discussions.

2 Stable Minimal Surfaces and Positive Scalar Cur-
vature

Let us start this short discussion by Theorem 10.2 of [GL83] which we recall here

Theorem 2.1 ([GL83] p. 172). Let S be a compact stable minimal surface in a 3-manifold
X with scalar curvature satisfying Scal ≥ κ0 > o. Let Ω ⊂ Σ be a compact connected domain
and let ρ > o be a number such that

1. Ωρ does not meet ∂Σ.

2. Image[H1(Ω)→ H1(Ωρ)] 6= 0.

Then,

ρ <
π√
κ0

.

Here, we denote by Ωρ := {x ∈ Σ : dΣ(x,Ω) ≤ ρ}. The proof of this result given on page
178 of [GL83] uses in an essential way the stability of Σ. This notion of stability implies
that for every smooth function f with compact support in Σ \ ∂Σ one has,∫

Σ

{
|∇f |2 +Kf2 − 1

2
κ0f

2
}
dA ≥ 0 ,

where K is the Gaussian curvature of Σ and dA the area element of the metric on Σ induced
from the one on X.

A consequence of Theorem 2.1, stated as Theorem 10.7, is the following statement.

Theorem 2.2. Let X be a compact 3-manifold, possibly with a non empty boundary, and
suppose that X is endowed with a metric of scalar curvature greater or equal to 1. Then any
closed curve γ ⊂ X such that

1. [γ] = 0 in H1(X, ∂X),

2. dist(γ, ∂X) > 2π

must already bound in its 2π-neighbourhood.

The proof amounts to applying Theorem 2.1 to the surface Σ of least area spanning γ
modulo ∂X, which may intersect ∂X. The argument though is not that straightforward and
the interested reader can read it on page 177 of [GL83].

The upshot of these nice results is the following corollary (Corollary 10.9 in [GL83])
which is relevant to the purpose of this text. On a non compact manifold X, we say that the
scalar curvature is uniformly positive if there exists κ0 > 0 such that, Scal ≥ κ0 everywhere
on X.

Corollary 2.3. A complete 3-manifold X of uniformly positive scalar curvature and with
finitely generated fundamental group is simply-connected at infinity.

This corollary makes sense for open 3-manifolds and it provides an important topological
consequence of uniformly positive scalar curvature. Although X, in Corollary 2.3, may be
non compact the result is a consequence of Theorem 2.2. For the sake of completeness we
end this section by recalling the definition of simply-connectedness at infinity.

Definition 2.4. A connected, locally compact space M is simply-connected at infinity if
for any compact set K ⊂M , there exists a compact set K′ containing K so that the induced
map π1(M \K′)→ π1(M \K) is trivial.

In other words, for any compact set K, the loops which are far away from K, say in the
complement of K′, can be contracted in the complement of K. Notice that this notion is
preserved by homeomorphisms.
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3 Contractible Open 3-Manifolds

We now describe a series of examples, the contractible open 3-manifolds which are not
homeomorphic to R3, for which stable minimal disks play an important role. They are
trivial in the sense that they are homotopically trivial and their topology is hidden in their
structure at infinity. The very first one was introduced by J. H. C. Whitehead in [Whi34] in
an unsuccessful attempt to prove the Poincaré conjecture; let us recall its construction. We
start with the Whitehead link which is a link with two components illustrated in Figure 1
below in two different ways. Notice that this link is symmetric; this means that there is an
isotopy of the ambient space which reverses the roles played by the black and red curves.

Figure 1: Whitehead Link

For a closed solid torus N we define the notion of a meridian curve. A meridian γ ⊂ ∂N
is an embedded circle which is nullhomotopic in N but not contractible in ∂N . On Figure
2 the red curve is a meridian.

We now choose an open solid torus N1. It can be viewed as an unknotted solid torus in
S3 and it is well known that the complement of N1 in S3 is another solid torus (this time
closed). We then embed N1 into a second open solid torus N2 as a tubular neighbourhood of
the green curve shown in Figure 2. The green and red curves form a Whitehead link. This is
the basic pattern of the construction which we will repeat infinitely many times. Precisely,
N2 is a solid torus which can be embedded, in the same way, into another open solid torus
N3. We do this infinitely many times and define the Whitehead manifold, Wh := ∪∞k=1Nk.
It turns out that Wh is an open subset of S3 (hence of R3 too) whose complement is a
fractal closed subset of S3 called the Whitehead Continuum. The Whitehead manifold is
then an open submanifold of S3, i.e. a non compact manifold without boundary.

Figure 2: N1 ⊂ N2

The symmetry of the Whitehead link allows a second construction which describes the
Whitehead continuum as the intersection of a descending sequence of closed solid tori. The
above one though, with the increasing sequenceNk, is much more flexible since it can support
variations such as changing the knot at each step k, and yields a family of manifolds some
of which are even not embedded in S3. We then say that an open 3-manifold is genus one if
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it is the increasing union of open solid tori Nk so that, for each k, N̄k ⊂ Nk+1 (where N̄k is
the closure of Nk) and such that a disc filling a meridian of Nk+1 intersects the core of Nk.
In such a generality they were introduced in [McM62] and there are uncountably many of
them, some of which are subsets of S3, some not (see [KM62]). Note that R3 is not genus
one but rather genus zero, since it is an increasing union of 3-balls. The construction can
also be made with handlebodies of higher genus [McM62] and the genus can also change at
each stage of the construction, the worst case being when this genus goes to infinity. This
produces an incredible zoology of contractible pairwise non homeomorphic 3-manifolds !

Showing that Wh is contractible is easy with the description. Thanks to a theorem due
(again) to Whitehead it suffices to show that all homotopy groups are trivial and this follows
from the fact that Nk is homotopically trivial in Nk+1. To prove that it is not homeomorphic
to R3 we simply show that Wh is not simply-connected at infinity.

We now want to explore the Riemannian geometry of these spaces, the idea being that
among all these contractible 3-manifolds R3 should be special. The starting point is the
article [SY82] by R. Schoen and S.-T. Yau in which they prove the following theorem.

Theorem 3.1 ([SY82], Theorem 3). Let M be a complete non compact 3-dimensional man-
ifold with positive Ricci curvature. Then M is diffeomorphic to R3.

The key idea relies on showing that there are no stable complete minimal surface in M .
Indeed, its Jacobi operator is related to the Ricci curvature of the ambient space whose
positiveness would give a contradiction. Recently this result was extended by G. Liu in
[Liu13] (see Theorem 2) who gets the conclusion that a contractible 3-manifold cannot carry
a complete Riemannian metric with non negative Ricci curvature unless it is R3. The
next step brings us to the article by M. Gromov and B. Lawson, [GL83]. Particularly to
the corollary of the main theorem of their chapter 10, stated above as Corollary 2.3. One
consequence is that a contractible 3-manifold cannot carry a complete metric with uniformly
positive scalar curvature unless it is diffeomorphic to R3; indeed, a result by C. H. Edwards
([Edw63]) combined with the proof of the Poincaré conjecture shows that a contractible
open 3-manifold which is simply-connected at infinity is homeomorphic to R3. Let us recall
that R3 does carry a complete metric of uniformly positive scalar curvature.

Results in the same spirit then appear in [CWY10] where it is proved, in particular, that

Theorem 3.2 ([CWY10], Theorem 4.4). If a non compact contractible 3-manifold M has a
complete Riemannian metric with uniformly positive scalar curvature outside a compact set,
then it is homeomorphic to R3.

Then, a striking result recently announced by Jian Wang gives a definitive answer.

Theorem 3.3 ([Wan21]). A contractible open 3-manifold which admits a complete metric
of non negative scalar curvature is homeomorphic (hence diffeomorphic) to R3.

In [Wan21] the above statement is made with the assumption that the scalar curvature is
positive. However a nice argument by J. Kazdan then allows Jian Wang to state the result
as above. Theorem 3.3 is a follow-up of two previous versions solving the same question for
subfamilies of contractible open 3-manifolds: see [Wan19a] for the genus 1 case and [Wan19b]
for the case when the fundamental group at infinity is trivial. It is worth recalling that R3

does carry a metric with positive scalar curvature and therefore Theorem 3.3 appears as a
beautiful rigidity result.

The method of proof pertains to the same philosophy than in [SY82] and [GL83]. Let
us describe some of the ideas contained in the proof of 3.3, in the case where the scalar
curvature is supposed to be positive and the space is a genus one contractible manifold.

We call X the open contractible 3-manifold. With the notations used to define genus
one 3-manifolds, let us consider a meridian γ ⊂ ∂N̄k (where N̄k is the closure of Nk), this
is an embedded curve which can be filled by a minimizing disk Dk. Let us assume, for a
while, that this disk is included in N̄k. Jian Wang shows that the number of connected
components of Dk ∩ N2 intersecting N1 goes to infinity with k. Now, the fact that Dk
is included in N̄k is ensured when ∂N̄k is mean convex and one can always deform the
Riemannian metric in a small neighbourhood of ∂N̄k so that it becomes mean convex. The
disk Dk is then included in N̄k and is minimal for this new metric which coincides with
the original one in, say, N̄k−1 ⊂ Nk and this is sufficient for the rest of the argument.
Now, let us assume that the sequence Dk converges to a complete minimal surface Σ ⊂ X
which, in that situation, is stable. By the result of Schoen and Yau (see [SY82]) this surface
is homeomorphic to R2 and the previous argument shows that the number of connected
components of Σ∩N2 intersecting N1 is infinite. By a result of Meeks and Yau (see [MY80]),
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each of these components contains a definite amount of area. The contradiction comes from
a nice extrinsic version of Cohn-Vossen’s Inequality, proved by Jian Wang,∫

Σ

κ(x)dv(x) ≤ 2π ,

where κ(x) is the scalar curvature of X at x and dv is the volume element of the induced
metric on Σ. The original Cohn-Vossen’s Inequality is the same, for a complete surface with
positive curvature, where κ is replaced by the intrinsic curvature. Since on N2 the scalar
curvature of X is bounded away from zero, by assumption, this inequality is in contradiction
with the infinite area contained in N2. Now, this is by far too naive; indeed, in general Dk
does not converge to a complete stable Σ but, according to Colding and Minicozzi (see
[CM11]), to a lamination with complete stable minimal leaves. A variation of the above
argument, much more involved, leads to the same contradiction with the extrinsic Cohn-
Vossen’s Inequality. As mentioned before, in the case when the scalar curvature is non
negative, a trick due to J. Kazdan (see [Kaz82]) allows to deform it into a metric with
positive scalar curvature. Let us point out that this beautiful and efficient version of Cohn-
Vossen’s Inequality relies on a smart use of the Jacobi operator for a stable minimal surface
(see Theorem 5.10 in [Wan19a]).

In the general case, when the open contractible manifold is not genus one, we get again a
lamination whose leaves are complete stable minimal surfaces Σ homeomorphic to R2 which
we call stable planes. The properties of these planes and the way they intersect the Nk’s are
central in the proofs. The proof of Theorem 3.3 rely on using these stable planes, chosen
with specific properties and which are separating X in two connected components, to do
some sort of plane surgery. Jian wang shows the existence of an uttermost plane L so that,
at least, one side of X \L, say X ′, has trivial fundamental group. We could then apply the
proof described in [Wan19b] except that X ′ has a boundary. This causes lots of difficulties,
for example the stable minimal laminations that one obtains by taking limits of meridian
disks may intersect L. One has to show that, somehow, L acts as a barrier. It is not the
point of this text to go further into the technical issues but we insist on the fact that it is a
tour de force.

4 Some Questions

This short account of the Riemannian geometry of some open and contractible 3-manifolds
is focused on the positive or non negative scalar curvature. Despite these restrictions it is
quite difficult to prove results and the techniques involved are definitely sophisticated.

We did not address any issue concerning a metric whose curvature is bounded above.
It is clear, thanks to Cartan-Hadamard Theorem, that any contractible 3-manifold cannot
carry a complete metric with non positive sectional curvature unless it is diffeomorphic
to R3. It turns out that this statement is true even if we relax the regularity. More
precisely, D. Rolfsen proved in [Rol70] that a complete open CAT(0) manifold of dimension
3 is homeomorphic to R3. Hence, Whitehead’s type manifolds cannot carry any complete
CAT(0) metric. Notice that the above result by D. Rolfsen is not any more true in higher
dimension (see [DJ91]).

In recent years we have witnessed a huge activity around synthetic versions of the notion
of Ricci curvature bounded below. New families of metric spaces have been described, such
as CD(κ,N) spaces (see [LV09]), and lots of results show that they share plenty of nice
properties with manifolds whose (standard) Ricci curvature is bounded below by κ and
whose dimension is (bounded above by) N . These notions might not see the details of the
local geometry, they rather focus on the geometry in the large; however, let us recall that
the assumption in Theorem 3.2 is only at infinity, more precisely outside a compact set.
Then, in view of Liu’s result (see [Liu13]), we are led to ask the following question.

Question 4.1. Does the Whitehead manifold (or any contractible open 3-manifold not home-
omorphic to R3) carry a geodesically complete CD(0, 3) metric ?

One difficulty is that most of these spaces do not have any quotient which is a manifold
or even an orbifold. We then loose all the tools that group actions could bring into play.

Now, going to dimension 4, there is a family of open spaces which plays a role comparable
to the contractible open 3-manifolds, there are the differentiable structures on R4. To our
knowledge very little is known about their possible Riemannian geometries and we could
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dream of a result that would characterise the standard differentiable structure on R4 by some
of its geometric properties. Some of these exotic R4’s, the so-called large exotic R4, are
related to special knots in S3 (those which are topologically slice but not smoothly slice, see
the discussion here). It seems possible and plausible that minimal surfaces or hypersurfaces
theory will play a role in this 4-dimensional context too.

What about a synthetic version of the non negative scalar curvature ? Some recent works
by M. Gromov seem to pave the way towards such a notion; the interested reader is referred
to [Gro18b, Gro18a] and the preprints posted here. Other interesting articles along these
lines are [Li20a, Li20b], by Chao Li. This is a very challenging and exciting question.

5 The Poincaré Conjecture

The starting point of our interest is the “proof ” of the Poincaré conjecture given in 1934
by J. H. C. Whitehead in the article [Whi34]. Roughly speaking the scheme is the following
(see here):

• let X be a simply connected closed 3-manifold then, for any point p ∈ X, X \ {p} is
contractible (by simple considerations left to the reader).

• The only contractible 3-manifold is R3.

• The one-point compactification of R3 is S3.

In 1935, he realised that the second step was wrong (see [Whi35b]) and constructed in
[Whi35a] the first contractible 3-manifold which is not homeomorphic to R3, the Whitehead
manifold which we have denoted by Wh in the previous sections.

Let us recall that Henri Poincaré never stated this problem as a conjecture but as a
question and this distinction is important since, from 1904 until the 70’s, there were as
many (wrong) proofs of the “conjecture” as (wrong) counter-examples provided. Another
similar question, but related to open manifolds, could have been asked as follows: is an open
manifold which has the same homotopy as R3, that is which is contractible, homeomorphic
to R3 ? The Whitehead manifold is a counter-example to this statement and the answer to
this question is negative. Nevertheless, the discovery of 3-manifolds which are contractible
but not homeomorphic to R3, such as the Whitehead manifold, opened a wide playground
for topologists and geometers.

The manifold Wh is a simple manifold, namely an open subset of S3 (hence of R3)
whose complement is a closed set, called the Whitehead continuum, which looks locally like
a product of an interval by a Cantor set. Now, such manifolds, not homeomorphic to R3 but
nevertheless contractible, turn out to be plentiful, as was shown by McMillan (see [McM62]).
In fact there exist uncountably many such manifolds whereas there are only a countable
family of closed topological manifolds. In [McM61] (Theorem 1, p. 511), McMillan showed
that all contractible open 3-manifolds satisfying an extra topological assumption are an
increasing union of handle bodies, generalising the genus one construction. The assumption
that had to be satisfied is that each compact subset of the 3-manifolds considered can be
embedded in the 3-sphere S3. Such a 3-manifold was called a W-space. This assumption
was dictated by the fact that the Poincaré conjecture was not settled and is now useless.
Notice also that X \ {p} has a topological boundary at infinity which is homeomorphic to
S2 (the boundary of a ball centred at p), which is clearly not the case for, at least, the
Whitehead manifold. Many other nice properties can be proved and the reader is referred
to the literature. Finally, it would be nice to have a “proof ” along the lines suggested by
Whitehead but, at the moment, an idea is still missing.

A general picture of the world of closed 3-manifolds was given by W. Thurston in the 70’s
and is known as Thurston’s geometrization conjecture (see [Thu97] and the post-Perelman
literature). It is a conjectural description of all closed 3-manifolds and the way to build or
decompose them nicely, which yields the Poincaré conjecture as a corollary. The picture is so
clear and so nice that the attempts to publish counter-examples to the Poincaré conjecture
(almost) stopped. In any case it took then less than 30 years to get G. Perelman’s proof of
Thurston’s Conjecture (see [Per02, Per03b, Per03a]) developing a technique introduced by
R. Hamilton in [Ham82].

The beautiful contribution by Thurston is to decompose the closed 3-manifolds into
pieces carrying each a very specific Riemannian geometry, like the case of closed surfaces
which are either spherical, flat or hyperbolic but with more (in fact 8) possibilities. Now,
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what could be a Geometrization conjecture for open 3-manifolds ? There is little hope to
be able to state a reasonable conjecture. For example, the starting point of Thurston’s
Geometrization Conjecture are the Kneser-Milnor and the Jaco-Shalen and Johannson de-
compositions of closed 3-manifolds none of which is true for open manifolds (see [ST89] and
[Mai08]). Therefore, the only sensible thing to do is to work out examples and, in this spirit,
the purpose of the previous sections is to describe an attempt to understand the geometry
of the family of contractible open 3-manifolds.
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